
Int J Software Informatics, Vol.XX, No.XX, XXXXXX 20XX, pp. 1–000 E-mail: ijsi@iscas.ac.cn
International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org
c©20XX by Institute of Software, Chinese Academy of Sciences. All rights reserved.Tel: +86-10-62661040

Fault-based Conformance Testing in Practice

Martin Weiglhofer and Bernhard Aichernig and Franz Wotawa

Institute for Software Technology - Graz University of Technology

Inffeldgasse 16b/II - 8010 Graz - Austria

Abstract Conforming to protocol specifications is a critical issue in modern distributed

software systems. Nowadays, complex service infrastructures, such as Voice-over-IP systems,

are usually built by combining components of different vendors. If the components do not

correctly implement the various protocol specifications, failures will certainly occur. In the

case of emergency calls this may be even life-threatening. Functional black-box conformance

testing, where one checks the conformance of the implemented protocol to a specification

becomes therefore a major issue. In this work, we report on our experiences and findings when

applying fault-based conformance testing to an industrial application. Besides a discussion

on modeling and simplifications we present a technique that prevents an application from

implementing particular faults. Faults are modeled at the level of the specification. We show

how such a technique can be adapted to specifications with large state spaces and present

results obtained when applying our technique to the Session Initiation Protocol and to the

Conference Protocol. Finally, we compare our results to random and scenario based testing.

Key words: fault-based testing, mutation testing, input-output conformance, ioco

1 Introduction

Validation and verification is an important task in the development of safety-critical
and highly available software systems. Modern distributed systems often rely on the
communication of standardized protocols implemented by different vendors. To ensure
a proper cooperation of the different implementations they all must conform to the
protocol specification. That is, one needs to check the conformance of the observable
behavior of implementations. By considering the implementation as a black-box, i.e.
without any access to the source code, one can validate the observable behavior with
respect to a specification. Functional black-box testing is the method of choice for
such end-to-end testing.

However, testing if conducted thoroughly and systematic is a rather tedious and
time-consuming task. A formal notion of conformance and mature research prototypes
suggest the application of formal methods for automatic test case generation. However,
in practice there are still some challenges and issues that need to be considered:

Test case selection The early work on formal conformance testing in the area of
distributed systems was mainly concerned with the soundness and completeness
of the testing theory. Since the models were finite labeled transition systems, the
problem of how to select a manageable subset out of the exhaustive test set was not

‡ Corresponding author: Martin Weiglhofer, Institute for Software Technology, Graz University of
Technology, Inffeldgasse 16b/II, 8010 Graz, Austria, e-mail: weiglhofer@ist.tugraz.at.

2 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

a major concern. However, in practice time and resources for testing are usually
very limited. Thus, there is a need for selecting a proper subset of test cases.

Identifying test purposes Test purposes, i.e. formalized test objectives, have been
introduced to allow efficient test case generation for large specifications. Unfor-
tunately, this still leaves the tester with the task of writing test purposes, which
might turn out to be rather difficult if thorough testing is required. For example,
du Bousquet et al. [dBRS+00] report that even after ten hours of manual test pur-
pose design they failed to find a set of test purposes that would detect all mutants
of a given implementation.
In our approach, we want to support the tester in formalizing test purposes, by
turning his focus on possible faults. Possible faults can be anticipated by inspect-
ing a specification, by using domain knowledge, or by heuristic fault injection
operators. In all cases, the fault is modeled at the specification level by altering
the specification syntactically. We call this altered version a mutant. The idea, is
to generate test cases that would find such faults in the implementation.

Equivalent mutants A common problem with this approach is known as the Equiv-
alent Mutant Problem. Not all mutations represent actual faults that can be ob-
served at the interface level. Thus, no test case exists that can distinguish the orig-
inal from such an equivalent mutant. On the specification level, equivalence/pre-
order checkers can be used to eliminate such equivalent mutants. The problem
is which equivalence/preorder relation is appropriate for our purposes. Once, the
relation is fixed, the problem is theoretically solved.

Applicability to industrial specifications In order to detect equivalent mutants
one needs to compare the complete state spaces of the mutant and the original
specification. Due to time and resource limits this is often infeasible for industrial
specification. However, equivalent mutants do not lead to useful test cases because
they cannot be distinguished from the specification. Test cases derived from such
mutants do not improve test suites. This paper presents an approach applicable to
large specifications while guaranteeing that no redundant test cases for equivalent
mutants are generated.

Automated test case generation The technique should automatically generate
test cases. Many use the counter examples (or witnesses) produced by a model
checker as test cases. A counter example is not a test case in the traditional sense.
A test case should provide the stimuli and the responses for a system. However, a
counterexample exemplifies only one possible choice of computation (a path). In
case of non-determinism involved this is not sufficient for a test case, since a test
case should predict and take care of all possible responses, as well as reject wrong
responses.

This paper presents a fully automated, fault-based, practical approach for test
case selection based on lotos specifications. The presented approach focuses on sim-
ple faults on the specification’s level. Given a specification, such faults are inserted
automatically into the specification. Faulty specifications are called mutants. Note
that there is only one fault per mutant. A conformance check between a faulty speci-
fication and the original specification leads to a (linear) counterexample if the mutant
does not conform to the specification. Such a linear counterexample is not a valid test

Fault-based Conformance Testing in Practice 3

case for non-deterministic systems. Thus, we use this counterexample as a high-level
description of the testing goal, i.e. as a test purpose. The generated test purpose al-
lows one the use of established tools for deriving test cases based on test purposes,
e.g. tgv [JJ05], samstag [GHN93], or Microsoft’s SpecExplorer [VCG+08]. The
presented approach offers the advantages of mutation based test selection strategies
together with the efficiency of test purpose based test derivation algorithms.

This paper is based on our previous work [AD06, APWW07a, APWW07b, AWW08,
WW08a, WW08b], which it extends with:

• Summing up our experiences of modeling and fault-based testing on industrial
applications,

• a detailed discussion of formalizing the Session Initiation Protocol (SIP) in terms
of a lotos specification,

• a new approach for handling specifications with large, industrial scale, state spaces,
• new experimental results showing the practicability when applying the presented

approach to the Session Initiation Protocol,
• and results obtained by applying our fault-based testing technique to an additional

protocol specification, the Conference Protocol [TPHT96].

Case Study Our main application domain is testing in the context of Voice-over-IP.
One elementary protocol within the Voice-over-IP landscape is the Session Initiation
Protocol.

The Session Initiation Protocol (SIP) [RSC+02] handles communication sessions
between two end points. The focus of SIP is the signaling part of a communication
session independent of the used media type between two end points. More precisely,
SIP provides communication mechanisms for user management and for session man-
agement. User management comprises the determination of the location of the end
system and the determination of the availability of the user. Session management
includes the establishment of sessions, transfer of sessions, termination of sessions,
and modification of session parameters. SIP defines various entities that are used
within a SIP network. One of these entities is the Registrar, which is responsible for
maintaining location information of users. An example call flow of the registration
process is shown in Figure 1. In this example, Bob tries to register his current device
as end point for his address Bob@home.com. Because the server needs authentication,
it returns “401 Unauthorized”. This message contains a digest which must be used
to re-send the register request. The second request contains the digest and the user’s
authentication credentials, and the Registrar accepts it and answers with “200 OK”.
For a full description of SIP we refer to [RSC+02].

The SIP Registrar will serve as a running example in this paper in order to discuss
various aspects of our approach.

This paper is organized as follows. Section 2 gives a brief overview of formal con-
formance testing, including an instantiation of this formal testing framework based on
labeled transition systems and an introduction to input-output conformance testing.
Section 3 reviews the lotos specification language, including an example specification
based on parts of the Session Initiation Protocol. Furthermore, Section 3 discusses the

4 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

Fig. 1. Simple Call-Flow of the registration process.

need and the usage of simplifications during modeling. Section 4 shows how to apply
fault-based conformance testing to industrial scale lotos specifications, including
mutation operators for lotos specifications. Furthermore, this section summarizes
our approach for efficient on-the-fly input-output conformance checking and extends
our previous work by introducing bounded ioco. We applied our technique to two
different specifications. Section 5 presents the obtained results and compares the ap-
proach presented in this paper with other test case selection strategies. We review
related work in Section 6 and conclude in Section 7.

2 Formal Conformance Testing

An overall framework of formal conformance testing has been proposed in [IJW97,
HHT96]. The central element within this conformance testing framework is the def-
inition of what is a correct implementation of a formal specification. This defines a
conformance relation. To define such conformance relations it is assumed that there
exists a formal specification of the required behavior, i.e., s ∈ SPECS. The set
SPECS is the set of all possible specifications that can be expressed using a partic-
ular specification language.

In addition to the specification, there is the implementation under test IUT ∈
IMPS, which denotes the real, physical implementation. IMPS is the universe of all
possible implementations. We want to formally reason about the correctness of the
concrete implementation IUT with respect to the specification s. Thus, as a common
testing hypothesis [Tre92, Ber91] it is assumed that every implementation can be
modeled by a formal object mIUT ∈ MODS. MODS denotes the set of all models.
Note that it is not assumed that this model is known, only its existence is required.

Conformance is expressed as a relation between formal models of implementations
and specifications, i.e.,

imp ⊆MODS × SPECS
As each modelmIUT ∈MODS represents a concrete implementation iut ∈ IMPS

a conformance relation imp allows one to formally reason about the correctness of
the iut with respect to a specification s ∈ SPECS.

By applying inputs to the implementation and observing outputs, i.e. by test-
ing, one wants to find non-conforming implementations. The universe of test cases is

Fault-based Conformance Testing in Practice 5

given by TESTS. Executing a test case t ∈ TESTS on an implementation leads to
observations obs ⊆ OBS, where OBS denotes the universe of observations.

Formally, test case execution is modeled by a function exec : TESTS×MODS →
OBS. Given a test case t ∈ TESTS and a model of an implementation m ∈MODS,
exec(t,m) gives the observations in OBS that result from executing t on the model
m.

Finally, there is a function verd that assigns a verdict, i.e. pass or fail, to each
observation: verd : OBS → {pass, fail}. An implementation IUT ∈ IMPS passes a
test suite TS ⊆ TESTS if test execution of all its test cases leads to an observation for
which verd evaluates to pass. In practice, there is a third verdict, i.e. inconclusive, that
is used for judging test executions [JJ05]. This verdict is used if the implementation
has not done anything wrong but the responses of the IUT did not satisfy the test
objective.

There are different types of models and conformance relations that can be seen
as an instantiation of this formal conformance testing framework. For example, when
one uses testing techniques based on finite state machines (FSMs) [LY96, HBH08]
then MODS and SPECS are usually some sorts of FSMs. Usually, the considered
conformance relation is some relation between the states of the implementation and
the states of the specification (e.g. isomorphism).

Another instantiation of this formal testing framework uses labeled transition
systems for representing specifications and models of implementations. There is a
broad range of relations that have been defined for labeled transition systems, e.g.
bisimulation equivalence [Mil90], failure equivalence and preorder [Hoa85], and refusal
testing [Phi87], just to name a few.

One commonly used conformance relation is the input-output conformance re-
lation (ioco) [Tre96]. This relation is designed for functional black box testing of
systems with inputs and outputs. Inputs are under the control of the environment,
i.e. the tester, while outputs are under the control of the implementation under test.
ioco allows one to use incomplete specifications. The specifications and the imple-
mentations can be non-deterministic. Furthermore, the models used for ioco allow
arbitrary interleaving of input and output. Finally, ioco considers the absence of out-
puts as error if this behavior is not allowed by the specification. These properties
make input-output conformance testing applicable to practical applications.

2.1 Input-Output Conformance

The input-output conformance (ioco) relation [Tre96] expresses the conformance of
implementations to their specifications where both are represented as labeled transi-
tion systems (LTS). Because we distinguish between inputs and outputs, the alphabet
of an LTS is partitioned into inputs and outputs.

Definition 1 (LTS with inputs and outputs). A labeled transition system with
inputs and outputs is a tuple M = (Q,L ∪ {τ},→, q0), where Q is a countable, non-
empty set of states, L = LI ∪ LU a finite alphabet, partitioned into two disjoint
sets, where LI and LU are input and output alphabets, respectively. τ 6∈ L is an
unobservable action, →⊆ Q× (L ∪ {τ})×Q is the transition relation, and q0 ∈ Q is
the initial state.

6 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

a0

aa

a1

a2

?1

!c

b0

bb

b1 b2

b3 b4

?1 ?2

!c !t

c0

cc

c2c1

c4c3

c5

?1

?1

!t

?1

!c

d0

dd

d2d1

d4d3

d6d5

?1

?1

!t!c

?1

!c

Fig. 2. Four labeled transition systems.

An LTS is deterministic if for any sequence of actions starting at the initial state
there is at most one successor state.

We use the following common notations:

Definition 2. Given a labeled transition system M = (Q,L ∪ {τ},→, q0) and let
q, q′, qi ∈ Q, a(i) ∈ L and σ ∈ L∗.

q
a→ q′ =df (q, a, q′) ∈→
q
a→ =df ∃q′ • (q, a, q′) ∈→

q
a

6→ =df 6∃q′ • (q, a, q′) ∈→
q

ε⇒ q′ =df (q = q′) ∨ ∃q0, . . . , qn • (q = q0
τ→ q1 ∧ · · · ∧ qn−1

τ→ qn = q′)

q
a⇒ q′ =df ∃q1, q2 • q ε⇒ q1

a→ q2
ε⇒ q′

q
a1...an⇒ q′ =df ∃q0, . . . , qn • q = q0

a1⇒ q1 . . . qn−1
an⇒ qn = q′

q
σ⇒ =df ∃q′ • q σ⇒ q′

We use init(q) to denote the actions enabled in state q. Furthermore, we denote
the set of states reachable by a particular trace σ by q after σ. More precisely,

Definition 3. Given an LTS M = (Q,L ∪ {τ},→, q0) and q ∈ Q,S ⊆ Q, a ∈ L, and
σ ∈ L∗:

init(q) =df {a|q a→}
init(S) =df

⋃
q∈S

init(q)

q after σ =df {q′|q σ⇒ q′}
S after σ =df

⋃
q∈S

(q after σ)

Note that we will not always distinguish between an LTS M and its initial state
and write M ⇒ instead of q0 ⇒.

Example 1. Figure 2 shows four labeled transition systems representing a coffee/tee
(c/t) vending machine. The input and output alphabets are given by LI = {1, 2} and
by LU = {c, t}, i.e. one can insert one and two unit coins and the machine outputs

Fault-based Conformance Testing in Practice 7

e0

ee

e1

e2

?1

!c

δ

δ

f0

ff

f1 f2

f3 f4

?1 ?2

!c !t

δ

δδ

g0

gg

g2g1

g4g3

g5

?1

?1

!t

?1

!c

δ

δ

δ

δ

h0

hh

h2h1

h4h3

h5 h6

?1

?1

!t!c

?1

!c

δ

δ

δ

δ δ

Fig. 3. δ-annotated labeled transition systems.

coffee or tea. We denote input actions by the prefix ”?”, while output actions have
the prefix ”!”. For example, a0 after 〈?1〉 = {a1} while c0 after 〈?1〉 = {c1, c2}.

The ioco conformance relation employs the idea of observable quiescence. That
is, it is assumed that a special action, i.e. δ, is enabled in the case where the labeled
transition system does not provide any output action. These δ-labeled transitions
allow to detect implementations that do not provide outputs while the specification
requires some output (see Example 4: ¬(k ioco e)). The input output conformance
relation identifies quiescent states as follows: A state q of a labeled transition system
is quiescent if neither an output action nor an internal action (τ) is enabled in q.

Definition 4. Let M be a labeled transition system M = (Q,L ∪ {τ},→, q0), with
L = LI ∪ LU , such that LI ∩ LU = ∅, then a state q ∈ Q is quiescent, denoted by

δ(q), if ∀a ∈ LU ∪ {τ} • q
a

6→.

By adding δ-labeled transitions to LTSs the quiescence symbol can be used as any
other action.

Definition 5. Let M = (Q,L ∪ {τ},→, q0) be an LTS then Mδ = (Q,L ∪ {τ, δ},→
∪ →δ, q0) where →δ=df {q δ−→ q|q ∈ Q ∧ δ(q)}. The suspension traces of Mδ are
Straces(Mδ) =df {σ ∈ (L ∪ {δ})∗|q0 σ=⇒}.

Unless otherwise indicated, from now on we include δ in the transition relation of
LTSs, i.e., we use Mδ instead of M .

The class of labeled transition systems with inputs LI and outputs in LU (and with
quiescence) is denoted by LT S(LI , LU) [Tre96]. This is the universe of specifications,
i.e. SPECS = LT S(LI , LU).

Example 2. Figure 3 shows the δ-annotated LTSs for the LTSs illustrated in Figure 2.
For example, the states g0, g2, g3, and g5 are quiescent because they do not have
outputs nor τ actions.

Models for implementations in terms of the input-output conformance relation
are input-output transition systems (IOTS). Recall that it is not assumed that this
LTS is known in advance, but only its existence is required. Implementations are not
allowed to refuse inputs, i.e. implementations are assumed to be input-enabled and
so are their models. Note that specifications do not have to be input-enabled.

8 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

i0

ii

i1

i2

?1

!c
δ

δ
?2

?1
?2

?1 ?2

j0

jj

j1 j2

j3 j4

?1 ?2

!c !t

δ

δ δ

?1
?2

?1
?2

?1 ?2?1 ?2

k0

kk

k2k1

k4k3

k5

?1

?1

!t

?1

!c

δ

δ

δ

δ

?2

?2?1
?2

?1
?2

?1 ?2

?1 ?2

l0

ll

l2l1

l4l3

l5 l6

?1

?1

!c
!t

?1

!c

δ

δ

δ

δ δ

?2

?2?1
?2

?1
?2

?1 ?2

?1 ?2 ?1 ?2
Fig. 4. Input-output transition systems.

Definition 6 (IOTS). An input-output transition system is an LTS M = (Q,L ∪
{τ},→, q0), with L = LI ∪ LU , such that LI ∩ LU = ∅, where all input actions are
enabled (possibly preceded by τ -transitions) in all states: ∀a ∈ LI ,∀q ∈ Q • q a=⇒.

Note that this sort of input-enabledness, i.e. where τ -labeled transitions may pre-
cede input actions (∀a ∈ LI ,∀q ∈ Q • q a=⇒), is called weak input-enabledness. Con-
trary, strong input-enabledness requires that all input actions are enabled in all states,
i.e. ∀a ∈ LI ,∀q ∈ Q • q a−→.

The class of IOTSs with inputs LI and outputs in LU is given by IOT S(LI , LU) ⊆
LT S(LI , LU) [Tre96]. As IOTSs are used to formally reason about implementa-
tions, input-output transition systems are our implementation models, i.e. MODS =
IOT S(LI , LU) when instantiating the formal framework of conformance testing.

Example 3. Figure 4 depicts the IOTSs derived from the LTSs of Figure 3.

We use out(q) to denote the outputs at a state q.

Definition 7. Given a labeled transition system M = (Q,L ∪ {τ, δ},→, q0), with
L = LI ∪ LU , such that LI ∩ LU = ∅, let q ∈ Q and S ⊆ Q, then

out(q) =df {a ∈ LU | q a→} ∪ {δ|δ(q)}
out(S) =df

⋃
q∈S

(out(q))

Informally, the input-output conformance relation states that an implementation
under test (IUT) conforms to a specification S iff the outputs of the IUT are outputs
of S after an arbitrary suspension trace of S. Formally, ioco is defined as follows:

Definition 8 (Input-output conformance). Given a set of inputs LI and a set of
outputs LU then ioco ⊆ IOT S(LI , LU)× LT S(LI , LU) is defined as:

IUT ioco S =df ∀σ ∈ Straces(S) • out(IUT after σ) ⊆ out(S after σ)

Example 4. Consider the LTSs of Figure 3 to be specifications and let the IOTSs
of Figure 4 be implementations. Then we have i ioco e and j ioco f . We also have
j ioco e because 〈?2〉 is not a trace of e. Thus, this branch is not relevant with respect

Fault-based Conformance Testing in Practice 9

T0

TT

T1 fail fail

T2

fail pass fail

θ ?t ?c

!1

?t ?c θ

∗ ∗

∗ ∗ ∗

Fig. 5. Example of a test case.

to ioco. k does not conform to e, i.e. ¬(k ioco e), because out(k after ?1) = {!c, δ} 6⊆
{!c} = out(e after ?1). Furthermore ¬(l ioco e) because out(l after ?1) = {!c, δ} 6⊆
{!c} = out(e after ?1). Due to the use of suspension traces we also have ¬(l ioco k)
because out(l after 〈?1, δ, ?1〉) = {!c, !t} 6⊆ {!t} = out(k after 〈?1, δ, ?1〉).

2.2 Test Cases and Test Case Execution

By the use of a particular set of test cases one wants to test if a given implementation
conforms to its specification. In the ioco framework a test case is a labeled transition
system [Tre96]. In a test case the observation of δ is implemented by θ, i.e., test cases
use θ, to observe δ. This is because, in practice δ is a timeout, which is not a normal
event that can be observed. θ can be seen as the timer used to observe the occurrence
of quiescence, i.e. the occurrence of δ. Note that inputs of a test case are outputs of
an IUT and vice versa.

Definition 9 (Test case). A test case T is an LTS T = (Q,L ∪ {θ},→, q0), with
L = LI ∪ LU , and LI ∩ LU = ∅, such that (1) T is deterministic and has finite
behavior; (2) Q contains sink states pass and fail (in pass and fail states a test case
synchronizes on any action); and (3) for any state q ∈ Q where q 6= pass and q 6= fail,
either init(q) = {a} for some a ∈ LU , or init(q) = LI ∪ {θ}.
T EST (LU , LI) denotes the class of test cases over LU and LI , i.e. TESTS =

T EST (LU , LI). A test suite is a set of test cases.

Example 5. Figure 5 shows a test case satisfying Definition 9. In a state either
inputs (outputs of the IUT) and the θ event are enabled, or an output is enabled.
The ∗-labeled transitions in pass and fail states denote that in such states a test case
synchronizes on any actions.

Running a test case t ∈ T EST (LU , LI) against an implementation under test
i ∈ IOT S(LI , LU) is similar to the parallel composition of the test case and the
implementation. The only difference is that θ is used to observe δ. Formally, running
t on i is denoted by te|i.
Definition 10 (Synchronous execution). Given a test case t ∈ T EST (LU , LI),
an IUT i ∈ IOT S(LI , LU), and let a ∈ LU ∪ LI , then the synchronous test case

10 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

execution operator e| has the operational semantics defined by the following inference
rules:

i
τ−→ i′ t

a−→ t′, i a−→ i′ t
θ−→ t′, i δ−→

te|i τ−→ te|i′ te|i a−→ t′e|i′ te|i θ−→ t′e|i

A test run can always continue, i.e. there are no deadlocks. This is because a test
case synchronizes on any action when a verdict state is reached. Formally, a test run
is a trace of te|i leading to a verdict state (pass, fail) of t:

Definition 11 (Test run). Given a test case t ∈ T EST (LU , LI) and an IUT i ∈
IOT S(LI , LU), then a test run σ ∈ LU ∪ LI ∪ {θ} is given by: ∃i′ • te|i σ=⇒ passe|i′
or ∃i′ • te|i σ=⇒ faile|i′.

An implementation i passes a test case iff all possible test runs lead to pass verdict
states of the test case:

Definition 12 (Passing). Given an implementation i ∈ IOT S(LI , LU) and a test

case t ∈ T EST (LU , LI), then i passes t ⇔df ∀σ ∈ (LI ∪ LU ∪ θ)∗ ,∀i′ • te|i
σ

6=⇒
faile|i′

Example 6. Running the test case of Figure 5 on the IUT i of Figure 4 leads to the
following test runs:

T0e|i0 〈θ,!1,?c〉
=⇒ passe|i2

T0e|i0 〈θ,!1,?c,θ〉=⇒ passe|i2
T0e|i0 〈θ,!1,?c,θ,θ〉=⇒ passe|i2

. . .

Because all possible test runs lead to pass, we have i passes T .

Due to the structure of test cases, a test case may block outputs of an IUT. If a test
case likes to provide a stimuli (input to the implementation) but the implementation
opts for an output, the test case rules [PY02]. To overcome this issue, test cases
have been made input-enabled recently [Tre08]. Input-enabled test cases do not block
outputs of IUTs. However, such test cases comprise non-deterministic choices between
inputs and outputs.

2.3 Test Case Generation

Among others, there are two test case generation strategies that have turned out
to be well applicable in practice. First, there is the approach of selecting test cases
randomly [Tre96]. Second, test cases are selected based on so called test purposes. A
test purpose can be seen as a formal specification of a test case. Tools like samstag

[GHN93], tgv [JJ05] and Microsoft’s SpecExplorer [VCG+08] use test purposes
for test generation. Our approach relies on tgv, where test purposes are defined as
LTSs:

Definition 13 (Test Purpose). Given a specification S in the form of an LTS, a

Fault-based Conformance Testing in Practice 11

test purpose is a deterministic LTS TP = (Q,L,→, q0), equipped with two sets of
trap states: AcceptTP defines pass verdicts, and RefuseTP limits the exploration of
the graph S. Furthermore, TP is complete (i.e., it allows all actions in each state).

According to [JJ05] test synthesis within tgv is conducted as follows: Given a
test purpose TP and a specification S, tgv calculates the synchronous product SP =
S×TP. The construction of SP is stopped in Accept and Refuse states as subsequent
behaviors are not relevant to the test purpose. Then tgv marks all states where
neither an output nor a τ -labeled transition is possible by adding δ labeled self-loops
to these states (c.f. Definition 4). Before a test case is extracted, tgv obtains the
observable behavior SPV IS by making SP deterministic. Note that SPV IS does not
contain any τ -labeled transitions.

A test case derived by tgv is controllable, i.e., it does not have to choose between
sending different stimuli or between waiting for responses and sending stimuli. This
is achieved by selecting traces from SPV IS that lead to Accept states and pruning
edges that violate the controllability property. Finally, the states of the test case are
annotated with the verdicts pass, fail and inconclusive. Inconclusive verdicts denote
that neither a pass nor a fail verdict has been reached but the implementation has
chosen a trace that is not included in the traces selected by the test purpose.

Although test purposes are complete, i.e. they allow actions in each state, the
derived test cases satisfy Definition 9. That is, a test case either provides a stimulus
to the implementation or it accepts all possible responses from the implementation
under test.

As a major strength of tgv, the test case synthesis is conducted on-the-fly: parts
of S, SP, and SPV IS are constructed only when needed. In practice, this allows one
to apply tgv to large specifications.

3 Modeling using lotos

Labeled transition systems are suitable models for representing test purposes, test
cases, specifications, and implementations. However, for modeling large industrial
systems it is impractical to write specifications in terms of labeled transition systems.
Therefore, a specification language is needed having the semantics of labeled tran-
sition systems, but providing a simple syntax for writing large specifications. One
such specification language is lotos, the language of temporal ordering specification
[ISO89].

lotos is an ISO standard[ISO89]. lotos comprises two components: The first
is based on the Calculus of Communication Systems [Mil80] (CCS) and deals with
the behavioral description of a system, which is given in terms of processes, their
behavior, and their interactions. The second component of lotos specifications is
used to describe data structures and value expressions, and is based on the abstract
data type language ACT ONE [EFH83].

The basic elements of a lotos specification are processes with a certain behavior
expressed in terms of actions. An action is an expression over a process’s gates, pos-
sibly equipped with values. Table 1 lists some of the main elements used to compose
the behavior of a process. As listed in this table, an action is basically one of four ex-
pressions. There is the internal action i. There is the action without any parameters,

12 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

Table 1. Excerpt of lotos behavior elements.

Syntax Meaning

i internal action

g action, i.e. a process gate

g !value action offering a value

g ?value:Type action reading a value

action; behavior action followed by a behavior

[guard] -> behavior guarded behavior

behavior1 [] behavior2 choice

behavior1 || behavior2 synchronization

behavior1 ||| behavior2 interleaving

behavior1 |[gate1,..]| behavior2 partial synchronization

behavior1 [> behavior2 disabled by second behavior

behavior1 >> behavior2 first enables second

exit exit

stop stop, inaction

proc[gate,..](val,..) process instantiation

(behavior) grouping

i.e. only the name of a process’ gate. This simply expresses that the process offers
this action for communication. Actions may offer values, i.e. g !value or actions may
read values, i.e. g ?value.

Sequential composition is denoted by action; behavior, i.e. first the action is
offered for communication and then the behavior is executed. The actions within a
guarded behavior are only enabled if the guard evaluates to true.

A choice between two behaviors (behavior1 [] behavior2) expresses that the
very first action of behavior1 and of behavior2 are offered for communication. Once,
one of the offered actions is chosen by the environment the composed process behaves
like behavior1 or behavior2. Basically, [] expresses external choice. Internal choice,
i.e., a choice where a process itself decides on the offered actions, can be implemented
using the special action i. i represents an internal transition, i.e. i results in a τ -labeled
transition within the underlying LTS semantics.

Example 7. Figure 6 illustrates the difference between internal and external choice
in lotos and in the underlying labeled transition systems. The specification and its
LTS shown on the left depict an external choice between the actions a and b. That
is, in state j0 the environment can choose whether to synchronize on a or on b. On
the contrary, the process P2 and its LTS depict an internal choice between a and b.
That is, the system may internally decide to move to state k1 or to state k2. In any
case only one action is offered for communication.

lotos supports three different operators to express the parallel composition be-
tween processes, i.e., ||, |||, and |[...]|. The expression P1||P2 denotes the full
synchronization on all gates of the two composed processes P1 and P2. The behavior
of P1|||P2 is given by the unsynchronized interleaving of the behavior of P1 and of

Fault-based Conformance Testing in Practice 13

process P1[a, b] : exit :=

a; exit [] b; exit

endproc

j0P1P1

j1 j2

a b

process P2[a, b] : exit :=

i; a; exit [] i; b; exit

endproc

k0P2P2

k1 k2

k3 k4

τ τ

a b

Fig. 6. External and internal choice.

the behavior of P2. Finally, P1|[...]|P2 is used to synchronize on a particular subset
of the gates of the two processes. Note that this operator can be used to express the
former two.

The enabling operator (>>) within a lotos specification states that a successful
execution of the first process enables the following behavior block. In contrast to that,
the disabling operator ([>) states that any action from the second behavior disables
the execution of the first behavior. Finally, the behavioral part of lotos supports the
definition of processes (for an example see Figure 6), instantiation of processes and
grouping of behavior.

An abstract data type is given in terms of sorts, operations, and equations.

Example 8. Figure 7 shows the basic elements of data type definitions. This Con-
figuration data type is part of our Session Initiation Protocol Registrar specification
[Wei06] and is used to represent the list of configured users. Entries in this list are
UserRecord-elements. A UserRecord is an abstract type representing a tuple. The
tuple comprises the user identifier (UserId) and a Boolean flag indicating the autho-
rization status of the user. If the flag is true, the user is allowed to modify the entries
stored within the SIP Registrar.

The Configuration data type comprises the basic constructor nilCfg (Line 5),
denoting an empty list, and the three operators addCfgEntry, getCfgEntry, and
isin. isin is an infix operator while the other two operations use a prefix notation.

For example, the signature of the isin operator in Line 8 declares that this op-
erator takes a user identifier (UserId) and a configuration list (Cfg) and returns a
Boolean. The axioms of the isin operation, with the equations identifying Boolean
terms (ofsort Bool), are read as follows: No element is in the empty list (Line 12).
If the given user identifier (uid) is equal to the user identifier (Line 13) of an element
elem, then uid isin addCfgEntry(elem, tail) is true for any remaining list tail.
If the given uid is different to the identifier of the element elem, then the result of
uid isin addCfgEntry(elem, tail) is true if uid is in the rest of the list, i.e. uid
isin tail, and false otherwise (Line 16).

3.1 Modeling the Session Initiation Protocol in lotos

In this section we present parts of our Session Initiation Protocol (SIP) Registrar
specification [Wei06] in order to exemplify the use of lotos.

A SIP Registrar provides its functionality through the maintenance of a state

14 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

1 type Configuration is UserRecord , Boolean

2 sorts

3 Cfg

4 opns

5 nilCfg : -> Cfg

6 addCfgEntry : URec , Cfg -> Cfg

7 getCfgEntry : UserId , Cfg -> URec

8 _isin_ : UserId , Cfg -> Bool

9 eqns

10 forall uid: UserId , elem: URec , tail: Cfg

11 ofsort Bool

12 uid isin nilCfg = false;

13 (uid eq getUId(elem)) =>

14 (uid isin addCfgEntry(elem , tail)) = true;

15 (uid ne getUId(elem)) =>

16 (uid isin addCfgEntry(elem , tail)) = (uid isin tail);

17 ofsort URec

18 getCfgEntry(uid , nilCfg) = newURec (2 of UserId , true);

19 uid eq getUId(elem) =>

20 getCfgEntry(uid , addCfgEntry(elem , tail)) = elem;

21 uid ne getUId(elem) =>

22 getCfgEntry(uid , addCfgEntry(elem , tail)) =

23 getCfgEntry(uid , tail);

24 endtype (* Cfg *)

Fig. 7. A lotos abstract data type definition representing a list of configuration entries for
our specification of a Session Initiation Protocol Registrar.

machine. Basically, this state machine is responsible for retransmission of responses
of the SIP Registrar. Figure 8 shows the so called non-invite server transaction of a
SIP Registrar. We abstracted from nodes and edges drawn in gray since they are not
relevant or hard to consider within a model suited for testing this protocol.

Each REGISTER request is processed by its own state machine. As illustrated
by Figure 8, an initial request is handed over to the transaction’s user (TU), i.e. the
Registrar core. Based on the header fields of the request the Registrar core determines
a proper response and forwards the response to the state machine. Responses in
the Session Initiation Protocol are identified by three digits. Since a Registrar never
generates 1xx responses, our model does not include the gray edge from the Trying-
state to the Proceeding-state. Any other response, i.e.200-699, is forwarded to the
initiator of the request (send response). The state machine then goes to its Completed -
state.

Once, the Completed -state is reached any request (which matches the transaction
handled by this state machine) is answered with the last sent response (self-loop on
the state Completed). After a particular amount of time, the state machine moves to
the Terminated -state and the transaction is destroyed.

Figure 9 shows our lotos formalization of the transaction handling state machine.
The state machine is represented by a single process (serverTransaction). This
process communicates with the transaction user, i.e. the SIP Registrar core, through
the gates from tu and to tu. The gates pin and pout are used for communication with
the environment, i.e. to receive REGISTER requests and to send proper responses.

Since lotos does not include state-variables, the state machine is implemented as
a recursive process where the current state is maintained in a parameter of this process.

Fault-based Conformance Testing in Practice 15

Trying

Request received;
pass to TU

Request received;
pass to TU

Proceeding

Completed Terminated

1xx from TU;
send response

Request;
send response

1xx from TU;
send response

200-699 from
TU; send
response

Request;
send response

Transport Error;
Inform TU

Transport Error;
Inform TU

Timeout

200-699 from TU;
send response

Fig. 8. State machine for handling transactions of a Session Initiation Protocol Registrar
(Source: [RSC+02]).

Every time the process is invoked it checks its current state and reacts according to
Figure 8.

In addition to the current state parameter trans state (Line 2), which may have
the value ts trying, ts completed, or ts terminated, the process takes two further
parameters: branch (Line 3), which is used to identify retransmissions; response
(Line 4), which holds the last sent response.

As indicated by the noexit keyword (Line 4), this server process does not termi-
nate, but continues forever. Thus, as an abstraction we can only have one transaction
state machine. The state machine is never destroyed, but only the relevant parameters
are reset once the terminated state is entered.

If the model of the state machine is in the Terminated -state, it waits to receive
a message and moves on to the Trying state if a message is received. The reception
of REGISTER messages (and some initial validations) is modeled by the process
listenForMessage (Line 7). On successful termination the process listenForMessage
passes the control to the succeeding behavioral block (>> operator). If a valid message
has been received, indicated by the hand to tu variable, then the request is forwarded
to the transaction user (Line 11) and the state machine moves to the Trying-state
(Line 13).

If the state machine is in the Trying-state (Line 23), any response from the trans-
action user (Line 24) is sent to the environment of the Registrar (Line 25). After that
the state machine moves on to the Completed -state (Line 27).

In the Completed -state there is a non-deterministic internal choice between re-
ceiving a retransmission (Lines 32-36) and finally moving to the Terminated -state
(Line 42). This non-deterministic choice is an abstraction for the timeout transition
in the state machine.

Note that this non-deterministic choice is not the only source of non-determinism
within our specification. Another non-deterministic choice within the SIP Registrar
specification deals with user authentication. This is a feature that is not necessarily

16 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

1 process serverTransaction [pin , pout , from_tu , to_tu](

2 trans_state: TransState ,

3 branch: Branch ,

4 response: SipResp) : noexit :=

5

6 [trans_state eq ts_terminated] -> (

7 listenForMessage[pin ,pout ,from_tu ,to_tu](branch ,response) >>

8 accept msg: RegisterMsg , resp: SipResp , hand_to_tu: Bool in

9 (

10 [hand_to_tu] -> (

11 to_tu !msg;

12 serverTransaction[pin , pout , from_tu , to_tu](

13 ts_trying , getBranch(msg) + 1, resp)

14)

15 []

16 [not(hand_to_tu)] -> (

17 serverTransaction[pin , pout , from_tu , to_tu](

18 ts_terminated , 0, resp)

19)

20)

21)

22 []

23 [trans_state eq ts_trying] -> (

24 from_tu ?resp: SipResp;

25 pout !resp;

26 serverTransaction[pin , pout , from_tu , to_tu](

27 ts_completed , branch , resp)

28)

29 []

30 [trans_state eq ts_completed] -> (

31 (

32 i;

33 pin ?msg: RegisterMsg [(getBranch(msg) eq branch)];

34 pout !response;

35 serverTransaction[pin , pout , from_tu , to_tu](

36 ts_completed , branch + 1, response)

37)

38 []

39 (

40 i;

41 serverTransaction[pin , pout , from_tu , to_tu](

42 ts_terminated , 0, response)

43)

44)

45 endproc

Fig. 9. lotos specification of the transaction handling state machine of a Session Initiation
Protocol Registrar.

turned on in a SIP Registrar. As we do not want to have two similar specification
that just differ in the authentication handshake we have a non-deterministic choice
between the authenticated and the unauthenticated mode of a SIP Registrar.

According to the RFC [RSC+02] a SIP Registrar may reject a message with a short
expiration interval or it may accept this message. This requirement again introduces
some non-determinism in our SIP Registrar model.

Fault-based Conformance Testing in Practice 17

3.2 Simplifications

As one can already see from the lotos example above, modeling always includes
choosing proper simplifications. Although modern specification languages have high
expressive power, it is impractical and often infeasible to model the complete concrete
behavior of a system. Thus, when developing a formal model one usually abstracts
from the real world.

Basically we distinguish between two different types of simplifications: abstrac-
tions and limitations. Abstractions are simplifications that preserve conformance. For
example, one may only specify the behavior for a particular set of inputs; for the
unspecified inputs the systems may behave arbitrarily. Hence, in the context of ioco
with partial models, abstraction may constrain the inputs and may remove constraints
from the output behavior. In contrast, a limitation is a restriction of the system’s pos-
sible reactive behavior (output) and hence not a proper abstraction. Consequently,
limitations do not preserve conformance and the tester must be careful in interpreting
a fail verdict: it might be due to a limitation in the model.

In model-based testing the simplifications influence the kind of detectable faults.
The more abstract or limited a formal model is, the less information for judging on
the correctness of an implementation is available [Gau95]. Thus, a major challenge in
deriving models for industrial applications is the selection of proper simplifications.
Simplifications need to limit a specification’s state space to a manageable size, while
the model still needs to be concrete enough to be useful.

According to [PP05, PPW+05] we distinguish five classes of abstractions: func-
tional, data, communication, temporal, and structural abstractions. Functional ab-
straction focuses on the functional part of the specification. This class of abstrac-
tions comprises the omission of behavior that is not required by the objectives of
the model. Data abstraction subsumes the mapping from concrete to abstract values.
Data abstraction includes the elimination of data values that are not needed within
the functional part of the specification. Communication abstraction maps complex
interactions to a more abstract level, e.g., the formal model uses one message to ab-
stract a handshake scenario (several messages) of the real world. Temporal abstraction
deals with the reduction of timing dependencies within the formal specification. For
example, a certain model specifies only the ordering of events, but abstracts from
discrete time values. Structural abstraction combines different real world aspects into
logical units within the model.

Simplifications for the SIP Registrar Model When developing the formal model
of a SIP Registrar we have chosen the simplifications listed in Table 2.

In particular, we simplify our model with respect to general server errors (Sim-
plification 1), because of the loose informal specification of server errors within the
rfc. Server errors may occur at any time when the Registrar encounters an internal
error. For testing general server errors we would need a significant knowledge about
the implementation internals. Especially, in order to trigger a server error during test
execution, we would need to know how to enforce it. Hence, we skip server errors
from the modeled behavior which may result in a wrong testing verdict. Therefore,
this simplification is a limitation.

Simplification 2 omits specification details about forwarding requests. Thus, we

18 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

Table 2. Simplifications for the specification of the SIP Registrar.

id type description

1 limitation Our formal model of the Registrar never terminates with a server error.

2 limitation Our specification never forwards REGISTER messages to other SIP Reg-
istrars.

3 limitation We assume that the communication channel is reliable and delivers mes-
sages in the sent order.

4 functional The Registrar starts from a well known initial state.

5 functional While the authentication handshake is in our model, the calculation of
authentication credentials is not modeled.

6 functional REGISTER messages do not contain any Requires header fields.

7 data The Call-Id is abstracted to the range [0, 1].

8 data We limit the integer part of the CSeq header to [0, 1]. The method part
is not in the formal model.

9 data The range [0, 232−1] of the Expires header field can be divided into three
partitions where we use only boundary values of each partition.

10 data Our model uses three different users: An authorized user, a known but
unauthorized user and an unknown user.

11 data Our formal model uses three different Contact values: *, any addr1, and
any addr2.

12 data The To and From header fields are omitted in our abstract REGISTER
messages.

13 temporal Our specification does not use any timers. We only focus on the ordering
of events.

do not generate tests for this feature. This is again a limitation as the forwarding of
requests would result in different outputs, i.e. the receiver of the forwarded request
responds to the REGISTER message.

Simplification 3 removes the needs for modeling possible interleaving of messages.
During test execution this assumption is ensured by running the test execution frame-
work and the implementation under test on the same computer.

Simplification 4 requires the start from a defined initial state. Otherwise, our
model would have to consider different database contents on startup of the Regis-
trar. We consider this a functional abstraction, because the functionality for other
initializations is left open.

Simplifying the model with respect to the calculation of authentication credentials
(Simplification 5) does not impose any limitation if the credentials are calculated and
inserted correctly into test messages during test execution. As the detailed algorithm
for credentials calculation is abstracted this is a functional abstraction.

We also skipped the Requires header field in the formal specification in order
to limit the number of possible request messages (Simplification 6). Not considering

Fault-based Conformance Testing in Practice 19

this input header field as being part of a REGISTER request represents a functional
abstraction: the implementation may behave arbitrarily after this unspecified request.

Simplifications 7-10 are based on the ideas of equivalence partitioning and bound-
ary value analysis [Mye79], which are strategies from white-box testing. For example,
Simplification 10 uses the fact, that the Registrar relevant part of the rfc only dis-
tinguishes users that (1) are known by the proxy and allowed to modify contact
information, (2) that are known by the proxy but are not allowed to modify contact
information, and (3) users that are not known by the proxy, i.e. users that do not
have an account. Thus, only three different users are needed, one of each group. Note
that the simplifications 7-10 are data abstractions. Each of the header fields addressed
by these abstractions are inputs to our specification. However, as we have one value
per equivalence partition this is not a functional abstraction: every behavior (with
respect to these inputs) of the system is modeled. Nevertheless, as we do not model
all possible input values this is a data abstraction.

Simplification 11 limits the different Contact header field values. We allow the
two addresses “any addr1” and “any addr2”, respectively. These two elements are
replaced during test execution with valid contact addresses. According to the rfc,
the asterisk is used for “delete” requests. This is again a data abstraction as the
different possible behaviors are covered by our specification.

Simplification 2 causes the header fields, To and From, to contain redundant
information. So they can be omitted from our formal REGISTER messages (Simpli-
fication 12). Again this is a data abstraction.

Finally, as tgv does not support real-time testing, we need to abstract from
concrete time events (Simplification 13).

4 Fault-based Conformance Testing

Given a formal specification there is a huge, possibly infinite, number of test cases
that can be derived from that specification. There are different ways of selecting a
finite set of test cases. One possibility for test case selection is the use of coverage
criteria (e.g. [CR93, FWW08a]) on the level of the specification. Another way is the
use of anticipated faults for the generation of test cases. This idea dates back to the
late 1970s [DLS78, Ham77] where testers mutated source code to assess their test
cases. Budd and Gopal [BG85] applied this technique to specifications.

In this paper, we also consider specification mutation as a way to select test cases.
A fault is modeled at the specification level by altering the specification syntactically.
The idea is to generate test cases that would fail if an implementation conforms
to a faulty specification [AD06]. In order to generate test cases we mutate lotos

specifications. Every mutant is compared to the original specification with respect to
input-output conformance. If the mutant does not conform to the specification, then
the trace leading to non-conformance serves as a test purpose. This test purpose is
fed into the tgv tool [JJ05] in order to derive tree structured test cases which can be
applied to non-deterministic systems.

Thus, we generate a test purpose for a specification S as follows:

1. Select a mutation operator Om.
2. Generate a mutated version Sm of the specification S by applying Om to S.

20 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

3. Check S and Sm for input output conformance (using an ioco checker [WW08a]).
4. Use the counterexample c, if any, as a test purpose TP 1 for the tgv tool.
5. Run the tgv tool with the test purpose TP on the original specification S in order

to derive the final test case.

As we introduce faults at the level of the specification mutation operators are
needed. These operators represent the sort of faults that we consider. For the selec-
tion of mutation operators one usually relies on two hypotheses [BDLS80]. The first
one is called the ‘competent specifier hypothesis’ which is related to the ‘competent
programmer hypothesis’ [BDLS80]. This hypothesis states that the specifier (pro-
grammer) is usually competent and gets the specification (program) almost correct.
Faults can be corrected by a few key strokes.

The second assumption is called the ‘coupling hypothesis’. It states, that big and
dramatic effects that arise from bugs in software are closely coupled to small and
simple failures.

Due to these two assumptions we can stick to small mutations on the specifica-
tion. Thus, as usual in mutation testing, we use small syntactic changes on lotos

specifications; each mutant only comprises a single mutation.
We use some of the mutation operators proposed in [BOY00, SCSP03] and adapted

them to lotos specifications. Our mutation operators listed in Table 3.

4.1 Fault-based IOCO Testing

We are interested in testing for input-output conformance. Thus, for every mutant
we want to generate a test case, such that the test case fails if this mutant has
been implemented. However, not all mutation operators lead to models that can be
distinguished from the original specification when using ioco, i.e. not all mutations
represent faults. A fault can only be defined with respect to a conformance relation.

A mutant that cannot be distinguished from the original specification is called
equivalent mutant. Although, the ioco relation is not an equivalence relation, we still
use the terms equivalent and non-equivalent mutant as they are common in mutation
testing. For an equivalent mutant there is no test case that distinguishes the mutant
from the original specification. Contrary, a non-equivalent mutant comprises a fault
such that there is a test case that passes on the original specification and fails on the
mutant.

In the following the meaning of faults in the context of ioco is shown. Our first
observation is that not all injected faults will cause observable failures. In order to
observe a failure, the mutant must not conform (with respect to ioco) to our original
specification. Hence, given an original specification S we are only interested in mutants
Sm, such that2

¬ (Sm ioco S)

Unfolding the definition of ioco gives

¬ (∀σ ∈ Straces(S) • out(Sm after σ) ⊆ out(S after σ)) (1)

1 The labels of the test processes are marked with INPUT or OUTPUT. We remove these marks.
Furthermore, we have to add Refuse and Accept states.
2 We make Sm input enabled.

Fault-based Conformance Testing in Practice 21

Table 3. Mutation operators for lotos specifications.

Op. Name Description

ASO Association Shift Op. Change the association between variables in
boolean expressions, e.g. replace x∧(y∨z) by
(x ∧ y) ∨ z.

CRO Channel Replacement Op. Replace the communication channel, i.e.
change the gate of an event. For example, this
operator would change Line 34 of Figure 9
from pout !response to pin !response.

EDO Event Drop Op. Drop events of the specification.

EIO Event Insert Op. Duplicate existing events.

ENO Expression Negation Op. Replace an expression by its negation, e.g. re-
place x ∧ y by ¬(x ∧ y).

ERO Event Replacement Op. Replace an event by a different event. For ex-
ample, applying this operator to Line 34 of
Figure 9 leads to pout !response to pout.

ESO Event Swap Op. Swap two neighbouring events.

HDO Hiding Delete Op. Delete an event from hide definition, i.e. make
an unobservable event observable.

LRO Logical Operator Replacement Replace a logical operator by other logical op-
erators.

MCO Missing Condition Op. Delete conditions from decisions.

ORO Operand Replacement Op. Replace an operand (variable or constant) by
another syntactically legal operand, e.g. on
mutation with respect to this operator is to
replace the branch variable in Line 33 of Fig-
ure 9 by 0.

POR Process Operator Replacement Replace synchronization operators (||,|[...]|,|||)
PRO Process Replacement Op. Replace process instantiations with stop or

exit events

RRO Relational Operator Replacement Replace a relational operator (<, ≤, >, ≥, =,
6=) by any other except its opposite (since the
opposite is similar to the negation operator)

SNO Simple Expression Negation Replace a simple expression by its negation,
e.g. negate x in x ∧ y getting (¬x ∧ y).

SOR Sequential Operator Replacement Replace the sequential composition operator
>> and [>.

USO Unobservable Sequence Op. Make events of the specification unobservable.

which can further be rewritten to

= ∃σ ∈ Straces(S) • out(Sm after σ) 6⊆ out(S after σ) (2)

This is the first hint for a testing strategy. We are interested in the suspension
trace of actions leading to non-conformance between the mutant and the original LTS.
In other words, our test purposes for detecting faults are sequences of actions leading
to non-conformance. As one can see from this formula, a non-conformance check can
be reduced to a test for subsets on the output labels.

22 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

It follows that a failure is observed, if the mutant Sm produces an output o not
predicted by specification S:

= ∃σ ∈ Straces(S) • ∃o • o ∈ out(Sm after σ) ∧ o 6∈ out(S after σ) (3)

This simple derivation shows an important property of the ioco relation: mutating
the specification by injecting an additional input a such that a new trace for the
mutant Sm is generated, i.e. ∀σ ∈ Straces(S) • σ · a 6∈ Straces(S), does not lead to a
failure.

The theory highlights a further important clarification in fault-based testing: In
the presence of non-determinism, there is no guarantee that an actual fault will always
be detected. The reason is that non-conformance only means that there is a wrong
output after a trace of actions, but the implementation may still opt for the correct
one. In that case we rely on the complete testing assumption [LvBP94], which says
that an implementation exercises all possible execution paths of a test case t, when t
is applied a predetermined finite number of times.

4.2 On-the-fly IOCO Checking

As highlighted above we only need to consider mutants Sm of a specification S such
that ¬(Sm ioco S). Because the state spaces of specifications are usually huge, we
cannot construct the state space of the specification and the mutant in advance, and
then check for conformance. Thus, conformance checking between the mutant and the
specification has to be done on the fly.

Therefore, we use the lotos parser of the CADP toolbox [GLM02]. This parser
takes a lotos specification and allows one to access the underlying LTS incrementally.
The lotos specification is translated into an initial-state and a successor-function.
The successor-function takes a state and returns the edges, i.e. labels and end-states,
that are enabled in the given state.

In order to check two labeled transition systems for conformance we use an ap-
proach similar to the approach of Fernandez and Mounier [FM91]. That is, we define a
synchronous product (×ioco) between two labeled transition systems Sm and S such
that Sm ×ioco S contains special fail states if ¬(Sm ioco S). Checking for confor-
mance is then implemented as a simple reachability search for fail states. If there is
a fail state after a particular path, then this path is a counter-example showing the
non-conformance between Sm and S.

Since, the input output conformance relation uses δ-labeled transitions and these
transitions are not initially provided by the semantics of lotos specification we have
to identify and to label quiescent states before calculating the synchronous prod-
uct. More precisely, we add quiescence labeled transitions for quiescent states when
iterating over the transitions of a particular state.

After adding the quiescence information we make the two labeled transition sys-
tems deterministic. This is done during the calculation of the synchronous product
by the use of the subset construction [HU79]. Note that in the worst case this may
cause an exponential increase of the number of states. During the process of making
the LTSs deterministic we remove τ -labeled transitions too.

Definition 14. Let Sm = (QS
m

, L ∪ {τ, δ},→Sm , qS
m

0) and S = (QS , L ∪ {τ, δ},→S

, qS0) be two deterministic LTSs, where the labels L are partitioned into inputs LI

Fault-based Conformance Testing in Practice 23

and outputs LU , i.e. L = LI ∪ LU and LI ∩ LU = ∅. The synchronous product
SP = Sm ×ioco S is an LTS SP = (QSP , L,→SP , q

SP
0), where its state set QSP is a

subset of (QS
m×QS)∪{pass, fail} reachable from the initial state qSP0 =df

(
qS

m

0 , qS0
)

by the transition relation →SP . Let qS
m ∈ QSm

and qS ∈ QS be two states of Sm

and S, respectively. Then, the transition relation →SP is defined as the smallest set
obtained by the application of the following rules:

1. Edges possible in both LTSs, Sm and S:
∀a ∈ LI ∪ LU • ∀q′Sm ∈ QS

m

, q′S ∈ QS • qSm a→Sm q′S
m ∧ qS a→S q′S ⇒(

qS
m

, qS
) a→SP

(
q′S

m

, q′S
)
.

2. Implementation freedom on unspecified inputs:
∀a ∈ LI • ∀q′Sm ∈ QSm • qSm a→Sm q′S

m ∧ qS 6 a→S⇒
(
qS

m

, qS
) a→SP pass.

3. Sm may allow fewer outputs than S:
∀b ∈ LU • ∀q′S ∈ QS • qS b→S q

′S ∧ qSm 6 b→Sm⇒ (
qS

m

, qS
) b→SP pass.

4. Input enabledness of Sm:
∀a ∈ LI • ∀q′S ∈ QS • qS a→S q

′S ∧ qSm 6 a→Sm⇒ (
qS

m

, qS
) a→SP

(
qS

m

, q′S
)
.

5. Unspecified outputs of Sm:
∀b ∈ LU • ∀q′Sm ∈ QSm • qSm b→Sm q′S

m ∧ qS 6 b→S⇒
(
qS

m

, qS
) b→SP fail.

Rule 1 states, that edges that are possible in both LTSs are edges of the syn-
chronous product.

Rule 2 handles the cases where the LTS representing the implementation allows
inputs, that are not specified by the LTS representing the specification. Since ioco
allows any behavior on unspecified inputs we add a pass state to the synchronous
product. The added state is a sink state, i.e., there are no outgoing edges. Note, that
pass states do no affect the final comparison result, since only the existence of fail
states determine whether two LTS are related under conformance (with respect to
ioco) or not.

Since, ioco requires that the outputs of the implementation’s LTS have to be a
subset or have to be equal to the outputs of the specification’s LTS we add an edge
to a pass state for any output that is allowed in S but not in Sm (Rule 3). Again,
this pass state has no influence on the final comparison result.

Note, that ioco requires the left hand side LTS to be weakly input enabled. In
practice this may not be the case for a given input output labeled transition system.
Thus, we have to convert the left hand side LTS to a weakly input enabled LTS. The
synchronous product considers this requirement by Rule 4 of the transition relation.
This rule assumes that an input is always possible in Sm. Thus, if input a is not
allowed in Sm, the input enabledness allows to assume a self-loop labeled with a on
state qS

m

. Hence, this rule ensures that the synchronous product will not contain an
edge leading to fail because Sm lacks input enabledness.

We add an edge leading to a fail state if an output of the left hand LTS Sm is not
an output of the right hand LTS S (Rule 5). Only in that case the two LTSs do not
conform with respect to ioco.

Example 9. Figure 11 shows the synchronous products used to check conformance

24 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

g′
0

g’g’

g′
1

g′
2g′

3 g′
4

g′
5

?1

!c ?1 δ

?1
!t

δ

δ
δ

δ

h′
0

h’h’

h′
1

h′
2h′

3 h′
4

h′
5 h′

6

?1

!c ?1 δ

?1
!t !c

δ

δ
δ

δ δ

Fig. 10. Deterministic versions of the labeled transition systems g and h of Figure 3.

f0, e0

f ×ioco ef ×ioco e

f1, e1 pass

f2, e3

?1 ?2
δ

!c
δ

(a) f ×ioco e

h′
0, g

′
0

h′ ×ioco g′h′ ×ioco g′

h′
1, g

′
1

h′
2, g

′
2h′

3, g
′
3 h′

4, g
′
4

h′
5, g

′
5 fail

?1
δ

!c ?1 δ

δδ
!t !c

δ
(b) h′ ×ioco g′

Fig. 11. Synchronous products illustrating the application of Definition 14 to the labeled
transition systems f and e of Figure 3 and g’ and h’ of Figure 10.

on some of the labeled transition systems of Figure 3. The basis of the ioco check are
δ-annotated deterministic labeled transition systems.

When checking f ioco e the synchronous product according to Definition 14 looks
like the LTS shown in Figure 11a. The trace 〈?2〉 of the implementation’s model f is
not relevant in specification e, and hence Rule 2 of Definition 14 applies.

When checking g ioco h and h ioco g the two labeled transition systems are
turned deterministic first. The resulting LTSs g′ and h′ are illustrated in Figure 10.
The synchronous product using ×ioco is illustrated in Figure 11b.

The fail state comes from Rule 5 which says, that outputs of the implementation
that are not allowed by the specification lead to fail. However, when checking the
reverse relation g ioco h there would be a pass state instead of the fail state. This is
because implementations may have fewer outputs than specifications after a particular
trace (Rule 3).

As the synchronous products are constructed on-the-fly the construction stops if
a fail-state is reached.

4.3 Handling large state spaces

IOCO checking of two conforming labeled transition systems requires the comparison
of their whole state spaces. For large industrial specifications this is often infeasi-
ble. In the case of our SIP Registrar specification, the attempt of constructing the

Fault-based Conformance Testing in Practice 25

specification’s state space on a computer with 2GB RAM failed after 11 days due to
insufficient memory. Note that for this experiment we bound all used data types of
our specification.

To overcome this problem, we proposed to exploit the knowledge where the fault
has been inserted in the lotos specification [APWW07a]. By marking the place of
the mutation it is possible to construct the relevant part of the state space only, i.e.
the part that reflects the mutation. However, since the position of the markers is
determined syntactically, our approach is not applicable for all mutation operators.
For example, for the SIP Registrar specification, we succeeded to mark 252 out of 843
mutants only, i.e. our approach applied to only 30% of the mutants [AWW08].

Nevertheless, the on-the-fly approach for checking the conformance of two speci-
fications is suitable for any mutation operator. We can apply the conformance check
not to the whole specification’s state space but only up to a particular depth. Thus,
similar to bounded model checking [BCC+03], we check for bounded input-output
conformance:

Definition 15 (Bounded input-output conformance). Given a set of inputs LI
and a set of outputs LU then ioco|k| ⊆ IOT S(LI , LU)×LT S(LI , LU) is defined as:

IUT ioco|k| S =df ∀σ ∈ Straces(S)•
(length(σ) ≤ k) =⇒ (out(IUT after σ) ⊆ out(S after σ))

Example 10. For example, let the input output transition system k of Figure 4 be
the specification and let the IOTS l of Figure 4 be the model of an implementation. l
does not (ioco-) conform to k, i.e. ¬(l ioco k), because out(l after 〈?1, δ, ?1〉) =
{!c, !t} 6⊆ {!t} = out(k after 〈?1, δ, ?1〉). However, we have l ioco|0| k, because
out(l after 〈〉) = {δ} = out(k after 〈〉). Furthermore, we have l ioco|1| k, because
l ioco|0| k, out(l after 〈δ〉) = {δ} = out(k after 〈δ〉), out(l after 〈?1〉) = {!c, δ} =
out(k after 〈?1〉), and out(l after 〈?2〉) = {δ} = out(k after 〈?2〉). We also have
l ioco|2| k, because l ioco|0| k and l ioco|1| k and there is no trace after which an
output of l is not allowed by k. The shortest trace leading to non-conformance has
a length of three, i.e. 〈?1, δ, ?1〉. Thus, with a bound greater or equal to three l does
not conform to k, i.e. ¬(l ioco|3| k).

In contrast to our previous syntactic labelling technique, bounded input-output
conformance checking applies to any mutation operator. If we find a counter-example
when checking for Sm ioco|k| S within a particular bound k, then the counter-example
is also valid for showing non-conformance for ioco. However, failing to show non-
conformance within a particular bound k does not mean that we necessarily have
an ioco-correct, i.e. an equivalent, mutant. Thus, the technique is sound but incom-
plete. Here, soundness guarantees that no counterexamples for equivalent mutants
are generated. Hence, we will never produce redundant test cases from equivalent
mutants. Due to incompleteness we may miss some test cases aiming for faults that
are observable only above the boundary.

26 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

Table 4. Details of the lotos specifications of the applications under test.

net. Lines of CodeNo.pro-
cesses

No.ac-
tions

No.data-
types Total data types

SIP 10 27 20 3000 2500

CP 16 26 1 900 700

5 Experimental Results

This section presents the results obtained when applying our approach to two dif-
ferent applications: (1) The Session Initiation Protocol (SIP) [RSC+02] and (2) the
Conference Protocol (CP) [TPHT96]. The results are presented in terms of source
code coverage, and actual faults found in comparison to testing using manual test
case selection and random test case selection. We conducted all our experiments on a
PC with Intel(R) Dual Core Processor 1.83GHz and 2GB RAM.

5.1 Applications under Test

In addition to the lotos specification of a SIP Registrar, which comprises approx-
imately 3KLOC (net.), 20 data types (contributing to net. 2.5KLOC), and 10 pro-
cesses, the Conference Protocol serves to evaluate our approach.

Table 4 summarizes the characteristics of the two specifications in terms of number
of processes, number of actions, and in terms of net lines of code.

5.1.1 The Conference Protocol

The Conference Protocol has been used previously to analyze the fault-detection abil-
ity of different formal testing approaches (e.g., [dBRS+00, BFdV+99]). The specifica-
tion is available in different specification languages to the public3. In addition, there
are 27 erroneous implementations which can be used to evaluate testing techniques.

The protocol itself is a simple communication protocol for a chat application.
The main part of the application is called the Conference Protocol Entity (CPE). A
CPE serves as chat client with two interfaces; one interface allows the user to enter
commands and to receive messages sent by other users, and the other interface allows
the chat application to send and receive messages via the network layer. These two
interfaces are the points of control and observation for a tester.

Users can join conferences, exchange messages and leave conferences. Each user
has a nickname and can join one conference at a time only. Figure 12 shows a typical
example of a simple chat session. First, a user with nickname Bob joins conference
“C1”. The Conference Protocol Entity sends that information to all potential confer-
ence partners. In the illustrated scenario user Alice participates in the same conference
as joined by Bob. Thus, Alice’s protocol entity answers with an answer -protocol data
unit (PDU). Then Alice decides to leave the conference which causes her protocol
entity to send a leave-PDU to all participating users, i.e., to Bob’s CPE.

3 http://fmt.cs.utwente.nl/ConfCase/

Fault-based Conformance Testing in Practice 27

Fig. 12. Simple call-flow illustrating joining and leaving a chat session.

5.2 Test Case Generation Results

We developed a mutation tool that takes a lotos specification and uses the mutation
operators of Section 4 in order to generate for each possible mutation one faulty
version (mutant) of the specification. With this tool all mutants of the specifications
were generated automatically.

Table 5 lists for each mutation operator (1st column) the overall number of gener-
ated mutants (2nd and 7th column) for the session initiation protocol specification and
for the Conference Protocol specification. The 3rd (8th) column depicts the average
time needed for running the on-the-fly input-output conformance check.

We have set the bound of the depth first search for the SIP Registrar to 5 steps
and for the Conference Protocol to 10 steps. Note that internal transitions do not add
to the length of a trace, i.e. a bound of five means that we checked for conformance
using all traces comprising five or less visible actions.

The number of equivalent and different mutants (with respect to the ioco relation)
are listed in the 4th and the 5th column of Table 5 for the SIP Registrar specification
and in the 9th and the 10th column for the Conference Protocol specification. Finally,
the 6th and the 11th columns list the average time needed by the tgv tool to extract
a final test case.

Note that the third, the sixth, the eighth and the eleventh columns of Table 5 list
the average duration needed for the different steps during the test case generation.
Thus, also the last row (Σ) lists the average values in these columns.

Approximately, 47% (31%) of the generated mutants for the SIP Registrar (Con-
ference Protocol) specification are distinguishable from the original specification with
respect to ioco|k|. The other mutants do not result in useful test cases when test-
ing for particular faults. Although, the chosen bound of the SIP Registrar is smaller
than the bound used for the Conference Protocol, the conformance check on the SIP
specification was slower. This is because the SIP Registrar branches heavily in the
beginning, i.e. there are approximately 2700 outgoing transitions at the initial state.

Remarkably the two mutation operators ASO and SOR did not lead to any mu-
tant with an observable difference for the two specifications. Within the Conference
Protocol there are no logical expressions comprising more than one logical operator.

4 Note that the difference between this number and the 843 mutants reported in [AWW08] comes
from minor structural improvements of our specification.

28 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

Table 5. Number of generated mutants and timing results for the extraction of the test
cases for the two considered protocol specifications.

oper- SIP Registrar Conference Protocol

ator mut. ioco = 6= tgv mut. ioco = 6= tgv

ASO 11 4m52s 11 0 - 0 - 0 0 -

CRO 81 4m58s 26 55 5s 20 11s 12 8 1s

EDO 31 5m09s 14 17 5s 10 14s 7 3 1s

EIO 35 7m41s 24 11 5s 12 15s 9 3 1s

ENO 52 4m49s 16 36 5s 38 08s 21 17 1s

ERO 31 4m39s 7 24 5s 10 04s 4 6 1s

ESO 10 7m12s 8 2 5s 0 - 0 0 -

HDO 4 4m28s 1 3 5s 0 - 0 0 -

LRO 21 8m15s 13 8 5s 15 18s 15 0 -

MCO 33 8m12s 26 7 5s 30 18s 30 0 -

ORO 431 7m09s 245 186 5s 183 1m35s 126 57 1s

POR 6 32m39s 2 4 5s 3 07s 2 1 1s

PRO 18 5m03s 8 10 5s 30 09s 14 16 1s

RRO 91 7m42s 59 32 5s 0 - 0 0 -

SNO 32 6m57s 17 15 5s 39 18s 28 11 1s

SOR 0 - 0 0 - 0 - 0 0 -

USO 23 4m38s 5 18 5s 10 18s 8 2 1s

Σ 9104 6m26s 482 428 5s 400 23s 276 124 1s

Thus the ASO operator does not produce any mutant on that specification. Contrary,
there are logical expressions within the SIP Registrar specification that use more than
one logical operator. However, these expressions always use the same logical opera-
tor, thus an association shift within these expression does not lead to any observable
difference.

As there are no enabling (>>) nor any disabling ([>) statements within the Con-
ference Protocol specifications the SOR operator does not produce any mutant. The
SIP Registrar specification comprises six >> statements. However, in this specification
replacing >> with [> always resulted in an invalid specification. This is because for the
[> operator the exit-behavior, i.e. the types of the returned values, has to be equal.
Unfortunately, the exit-behavior always differs in our specification.

Anyway, on other specifications these mutation operators can lead to mutants
exhibiting an ioco incorrect behavior.

5.3 Test Case Execution Results

The test cases were executed on real implementations of both protocols. As we rely
on tgv for test case generation the obtained test cases are not input enabled, i.e.
our test cases may require to prevent an implementation from doing outputs (see
Definition 9).

However, in practice it is often not possible that a tester prevents an implemen-
tation from doing outputs. One way to overcome this issue is to apply the reasonable

Fault-based Conformance Testing in Practice 29

environment assumption [FJJV97], which says that before the environment sends a
message to the network, it waits until stabilization. This means that the test execu-
tion environment is not allowed to send new messages until it received all responses
from the implementation. In order words, one gives outputs (of the IUT) priority over
inputs (to the IUT).

Recall, that tgv prunes edges during test case generation, as this tool relies on
blocking outputs from the IUT while inputs are enabled. Thus, we implement the
reasonable environment assumption by running the specification in parallel to the test
case execution. If there is an input from the implementation to a test case and this
input is allowed by the specification but not by the test case we give an inconclusive
verdict. If the input is not allowed by both the test case and the specification we give
a fail verdict. Otherwise, i.e. the input is allowed by the test case, we continue the
execution of the test case.

Note that the reasonable environment assumption is not a general assumption of
our approach. We only used it to ensure correct verdicts during test case execution.
If the assumptions of ioco are satisfied then there is no need for using the reasonable
environment assumption.

In a previous project, we tested a commercial implementation of the Session Ini-
tiation Protocol Registrar [APWW07a, AWW08]. Because this implementation is no
longer available to us, in this paper the open source implementation Kamailio5 serves
as implementation under test.

Table 6 illustrates the number of passed (3rd and 7th column), failed (4th and
8th column) and inconclusive (5th and 9th column) verdicts obtained by executing
the generated test cases. The number of test cases is listed in the 2nd column and
the 6th column, respectively. Note, that we run the test cases of the SIP Registrar
on two different configurations of the Kamailio implementation. For one test run
authentication was turned on and for the other test run authentication was turned
off. For example, we run the 15 test cases derived from the SNO mutations two times,
resulting in 30 test runs. 24 out of these 30 test runs terminated with a pass verdict
while 5 test runs reported a fail verdict. One of the 30 test runs led to an inconclusive
verdict. A test case’s verdict is inconclusive if the implementation chooses outputs
different to the outputs required by the test case’s preamble. That is, the chosen
output is correct with respect to the specification, but the test case failed to bring
the implementation to the required state.

For the Conference Protocol we have 27 faulty implementations. Thus, running
for example the 8 test cases derived from the CRO mutations we get 8 × 27 = 216
test runs. 208 out of these 216 test runs terminated with a pass verdict, while 8 test
runs ended with a fail verdict.

By the use of the generated test cases we detected 4 differences between the
Kamailio Registrar and our specifications. However, a verdict fail does not imply that
the corresponding mutant has been implemented. It also happens that there occurred
a failure during the execution of the preamble of the test case. The preamble is the

5 Note, that Kamailio was previously named OpenSER and can be found at http://www.kamailio.
org/

30 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

Table 6. Test case execution results for the two protocol specifications.

oper- SIP Registrar Conference Protocol

ator no.tc. pass fail inconc. no.tc. pass fail inconc.

ASO 0 - - - 0 - - -

CRO 55 85 25 0 8 208 8 0

EDO 17 27 7 0 3 78 3 0

EIO 11 18 4 0 3 78 3 0

ENO 36 60 12 0 17 430 29 0

ERO 24 37 11 0 6 156 6 0

ESO 2 2 2 0 0 - - -

HDO 3 5 1 0 0 - - -

LRO 8 15 1 0 0 - - -

MCO 7 13 1 0 0 - - -

ORO 186 302 70 0 57 1458 81 0

POR 4 7 1 0 1 26 1 0

PRO 10 17 3 0 16 408 24 0

RRO 32 56 8 0 0 - - -

SNO 15 24 5 1 11 282 15 0

SOR 0 - - - 0 - - -

USO 18 29 7 0 2 52 2 0

Σ 428 698 158 1 124 3176 172 0

sequence of messages that aims to bring the implementation to a certain state in which
the difference between the mutant and the original specification can be observed.

For the Conference Protocol we detected in total 7 of the 27 faulty implemen-
tations. Recall that the bound of the test case length is ten actions in the case of
the Conference Protocol. This limitation in the length of the test cases is mainly the
reason why we did not detect more faulty implementations.

5.4 Comparing Fault-based Testing to Other Approaches

In order to evaluate the quality of the generated test cases using our fault-based
technique, we compared results of our approach to results obtained when using hand-
crafted test purposes (scenarios), i.e. the tgv tool [JJ05], and when using random
testing, i.e. the torx tool [TB03].

We identified five relevant scenarios from the textual specification of the SIP Reg-
istrar and ten interesting scenarios from the textual description of the Conference
Protocol. tgv derives only one test case per test purpose. As we have shown in
[FWW08b], deriving multiple test cases for a single test purpose increases the source
code coverage and the number of detected faults on implementations for the result-
ing test suite. We compared the results of our fault-based approach with test suites
obtained when using one test case per test purpose and with test suites comprising
multiple test cases per test purpose. For deriving multiple test cases per test pur-
pose we use transition coverage on the (final) synchronous product between each test
purpose and the specification.

Fault-based Conformance Testing in Practice 31

Table 7. Overview of the main results using random, scenario-based and fault-based test
case generation techniques.

IUT Technique
seq.

length
test
gen.

test
cases

avg. coverage no.
faultsF C/D

SIP

random 10.95 4s 100 73% 36% 5

scenarios (1) 2.20 1s 10 64% 26% 2

scenarios (many) 4.53 1s 6813 73% 34% 6

fault-based 3.75 6m26s 428 70% 31% 4

Conf.
Prot.

random 9.03 4s 100 70% 56% 19

scenarios (1) 5.53 1s 5 75% 58% 17

scenarios (many) 4.98 1s 408 77% 60% 23

fault-based 7.23 23s 124 66% 51% 7

For random testing we ran the torx tool 100 times on every implementation. For
our comparison we conducted three times 100 test runs, i.e. we made 100 random test
runs and repeated this experiment three times with different seeds for the random
value generator. The results shown in this paper are the average values out of these
three experiments. Thus, for the one SIP Registrar we get 100 test runs (i.e. the
average of 3 times 100), while for the Conference Protocol we have 2700 test runs, i.e.
100 test runs for each of the 27 faulty implementations.

Table 7 summarizes the results when testing the two protocols using different
test case selection strategies. This table shows for each of the three techniques (2nd
column), the average length of the executed test sequences (3rd column). The next
columns depict, the average time needed to generate a single test case (4th column)
and the overall number of generated test cases (5th column). In addition, Table 7
shows the code coverage6 in terms of function coverage (6th column), and condi-
tion/decision coverage (7th column). Finally, Table 7 illustrates the number of de-
tected faults (8th column).

The code coverage shows some interesting properties of the generated test cases.
First of all, random testing covers less functions than the test cases derived from our
scenarios. This is because there are some complex scenarios which require a particular
sequence of test messages in order to put the implementations into certain states. For
example, if the Registrar is in such a state it uses additional functions for processing
REGISTER requests. Unfortunately, the random test generation never selected this
sequence from the formal specification.

The condition/decision (C/D) coverage achieved by random testing is higher than
the C/D coverage from scenario-based testing. That means, that random testing has
inspected the covered functions more thoroughly. In the case of the SIP Registrar
the fault-based test cases cover more source code and find more faults than one test
case per scenario. For the Conference Protocol this is not the case. This shows, that
scenario based testing highly depends on the skills of the tester.

For the Conference Protocol test cases generated based on scenarios detected all

6 For coverage measurements we use the Bullseye Coverage Tool: http://www.bullseye.com

32 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

faults that are detected by the other approaches. That is, combining all test cases of
all our experiments we detected 23 of the 27 faulty implementations. Using many test
cases for a single scenario revealed faults that have not been detected using random
or fault-based testing. The faulty implementations found by the use of fault-based
testing have also been revealed using the other test case select techniques.

In the case of the SIP Registrar only many test cases per scenario detect the faults
revealed by fault-based testing. Fault-based testing complements random testing and
scenario based testing when one test case per scenario is used.

Thus, in practice it is recommendable to combine different test case selection
techniques, because for example fault-based testing revealed additional faults in the
tested implementations.

6 Related Research

There are different approaches for test cases selection, e.g. random or coverage based
test case selection. While random test case selection was the first test case selection
strategy considered for ioco testing [Tre96], coverage based testing for lotos speci-
fications has been explored by Amyot and Logrippo [AL00] and by Cheung and Ren
[CR93]. Also the work of Huo and Petrenko [HP08] deals with coverage based test case
selection. However, they consider transition and state coverage of labeled transition
systems.

While we consider fault-based conformance testing, mutation based test case gen-
eration by the use of model-checkers has been proposed by Ammann et al. [ABM98].
While model-checker based mutation testing was limited to deterministic models re-
cent research [BPG07, OBY02, FW07] allows the application of model-checkers to
non-deterministic models.

The work of Okun et al. [OBY02] considers the generation of counterexamples for
non-determinism within the specification. If there is a non-deterministic choice within
a specification and a mutant all possible combinations of the non-deterministic choices
in the mutant and the original explored. This may lead to a counterexample coming
from a difference in the execution, not from a semantic difference. The approach of
Okun et al. solves this problem for some models.

Boroday et al. [BPG07] propose to use module checking [KV96] to cope with non-
determinism. However, the proposed approach produces again a linear counterexam-
ple. There is no statement about how to apply such test cases to systems that can
choose between providing different outputs.

Testing such systems by the use of linear counterexamples has been investigated
by Fraser and Wotawa [FW07]. The basic idea of their work is to give inconclusive
verdicts in states where the model comprises non-deterministic choices. If test case
execution terminates with an inconclusive verdict, they use the model to verify if the
output of the implementation is allowed by the specification. If there is an invalid
output test case execution is terminated with a fail verdict. Otherwise, the test case
is extended using the information obtained from the test case execution, and the test
case is re-executed on the implementation. This procedure is repeated until the test
case execution terminates with a pass or fail verdict. Contrary, we do not need to
extend our test cases during test case execution.

Petrenko and Yevtushenko [PY05] showed how to use partial, non-deterministic

Fault-based Conformance Testing in Practice 33

finite state machines (FSM) for mutation based test case generation. This work makes
FSM based testing more amenable in industrial applications where specifications are
rarely deterministic and complete. The difference to our approach is the used model.
FSMs assume that a system cannot accept a next input before producing an output
as a reaction to a previous input.

Another work that considers the combination of fault-based testing and test pur-
poses is [PBG04]. The used models are extended finite state machines (EFSM). The
authors consider one single fault-type where an implementation is in an wrong post-
state after applying a particular test sequence. The test purpose is given in terms
of configurations of the EFSM denoting suspicious implementation states. That is,
the test purpose describes outputs that should be avoided. The authors also consider
limiting the length of the test sequence. In contrast we consider mutations on the level
of the specification. Furthermore, our approach automatically derives a test purpose.
This test purpose is then used for test case generation.

While we considered mutating lotos specifications, Stocks applied fault-based
testing to Z specifications [Sto93]. Mutation testing of Estelle specifications has been
considered in [DSMFDS99].

The idea of generating test purposes instead of generating test cases directly has
been subject to previous research [HLU03, dSM06]. The authors of [dSM06] present a
modified model-checking algorithm that allows to transform properties, given in com-
putational tree logic (CTL), to test purposes. Henniger et al. [HLU03] automatically
generate test purposes by identifying significant behavior of a system. Each significant
behavior is converted to a test purpose. However, both articles do not consider testing
for specific faults.

Various testing techniques have been applied to SIP [WLS04, SNLD02]. While
the applied techniques deal with security aspects and performance issues, to our best
knowledge none of them focuses on protocol conformance testing.

Modeling SIP using SDL or UML has been subject to publication previously
[CvB03, SRS01a, SRS01b]. In difference to our formalization, the presented mod-
els are based on the outdated rfc 2543 [HSSR99]. The presented formalizations are
not tailored to any special purpose and deal with the session management part of
SIP. Contrary, our model is based on the currently valid rfc 3261 and targets the
user management part of SIP. Furthermore, the aim of our specification is protocol
conformance testing.

The Conference Protocol example has been used by other authors to assess test
case generation techniques [BFdV+99, dBRS+00, HFT00, BN07, HP08]. A compar-
ison when applying different tools to the Conference Protocol is given by Belinfante
et al. [BFS04]. The applied tools detected between 21 and 25 of the 27 faulty imple-
mentations. Note that the missing two implementations comprise faults that cannot
be detected using the ioco relation. Also the approach of Huo and Petrenko [HP08]
revealed all 25 faulty implementations.

7 Conclusion

In this paper we presented our insights gained when testing industrial applications
by the use of formal testing techniques. Particularly, we discussed the modeling of an
industrial application, i.e. the Session Initiation Protocol Registrar. As our project

34 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

was conducted together with an industrial partner, the specification has been reviewed
by field experts.

We presented the chosen simplifications making the large state space of our spec-
ifications manageable. Nevertheless, the model still comprises enough information for
deriving useful test cases.

We then showed how one can use a fault-based testing technique in order to pre-
vent a system from implementing particular faults. Faults are modeled on the level of
specifications. Faults are injected into specifications automatically. Such faulty spec-
ifications are called mutants. Every mutant contains only one fault. A conformance
check between the mutant and the original specification leads to a counterexample
(if any). This counterexample is then used as a test objective in order to generate
a tree-structured test case. Such test cases are suitable for testing non-deterministic
systems.

In the worst case one has to consider the whole state space of the mutant and
the specification for this conformance check. This is not feasible for industrial scale
applications. We showed how this can be solved by bounding the search depth for such
a counterexample. Furthermore, we discussed the effects of having such a bound.

By applying our approach to two different specifications we demonstrated its fea-
sibility in practice. While our technique does not substitute conventional test case
selection strategies, it complements them. The experimental results showed that fault-
based testing revealed an additional fault, not detected by random testing or scenario-
based testing.

Further Research We consider fault-based ioco testing based on lotos specifi-
cations. Recent research incorporates data and data-dependent control flow into the
ioco testing theory [RdBJ00, FTW06]. Further research may combine fault-based
conformance with symbolic conformance testing. In symbolic conformance testing
one does not need to enumerate all data for constructing the labels of the LTS but
can use data directly within the symbolic transition system. This may be beneficial
for data dependent specifications such as the SIP Registrar.

Another direction of research would be a closer investigation of the mutation
operators with respect to the conformance relation. Due to the properties of ioco, i.e.
additional new inputs do not lead to observable failures (see Section 4.1), one may
determine in advance that some mutants do not exhibit an observable difference with
respect to the original specification. Thus, one may omit some mutations during the
fault injection phase of our approach. However, for this one needs to determine if the
inserted event results in an additional new input within the mutant’s underlying LTS.

Acknowledgments The research herein is partially conducted within the compe-
tence network Softnet Austria (www.soft-net.at) and funded by the Austrian Federal
Ministry of Economics (bm:wa), the province of Styria, the Steirische Wirtschafts-
förderungsgesellschaft mbH. (SFG), and the city of Vienna in terms of the center for
innovation and technology (ZIT). This work is also partially funded by the EU FP7
project MOGENTES ICT-216679, Model-based Generation of Tests for Dependable
Embedded Systems.

We are most grateful to the anonymous reviewers for their valuable comments.

Fault-based Conformance Testing in Practice 35

References

[ABM98] P.E. Ammann, P.E. Black, and W. Majurski. Using model checking to generate
tests from specifications. In Formal Engineering Methods, 1998. Proceedings.
Second International Conference on, pages 46–54, 9-11 Dec. 1998.

[AD06] Bernhard K. Aichernig and Carlo Corrales Delgado. From faults via test purposes
to test cases: On the fault-based testing of concurrent systems. In Proceedings of
the 9th International Conference on Fundamental Approaches to Software Engi-
neering, volume 3922 of LNCS, pages 324–338. Springer, 2006.

[AL00] Daniel Amyot and Luigi Logrippo. Structural coverage for lotos - a probe inser-
tion technique. In Proceedings of the 13th International Conference on Testing
Communicating Systems: Tools and Techniques, pages 19–34. Kluwer, B.V., 2000.

[APWW07a]Bernhard K. Aichernig, Bernhard Peischl, Martin Weiglhofer, and Franz Wotawa.
Protocol conformance testing a SIP registrar: An industrial application of formal
methods. In Mike Hinchey and Tiziana Margaria, editors, Proceedings of the 5th
IEEE International Conference on Software Engineering and Formal Methods,
pages 215–224, London, UK, 2007. IEEE.

[APWW07b]Bernhard K. Aichernig, Bernhard Peischl, Martin Weiglhofer, and Franz Wotawa.
Test purpose generation in an industrial application. In Proceedings of the 3rd
International Workshop on Advances in Model-Based Testing, pages 115–125,
London, UK, July 2007.

[AWW08] Bernhard K. Aichernig, Martin Weiglhofer, and Franz Wotawa. Improving fault-
based conformance testing. Electronic Notes in Theoretical Computer Science,
220(1):63–77, December 2008.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-
shan Zhu. Bounded model checking. Advances in Computers, 58:118–149, 2003.

[BDLS80] Timothy A. Budd, Richard A. DeMillo, Richard J. Lipton, and Frederick G.
Sayward. Theoretical and empirical studies on using program mutation to test
the functional correctness of programs. In POPL ’80: Proceedings of the 7th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 220–233, New York, NY, USA, 1980. ACM.

[Ber91] Gilles Bernot. Testing against formal specifications: A theoretical view. In Sam-
son Abramsky and T. S. E. Maibaum, editors, Proceedings of the International
Joint Conference on Theory and Practice of Software Development, volume 494
of Lecture Notes in Computer Science, pages 99–119. Springer, 1991.

[BFdV+99] Axel Belinfante, Jan Feenstra, René G. de Vries, Jan Tretmans, Nicolae Goga,
Loe M. G. Feijs, Sjouke Mauw, and Lex Heerink. Formal test automation: A
simple experiment. In 12th International Workshop on Testing Communicating
Systems, volume 147 of IFIP Conference Proceedings, pages 179–196. Kluwer,
1999.

[BFS04] Axel Belinfante, Lars Frantzen, and Christian Schallhart. Tools for test case gen-
eration. In Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker,
and Alexander Pretschner, editors, Model-Based Testing of Reactive Systems,
volume 3472 of Lecture Notes in Computer Science, pages 391–438. Springer,
2004.

[BG85] Timothy A. Budd and Ajet S. Gopal. Program testing by specification mutation.
Computer languages, 10(1):63–73, 1985.

[BN07] M. Botinčan and V. Novaković. Model-based testing of the conference proto-
col with spec explorer. In Proceedings of the 9th International Conference on
Telecommunications, pages 131–138. IEEE, June 2007.

[BOY00] Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation operators for specifi-
cations. In Proceedings of the 15th IEEE International Conference on Automated
Software Engineering, pages 81–88, Grenoble, France, September 2000. IEEE.

[BPG07] Sergiy Boroday, Alexandre Petrenko, and Roland Groz. Can a model checker
generate tests for non-deterministic systems? Electr. Notes Theor. Comput. Sci.,
190(2):3–19, 2007.

36 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

[CR93] T.Y. Cheung and S. Ren. Executable test sequences with operational coverage
for lotos specifications. In 12th Annual International Phoenix Conference on
Computers and Communications, pages 245–253, 23-26 March 1993.

[CvB03] Ken Y. Chan and Gregor v. Bochmann. Modeling IETF session initiation proto-
col and its services in SDL. In Proceedings of the 11th International SDL Forum:
System Design, volume 2708 of LNCS, pages 352–373. Springer, 2003.

[dBRS+00] Lydie du Bousquet, Solofo Ramangalahy, Séverine Simon, César Viho, Axel Be-
linfante, and René G. de Vries. Formal test automation: The conference protocol
with TGV/TORX. In Proceedings of 13th International Conference on Testing
Communicating Systems: Tools and Techniques, volume 176 of IFIP Conference
Proceedings, pages 221–228, Dordrecht, August 2000. Kluwer Academic Publish-
ers.

[DLS78] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data selection: Help
for the practicing programmer. IEEE Computer, 11(4):34–41, April 1978.

[dSM06] Daniel Aguiar da Silva and Patŕıcia D. L. Machado. Towards test purpose gen-
eration from CTL properties for reactive systems. Electr. Notes Theor. Comput.
Sci., 164(4):29–40, 2006.

[DSMFDS99]Simone Do Rocio Senger De Souza, José Carlos Maldonado, Sandra Camargo
Pinto Ferraz Fabbri, and Wanderley Lopes De Souza. Mutation testing applied
to estelle specifications. Software Quality Control, 8(4):285–301, 1999.

[EFH83] Hartmut Ehrig, Werner Fey, and Horst Hansen. Act one - an algebraic specifica-
tion language with two levels of semantics. In Manfred Broy and Martin Wirsing,
editors, Proceedings 2nd Workshop on Abstract Data Type, 1983.

[FJJV97] Jean-Claude Fernandez, Claude Jard, Thierry Jéron, and César Viho. An ex-
periment in automatic generation of test suites for protocols with verification
technology. Science of Computer Programming, 29(1-2):123–146, 1997.

[FM91] Jean-Claude Fernandez and Laurent Mounier. “On the fly“ verification of be-
havioural equivalences and preorders. In Proceedings of the 3rd International
Workshop on Computer Aided Verification, volume 575 of LNCS, pages 181–191.
Springer, 1991.

[FTW06] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. A symbolic framework
for model-based testing. In 1st Combined International Workshops on Formal
Approaches to Software Testing and Runtime Verification, volume 4262 of LNCS,
pages 40–54. Springer, 2006.

[FW07] Gordon Fraser and Franz Wotawa. Nondeterministic testing with linear model-
checker counterexamples. In Quality Software, 2007. QSIC ’07. Seventh Inter-
national Conference on, pages 107–116, 11-12 Oct. 2007.

[FWW08a] Gordon Fraser, Martin Weiglhofer, and Franz Wotawa. Coverage based testing
with test purposes. In Proceedings of the 8th International Conference on Quality
Software, pages 199–208, 2008.

[FWW08b] Gordon Fraser, Martin Weiglhofer, and Franz Wotawa. Using observer automata
to select test cases for test purposes. In Proceedings of the 20th International
Conference on Software Engineering and Knowledge Engineering, pages 709–714,
2008.

[Gau95] Marie-Claude Gaudel. Testing can be formal, too. In Peter D. Mosses, Mogens
Nielsen, and Michael I. Schwartzbach, editors, Proceedings of th 6th International
Conference on Theory and Practice of Software Development, volume 915 of
LNCS, pages 82–96. Springer, 1995.

[GHN93] Jens Grabowski, Dieter Hogrefe, and Robert Nahm. Test case generation with
test purpose specification by MSC’s. In Proceedings of the 6th SDL Forum, pages
253–266. Elsevier Science, 1993.

[GLM02] Hubert Garavel, Frédéric Lang, and Radu Mateescu. An overview of CADP 2001.
European Association for Software Science and Technology Newsletter, 4:13–24,
2002.

Fault-based Conformance Testing in Practice 37

[Ham77] R.G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions
on Software Engineering, SE-3(4):279–290, July 1977.

[HBH08] Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, editors. Formal
Methods and Testing, An Outcome of the FORTEST Network, Revised Selected
Papers, volume 4949 of Lecture Notes in Computer Science. Springer, 2008.

[HFT00] Lex Heerink, Jan Feenstra, and Jan Tretmans. Formal test automation: The
conference protocol with phact. In Hasan Ural, Robert L. Probert, and Gre-

gor von Bochmann, editors, Proceedings of the 13th International Conference on
Testing Communicating Systems, volume 176 of IFIP Conference Proceedings,
pages 211–220. Kluwer, 2000.

[HHT96] D. Hogrefe, S. Heymer, and G. J. Tretmans. Report on the standardization
project “formal methods in conformance testing”. In B. Baumgarten, H-J.
Burkhardt, and A. Giessler, editors, Selected proceedings of the IFIP TC6 9th
international workshop on Testing of communicating systems, pages 289–298,
London, 1996. Chapman & Hall.

[HLU03] Olaf Henniger, Miao Lu, and Hasan Ural. Automatic generation of test purposes
for testing distributed systems. In Alexandre Petrenko and Andreas Ulrich, edi-
tors, 3rd International Workshop on Formal Approaches to Testing of Software,
volume 2931, pages 178–191, Montreal, Quebec, Canada, 2003. Springer.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[HP08] Jiale Huo and Alexandre Petrenko. Transition covering tests for systems with

queues. SOFTWARE TESTING, VERIFICATION AND RELIABILITY, 18(4),
2008.

[HSSR99] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session initiation
protocol. RFC 2543, IETF, 1999.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[IJW97] ITU-T SG 10/Q.8 ISO/IEC JTC1/SC21 WG7. Information retreival, transfer,
and management for osi. framework: Formal methods in conformance testing.
Committee Draft CD 13245-1, ITU-T Proposed Recommendation Z.500, 1997.
Geneve, Switzerland.

[ISO89] ISO. ISO 8807: Information processing systems – open systems interconnection
– LOTOS – a formal description technique based on the temporal ordering of
observational behaviour, 1989.

[JJ05] Claude Jard and Thierry Jéron. TGV: theory, principles and algorithms. Interna-
tional Journal on Software Tools for Technology Transfer, 7(4):297–315, August
2005.

[KV96] Orna Kupferman and Moshe Y. Vardi. Module checking. In Rajeev Alur and
Thomas A. Henzinger, editors, 8th International Conference on Computer Aided
Verification, volume 1102 of Lecture Notes in Computer Science, pages 75–86.
Springer, 1996.

[LvBP94] Gang Luo, G. von Bochmann, and A. Petrenko. Test selection based on commu-
nicating nondeterministic finite-statemachines using a generalized wp-method.
Transactions on Software Engineering, 20(2):149–162, 1994.

[LY96] David Lee and Mihakus Yannakakis. Principles and methods of testing finite
state machines – a survey. Proceedings of the IEEE, 84(8):1090–1123, August
1996.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92. Springer, 1980.
[Mil90] Robin Milner. Operational and algebraic semantics of concurrent processes. In

J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B:
Formal Models and Sematics, chapter 19, pages 1201–1242. Elsevier Science Pub-
lishers B.V., 1990.

[Mye79] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., 1979.
[OBY02] Vadim Okun, Paul E. Black, and Yaacov Yesha. Testing with model checker:

Insuring fault visibility. In Proceedings of International Conference on System

38 International Journal of Software and Informatics, Vol.XX, No.XX, XXXXXX 20XX

Science, Applied Mathematics & Computer Science, and Power Engineering Sys-
tem, pages 1351–1356, 2002.

[PBG04] Alexandre Petrenko, Sergiy Boroday, and Roland Groz. Confirming configura-
tions in efsm testing. IEEE Transactions on Software Engineering, 30(1):29–42,
2004.

[Phi87] I. Phillips. Refusal testing. Theor. Comput. Sci., 50(3):241–284, 1987.

[PP05] Wolfgang Prenninger and Alexander Pretschner. Abstractions for model-based
testing. Electr. Notes Theor. Comput. Sci., 116:59–71, 2005.

[PPW+05] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Zölch, and T. Stauner. One evaluation of model-based test-
ing and its automation. In Proceedings of the 27th International Conference on
Software Engineering, pages 392 – 401, St. Louis, Missouri, USA, 2005. ACM.

[PY02] Alexandre Petrenko and Nina Yevtushenko. Queued testing of transition systems
with inputs and outputs. In Rob Hierons and Thierry Jéron, editors, Proceedings
of the Workshop Formal Approaches to Testing of Software, pages 79–93, 2002.

[PY05] Alexandre Petrenko and Nina Yevtushenko. Conformance tests as checking ex-
periments for partial nondeterministic fsm. In Proceedings of the 5th Interna-
tional Workshop on Formal Approaches to Software Testing, volume 3997 of Lec-
ture Notes in Computer Science, pages 118–133. Springer, 2005.

[RdBJ00] Vlad Rusu, Lydie du Bousquet, and Thierry Jéron. An approach to symbolic
test generation. In Wolfgang Grieskamp, Thomas Santen, and Bill Stoddart,
editors, Proceedings of the Second International Conference on Integrated Formal
Methods, volume 1945 of LNCS, pages 338–357. Springer, 2000.

[RSC+02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session initiation protocol. RFC 3261, IETF,
2002.

[SCSP03] Thitima Srivatanakul, John A. Clark, Susan Stepney, and Fiona Polack. Chal-
lenging formal specifications by mutation: a csp security example. In Proceedings
of the 10th Asia-Pacific Software Engineering Conference, pages 340–350. IEEE,
December 2003.

[SNLD02] Henning Schulzrinne, Sankaran Narayanan, Jonathan Lennox, and Michael
Doyle. SIPstone - benchmarking SIP server performance. Technical report,
Columbia University, Ubiquity, 2002.

[SRS01a] Goran Stojsic, Robert Radovic, and Sinisa Srbljic. Formal definition of SIP end
systems behavior. EUROCON, Trends in Communications, 2:293–296, 2001.

[SRS01b] Goran Stojsic, Robert Radovic, and Sinisa Srbljic. Formal definition of SIP proxy
behavior. EUROCON Trends in Communications, 2:289–292, 2001.

[Sto93] Philip Alan Stocks. Applying formal methods to software testing. PhD thesis,
Department of computer science, University of Queensland, 1993.

[TB03] Jan Tretmans and Ed Brinksma. TorX: Automated model based testing. In
A. Hartman and K. Dussa-Zieger, editors, Proceedings of the 1st European Con-
ference on Model-Driven Software Engineering, pages 13–25, Nurnburg, Ger-
many, 2003.

[TPHT96] Rinke Terpstra, Luis Ferreira Pires, Lex Heerink, and Jan Tretmans. Testing
theory in practice: A simple experiment. Technical report, University of Twente,
The Netherlands, 1996.

[Tre92] J. Tretmans. A Formal Approach to Conformance Testing. PhD thesis, University
of Twente, Enschede, December 1992.

[Tre96] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software - Concepts and Tools, 17(3):103–120, 1996.

[Tre08] Jan Tretmans. Model based testing with labelled transition systems. In Hierons
et al. [HBH08], pages 1–38.

[VCG+08] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai
Tillmann, and Lev Nachmanson. Model-based testing of object-oriented reactive

Fault-based Conformance Testing in Practice 39

systems with spec explorer. In Formal Methods and Testing, volume 4949 of
Lecture Notes in Computer Science, pages 39–76. Springer, 2008.

[Wei06] Martin Weiglhofer. A LOTOS formalization of SIP. Technical Report SNA-
TR-2006-1P1, Competence Network Softnet Austria, Graz, Austria, December
2006.

[WLS04] Christian Wieser, Marko Laakso, and Henning Schulzrinne. SIP robustness test-
ing for large-scale use. In SOQUA/TECOS, volume 58 of LNI, pages 165–178,
2004.

[WW08a] Martin Weiglhofer and Franz Wotawa. ”On the fly” input output conformance
verification. In Proceedings of the IASTED International Conference on Software
Engineering, pages 286–291, Innsbruck, Austria, February 2008.

[WW08b] Martin Weiglhofer and Franz Wotawa. Random vs. scenario-based vs. fault-based
testing: An industrial evaluation of formal black-box testing methods. In Pro-
ceedings of the 3rd International Conference on Evaluation of Novel Approaches
to Software Engineering, pages 115–122, Funchal, Madeira - Portugal, 2008.

