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a b s t r a c t

Test purposes have been presented as a solution to avoid the state space explosion when selecting test
cases from formal models. Although such techniques work very well with regard to the speed of the test
derivation, they leave the tester with one important task that influences the quality of the overall testing
process: test purposes have to be formulated manually. In this paper, we present an approach that assists
a test engineer with test purpose design in two ways: it allows automatic generation of coverage based
test suites and can be used to automatically exercise those aspects of the system that are missed by hand-
crafted test purposes. We consider coverage of LOTOS specifications, and show how labeled transition sys-
tems derived from such specifications have to be extended in order to allow the application of logical cov-
erage criteria to LOTOS specifications. We then show how existing tools can be used to efficiently derive
test cases and suggest how to use the coverage information to minimize test suites while generating
them.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Test purposes can be used to create test cases efficiently, even
when large models are used for test case generation. A test purpose
is a formal representation of what the tester intends to exercise.
Given a test purpose, only a limited part of a test model needs to
be considered which attenuates the state space explosion problem.
Unfortunately, this still leaves the tester with the task of writing
test purposes, which might turn out rather difficult if thorough
testing is required. In fact, despite all formal conformance rela-
tions, the real quality of the test suites depends on the ability of
the tester to formulate suitable test purposes. For example, du
Bousquet et al. [2] report that even after 10 h of manual test pur-
pose design they failed to find a set of test purposes that would de-
tect all mutants of a given implementation.

In this paper, we present a set of generic test purposes based on
coverage criteria for LOTOS [3] specifications. Such an approach of-
fers the advantages of established test selection strategies together
with the efficiency of test purpose based test derivation algo-
rithms. This combination is not directly possible; test purposes
are applied to an underlying model formalism, which is mostly
the labeled transition system (LTS). We are not simply looking at
coverage of labels or transitions of the LTS, but aim to cover impor-
tant aspects of the underlying specification, which is typically gi-
ll rights reserved.
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ven in some formal language like LOTOS. However, not all relevant
information contained in a LOTOS specification is directly reflected
in the LTS.

We define coverage criteria for LOTOS specifications based on
well-known structural criteria and criteria for logical conditions,
and show how the derived LTS can be extended to contain the nec-
essary information. This additional information is used within our
test purposes for different coverage criteria; given our test pur-
poses available tools such as TGV [4] can be used to automatically
derive test suites. The technique can be applied by itself as a suffi-
cient testing method, but it can also support a test engineer to de-
tect and automatically exercise those parts of a system that
manually specified test purposes do not cover.

This paper is based on our previous work [1], which it extends
with:

� two new coverage criteria, i.e., process coverage and modi-
fied condition/decision coverage, for LOTOS specifications,

� an improved discussion of weak and strong coverage includ-
ing formal definitions,

� a discussion of how to complement test suites derived from
manually designed test purposes,

� results obtained by applying our approach to an additional
specification, and

� results for complementing manually designed test purposes.

This paper is organized as follows: first, we introduce the neces-
sary preliminaries of LOTOS and LTS based testing in Section 2. Then,
we define coverage criteria for LOTOS in Section 3, show how the
LOTOS specification has to be extended such that the resulting LTS
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contains all necessary information, and describe how the coverage
test purposes are derived. In Section 4, we present results of an
evaluation conducted on two different protocol specifications. Fi-
nally, we review related work in Section 5 and conclude the paper
in Section 6.
2. Preliminaries

The approach presented in this paper considers test case gener-
ation for LOTOS specifications. Semantically, LOTOS specifications can
be interpreted as labeled transition systems. Test case generation
for labeled transition systems is a much studied field of research.
There is a well-defined theory underlying such approaches, and
mature research prototypes (e.g., TGV [4], TORX [5]) have been pre-
sented. Consequently, this is also the approach we have chosen. In
this section we give a short introduction to the language LOTOS and
then briefly review the notion of test cases and test purposes as
used by TGV for test generation with respect to Tretmans’s input/
output conformance (ioco) theory [6]. The example specification
given in this section will be used in the subsequent sections to de-
scribe our testing approach.

2.1. A brief introduction to LOTOS and labeled transition systems

This section contains a brief introduction to LOTOS; for a detailed
introduction to the LOTOS specification language we refer the reader
to the work of Bolognesi and Brinksma [7].

The language of temporal ordering specification (LOTOS) is an ISO
standard [3]. LOTOS comprises two components: The first is based
on the Calculus of Communication Systems [8] (CCS) and deals
with the behavioral description of a system, which is given in
terms of processes, their behavior, and their interactions. The sec-
ond component of LOTOS specifications is used to describe data
structures and value expressions, and is based on the abstract data
type language ACT ONE [9].

The basic elements of a LOTOS specification are processes with a
certain behavior expressed in terms of actions. An action is an
expression over a process’s gates, possibly equipped with values.
Table 1 lists some of the main elements used to compose the
behavior of a process.

The ‘‘;” operator is used to express sequential composition. For
example, the behavior a; b in a process with the gates a and b ex-
presses that first a and then subsequently b happens. A guarded
behavior [guard]->behavior is only executed if the guard eval-
uates to true. For example, in the specification shown in Fig. 2 Line
29 can only be executed if the size of the stack s is equal to one.
Table 1
Excerpt of LOTOS behavior elements.

Syntax Meaning

action; behavior Action followed by a behavior
[guard] -> behavior Guarded behavior
behavior1 []

behavior2

Choice

B1jjjB2 Interleaving of two behaviors
B1jjB2 Behaviors are synchronized on all actions
B1j½g1; . . . ;gn�jB2 Behaviors are partially synchronized on the gates

g1; . . . ; gn

behavior1 [>
behavior2

Disabled by second behavior

behavior1 >>
behavior2

First enables second

exit Exit
proc[gate,..](val,..) Process instantiation
(behavior) Grouping
A choice between two behaviors B1 and B2 is expressed by
B1½�B2. For example, let the gates of a process be milk and tee,
then the expression milk[]tee allows one to chose between the
events tee and coffee.

The LOTOS construct B1½> B2 states, that choosing the first action
of the behavior B2 disables the execution of the behavior B1. For
example, Line 3 of Fig. 2 expresses that the Main process is exe-
cuted unless the event ui !quit is executed. After ui !quit the
execution continues in the right branch of the ½> operator. In the
case of the specification of Fig. 2 this means that the specification
terminates (exit).

The enabling operator (>>) within a LOTOS specification states
that a successful execution of the first process enables the subse-
quent behavior block. For example consider Line 10 of Fig. 2. This
line states, that after successful termination of the DisplayStack
process the behavior of the specification is obtained by recursively
instantiating the Main process.

An interleaving expression B1jjjB2 expresses that the two behav-
iors B1 and B2 are executed without any synchronization, i.e. the
actions may be executed in an arbitrary order. For example, let
a1; a2 and b1 be actions, then the specification ða1; a2Þjjjðb1Þ has
the following observable behaviors: ha1; a2; b1i, ha1; b1; a2i,
hb1; a1; a2i. Contrary, partial synchronization ðB1j½g1; . . . ; gn�jB2Þ ex-
presses synchronization only on the specified gates g1; . . . ; gn. A
synchronized action can only be executed if both synchronized
behavioral blocks offer the action, i.e. let a1; a2 and b1 be actions,
then the specification ða1; a2Þj½a2�jða2; b1Þ has only the following ac-
tion sequence: ha1; a2; b1i. Finally, full synchronization, i.e. B1jjB2,
requires that all actions of B1 and B2 are synchronized.

Process instantiation allows one to use defined processes. For
example, Line 3 of Fig. 2 instantiates the Main process with the
gates ui and out and an empty stack, i.e. nil, as parameter.

An abstract data type is given in terms of sorts, operations and
equations. An example showing the basic elements of data type
definitions is given in Fig. 1. This data type comprises the base ele-
ment nil (Line 5), which denotes an empty stack, and the four pre-
fix operators push, pop, top, and size. For example, the signature
of the push operator on Line 6 shows that this operator takes a nat-
ural number (Nat) and a stack and returns a new stack. The equa-
tion part of this data type definition states that for any stack st and
for any natural number n, popping a previously pushed element of
a stack st results into st (Line 13).

The semantics of a LOTOS specification is given as a labeled tran-
sition system.

Definition 1 (Labeled transition system). A labeled transition sys-
tem (LTS) is a tuple M ¼ QM;AM [ fsg;!M; qM

0

� �
, where Q M a finite

set of states, AM a finite alphabet and s R AM is an unobservable
action,!M # QM � AM � QM is the transition relation, and qM

0 2 QM

is the initial state.

We are interested in generating test cases for testing confor-
mance with respect to input output conformance (ioco) as defined
by Tretmans [6]. Hence, the LTS is extended with input and output
information before test generation; this gives an input output la-
beled transition system.

Definition 2 (Input output labeled transition system). An input
output labeled transition system (IOLTS) is an LTS
M ¼ QM;AM [ fsg;!M ; qM

0

� �
where AM is partitioned into two

disjoint sets AM ¼ AM
I [ AM

O , where AM
I and AM

O are input and output
alphabets, respectively.

We use the following common notations for LTSs and for IOLTSs.

Definition 3. Let M be a labeled transition system
M ¼ QM;AM

I [ AM
O [ fsg;!M ; qM

0

� �
and let q; q0; q0; q1; . . . ; qn 2

QM; a; a1; . . . ; an 2 AM
I [ AM

O , and r 2 AM
I [ AM

O

� ��
, then



Fig. 1. A simple stack data type providing typical stack operations.

M. Weiglhofer et al. / Information and Software Technology 51 (2009) 1601–1617 1603
q!a Mq0 ¼df ðq;a;q0Þ 2!M

q!a M ¼df9q0 � ðq;a;q0Þ 2!M

q)
�

q0 ¼df ðq¼q0Þ_9q0; . . . ;qn � ðq¼ q0!
s

Mq1^�� �^qn�1!
s

Mqn¼ q0Þ

q)
a

q0 ¼df9q1;q2 �q)
�

Mq1!
a

Mq2)
�

Mq0

q )
a1 ;...;an

q0¼df9q0; . . . ;qn �q¼ q0 )
a1

Mq1; . . . ;qn�1)
an

Mqn ¼q0

q)
r

¼df9q0 �q)
r

q0

We use initðqÞ to denote the actions enabled in state q and
tracesðqÞ to denote the traces starting in state q. Informally, a trace
of an LTS is a finite sequence of actions allowed by the transition
relation. Furthermore, we denote the states reachable by a partic-
ular trace r by q after r. More precisely,

Definition 4 [10]. Let M be a labeled transition system M ¼
QM;AM

I [ AM
O [ fsg;!M ; qM

0

� �
and let q 2 QM ;Q # Q M , and r 2

AM
I [ AM

O

� ��
, then

initðqÞ ¼df a 2 AM
I [ AM

O [ fsgjq!
a

M

n o

tracesðqÞ ¼df r 2 AM
I [ AM

O

� ��
jq)

rn o

q afterM r ¼df q0j q)
r

Mq0
n o

Q afterM r¼df

[
q2Q

ðq afterM rÞ

Note that initðqÞ may contain s actions while tracesðqÞ only
comprises observable behavior, i.e. no s actions, starting at state
q. When talking about traces one is not interested in unobservable
behavior. Contrary, when looking at the actions initially enabled in
state q one wants to know if there is a s labeled transition enabled
in q. Because in that case the system may internally move to an-
other state. This is not relevant with respect to the traces of q.

An LTS M ¼ QM ;AM
I [ AM

O [ fsg;!M; qM
0

� �
is deterministic if for

any sequence of actions, starting at the initial state, there is at most

one successor state, i.e. 8r 2 AM
I [ AM

O

� ��
: qM

0 afterMr
�� �� 6 1, where

jXj denotes the cardinality of the set X.
Labeled transition systems can be composed using parallel

composition, which is denoted by the parallel composition opera-
tor k. Given two labeled transition systems M1 and M2, then the
operational semantics of M1kM2 is defined by the following infer-
ence rule:

qM1!a M1 qM1
0
; qM2!a M2 qM2

0

qM1 jjqM2!a M1kM2 qM1
0jjqM2

0

As this inference rule illustrates, the parallel composition
M1kM2 comprises only parts common to both M1 and M2. Note that
LOTOS’s k operator has a similar semantics, i.e. synchronization hap-
pens on all actions of the synchronized behaviors.
2.2. Example LOTOS specification of a stack calculator

Fig. 2 shows a LOTOS specification of a simple stack calculator,
which will be used to illustrate coverage criteria in the subsequent
section. The specification uses both behavioral description ele-
ments and data type elements. The stack data type is specified in
Fig. 1. For the sake of brevity we do not show the data type defini-
tions for Boolean elements and for natural numbers in this paper;
our specification simply relies on the types ‘‘Boolean” and ‘‘Natu-
ralNumber” stated in the appendix of the LOTOS ISO standard [3].
In addition, we omit the definition of our ‘‘Operator” type, which
only provides the two base elements add and display and com-
parison operators for those two elements.

The specification of the stack calculator uses the two gates ui
for user input and out for system output and consists of two
processes. The main process (Lines 5–25) takes the current stack
s as argument and reads either an operator (Line 7) or an oper-
and (Line 24), i.e., a natural number, from the user. If the user
enters a natural number, the number is pushed onto the stack
and the execution of the main process is continued recursively
(Line 24).

If the user enters an operator the specification checks which
operator has been entered. If the display operator has been se-
lected and the stack is not empty (Line 9) then the specification
calls the DisplayStack process and the Main process subse-
quently without changing the stack (Line 10).

If the entered operator equals add and the size of the stack is
greater than or equal to two (Line 13) then we recursively continue
with a stack where the two top elements are replaced with their
sum (Line 14).
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If the stack size does not meet the requirements of the entered
operator (Lines 17 and 18) then the calculator issues an error and
continues without changing the stack (Line 19).

The DisplayStack process (Lines 27–33) takes a stack s and
displays the content of the stack using the out gate.

The overall behavior of the calculator’s specification (Line 3) is
composed of instantiating the main process with an empty stack
(i.e., nil) with the possibility to disable operation of the main pro-
cess at any time using a quit command.

2.3. Test purposes and test cases

While a formal model is a description of the system under test, a
test purpose can be seen as a formal specification of a test case.
Tools like SAMSTAG [11], TGV [4] and Microsoft’s XRT [12] use test pur-
poses for test generation. We use TGV in our experiments; the for-
mal notation of test purposes for TGV is given by:

Definition 5 (Test purpose). Given a specification S in the form of
an IOLTS, a test purpose is a deterministic IOLTS
TP ¼ QTP ;ATP ;!TP ; qTP

0

� �
, equipped with two sets of trap states:

AcceptTP defines pass verdicts, and RefuseTP allows one to limit the
exploration of the graph S. Furthermore, ATP ¼ AS and TP is
complete (i.e., it allows all actions in each state).

Fig. 3 serves to illustrate a test purpose and the used notation
for test purposes within this paper. We use ’�’-labeled edges to de-
Fig. 2. LOTOS specification of a
note all edges that are not explicitly specified for a particular state.
Edge labels that end with ‘.�’ denote any edge that start with the
text stated before ‘.�’. The illustrated test purpose is intended for
our stack calculator specification of Fig. 2. This test purpose selects
traces of the specification’s LTS that end with hout!2;out:�i. It re-
fuses to select any trace that contains out!error.

According to Jard and Jéron [4] test synthesis within TGV is con-
ducted as follows: given a test purpose TP and a specification S TGV

calculates the synchronous product SP ¼ S� TP. The construction
of SP is stopped in Accept and Refuse states as subsequent behaviors
are not relevant to the test purpose. Then TGV extracts SPVIS of SP by
removing all s actions from SP, by adding suspension labels to SP
and by making SP deterministic. SPVIS denotes the visible behavior
of SP, i.e. SPVIS does not comprise s labeled (unobservable) transi-
tions and SPVIS is deterministic.

The added suspension labels are needed for input output con-
formance testing and indicate the absence of output. A suspension
label is a d labeled transition, which indicates the absence of out-
puts. Thus, d labeled transitions are enabled in states where neither
an output nor a s labeled transition is enabled.

A test case derived by TGV is controllable, i.e., it does not have to
choose between sending different stimuli or between waiting for
responses and sending stimuli. This is achieved by selecting traces
from SPVIS that lead to Accept states and pruning edges that violate
the controllability property. Finally, the states of the test case are
annotated with the verdicts pass, fail and inconclusive (inconc).
simple stack calculator.
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Inconclusive verdicts denote that neither a pass nor a fail verdict
has been reached but the implementation has chosen a trace that
is not included in the traces selected by the test purpose.

As a major strength of TGV, the test case synthesis is conducted
on-the-fly: parts of S, SP, and SPVIS are constructed only when
needed. In practice, this allows one to apply TGV to large
specifications.

The constructed test case is again an IOLTS with special proper-
ties. More formally,

Definition 6 (Test case). A test case is a deterministic IOLTS

TC ¼ QTC ;ATC ;!TC ; qTC
0

� �
equipped with three sets of trap states

Pass � QTC , Fail � QTC , and Inconc � QTC characterizing verdicts. A
test case satisfies the following properties:

1. Inputs of TC are outputs of the implementation under test (IUT)
and vice versa. Furthermore, TC considers all possible outputs of
the IUT.

2. From each state a verdict must be reachable.
3. States in Fail and Inconc are only directly reachable by inputs.
4. A test case is input complete in all states where an input is

possible.
5. TC is controllable, i.e., no choice between two outputs or

between inputs and outputs.

A test suite is a set of test cases.
3. Coverage based test purpose generation

One of the main difficulties in testing software is to decide
which test cases out of a possibly infinite set to choose. Coverage
criteria are a well-known method to focus on finite subsets that
exercise some defined aspects of a system. Code coverage criteria
are mostly used to assess the quality of an existing test suite, while
criteria based on specifications and models are often used to derive
test suites. In general, a coverage criterion defines a set of test
requirements that should be exercised. The coverage value ex-
presses the percentage of the test requirements that are actually
covered by a given test suite.

In this section we define coverage criteria for LOTOS specifica-
tions, and show how the LTS representing the semantics of a LOTOS

specification has to be extended in order to allow coverage of the
defined criteria. Finally, we present a generic set of test purposes
which allow one to generate test cases achieving maximum spec-
ification coverage.

3.1. Basic coverage of LOTOS specifications

The behavioral part of a LOTOS specification is expressed in terms
of processes and their communication. A process is considered to
be a black-box at some level of abstraction where only the process’
external behavior is considered. Similar to function coverage for
sequential programs, process coverage gives the percentage of pro-
cesses executed within a LOTOS specification.
Fig. 3. Example test purpose.
Definition 7 (Process coverage). A process of a LOTOS specification is
covered, if it is executed. The process coverage represents the
percentage of processes of the specification that are covered.

The behavior of a LOTOS process consists of actions. The idea of
action coverage for LOTOS specifications is that every action state-
ment in the specification should be executed at least once, similar
to statement coverage [13] for source code.

Definition 8 (Action coverage). An action of a LOTOS specification is
covered, if it is executed. The action coverage represents the
percentage of actions of the specification that are covered.

A single action statement within the specification may generate
several edges within the underlying LTS, because data is handled
by enumeration. If an action has parameters, e.g., a Boolean vari-
able, then the LTS contains all possible enumeration of the param-
eters’ values. For one Boolean parameter the LTS contains two
edges: one labeled with true and another one labeled with false.
Action coverage only requires that one of these edges is taken by
a test case.

For example, the specification illustrated in Fig. 2 has actions in
Lines 7, 19, 24, 29, and 32. The test case shown in Fig. 4 covers
66.6% of these actions: The action in Line 24 is covered by the first
two transitions ui!1 and ui!2. The transition ui!display covers
the action of Line 7. The final two transitions out!2 and out!1

cover the two actions of Line 32 and of Line 29, respectively. The
process coverage of this test case is 100.0% because every process
(Main and DisplayStack) has been entered at least once. Note
that in this example the edges leading to fail states do not add to
action nor to process coverage, because there is no test run on
our specification that leads to a fail verdict state.

3.2. Logical coverage criteria for LOTOS specifications

LOTOS specifications contain Boolean expressions within guards.
For example, Line 9 in Fig. 2 contains the logical expression (op eq

display) and (size(s) gt 0). Following a large body of litera-
ture of coverage in software testing, we call such an expression a
decision. A decision comprises a number of conditions (also known
as clauses), that are connected by logical operators. In this section
we adapt several known coverage criteria for logical expressions
to LOTOS specifications.

Definition 9 (Decision coverage). A decision is covered, if it eval-
uates to true and to false at some point during test execution. The
decision coverage represents the percentage of decisions in a LOTOS

specification that are covered.
ig. 4. Test case having 100.0% process coverage and 66.6% action coverage on the
F

specification of Fig. 2.
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Decision coverage has also been called branch coverage [13] or
predicate coverage [14]. In contrast to action coverage, each deci-
sion results in two test requirements, one for the decision to eval-
uate to true and one for it to evaluate to false; this applies to the
condition and to the condition/decision criterion as well. As an
example, the specification given in Fig. 2 has five decisions on Lines
9, 13, 17, 28, and 31. The test case of Fig. 4 achieves 70% decision
coverage with regard to these decisions: The transition ui!dis-

play and the fact that the stack size is changed by the two prede-
cessor transitions cause the guard of Line 9 to evaluate to true and
the guards of Line 13 and of Line 17 to evaluate to false. The last
two transitions out!2 and out!1 cause the decisions of Line 28
and Line 31 to evaluate to true and to false, respectively. The tran-
sitions ui!1 and ui!2 do not directly trigger any guard.

A decision consists of conditions separated by logical operators
(e.g. and, or); these conditions are considered by condition cover-
age (also known as clause coverage [14]).

Definition 10 (Condition coverage). A decision consists of condi-
tions separated by logical operators (e.g. and, or). A single
condition is covered, if it evaluates to both true and false at some
point during test execution. The condition coverage represents the
percentage of conditions in a LOTOS specification that are covered.

For example, the specification listed in Fig. 2 has ten conditions
on Lines 9, 13, 17, 28, and 31. The transition ui!display of the
test case illustrated in Fig. 4 lets the first condition of Line 9 eval-
uate to true. Because the two transitions ui!1 and ui!2 raise the
stack size to two, the transition ui!display also makes the con-
dition (size(s) gt 0) and (size(s) ge Succ(Succ(0))) true.
Furthermore, the conditions (op eq add), (size(s) lt Succ(-

Succ(0))), and (size(s) eq 0) evaluate to false. The two tran-
sitions out!2 and out!1 leading to the pass state make the
conditions of Lines 28 and 31 evaluate to false and true, and to true
and false, respectively. Thus, the condition coverage is 60%.

As satisfying condition coverage does not guarantee that all
decisions are covered (i.e., decision coverage is not subsumed by
condition coverage), it is common to define the condition/decision
(CD) coverage criterion as the combination of decision and condi-
tion coverage.

Definition 11 (Condition/decision coverage). The condition/deci-
sion coverage represents the percentage of conditions and deci-
sions in a LOTOS specification that are covered.

This means that 100% condition/decision coverage is achieved if
all conditions evaluate to true and to false, and if every decision
also evaluates to true and to false during the test execution.

Our stack calculator specification includes ten conditions and
five decisions (Lines 9, 13, 17, 28, 31). Counting the condition/deci-
sion coverage of our test case shown in Fig. 4, we get a CD coverage
of 63%.

Another coverage criterion for logical expressions is the modi-
fied condition/decision coverage (MCDC) [15]. The essence of mod-
ified condition/decision coverage is that each condition must show
to independently affect the outcome of the decision. That is, test
Table 2
Modified condition/decision coverage for the guard ((op eq add) and (size(s) lt Suc

TC C1 C2

op eq add size(s) lt Succ(Succ(0))

1 T F
2 F T
3 T T
4 T F
5 T F
cases must demonstrate that the truth value of the decision has
changed because of a change of a single condition.

Definition 12 (Modified condition/decision coverage). The modified
condition/decision coverage represents the percentage of condi-
tions that independently effected the outcome of a decisions in a
LOTOS specification during execution.

For each condition a pair of test cases is needed, i.e., one making
the decision true while the other makes the decision false. How-
ever, by overlapping these pairs of test cases usually N þ 1 test
cases are sufficient for covering a decision comprising N
conditions.

Table 2 depicts a minimal set of truth values for the conditions
of the guard of Line 17 in Fig. 2. A set of test cases that cause the
conditions to take these truth values has 100% MCDC coverage
on the guard of Line 17. For example, consider the two test cases
1 and 5. They only differ in the truth value of the condition C4.
However, the truth value of the decision is different for the two test
cases 1 and 5 as well. Thus, this test case pair covers C4 with re-
spect to MCDC coverage. Furthermore, C3 is covered by the test
cases 4 and 5, C2 is covered by the test cases 1 and 3 and C1 is cov-
ered by the two test cases 2 and 3.

3.3. Weak and strong coverage

Due to the inherent parallel nature of LOTOS specifications we
need to distinguish between weak and strong coverage. At any
point of execution one may choose between different actions of-
fered by a LOTOS specifications. Obviously, the offered actions de-
pend on the structure of the specification.

For example, consider a specification having two processes P1
and P2 in parallel, i.e., P1jjjP2. The jjj parallel execution operator
denotes any interleaving of the actions offered by P1 and P2. Thus,
at the very beginning of this specification fragment one can choose
between the actions initially offered by P1 and the actions initially
offered by P2. A similar situation can be constructed for guarded
expressions. An action may be offered only if a particular guard
evaluated to true.

A coverage item is covered weakly if the actions related to that
coverage item are offered by the specification at some moment
during the execution of a test case. Weak coverage does not require
that a test case synchronizes on the relevant actions. More for-
mally, weak coverage is defined as follows:

Definition 13 (Weak coverage). Given a set of actions
C ¼ fa1; . . . ; ang comprising the actions relevant for a particular
coverage item, an IOLTS representing a test case t ¼

Qt;At ;!t ; qt
0

� �
, and a specification S ¼ QS;AS;!S; qS

0

� �
, then t

weakly covers S with respect to g, iff

9a 2 C � 9r 2 tracesðtÞ � a 2 initðS after rÞ

Depending on the coverage criterion the relevant actions differ.
In the case of process coverage the relevant actions C are given by
the transition labels of the transitions that are enabled in the LTS
because of the process’ behavior. For action coverage the relevant
c(Succ(0)))) or ((op eq display) and (size(s) eq 0)) of Fig. 2.

C3 C4 ðC1 ^ C2Þ _ ðC3 ^ C4Þ
op eq display size(s) eq 0

T F F
T F F
T F T
F T F
T T T
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actions C are given by the transition labels that result from the ac-
tion to be covered. For logical coverage criteria we have to distin-
guish between the true and the false case. In one of these cases
there are more transitions enabled in the LTS than in the other.
Without loss of generality assume that the true case has more en-
abled transitions. Then, C for the true case is given by the transition
labels that are absent in the false case. The actions C for the false
case are all actions that are enabled in the false case.

We say we have strong coverage if the actions of interest are not
only offered by the specification, but if the test case synchronizes
on one of that actions. That is, if one action is taken by the test case.
More precisely, strong coverage for a coverage goal, expressed in
terms of actions, is defined as follows:

Definition 14 (Strong coverage). Given a set of actions
C ¼ fa1; . . . ; ang comprising the actions relevant for a particular
coverage item, an IOLTS representing a test case t ¼

Qt ;At;!t; qt
0

� �
, and a specification S ¼ QS;AS;!S; qS

0

� �
, then t

strongly covers S with respect to g, iff

9r 2 tracesðtÞ � C \ initðtjjS after rÞ– ;

As this definition shows, strong coverage only requires that at
least one of the relevant actions is taken by the test case.

The following example serves to illustrate the difference be-
tween weak and strong coverage. Fig. 5 depicts the initial part of
the underlying labeled transition system of our stack calculator
specification (Fig. 2). As this LTS shows, after executing ui!add
Fig. 5. Part of the underlying LTS of the stack calculator specification.

Fig. 6. Two different test cases illustrating weak and strong coverage.

Table 3
Subsumption relation of the approached coverage criteria.

Process Action Decision

(W) (S) (W) (S) (W)

Process (W) # 6# 6# 6#
Process (S) 6# 6# 6# 6#
Action (W) 6# 6# # 6#
Action (S) 6# 6# 6# 6#
Decision (W) 6# 6# 6# 6#
Decision (S) 6# 6# 6# 6# 6#
Condition (W) 6# 6# 6# 6# 6#
Condition (S) 6# 6# 6# 6# 6#
CD (W) 6# 6# 6# 6# 6#
CD (S) 6# 6# 6# 6# 6#
MCDC (W) 6# 6# 6# 6# 6#
MCDC (S) 6# 6# 6# 6# 6#
(Line 7) the calculator may either issue an error (out!error) or
the user may quit (ui!quit) the calculator.

For this part of the specification two different valid test cases
are possible; these test cases are illustrated in Fig. 6. Both test cases
enable the block guarded by the condition in Line 17. However, the
test case on the left hand side does not take an action from the
guarded block, but chooses the quit action. This test case covers
the decision’s true case of the guard weakly. On the other hand,
the test case illustrated on the right of Fig. 6 chooses an action that
is possible only because the guard has evaluated to true. Thus, this
test case achieves strong coverage with respect to the conditions
and decisions of interest.

3.4. Relation between coverage criteria

Table 3 relates the coverage criteria of Section 3.1 and of Section
3.2 with respect to weak (W) and strong (S) coverage. The table is
read from left to top. For example, the intersection of the first row
with the second column states that weak process coverage (Process
(W)) is not subsumed by the strong process coverage (Process (S)).

As this table shows, neither weak nor strong process coverage
subsume any other coverage criteria. This is also true for weak
and strong action coverage. In particular, action coverage does
not subsume process coverage because LOTOS allows one to use pro-
cesses which do not comprise actions.

Furthermore action coverage neither subsumes any other cov-
erage criterion nor is subsumed by any other coverage criterion.
Let a, b, and c be actions and let a [] b [] [x>5]!(c) be the spec-
ification. Then a test suite having 100% action coverage consists at
least of three test cases while the test suites for our logical criteria
comprise only two test cases.

Weak coverage of any logical criteria is always subsumed by its
strong pedant. Contrary, weak coverage never subsumes strong
coverage. This follows from the definitions of weak and strong cov-
erage. Thus, weak condition decision coverage does not subsume
strong decision coverage. However, weak CD coverage subsumes
weak decision coverage and strong CD coverage subsumes strong
decision coverage.

Strong MCDC subsumes all of our coverage criteria except pro-
cess and action coverage. This is, because for each condition MCDC
comprises one test case such that condition evaluations to both
true and false. In addition, there is at least one test case making
the decision true and at least one test case making the decision
false.

3.5. Deriving test purposes from coverage criteria

We have defined the coverage criteria on the syntactical level of
the specification while test purposes operate on the semantic level,
Condition CD MCDC

(S) (W) (S) (W) (S) (W) (S)

6# 6# 6# 6# 6# 6# 6#
6# 6# 6# 6# 6# 6# 6#
6# 6# 6# 6# 6# 6# 6#
6# 6# 6# 6# 6# 6# 6#
# 6# 6# # # # #

6# 6# 6# # 6# #

6# # # # # #

6# 6# 6# # 6# #

6# 6# 6# # # #

6# 6# 6# 6# 6# #

6# 6# 6# 6# 6# #

6# 6# 6# 6# 6# 6#
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e.g., on the labeled transition system. Unfortunately, the LTS does
not explicitly contain the information needed to generate coverage
based test purposes. In order to bridge this gap we have to anno-
tate the LOTOS specification with additional information such that
this information is also visible in the LTS.

More specifically, we insert probes a that are not in the initial
alphabet of the specification S, i.e., a R AS [ fsg; we call a specifica-
tion with inserted probes marked. Each probe results in a distinct
transition in the labeled transition system, and therefore makes
coverage relevant information of the specification visible. By
selecting a labeled transition in the test purpose we can now de-
rive test purposes with respect to a certain coverage criterion. Note
that for the final test case the a label has to be hidden again.

In the following we explain for every coverage criterion what
probes are needed and what the test purposes look like.

Process coverage: for process coverage we generate as many
marked specification as there are processes within the specifica-
tion. Each marked specification comprises a single probe which is
inserted directly after the process declaration. In the case of our
stack calculator example we generate 2 different copies. In one
copy there is an a-probe at Line 6, while in the other copy the a-
probe is inserted at Line 28 (in front of the guard).

By using the test purpose depicted in Fig. 7 we derive test cases
for each of the specifications in order to obtain a test suite for pro-
cess coverage. This test purpose simply states that any sequence
covering an a-labeled transition followed by an arbitrary action
is a valid test case. (Alternatively, one could use a single specifica-
tion with several probes without any loss of generality. However,
our experiments have shown that this slows down TGV

significantly.)
Action coverage: in order to generate test cases with respect to

action coverage we construct as many marked specifications as
there are actions within the specification. For example, for our
stack calculator specification we generate 5 different copies. In
each copy we insert an a after the action of interest, e.g., after
the action statements on Lines 7, 19, 24, 29, and 32. Then, the test
purpose depicted in Fig. 8 is used with each of the specifications in
order to derive test cases with respect to action coverage. This test
purpose simply states that any sequence covering a transition la-
beled with a is a valid test case; because a follows after the consid-
ered action, this guarantees that the action was executed.

Decision coverage: for generating test cases with respect to log-
ical coverage criteria we have to equip our a probes with additional
Fig. 7. Test purpose for generating test cases with respect to process coverage of
marked specifications.

Fig. 8. Test purpose for generating test cases with respect to action coverage of
marked specifications.
information, which allows us to select a certain outcome of a deci-
sion. In the case of decision coverage we simply add the whole
decision to the probe.

Fig. 9 serves to illustrate this technique. This figure shows the
DisplayStack-process of our stack calculator specification. In order
to generate test cases for covering the condition of Line 4, we
added a probe equipped with the decision in Line 2. The underlying
LTS of this piece of specification contains the edges a!TRUE and
a!FALSE, which can be selected directly by the test purpose.

Note that we insert the probes before the decisions if they are
not part of a choice operator (i.e., ‘‘[]”). In the case of choices we in-
sert the marker before the first condition of the choice (e.g., the
probe for the condition of Line 6 in Fig. 9 is inserted at Line 2).
For each marked specification we get two test cases from the
two test purposes of Fig. 10, one for each possible outcome of a
decision. In order to ensure that the decision is evaluated we need
to select one non-internal edge, e.g., an edge not labeled with s.
Therefore, we have an ‘�’-labeled edge leading to the accept state,
which selects an edge which is possible after a.

Condition coverage: in order to generate test cases with respect
to condition coverage we insert our a probes in the same manner
as for decision coverage. Instead of equipping the probes with
the whole decision we split the decision into its conditions. For
example, the probe for covering the two conditions in the guard
in Line 9 of our stack calculator example is a !(op eq display)

!(size(s) gt 0). The corresponding test purposes are illustrated
in Fig. 11. For each condition of our inserted markers ðaÞ we need
to select the true (!TRUE) and the false (!FALSE) outcome while we
do not care about the other conditions (![A-Z]�). Since we need to
select a particular condition we have to add ![A-Z]� at the right po-
sition for every other condition in the label of the test purpose.

If there are n conditions in a decision we need 2� n test pur-
poses in order to derive test cases with respect to decision cover-
age. As for decision coverage we need to select one edge after
the a probe in order to ensure that the condition is evaluated.

Condition/decision coverage: we generate test cases with respect
to CD coverage by inserting probes similar to condition coverage.
The probes are equipped with the decision as the first element fol-
lowed by the conditions of the decision. We then use the test pur-
poses of Fig. 11 and instantiate them for all parameters of the
probe, i.e., for the decision and for all conditions.

Modified condition/decision coverage: the probes inserted into
specifications for deriving MCDC based test purposes are similar
to the probes for the other logical coverage criteria. Contrary, the
test purposes do not contain ‘‘![A–Z]”-elements which match any
logical value, e.g., true and false, but each label of a test purpose
matches a particular Boolean value of every condition. There are
several possibilities to calculate truth values for conditions that re-
sult in MCDC pairs; we refer to Ammann and Offutt [16] for an
overview. In order to generate a minimal number of test purposes
for a decision we calculate the truth-table for that decision. Then
we search for all sets of truth-value assignments to the conditions
of the decision such that each set is a valid MCDC test suite of min-
imal length. From these sets we randomly select one set which
then forms our test suite. The truth-value assignments are directly
used within the test purposes. In total, we generate N þ 1 different
test purposes for N conditions. Each test purpose selects a particu-
lar valuation of the conditions and of the decision of a probe. For
example, let Table 2 be the selected set of truth-value assignments
for the decision ((op eq add) and (size(s) lt Succ

(Succ(0)))) or ((op eq display) and (size(s) eq 0)) in
Line 17 of Fig. 2. Then the generated test purposes for C1 and C2

of Table 2 look like those illustrated in Fig. 12. We omit the test
purposes for C3 and C4 here.

Our current implementation does not consider whether the se-
lected truth-value assignments are valid within our specification or



Fig. 12. Test purposes for generating test cases with respect to modified condition/
decision coverage of marked specifications.

Fig. 9. Stack calculator specification with probe to cover a condition.

Fig. 10. Test purposes for generating test cases with respect to decision coverage of
marked specifications.

Fig. 11. Test purposes for generating test cases with respect to condition coverage
of marked specifications.
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not. Thus, it may happen that we use truth-value assignments
which can never occur within our specification.

3.5.1. Remarks
Except for action coverage, our test purposes can guarantee

weak coverage only. A solution for achieving strong coverage
would be to insert other probes, e.g., b where b R AS [ fsg, after
the actions relevant for a particular coverage item. For example,
for process coverage one could insert a b after every action than
can occur as the first action within a process.

However, while we can always decide where to insert regular a
probes based on the syntax of the specification, this cannot be done
on the syntactical level for b probes. We may need to evaluate
parts of the specification before we can decide on the positions
of b probes. However, if such probes are inserted into the specifica-
tion, test purposes can make use of these b actions in order to en-
sure that the right branch within the LTS is taken.
For example, suppose we want to strongly cover a process that
does not comprise any action but calls other processes. Further
suppose, that these other processes do not return but call them-
selves recursively. In that case we need to insert b after the first ac-
tion of the called processes.

3.6. Supporting manually designed test purposes

Our probe insertion technique does not only allow one to auto-
matically generate test suites based on coverage criteria. It may
also be used to complement manually designed test purposes.

Test cases generated for manually designed test purposes may
not fully cover all aspects of a particular model. By the use of our
probe-based technique we can determine the coverage value of a
given set of test cases. Furthermore, we can automatically generate
test cases that exercise parts of the specification missed by the test
cases derived from manually designed test purposes.

More precisely, we do the following in order to complement
test cases generated for manually designed test purposes. Given
a test suite derived from a set of test purposes we run the test cases
of that test suite on a specification comprising all probes for a par-
ticular coverage criterion. From these runs we can extract the set of
covered probes. By generating test cases for the uncovered probes
we can increase the overall coverage value of the test suite.

For example, suppose we want to complement the manually de-
signed test purpose illustrated in Fig. 3 with respect to action cov-
erage for our stack calculator specification. Assuming that the test
case generated by TGV for this test purpose looks like the test case
depicted in Fig. 4, running it on a copy of the specification compris-
ing all a probes for action coverage gives a coverage value of 66.6%.

From this test run we can deduce that the test case misses the
probes corresponding to the action ui!quit in Line 3 and to the
action out!error in Line 19. We can automatically generate
two test purposes, which aim to cover the two missed probes.
These two test purposes will lead to test cases similar to the test
cases illustrated in Fig. 6. The complemented test suite comprises
three test cases, which in total achieve 100% action coverage on
the specification.

3.7. Reduction

In practice there is often insufficient time for thorough testing
activities within industrial projects. Therefore it is reasonable to
try to reduce the size of generated test suites. However, the effect
of the reduction on the fault-detection ability of the test suites
should be small.

The techniques proposed in this paper can be used to apply
reduction during test case generation. A single test case may cover
more than the coverage item it has been generated for. When using
a probe based technique as described in this paper it is easy to
identify all items covered by a particular test case. This is done
by running the generated test case on a specification containing
all probes.



Table 4
Details of the used LOTOS specifications.

Number of processes Number of actions Number of decision Number of conditions Number of datatypes Net lines of code

Total Datatypes

SIP 10 27 39 49 20 3000 2500
CP 16 26 32 39 1 900 700
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An optimal test suite is a minimal set of test cases such that all
items are covered. Unfortunately, this is equivalent to the set cov-
ering problem which is known to be NP-complete. We can, how-
ever, approximate the optimal test suite. After a test case has
been generated we run this test case on a specification containing
all probes and extract the covered probes. We skip test purposes
for probes that are covered by previously generated test cases.
Note that this minimizes both the number of test cases and the
number of invocations of TGV. The number of generated test cases
depends on the processing order of the different test purposes.

Note that there is still some potential for reducing the test suite
sizes left. We currently do not consider that test cases may cover
probes of previously generated test cases. This would possibly al-
low to remove some more test cases from the generated test suites.

4. Experimental results

For an evaluation of the presented methods we show the results
obtained when applying our approach to two different protocols.
For both protocols we derived test suites based on the coverage cri-
teria presented in this paper. We show the results obtained when
running the generated test suites on real implementations of the
two protocols. Furthermore, we present results for complementing
manually designed test purposes.

4.1. Applications under test

For our empirical evaluation we used two different applica-
tions: (1) Session Initiation Protocol (SIP) [17] and (2) Conference
Protocol (CP) [18]. Table 4 summarizes the characteristics of the
two specifications in terms of the number of processes, the number
of actions, the number of decisions and conditions and in terms of
net lines of code.

4.1.1. The SIP registrar application
The Session Initiation Protocol (SIP) [17] handles communica-

tion sessions between two end points. The focus of SIP is the sig-
naling part of a communication session independent of the used
media type between two end points. More precisely, SIP provides
communication mechanisms for user management and for session
management.
Fig. 13. Simple call-flow of the registration process.
User management comprises the determination of the location
of the end system and the determination of the availability of the
user. Session management includes the establishment of sessions,
transfer of sessions, termination of sessions, and modification of
session parameters. SIP defines various entities that are used with-
in a SIP network. One of these entities is the Registrar, which is
responsible for maintaining location information of users.

An example call flow of the registration process is shown in
Fig. 13. In this example, Bob tries to register his current device as
end point for his address Bob@home.com. Because the server needs
authentication, it returns ‘‘401 Unauthorized”. This message con-
tains a digest which must be used to re-send the register request.
The second request contains the digest and the user’s authentica-
tion credentials, and the Registrar accepts it and answers with
‘‘200 OK”. For a full description of SIP we refer to the RFC [17].

We developed a formal specification covering the full function-
ality of a SIP Registrar. Note that the Registrar determines response
messages through evaluation of the request data fields rather than
using different request messages. Thus, our specification heavily
uses the concept of abstract data types. Details about our SIP Reg-
istrar specification can be found in a technical report [19].

We used two different implementations of the Session Initiation
Protocol Registrar for our evaluation: A commercially available
implementation, and version 1.1.0 of the open source implementa-
tion OpenSER.1 Note that a Registrar does not necessarily need to
authenticate users. According to the RFC a SIP Registrar SHOULD

authenticate the user. This is reflected in our specification by having
a non-deterministic internal choice between using authentication
and an unauthenticated mode. As both tested implementations al-
low one to turn authentication off, we run all our test cases against
two different configurations (with and without authentication).

4.1.2. Conference Protocol
The Conference Protocol has been used previously to analyze

the fault-detection ability of different formal testing approaches
(e.g., [2,20]). The specification is available in different specification
languages to the public.2. In addition, there are 27 erroneous imple-
mentations which can be used to evaluate testing techniques. Each
faulty implementation comprises a single fault.

The protocol itself is a simple communication protocol for a
chat application. The main part of the application is called the Con-
ference Protocol Entity (CPE). A CPE serves as chat client with two
interfaces; one interface allows the user to enter commands and to
receive messages sent by other users, and the other interface al-
lows the chat application to send and receive messages via the net-
work layer. These two interfaces are the points of control and
observation for a tester.

Users can join conferences, exchange messages and leave con-
ferences. Each user has a nick name and can only join one confer-
ence at a time. Fig. 14 shows a typical example of a simple chat
session. First, user Bob joins conference ‘‘C1” using the nickname
Bob. The Conference Protocol entity sends that information to all
potential conference partners. In the illustrated scenario user Alice
participates in the same conference as joined by Bob. Thus, Alice’s
1 http://www.openser.org.
2 http://fmt.cs.utwente.nl/ConfCase/.

http://www.openser.org
http://fmt.cs.utwente.nl/ConfCase/


Fig. 14. Simple call-flow illustrating joining and leaving a chat session.
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protocol entity answers with an answer-protocol data unit (PDU).
Then Alice decides to leave the conference which causes her proto-
col entity to send a leave-PDU to all participating users, i.e., to Bob’s
CPE.

4.2. Test case generation results

We have implemented a tool that takes a LOTOS specification,
automatically generates probe annotated specifications for the
coverage criteria presented in Section 3, and instantiates our gen-
eric test purposes for the inserted probes.

For the SIP Registrar specification our tool generated 10 probe
annotated specifications for process coverage (P), 27 probe anno-
tated specifications for action coverage (A), and 39 probe anno-
tated specifications for condition coverage (C), decision coverage
(D), condition/decision (CD) coverage and modified condition/deci-
sion coverage (MCDC), respectively. For decision, condition, condi-
tion/decision, and for modified condition/decision coverage the
number of generated test purposes does not only depend on the
number of inserted probes but also on the number of conditions
within a decision. For those coverage criteria our tool generated
78 (D), 98 (C), 176 (CD), and 94 (MCDC) test purposes, respectively.

For the Conference Protocol specification our tool derived 16
probe annotated specifications for process coverage, 26 probe
Table 5
Test case generation results for the Session Initiation Protocol.

C. No. Regular

TP Ok 1 Time Coverage

P 10 10 0 09 m 100.0
A 27 25 2 2 h 49 m 92.6
D 78 72 6 8 h 28 m 92.3
C 98 94 4 11 h 13 m 95.9
CD 176 166 10 19 h 39 m 94.3
MCDC 94 55 39 10 h 26 m 58.5

R 483 422 61 2 d 04 h 44 m

Table 6
Test case generation results for the Conference Protocol.

C. No. Regular

TP Ok 1 Time Coverage

P 16 15 1 6 h 56 m 93.8
A 26 19 7 2 d 03 h 16 m 73.1
D 64 56 8 4 d 17 h 05 m 87.5
C 78 66 12 5 d 21 h 38 m 84.6
CD 142 122 20 5 d 11 h 33 m 85.9
MCDC 71 46 25 7 d 16 h 40 m 64.8

R 397 324 73 26 d 05 h 08 m
annotated specifications for action coverage and 32 probe anno-
tated specifications for each of the logical coverage criteria. The
tool generated 64 (D), 78 (C), 142 (CD), and 71 (MCDC) test pur-
poses, respectively.

These generated test purposes together with the annotated
specifications serve as basis for our experimental evaluation.

4.2.1. Generating test cases based on coverage criteria only
Tables 5 and 6 list the results when generating test cases for the

coverage criterion based test purposes (1st column). These tables
show the number of instantiated test purposes (2nd column), the
number of generated test cases (3rd and 7th column), the number
of test purposes where TGV failed to generate a test case (4th and
9th column) and the time needed to process all test purposes
(5th and 10th column). We conducted all experiments on a PC with
Athlon(tm) 64 X2 Dual Core Processor 4200+ and 2GB RAM.

TGV fails on some test purposes, because its depth first search
algorithm runs into a path not leading to an accept state within
the synchronous product between the specification and the test
purpose. As our specifications have infinite state spaces and our
test purposes lack Refuse states TGV eventually runs out of memory.
Furthermore, we may generate test purposes for which no test case
can be derived, e.g. if there are conditions/decisions that are tautol-
ogies or condition/decisions that are unsatisfiable. Also for MCDC
we may generate test purposes for which no test case exists (see
Section 3.5). However, we did not observe invalid test purposes
in our experiments.

The left part of the table depicts the figures obtained when gen-
erating test cases for all test purposes. In contrast, the right part
illustrates the results gained from reducing the test suites as de-
scribed in Section 3.7. An additional column (8th column) in this
part lists the number of probes additionally covered by the gener-
ated test cases.

TGV runs out of memory on 61 (73) test purposes for the SIP
(Conference Protocol) application (see 4th column). Thus, for our
Session Initiation Protocol we get test suites having 100% process
coverage, 92.6% action coverage, 92.3% decision coverage, 95.9%
condition coverage, 94.3% CD coverage, and 58.5% MCDC coverage.
For the Conference Protocol the generated test suites have 93.8%
Reduced

Ok Coverage 1 Time Coverage

2 8 0 08 m 100.0
10 15 2 2 h 37 m 92.6
10 62 6 3 h 11 m 92.3
12 82 4 3 h 26 m 95.9
12 154 10 4 h 30 m 94.3
32 26 36 9 h 44 m 61.7

78 347 58 23 h 36 m

Reduced

Ok Coverage 1 Time Coverage

3 12 1 6 h 56 m 93.8
12 7 7 2 d 03 h 13 m 73.1
37 20 7 1 d 18 h 55 m 89.1
46 21 11 2 d 11 h 29 m 85.9
78 46 18 4 d 06 h 20 m 87.3
25 22 24 5 d 07 h 20 m 66.2

201 128 68 16 d 06 h 13 m
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process coverage, 73.1% action coverage, 87.5% decision coverage,
84.6% condition coverage, 85.9% CD coverage, and 64.8% MCDC
coverage, respectively.

When generating test cases for uncovered test purposes only
(see Section 3.7) we are sometimes able to cover probes for which
TGV runs out of memory otherwise. This is because TGV may run out
of memory before the branch containing the probe can be selected
during the depth first search. For example, for the SIP application
the modified condition/decision coverage increases from 58.5% to
61.7%.

However, as guaranteed by our minimization approach there is
never a reduction of model coverage, w.r.t. the coverage criterion,
although the overall number of test cases has been reduced by 82%
and by 38% for the SIP application and the Conference Protocol
Application, respectively.

The test case generation takes much longer for the Conference
Protocol than for the Session Initiation Protocol. Fig. 15 serves to
illustrate this effect. As this figure shows if TGV is able to generate
a test case for a particular test purpose this is usually quite fast, i.e.,
on average it takes approximately seven minutes for the SIP appli-
cation and approximately 6 s for the Conference Protocol applica-
tion. However, if TGV fails to generate a test case for a particular
test purpose it takes a long period of time (SIP: on average eight
minutes, Conference Protocol: on average 6 h) before it runs out
of memory. In particular, for the Conference Protocol it sometimes
takes days before TGV runs out of memory.

4.2.2. Supplementing manually designed test purposes
This section comprises the results when combining manually

designed test purposes with coverage based test purposes (see Sec-
tion 3.6). TGV derives one test case for every test purpose.
1sec

10sec

2min

15min

3h
10h

1d
3d

All Ok
  Conference Protocol

Failed All Ok
    Session Initiation Protocol

Failed
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e

Fig. 15. Minimum, maximum, 1st, 2nd, and 3rd quartile of the test case generation
times for the two different protocols (with a logarithmic scaled y-axis).

Table 7
Complementing manually generated test cases.

Coverage criterion Session Initiation Protocol

No. TC Coverage (%) No. TC New cover

Ok 1

P 5 90.0 1 0 100.0
A 5 66.7 8 1 96.3
D 5 59.0 28 4 94.9
C 5 52.0 45 2 98.0
CD 5 31.8 112 8 95.5
MCDC 5 30.9 26 39 58.5
For the Session Initiation Protocol we identified five relevant
scenarios from the textual specification and formalized these sce-
narios in terms of five different test purposes. For the LOTOS version
of the Conference Protocol specification we manually developed 10
test purposes. Thus, starting with the manually designed test pur-
poses for the Session Initiation Protocol and for the Conference
Protocol we generated five and ten test cases, respectively.

Table 7 contains information about the test suites generated
when combining coverage based test purposes with hand-crafted
test purposes. It shows for each coverage criterion (1st column)
the number of test cases (2nd column and 7th column) con-
tained in the initial test suite, i.e., the test suite directly derived
from the hand-crafted test purposes. The 3rd and the 8th col-
umn list the coverage value for these initial test suites. The
number of missed probes is given by the sum of the successive
two columns (i.e., 4th and 5th; 9th and 10th). In these columns
the table comprises the number of coverage based test purposes
for which TGV succeeded to generate test cases (4th and 9th col-
umn) and the number of test purposes for which TGV runs out of
memory (5th and 10th column). Finally, in the columns six and
eleven the table lists the new coverage values for the extended
test suites.

An important insight is that the coverage of the test cases de-
rived from hand-crafted test purposes is not satisfactory. Although
we tried to derive the test purposes by identifying relevant scenar-
ios from the informal specifications we missed some parts of the
model. For example, the test purposes designed for the Session Ini-
tiation Protocol failed to cover a whole process.

By complementing the test purpose using the presented tech-
nique we can increase the coverage for both specifications. On
average we were able to increase the coverage for the Session Ini-
tiation Protocol by 36% and by 14% for the Conference Protocol.

4.2.3. Test case execution
The obtained test cases are abstract test cases, i.e. they are given

in terms of labeled transition systems. Such test cases cannot be di-
rectly applied to a system under test, since the labels on the tran-
sitions are usually not understood by the implementation under
test.

To adapt abstract test cases to the IUT it is necessary to reinsert
the information abstracted within the model into test case. More
precisely, every stimuli i has to be converted to a concrete message
cðiÞ, while a system response o has to be mapped to the abstract
level aðoÞ [21].

For executing test cases we have implemented a test case exe-
cution framework [22]. This execution framework communicates
with implementations via UDP and uses a rule based rewriting sys-
tem to convert abstract messages to concrete ones and vice versa.

For our SIP Registrar specification [19], the rule sets for c and a
comprise 66 and 36 rules, respectively. Contrary, in the case of the
Conference Protocol c comprises 28 rules, while a consists of 33
rules.
Conference Protocol

age (%) No. TC Coverage (%) No. TC New coverage (%)

Ok 1

10 100.0 0 0 100.0
10 96.2 0 1 96.2
10 90.6 6 0 100.0
10 74.4 19 1 98.7
10 50.7 62 8 94.4
10 74.7 3 15 78.9
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Fig. 16 shows an abstract label of a SIP test case and the corre-
sponding concrete message that is obtained by applying the
rewriting rules. The rewritten message is sent to the implementa-
tion. If there is a response from the implementation, than this re-
sponse is rewritten to the corresponding abstract message. The
abstract message is matched with the labels of the test case. This
procedure continues until a verdict state is reached.

By running the test execution framework and the implementa-
tion under test on the same host we ensure that messages are
delivered in order, even when UDP is used as underlying commu-
nication service.

4.2.4. Test execution results
Table 8 shows the results obtained when executing the test

cases generated for a certain coverage criterion (1st column)
against our two SIP Registrar implementations in terms of the is-
sued verdicts passed (2nd and 6th column), failed (3rd and 7th col-
umn), and inconclusive (4th and 8th column) for the OpenSER
Registrar (2nd–5th column), and the commercial Registrar (6th–
9th column). Furthermore, this table shows the number of differ-
ences between the implementations and the specification (5th
and 9th column). Note that for the fifth column and for the ninth
column the last row ðRÞ shows the total number of faults detected
by the union of all test suites. This is also the case for all faults la-
beled columns in all successive tables.

We executed our test cases against the implementations using
two different configurations covered by our specification (see Sec-
tion 4.1.1). The values in Table 8 are the sums of the values for runs
with the two configurations.

The 122 failed test cases on the OpenSER Registrar implementa-
tion detected three different faults, and the 271 failed test cases for
the commercial implementation also revealed three different
Fig. 16. An abstract test message and the corresponding concre

Table 8
Test execution results using the regular test suite on two different SIP Registrars.

C. OpenSER

Pass Fail Inconclusive Faults

P 18 1 1 1
A 40 1 9 1
D 100 16 28 3
C 124 25 39 3
CD 224 41 67 3
MCDC 45 38 27 3

R 551 122 171 3
faults. Two faults are common to both implementations. These
faults are related to the rejection of registration messages with
too brief registration intervals, and to the rejection of messages
containing an incorrect combination of message parameters. In
addition, the commercial implementation does not reject messages
with an invalid sequence number, which is implemented correctly
in the OpenSER Registrar. However, the open source implementa-
tion allows a user to delete an existing registration with a message
having the same sequence number as the message that created the
registration; this violates the RFC.

The test cases derived from the action coverage criterion re-
vealed the missing rejection of messages with too brief registration
intervals in both implementations. In addition, they detected the
incorrect sequence number problem in the commercial implemen-
tation. Our test cases for decision, condition and condition/decision
coverage revealed all three faults in both implementations under
test.

Contrary, our five manually designed test purposes (see Table
11) detected one and two faults in the OpenSER and in the com-
mercial Registrar implementation. In that case the automatically
generated test cases using our coverage based approach outper-
form the manually designed test purposes.

Table 9 illustrates the results when executing the reduced test
suites on the two SIP Registrar implementations. Even though
our reduction of the test suite size does not affect the coverage va-
lue, it is known that the fault sensitivity can be adversely affected.
This can be observed in Table 9, where the reduction of the number
of test cases within the test suites also reduces the number of de-
tected faults. The test suites based on condition/decision coverage,
on decision coverage and on condition coverage missed one fault
that has been revealed by their non-reduced counterparts. The ac-
tion coverage test suite did not detect any failures in the open
te test message for testing the Session Initiation Protocol.

Commercial

Pass Fail Inconclusive Faults

18 1 1 1
27 15 8 2
72 44 28 3
86 65 37 3
158 109 65 3
46 37 27 3

407 271 166 3



Table 9
Test execution results using the reduced test suite on two different SIP Registrars.

C. OpenSER Commercial

Pass Fail Inconclusive Faults Pass Fail Inconclusive Faults

P 2 1 1 1 2 1 1 1
A 12 0 8 0 3 10 7 1
D 10 2 8 2 2 10 8 2
C 12 2 10 2 2 12 10 2
CD 11 2 11 2 1 13 10 2
MCDC 2 36 26 3 3 35 26 3

R 49 43 64 3 13 81 62 3
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source implementation and missed two faults in the commercial
implementation.

Table 10 lists the result when executing the generated test cases
on the 27 faulty implementations of the Conference Protocol. This
table comprises the results for the regular (2nd–5th column) and
for the reduced (6th to 9th column) test suites. As this table shows,
our coverage based test cases detected 8 of the 27 faulty imple-
mentations. We miss faults mainly because we fail to generate test
cases for some test purposes. Furthermore, the generated test cases
capture similar scenarios of the specification. For example, we
never observed the generation of a test purposes for the scenario
of users leaving a conference. Thus, we missed all faults that re-
quire at least one leave action of a conference user. Contrary, our
manually designed test purposes use leave messages and detected
five faults (missed by coverage based testing) which occurred only
because of the use of leave messages.

As for the SIP test suites, in some cases the test suite reduction
also reduced the fault sensitivity for the Conference Protocol test
suites.

While the execution of some test cases on the SIP Registrars
lead to inconclusive verdicts there are no inconclusive verdicts
when testing the Conference Protocol implementations. Due to
the structure of the specifications the test cases for Conference Pro-
tocol do not comprise any inconclusive verdict state. This is, be-
cause TGV generates an inconclusive verdict if either a refuse
Table 10
Test execution results using the regular and the reduced test suites on the 27 faulty impl

C. Regular

Pass Fail Inconclusive Fault

P 403 2 0 1
A 497 16 0 4
D 1347 165 0 8
C 1609 173 0 8
CD 2956 338 0 8
MCDC 1134 108 0 8

R 7946 802 0 8

Table 11
Test execution results using the complemented test suites on two different SIP Registrars

C. No. TC OpenSER

Pass Fail Inconclusive

Manual TPs 5 5 1 4
P 6 6 1 5
A 13 15 1 10
D 33 23 7 36
C 50 41 14 45
CD 117 130 25 79
MCDC 31 18 10 34

R 255 238 59 213
state or a sink state is reached during test case generation. As we
do not have refuse states in our test purposes and as there are no
sink states in the Conference Protocol specifications there are no
inconclusive verdicts in the derived test cases.

Contrary, the SIP Registrar specification has sink states because
we have an upper bound for the message sequence number in our
specification. Thus, there are sink states when this upper bound is
reached, which leads to inconclusive verdicts during test case
generation.

4.2.5. Results for complemented test suites
Tables 11 and 12 show the results when running the comple-

mented test suites on the SIP applications and on the Conference
Protocol applications, respectively.

Table 11 shows the number of test cases (2nd column) used for
the different test suites. Furthermore, this table depicts the num-
ber of passed (3rd and 7th column), the number of failed (4th
and 8th column), and the number of inconclusive (5th and 9th col-
umn) verdicts given by the test cases. Finally, the sixth and the
tenth column list the number of faults detected in the different
implementations.

We again run each test suite on the two different configura-
tions of our SIP Registrars, i.e., each test case runs on two differ-
ent configurations. Therefore, we have twice as many verdicts as
test cases. The first line of the table shows the results of only
ementations of the Conference Protocol.

Reduced

s Pass Fail Inconclusive Faults

80 1 0 1
309 15 0 4
952 47 0 7
1116 126 0 7
1886 220 0 8
581 94 0 8

4924 503 0 8

.

Commercial

Faults Pass Fail Inconclusive Faults

1 3 2 5 2
1 3 3 6 2
1 5 10 11 3
2 3 32 31 3
3 11 51 38 4
3 75 93 66 4
3 3 31 28 4

3 103 222 185 4



Table 12
Test execution results using the complemented test suite on the Conference Protocol
implementations.

C. No. TC Pass Fail Inconclusive Faults

Manual TPs 10 195 75 0 17
P 10 195 75 0 17
A 10 195 75 0 17
D 16 328 104 0 17
C 29 650 133 0 18
CD 72 1678 266 0 18
MCDC 13 262 89 0 17

R 160 3503 817 0 18
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running the test cases derived from the manually created test
purposes.

Using the complemented test suites we found two faults for
each implementation not detected when using test cases derived
from hand-crafted test purposes only. However, also the test suite
sizes increased. While having ten test runs (five test cases) for our
hand-crafted test purposes we have at most 234 test runs (117 test
cases) for CD coverage.

Table 12 uses the structure of Table 11 and lists the results ob-
tained when executing the complemented test suite for the Confer-
ence Protocol Specification on the 27 faulty implementations.

For the Conference Protocol we detected one more faulty imple-
mentation. The test suite size increased from ten test cases for
hand-crafted test purposes to at most 72 test cases when using
CD coverage for complementation. In the case of condition cover-
age the test suite size has been tripled while the number of de-
tected faults has been increased by 5%.
5. Related research

Coverage based testing has a long tradition in software engi-
neering; classical books on software testing, e.g., [13], describe dif-
ferent well-known coverage criteria. Coverage criteria for logical
expressions [14] lend themselves not only to test suite analysis,
but also to test case generation. For example, model checkers have
been used to automatically generate test cases that satisfy cover-
age criteria [23–25]. However, because testing with model check-
ers is based on the use of linear counterexamples as test cases,
model checkers cannot be used to generate test cases for non-
deterministic or incomplete specifications, and cannot be used to
generate test cases for the ioco theory.

As the ioco theory is formulated over labeled transition system
(LTS) one direction of research is to derive test cases directly from
LTSs. Various test case selection strategies, such as random test
case selection [5], or coverage of states, labels and transitions
[26] have been investigated. Contrary, we are looking for coverage
of relevant aspects of the high-level LOTOS specification. Coverage
based test case generation from LOTOS specification was also subject
to previous research.

van der Schoot and Ural [27] presented a technique for test case
generation with respect to the define and use of variables. They use
data flow graphs to identify the relevant traces. The feasibility of
these traces is then verified by using guided interference rules on
the LOTOS specification. However, they derive linear test cases and
only address test sequence selection. As a labeled transition system
does not comprise any symbolic variables, our approach selects not
only the test sequence but also the test data.

Cheung and Ren [28] define operational coverage for LOTOS spec-
ifications, i.e., coverage criteria that aim to reflect the characteris-
tics of LOTOS operations. Furthermore, they propose an algorithm
that derives an executable test sequence from a given specification
with respect to their coverage criteria. Their algorithm is based on
a Petri-net representation of the LOTOS specification.

Amyot and Logrippo [29] use a probe insertion technique to
measure structural coverage of LOTOS specifications. Their probe
insertion strategy allows one to reason about the coverage of a test
suite for a LOTOS specification. Furthermore, they present an optimi-
zation that reduces the number of needed probes. However, they
only considered action coverage. Furthermore, their approach
deals with measuring coverage only. They do not consider generat-
ing test cases with respect to their inserted probes.

Automatic generation of test purposes has been considered pre-
viously. da Silva and Machado [30] derive test purposes from tem-
poral logic properties using a modified model-checking algorithm
which extracts examples and counter-examples from a model’s
state space. By analyzing these traces they obtain the test
purposes.

In the work of Henniger et al. [31] test purposes are derived
from communicating extended finite state machines by relying
on all-nodes coverage on a labeled event structure derived from
the EFSMs. Amyot et al. [32] compare three different approaches
to derive test purposes from use case maps.

Aichernig and Delgado [33] use mutation techniques for test
purpose generation. They generate faulty specifications using
mutation operators, and for each faulty specification they derive
a distinguishing sequence (if such a sequence exists) that discrim-
inates the original specification from the faulty one. This sequence
serves as test purpose.

We extended the mutation technique [33] in order to apply it to
industrial sized specifications with huge, possibly infinite, state
spaces [34]. We used probes to mark the place of the mutation,
thereby extracting the relevant part of the specification and its mu-
tated version. By comparing the relevant parts, i.e., the parts that
are affected by the mutation, we are able to deal with large
specifications.
5.1. Comparison of test results

The Conference Protocol case study [18] used in this paper was
designed to support the comparison of different test case selection
strategies. Thus, others have applied various testing techniques to
this application. Table 13 gives an overview of the results achieved
by different testing techniques.

By the use of random test case selection 25 of the 27 erroneous
implementations of the conference protocol have been found [20].
The two missed mutants accept data units from any source, i.e.
they do not check if the data units come from potential conference
partners. As the authors abstracted from this behavior these two
mutants are correct with respect to their specification.

Also the TGV tool has been applied for testing the Conference
Protocol [2]. By the use of 19 manually designed test purposes,
24 faulty implementations have been found. However, even after
10 h of test purposes design the authors did not manage to gen-
erate a test suite that detect the 25th mutant. Because they use
the same specification as Belinfante et al. [20], two of the mutants
were correct w.r.t the used specification. Unfortunately, the test
purposes used by du Bousquet et al. [2] were not available to
us. Thus, we developed our own set of test purposes. Our test
purposes lead to a test suite which detects 17 mutants (2nd last
row of Table 13).

Heerink et al. [35] applied the Philips Automated Conformance
Tester (PHACT) to the Conference Protocol. As PHACT relies on
extended finite state machines (EFSM) they developed an EFSM
specification for the Conference Protocol. By the use of this
specification PHACT was able to detect 21 of the 27 faulty
implementations.



Table 13
Comparison of test results among different test case selection strategies using the Conference Protocol.

Selection strategy Conference Protocol SIP Registrar

Number of faults Ref. OpenSER Comm. Ref.

Random 25 [20] 4 5 [38]
Manual test purposes 24 [2]
PHACT 21 [35]
Spec explorer – [37]
Coverage on LTS 25 [26]
Mutation based 4 6 [34]

Coverage on LOTOS 8 Section 4.2.4 3 3 Section 4.2.4
Manual test purposes 17 Section 4.2.5 1 2 Section 4.2.5
Complemented TPs 18 Section 4.2.5 3 4 Section 4.2.5
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Microsoft’s SPECEXPLORER tool [36] has been applied to the Confer-
ence Protocol by Botinčan and Novaković [37]. Unfortunately, they
did not use the 27 available faulty implementations but developed
3 mutants by their own. Thus, the obtained results can neither be
compared with the other case studies nor with our results.

Coverage based test case selection on the level of the labeled
transition system [26] lead to test suites that also detected 25 of
the 27 faulty mutants.

As the conference protocol has been tested using other testing
techniques, we also applied different test case selection strategies
to our SIP Registrar specification. Using mutation based test case
selection on the SIP specification [34] revealed 6 faults in the com-
mercial Registrar implementation and 4 faults in the OpenSER
implementation [38]. Random test case selection detected 5 faults
in the commercial and 4 faults in the OpenSER Registrar. These fig-
ures are also summarized in Table 13.

6. Conclusions

A significant effort has been put into the development of formal
frameworks and practical tools for test case generation based on
labeled transition systems. The results are convincing, but the fact
that test purposes have to be manually formulated makes the test-
ing process dependent on the skills of the tester. In this paper we
present a set of generic test purposes based on coverage criteria
defined for LOTOS specifications. An extension of the mapping to la-
beled transition systems is necessary to explicitly reference the
necessary information. We evaluated our approach using two dif-
ferent protocol specifications.

In addition to using test cases automatically derived for partic-
ular coverage criteria we show how our technique can be used to
supplement manually designed test purposes. Therefore, we de-
signed test purposes for our two LOTOS specifications based on the
informal protocol descriptions. An interesting result of our experi-
ments is that the coverage achieved by manually designed test
purposes is potentially insufficient, therefore a complementary
coverage based technique is very recommendable. For example,
in the case of the Session Initiation Protocol specification we are
able to double the number of detected faults.

In this paper we define an elementary set of coverage criteria,
which correspond to some of the most commonly used criteria in
software testing. It should be straightforward to define further cov-
erage criteria based on logical expressions, such as, for example,
multiple condition coverage [13], or other modified condition/deci-
sion coverage variants [14]. The test purposes described in this pa-
per only guarantee weak coverage, as long as only a single test case
is derived for each test purpose. Achieving strong coverage will be
considered in future work. Finally, while we considered LOTOS in
this work, our approach can be applied to any specification lan-
guage with LTS semantics.
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