
Define, Verify, Refine: Correct Composition and

Transformation of Concurrent System Semantics

Anton Wijs(B)

Department of Mathematics and Computer Science, Eindhoven University
of Technology, 513, 5600 MB Eindhoven, The Netherlands

A.J.Wijs@tue.nl

Abstract. We present a technique to verify user-defined model trans-
formations, in order to step-wise develop formal models of concurrent
systems. The main benefit is that the changes applied to a model can be
verified in isolation. In particular, the preservation of safety and liveness
properties of such a modification can be determined independent of the
input model. This is particularly useful for model-driven development
approaches, where systems are designed and created by first developing
an abstract model, and iteratively modifying this model until it is con-
crete enough to automatically generate source code from it. Properties
that already hold on the initial model and should remain valid through-
out the development in later models can be maintained with our tool
Refiner, by which the effort of verifying those properties over and over
again can be avoided. This paper generalises our earlier results in various
ways, removing several restrictions, improving the focus of the verifica-
tion method on transformations, and introducing the possibility to add
completely new components at any time during the development.

1 Introduction

Concurrent systems tend to be very complex, and therefore very hard to develop
correctly, i.e. bug-free. One approach to restrict the potential for introducing
errors is by step-wise constructing the model of a concurrent system via model
transformations. In that way, a model can be made more and more detailed, ulti-
mately describing the system in full detail, which has the potential of allowing
automatic source code generation. Such an approach can be made more robust
by incorporating efficient verification techniques to determine that each inter-
mediate model is correct, i.e. that desired functional properties are preserved.
In [28,29], we presented a new technique to verify that formal definitions of trans-
formations preserve desired functional properties, independent of the model they
are applied on. Models, in this context, are action-based specifications of con-
current systems. Such specifications can be written in action-based modelling
languages, such as process algebras. The definitions of transformations corre-
spond with model transformations, as used in software engineering. The main
benefit is that after application of a verified transformation, a model does not
need to be rechecked, thereby avoiding state space explosion.

ϕ

M1

Apply
Model Checking

or

ϕ

Σ

M1

Perform
Preservation Check

or

Σ

M1

Transform M2

Adapt
M1 or ϕ

Adapt
Σ

Fig. 1. Schematic depiction of the typical use of Refiner

The new verification technique has been implemented in a prototype tool
called Refiner1 , by which a designer can, through a command-line interface,
step-wise transform the semantics of processes in concurrent system designs.
The designer does this by constructing transformation rule systems, which are
formalisations of model transformations that can be analysed efficiently to deter-
mine whether they preserve safety or liveness properties in general, i.e. indepen-
dent of the input model. Typically, Refiner is used as in Fig. 1. First, existing
action-based model checking toolsets such as Cadp [8] and mCRL2 [5] can
be applied to verify whether a given property ϕ, usually written in the modal
µ-calculus [17], holds for model M1 . If the property holds, Refiner is used to
determine whether the property is preserved by rule system Σ. There are two
supported techniques for this: one for determining model-independent property
preservation, independent of input models, and one for determining property
preservation for a particular input model. The latter involves M1 in the analysis,
therefore it is not general, since it does not allow reusing the verification results
for transformations of other models. But it may lead to a positive result in cases
where the model-independent one does not. The model-independent property
preservation check considers all the possibilities for Σ to match on input mod-
els. If ϕ is not preserved, Σ must be adapted and the last step repeated. If ϕ

is preserved, Refiner can be used to transform model M1 into a model M2

satisfying ϕ.
Refiner is primarily a testbed to investigate the possibilities for verifying

model transformations that exist, like models, as primary artifacts. This support
should be non-intrusive, i.e. verification should be done in the background, hid-
den from the designer, in order to not burden him or her with the verification
task.

Through experimentation, several limitations of the method from [29] have
been identified. One is that the approach does not yet support compositional
development of systems. Existing components can be transformed, but new

1 Available for download at http://www.win.tue.nl/∼awijs/refiner.

components cannot be introduced. Another is that a designer can sometimes
be confronted by the limitations of the technique; in order for a rule system
to be verifiable, it must be complete w.r.t. the behaviour it transforms. If two
components can communicate, and one party is modified, then also the other
party must be modified. This is not always desired, and requiring this makes the
verification intrusive, and threatens scalability, because it may demand a large
chain of additional modifications. Finally, we observe that in some cases, rule
systems are constructed with particular models in mind. In such cases, checking
property preserving for all imaginable models may be too restrictive.

Contribution. We build on the results of [29] to address the issues mentioned here.
We enrich our transformation formalism with the ability to add new processes,
and improve property preservation checking of rule systems. The latter is done
by introducing a new construct for transformations, and by defining so-called
non-interface hiding, which allows analysing the semantics of a subsystem w.r.t.
the remainder of the system it is part of. Finally, Refiner exploits multi-core
architectures through parallel property preservation checking, and we explain
how this is achieved.

Roadmap. Section 2 discusses related work, and Sect. 3 introduces the notions
used in this paper. In Sect. 4, property preservation checking from [29] is
explained, and this is extended in various ways in Sect. 5. Our implementa-
tion and experimental results are shown in Sect. 6, and finally, Sect. 7 contains
our conclusions and pointers to future work.

2 Related Work

Property preservation checking of changes applied on a model is most closely
related to incremental model checking [23,24]. In that work, information about
the verification computation is updated to reflect changes applied to the model.
Most approaches are limited to checking safety properties, and all of them require
at least as much computer memory as straight-forward model checking. Our
technique, though, is also suitable for liveness properties and requires far less
memory, since no information about the state space is maintained.

In refinement checking [1,18], supported by tools such as Rodin [2], FDR2 2

and Csp-Casl-Prover [16], it is usually checked that one model refines another.
This is very similar to our approach, but refinements are defined in terms of what
the new model will be, as opposed to how the new model can be obtained from
the old one, i.e. model transformations are not represented as artifacts indepen-
dent of the models they can be applied on. This makes it not directly suitable
to investigate the feasibility to verify definitions of model transformations, as
opposed to the models they produce.

The Bart tool3 allows automatically refining B components to B0 imple-
mentations. Similar to our setting, it treats refinement rules as user-definable

2 http://www.fsel.com/documentation/fdr2/html/index.html
3 http://www.tools.clearsy.com/tools/bart

artifacts and performs pattern matching to do the refining. Constraints are
checked to ensure that the resulting system will be correct. Approaches described
in, e.g., [4,9,10,15] prove that a transformation preserves the semantics of any
input model, by showing that the transformed model will be bisimilar to the orig-
inal. Contrary to our work, in all these approaches, no form of automatic hiding
of behaviour irrelevant for a desired system property is used, therefore they can-
not handle cases where transformations alter the semantics in a way that does
not invalidate that property. Others, such as [22,25], perform individual checks
for each concrete model.

Finally, incremental system composition, as used by the tools Exp.Open [20]
and Bip [3], focusses on incrementally combining processes into a full system,
and the latter also provides a fixed number of correct-by-construction model
transformations. With Refiner, one can define incremental process adding in
terms of transformations, and it can verify transformations provided by the user.
It will be interesting to see in how far results on compositional model checking
can be reused, to further improve verification of such transformations.

3 Background

In this paper, the semantics of concurrent systems are defined in a composi-
tional, action-based way. This means that the semantics of individual, finite-
state processes are captured using Labelled Transition Systems (LTSs), and that
these can be combined using synchronous composition, to obtain the semantics
of a concurrent system as a whole. LTSs are action-based descriptions, indicating
how a process can change state by performing particular actions.

An LTS G is a tuple 〈SG ,AG , TG , IG〉, where SG is a (finite) set of states,
AG is a set of actions (including the invisible action τ), TG ⊆ SG × AG × SG is
a transition relation, and IG ⊆ SG is a set of initial states. Actions in AG are
denoted by a, b, c, etc. We use s1

a
−→G s2 to denote 〈s1 , a, s2 〉 ∈ TG . If s1

a
−→G s2 ,

this means that in G, an action a can be performed in state s1 , leading to state s2 .
Note that a state s can be interpreted as an LTS 〈{s}, ∅, ∅, {s}〉, and a

transition s1
a
−→ s2 as an LTS 〈{s1 , s2 }, {a}, s1

a
−→ s2 , {s1 }〉. We use under-

lining of states to indicate which states are initial, so, e.g., s1
a
−→ s2 repre-

sents 〈{s1 , s2 }, {a}, s1
a
−→ s2 , {s1 , s2 }〉.

Network of LTSs. We represent models consisting of a finite number of finite-
state concurrent processes by a number of LTSs and a set of synchronisation
laws, or laws for short, defining how these LTSs interact. Together, these form a
network of LTSs [20].4 The process LTSs and laws imply a system LTS, repre-
senting the state space, which can be obtained by combining the LTSs using the
laws. Given an integer n > 0, 1..n is the set of integers ranging from 1 to n. A
vector v of size n contains n elements indexed by 1..n. For i ∈ 1..n, v[i] denotes
element i in v.

4 In [20], synchronisation laws are referred to as rules, but here, one may confuse these
with transformation rules, that are introduced later in this section.

Definition 1 (Network of LTSs). A network of LTSs M of size n is a
pair 〈Π,V〉, where

– Π is a vector of n (process) LTSs. For each i ∈ 1..n, we write Π[i] =

〈Si,Ai, Ti, Ii〉, and s1
b
−→i s2 is shorthand for s1

b
−→Π[i] s2;

– V is a finite set of synchronisation laws. A synchronisation law is a tuple 〈t̄, a〉,
where a is an action label, and t is a vector of size n called a synchronisation
vector, in which for all i ∈ 1..n, t[i] ∈ Ai ∪ {•}, where • is a special symbol
denoting that Π[i] performs no action.

At times, we use a set-notation for synchronisation vectors when the involved
actions may appear in any order; e.g., for n = 2, {a} denotes the set of vectors
{〈a, •〉, 〈•, a〉}. Furthermore, for 〈t̄, a〉, Ac(t) = {i | i ∈ 1..n ∧ t[i]
= •} refers to
the set of processes active for 〈t̄, a〉, and A(t) = {t[i] | i ∈ 1..n} \ {•} refers to
the set of actions participating in 〈t̄, a〉.

The synchronous composition of the LTSs in M, i.e. the system LTS LTS(M),
is the explicit description of the state space of the model. This LTS can be
obtained by combining the behaviour of the Π[i] according to the laws in V:

– I = {〈s1, . . . , sn〉 | ∀i ∈ 1..n.si ∈ Ii}, i.e. vectors of process initial states;
– A = {a | 〈t, a〉 ∈ V}, i.e. all actions that can result from synchronisation;
– S = S1 × . . . × Sn, i.e. all possible combinations of process states;
– T is the smallest transition relation satisfying:

〈t, a〉 ∈ V ∧ (∀i ∈ 1..n)

(

(t[i] = • ∧ s′[i] = s[i])

∨ (t[i]
= • ∧ s[i]
t[i]
−−→i s′[i])

)

=⇒ s
a
−→ s′.

Example 1. Consider the two LTSs on the left in Fig. 2, in which the initial
states are indicated by incoming arrowheads. We combine these in a network
M = 〈Π,V〉, with Π containing those LTSs in order of appearance, and V =
{(〈a, a〉, a′), (〈b, b〉, b′), (〈c, •〉, c)}. The synchronous composition LTS(M) is dis-
played on the right in Fig. 2, where for each state, the ID pair in it indicates
which combination of process LTS states it corresponds with. If both process
LTS states have an outgoing a-transition, then so will the corresponding state in
the synchronous composition. This also holds for b-transitions, but since b has
data parameters, this only works if both occurrences have the same parameters
d1, d2, which is the case here. This demonstrates how data can be used in tran-
sition labels, and how synchronisation works with it. Finally, the c-action can
be fired independently, meaning that the first process LTS can move from state
2 to 3 without synchronisation.

Divergence-Sensitive Branching Bisimilarity. As equivalence relation between
LTSs, we consider divergence-sensitive branching bisimilarity (DSBB) [11,12],
which is sensitive to hidden behaviour and the branching structure of an LTS,
including τ -cycles. Hence, it supports not only safety, but also liveness prop-
erty preservation. For liveness properties, the notion of diverging behaviour is

0 1

23

a

b(d1, d2)

c

a

0 1

2

a

b(d1, d2)a

0,0 1,1
a

2,2

b (d1, d2)

3,2
c

a

Fig. 2. Two LTSs and their synchronous composition (Example 1)

important. A state s is diverging iff an infinite sequence of internal actions can
be performed, i.e. there exists an infinite τ -path from s, which for finite LTSs
means that a τ -cycle is reachable via τ -transitions. We denote by →+ the tran-
sitive closure of

τ
−→.

Definition 2 (Divergence-Sensitive Branching Bisimulation). A binary
relation B between two sets of states SG1

, SG2
of LTSs G1, G2 is a divergence-

sensitive branching bisimulation if B is symmetric and s B t with s ∈ SG1
,

t ∈ SG2
implies that

– if s
a
−→G1

s′ then
• either a = τ with s′ B t;
• or t =⇒ G2

t̂
a
−→G2

t′ with s B t̂ and s′ B t′.
– if there is an infinite sequence of states s0, s1, s2, . . . ∈ SG1

such that s0 = s,

s0
τ
−→G1

s1
τ
−→G1

s2
τ
−→G1

. . . and si B t for all i ≥ 0, then there exists a
t′ ∈ SG2

such that t →+ t′ and sk B t′ for some k ≥ 0.

Two states s and t are divergence-sensitive branching bisimilar, noted s ↔∆
b t,

if there is a divergence-sensitive branching bisimulation B with s B t.

Two sets of states S, S′ are DSBB, i.e. S ↔∆
b S′, iff ∀s ∈ S.∃s′ ∈ S′.s ↔∆

b s′

and vice versa. Two LTSs G1,G2 are DSBB, i.e. G1 ↔∆
b G2, iff IG1

↔∆
b IG2

.
In [21], DSBB is related to a fragment of the modal µ-calculus, called Ldsbr

µ :

if a model M1 satisfies an Ldsbr
µ -property ϕ, denoted by M1 |= ϕ, then a second

model M2 satisfies ϕ iff M1 ↔∆
b M2. A similar result relates branching bisimi-

larity (BB) [12], i.e. DSBB without the divergence condition in Definition 2, and
Ldsbr

µ safety properties, in which diverging behaviour is not relevant. In Sect. 4,
we use this as follows: if we can determine that a transformation does not alter
the system LTS structure, then we can conclude that ϕ will be preserved.

In [21,29], we actually also involve a hiding mechanism called maximal hiding,
allowing to move LTSs to the highest possible level of abstraction w.r.t. a Ldsbr

µ -
property ϕ. It involves rewriting transition labels not relevant for ϕ to τ , which
roughly corresponds with hiding all labels not mentioned in ϕ. Incorporating
this in property preservation checking makes the technique much more powerful,
since it allows altering the semantics of a model through transformation, in ways
not relevant for a given property. Given a network M1, let Hϕ(LTS(M1)) be
the maximally hidden synchronous composition of M1 w.r.t. property ϕ. Then,
first of all, LTS(M1) |= ϕ iff Hϕ(LTS(M1)) |= ϕ, by maximal hiding [21].
Furthermore, by the relation between DSBB and Ldsbr

µ , if we can establish that

Hϕ(LTS(M1)) ↔∆
b Hϕ(LTS(M2)), then we can conclude that Hϕ(LTS(M2)) |=

ϕ, and hence, that LTS(M2) |= ϕ. In other words, it suffices to establish that
the maximally hidden synchronous compositions are DSBB. For clarity, we only
refer to hiding informally in some of the examples. It suffices to keep in mind
that all labels not mentioned in the given property are hidden. For the specifics
about Ldsbr

µ , the reader is referred to [21].

Transformation. In our setting, changes applied on a concurrent system model
are represented by LTS transformation rules applied on the semantics of the
processes of that model, i.e. on its network of LTSs. To reason about these
changes, we define the notions of a rule, and matches of rules on process LTSs.

Definition 3 (Transformation Rule). A transformation rule r = 〈Lr,Rr〉
consists of a left pattern LTS Lr = 〈SLr ,ALr , TLr , ILr 〉 and a right pattern
LTS Rr = 〈SRr ,ARr , TRr , IRr 〉, with ILr = IRr = (SLr ∩ SRr).

The states ILr (and IRr) are called the glue-states, and they are all initial.
They form the interface between behaviour subjected to transformation and the
other behaviour. Process LTS states matched by glue-states will not be removed,
but their incoming and outgoing transitions may be affected.

Definition 4 (Rule Match). A transformation rule r = 〈Lr,Rr〉 has a match
mr : SLr →֒ SG on an LTS G = 〈SG ,AG , TG , IG〉 iff mr is injective and

1. ∀s1
a
−→Lr s2.mr(s1)

a
−→G mr(s2);

2. ∀s ∈ SLr \ ILr , p ∈ SG :

– mr(s)
a
−→G p =⇒ ∃s′ ∈ SLr .s

a
−→ s′ ∧ mr(s

′) = p;

– p
a
−→G mr(s) =⇒ ∃s′ ∈ SLr .s′ a

−→ s ∧ mr(s
′) = p;

– mr(s) = p =⇒ p
∈ IG;

Note the conditions in the second clause of Definition 4. The first two are
the gluing conditions of the double-pushout (DPO) method [14] for graph trans-
formation, preventing conflicts when matching. They prevent so-called dangling
transitions, which are transitions where only the source or target state will be
removed, but not both. The final condition states that no initial state of G may
be removed through transformation, ruling out the possibility of obtaining an
LTS without an initial state.

When a left pattern is matched on part of a process LTS, transformation is
performed by means of DPO. The result is that each state matched by a glue-
state still exists after transformation, each state matched by a non-glue-state is
removed, and each non-glue-state in a right pattern has resulted in appropriate
representatives for each match of the left pattern.

In Sect. 5, we will introduce a form of Negative Application Conditions (Nacs)
[13]. The Nacs of a rule express additional patterns that should not be match-
able; a match can only be valid if the Nac patterns cannot be matched.

To facilitate explanation, we introduce a simplification without loss of gen-
erality. We assume that the Ai of the Π[i] in M are disjoint. Any network for

which this is not the case, e.g. the one given in Fig. 3, can be rewritten to one for
which this holds. The simplification implies that for a rule system Σ, each rule
r ∈ R can only be applied on at most one process LTS. We use the convention
that rule ri can only be applied on process LTS Π[i].

Sets of rules together make up a rule system Σ = 〈R, V̂〉, with R a set of rules
and V̂ a set of new synchronisation laws to be introduced when transforming.
Transformation of a network of LTSs M according to a rule system Σ involves
identifying all possible matches for each r ∈ R on M, and applying transforma-
tion on those matches. We say that IΣ = {i | ri ∈ R}. It represents the so-called
subsystem under transformation; all Π[i] with i ∈ IΣ are transformed by Σ.

V = ({a,b,c},com), . . .

init1

a(1)

init2

b(1)

init3

c(1)

init4

a(2)

init5

b(2)

init6

c(2)

V̂ = ({tryx,tryx},tryx), ({backx,backx},backx), (x ∈ {1, 2})
({move1,move1},com), ({move2,move2},move2), . . .

0

1
a#1

0

2

1

try1#1

move1#1

back1#1

0

1
b#1

0

2

3

4

1

try1#1

try2#1

move2#1

move1#1

back1#1

back2#1

0

1
c#1

0

2

1

try2#1

move2#1

back2#1

V ∪ V̂

init1

try1(1)

move1(1)

back1(1)

init2

try1(1)

try2(1)

move2(1)

move1(1)

back1(1)

back2(1)

init3

try2(1)

move2(1)

back2(1)
· · ·

Fig. 3. Transforming multi- to two-party communica-
tion in a distributed system

Figure 3 shows an exam-
ple of applying a rule sys-
tem on a network of LTSs
belonging to a distributed
system design consisting of
six processes. The behav-
iour of these processes rel-
evant for our example is
displayed at the top of the
figure. After an initialisa-
tion step, each process can
perform internal computa-
tions, represented by the
unlabelled dashed transi-
tions. At regular intervals,
each process must synchro-
nise with two others before
commencing its computa-
tion. This is defined in the
network by a law in V:
({a,b,c},com). Actions a,
b and c must have the same
data parameter values for
successful synchronisation,
so only the first and the last
three processes can poten-
tially synchronise.

In the middle of Fig. 3,
the definition of a rule sys-

tem with three rules is displayed, and the glue-states are coloured black. Each
rule is a pair of LTSs: the top one is the left pattern, and the bottom one is the
right pattern.

The rule system of Fig. 3 defines how to break down the three-party synchro-
nisation into a series of two-party synchronisations. To make rules more general,
we use place-holders #1,#2, A place-holder in a left pattern represents that

the parameters of a transition label can have any value, and the presence of the
same place-holder in the corresponding right pattern indicates which transition
labels should incorporate those values after transformation. In Fig. 3, the use
of placeholders allows the rule system to be applicable on both the first three
process LTSs and the last three. Additional laws in V̂ define the new synchro-
nisation possibilities. This rule system is very practical if the system should
eventually be able to run on hardware that does not support multi-party com-
munication. Finally, part of the transformed network is displayed at the bottom
of Fig. 3.

In the context of model transformations, it is crucial that a rule system is
terminating and confluent, i.e. that the transformation is guaranteed to finish,
and that it always leads to the same solution, independent of the order in which
matches are processed. This is important, since a user defining how a particular
model should be transformed typically has a specific resulting model in mind.
Therefore, if a rule system is not confluent, it usually means that the user made
some mistake. There are techniques to detect confluence, e.g. [19], which we have
implemented. Here, we assume that a given rule system is confluent. Termination
is achieved by the way in which we define transformation: first, all matches for all
rules in the rule system are determined, and then, the rules are applied without
looking for new matches. The process LTSs are finite, hence there will always be
a finite number of matches.

4 Property Preservation Checking

The main contribution of our approach is the ability to efficiently check whether a
rule system preserves desired functional properties, without analysing the poten-
tial behaviour of the input model. The verification techniques exploit the rela-
tions between DSBB and Ldsbr

µ properties, and BB and Ldsbr
µ safety properties

on the one hand, and DSBB, BB, and maximal hiding on the other (see Sect. 3).
Our techniques determine whether a rule system is guaranteed to preserve the
structure of the synchronous composition of networks w.r.t. a property ϕ. This
involves taking into account how the rule system can possibly be applied on
networks, and checking for bisimilarities between combinations of dependent
rule patterns, in which the possible synchronisation, and failure to synchronise,
between rule patterns before and after transformation is analysed. The potential
for synchronisation is derived from the laws and the ri ∈ R, leading to sets of
dependent rules, here referred to as checks. In general, a rule system can imply
multiple checks. We say that Υ is the set containing all those checks. In order to
compute Υ , we need a notion of direct dependency between rules. Behaviour in
the rule patterns of ri can directly depend on the behaviour of other rules. This
is captured by the set δ(ri). It is defined as:

δ(ri) =
⋃

〈t̄,a〉∈V∪V̂

{rj ∈ R | (t[i] ∈ ALri ∧t[j] ∈ ALrj)∨(t[i] ∈ ARri ∧t[j] ∈ ARrj)}

Dependency is determined by the actions of the rule patterns, and the old
and new laws. The transitive closure δ+(ri) contains all the rules on which ri

depends, directly and indirectly. Essentially, a check consists of a set of dependent
rules. Finally, we compute Υ as the set containing the δ+(ri) of all rules ri ∈ Σ.

Example 2. In Fig. 3, let Π[1], . . . , Π[3] be the first three process LTSs at the
top in order of appearance, and r1, . . . , r3 be the rules in the middle in order of
appearance. First of all, note that rule ri is applicable on Π[i], for i ∈ {1, 2, 3}.
The relevant dependencies are δ+(r1) = δ+(r2) = δ+(r3) = {r1, r2, r3}. The
same can be done concerning the other three process LTSs, by which we obtain
the same set.

Before we formalise property preservation, we need to discuss one more issue.
In order to correctly determine that a rule system preserves a given property,
based on bisimilarities between vectors of left and right rule patterns, the rule
patterns should be extended for analysis to make explicit which states are glue.

For example, consider a rule r that swaps two action labels a and b between

two transitions, with Lr = s0
a
−→ s1, s0

b
−→ s2, and Rr = s0

b
−→ s1, s0

a
−→ s2.

The two LTSs are DSBB, but only because s1 of Lr (and of Rr) can be related
to s2 of Rr (and of Lr). However, both these states are glue, and hence can
match on states of process LTSs that have in- and/or outgoing transitions that
are not present in the patterns, and therefore may not be DSBB. This means
that we are actually not interested in any DSBB, but a DSBB in which all
glue-states in the left pattern are related to themselves in the right pattern. To
express this, we add a self-loop with a unique action label to each glue-state
in both patterns. Formally, for each glue-state s, we add a transition s

κs−→ s,
with κs the unique label. Since with this extension, each glue-state has at least
one outgoing transition that no other state has, it has to be relatable to itself
when trying to construct a DSBB. For the aforementioned example, the extended
patterns, called Lr

κ and Rr
κ, are not DSBB.

Adding κ-loops solves the problem of relating glue-states, but in practice, it
turns out that it can be too restrictive. We return to this in Sect. 5, and introduce
an improved way to extend patterns.

Each set D ∈ Υ defines two κ-extended vectors of LTSs L
D

κ , R
D

κ , where

for G ∈ {L,R} and all i ∈ 1..n, we have G
D

κ [i] = Gri
κ if ri ∈ D. In case ri
∈

D, we use a place-holder state in G
D

κ at position i to indicate inactivity of ri.

The pairs 〈L
D

κ ,R
D

κ 〉 are used to check for property preservation. Together with
the appropriate laws,5 these vectors are interpreted as networks of LTSs, which
therefore are implicit descriptions of system LTSs in which the synchronisation
of process behaviour under transformation is described.

Finally, the property preservation check can be defined as follows.

Definition 5 (Property Preservation). Given a network of LTSs M, an
Ldsbr

µ -property ϕ, and a rule system Σ, let Σ imply a set of rule sets Υ w.r.t. V

5 Technically, the κ-actions require laws to produce κ-transitions in the synchronous
composition of a network. For clarity, we do not include them in the formalisation.

and V̂. We say that Σ is ϕ-preserving if for all D ∈ Υ , D′ ⊆ D, we have

Hϕ(LTS(〈L
D′

κ ,V〉)) ↔∆
b Hϕ(LTS(〈R

D′

κ ,V ∪ V̂〉))

In [6], a correctness proof is provided, i.e. that indeed, Σ is ϕ-preserving if
the DSBB conditions hold.

Note that according to Definition 5, DSBB checks are required for all subsets
D′ of all D ∈ Υ . Strict subsets of D represent situations where some processes are
able to synchronise, but others are not. All these situations need to be checked,
since they may occur in the system LTS of an input network.

Example 3. Say we want to check the preservation of deadlock freedom for the
modification step defined in Fig. 3. In [21], it is explained that this allows to
abstract from all transition labels, i.e. all can be rewritten to τ . Therefore, we can
restrict checks to the (internal actions) branching structure of the rule patterns.

From Example 2, we know that the only relevant dependency is {r1, r2, r3}.
It implies two κ-extended vectors, containing the corresponding behaviour in the
left and right rule patterns, respectively. Placing the vectors in two networks,
combined with V and V ∪ V̂, we can compute two system LTSs. For the first

(left patterns) network, we get the system LTS L1 = s0
com#1
−−−−−→ s1 (ignoring the

κ-loops), and for the second, we get LTS L2 = t0
try1#1
−−−−−→ t1

try2#1
−−−−−→ t2

move2#1
−−−−−−→

t3
com#1
−−−−−→ t4, t1

back1#1
−−−−−−→ t0, and t2

back2#1
−−−−−−→ t1 (again, ignoring the κ-loops).

After hiding all transition labels, we find that L1
↔∆
b L2, since L2 contains

τ -cycles and L1 does not, but they are BB, hence deadlock freedom is preserved.

Definition 5 can be used to efficiently check for the property preservation
by a rule system, thereby avoiding verification from scratch of the transformed
model. However, a number of conditions regarding the applicability of a rule
system were identified in [29].

1. Universal applicability: A rule system must be universally applicable w.r.t.
actions subjected to synchronisation of at least two parties; if such an action
a appears in the left pattern of some rule ri, then all occurrences of a in Π[i]
must be matched on by that rule, i.e. all occurrences will be transformed.
Without universal applicability, it is very hard to reason about the ability
for the new network to synchronise, since the original and the transformed
synchronising behaviour may coexist.

2. Completeness: A rule system must be complete, i.e. if one synchronising action
is transformed, then all actions that it depends on must be transformed.

3. Synchronisation: Laws introduced through transformation can only involve
new actions that were not present in the input model:

∀〈t̄, a〉 ∈ V̂, i ∈ 1..n.t[i]
∈
⋃

i∈1..n

Ai

The reason for this is that otherwise, new laws can alter the semantics of a
model in a way not expressed by the rules.

One contribution of this paper is a proposal how to remove the completeness
condition entirely and relax the synchronisation condition. In addition, we intro-
duce a mechanism to compositionally extend a network through transformation,
a new hiding technique called non-interface hiding, allowing to focus the analy-
sis on interfaces between subsystems, and the notion of an exclusive glue-state,
which allows more expressiveness for defining rules.

5 Compositional Reasoning and Exclusivity NACs

Compositional Development. One major limitation of the setup in Sects. 3 and
4 is that it does not support adding new processes. This can be solved by inter-
preting network vectors as infinite vectors. Each vector can be considered to be
infinite, with a finite number of process LTSs and an infinite number of ‘place-
holder’ single states. For this, we define that for all i > n, Π[i] = si. Likewise,
we interpret synchronisation vectors as being extended with an infinite number
of •-elements. Note that interpreting a network vector as being infinite does not
affect its system LTS, as the additional processes never change state.

The extension allows the introduction of new process LTSs; a rule ri =
〈s,Rri〉, with i > n, effectively introduces a new process LTS isomorphic to
Rri at position i in the network vector, since the single-state left pattern is
applicable on the place-holder state at position i in the infinite vector. Note that
a rule 〈Lri , s〉 can be used to effectively remove a process LTS isomorphic to Lri .

Removing the Completeness Condition. Another major limitation is the com-
pleteness condition of Sect. 4. Consider, for example, an input network with law
(〈a, b〉, c), and we wish to transform transitions labelled b to transitions labelled
b′. By the completeness condition, we would be forced to define a rule for a-
transitions, even if we wish to keep these unchanged. This is not desired, since
the verification technique is dictating how we should define a rule system.

Instead, we would like to be able to reason about behaviour subjected to
transformation completely independent of behaviour that is not transformed. In
the example, we would like to analyse a rule system applicable on b-transitions,
without having to address the a-transitions. For this, we need to be able to
focus our analysis entirely on the subsystem under transformation, and explicitly
involve the potential for synchronisation with processes outside the subsystem,
but not involve those processes themselves. Since synchronisation potential is
represented by the synchronisation laws, this can be achieved by adding altered
versions of laws that define synchronisation between the subsystem and the
remainder of the system. The altered versions no longer require the remainder
to be involved, thereby we detach the subsystem from the remainder of the
system.

Definition 6 (Detaching Laws). Given a network of LTSs M = 〈Π,V〉 and
a rule system Σ = 〈R, V̂〉. We define the set of detaching laws Vdet as follows:

Vdet = {〈t
′
, ă〉 | 〈t̄, a〉 ∈ V ∧ (Ac(t) ∩ IΣ)
= ∅ ∧ (Ac(t) \ IΣ)
= ∅},

with t
′
[i] = t[i] for all i ∈ IΣ, and t

′
[i] = •, otherwise, and ă the action a

annotated with the fact that it is the result of a detaching law.

For each law 〈t̄, a〉 where some of the participating process LTSs Π[i] will
be transformed, i.e. i ∈ Ac(t) ∩ IΣ , and some will not be, i.e. i ∈ Ac(t) \ IΣ ,
Vdet contains a new law based on 〈t̄, a〉, where behaviour of the latter process
LTSs is ignored, and the behaviour of the former is kept. The set V̂det for the
transformed network is defined in a similar way.

It is important to note that the actions resulting from laws in Vdet (and V̂det)
should be excluded from maximal hiding. For this reason, those actions (the
ă’s) have been annotated in Definition 6. When analysing the behaviour in the
transformation rules, the potential for synchronisation between the subsystem
under transformation, and thereby indirectly under analysis, and the remainder
of the system, should be taken into account. We refer to this potential as the
interface of the subsystem. The structure of the interface can be observed by
hiding all actions except those that are the result of applying a detaching law.
We refer to this as non-interface hiding, in which we move an LTS to a level of
abstraction where we completely focus on the synchronisation with other LTSs.

Definition 7 (Non-Interface Hiding). Given an LTS G, the non-interface
hidden LTS Hdet(G) is defined as follows:

– SHdet (G) = SG;
– AHdet (G) = {ă | 〈s, ă, s′〉 ∈ TG} ∪ {τ};
– THdet (G) = {〈s, ă, s′〉 | 〈s, ă, s′〉 ∈ TG} ∪ {〈s, τ, s′〉 | 〈s, a, s′〉 ∈ TG};
– IHdet (G) = IG.

Maximal hiding based on a property ϕ and non-interface hiding based on
detaching laws can be combined into a general hiding technique that hides all
actions except those that are relevant for the interface and/or the property. We
denote this hiding by Hdet

ϕ . Now, we redefine property preservation, taking the
new notions into account.

Definition 8 (Improved Property Preservation). Given a network of LTSs
M, an Ldsbr

µ -property ϕ, and a rule system Σ, let Σ imply a set of rule sets Υ

w.r.t. V and V̂. We say that Σ is ϕ-preserving if for all D ∈ Υ , D′ ⊆ D, we
have

Hdet
ϕ (LTS(〈L

D′

κ ,V ∪ Vdet〉)) ↔∆
b Hdet

ϕ (LTS(〈R
D′

κ ,V ∪ V̂ ∪ Vdet ∪ V̂det〉))

Compared to Definition 5, the rule networks incorporate Vdet and V̂det , which
allows for subsystems under transformation to be analysed in isolation.

For this new definition, the completeness condition can be dropped. However,
for that to be useful, we need to relax the synchronisation condition. Otherwise,
we would not be able to express new laws involving non-transformed behaviour.

The new condition is as follows: for all 〈t̄, a〉 ∈ V̂, there must exist a 〈t
′
, a′〉 ∈

V such that for all i ∈ 1..n \ IΣ , t[i] = t
′
[i], and for all i ∈ IΣ , both t

′
[i] ∈

ALri ∪ {•} and t[i] ∈ ARri ∪ {•}. This expresses formally that the remainder
of the system involved in the synchronisation was also allowed to synchronise in
that setup in the original network, while the subsystem is allowed to be altered.

0

1

send

0

1

2

τ

send

0

1

mŏc

κ0

κ1

↔∆

b

0

1

2

τ

mŏc

κ0

κ1

⊥

0

1

mŏc

κ0

κ1

κ1

↔∆

b ⊥

0

1

2

τ

mŏc

κ0

κ1

κ1

Fig. 4. κ-extension without and with exclusive glue-states

Example 4. Say we have a single rule r2 with Lr2 = s0
b
−→ s1, Rr2 = s0

b′

−→ s1

in a rule system with V̂ = {(〈a, b′〉, c)}, that we wish to apply on a network
M with V = {(〈a, b〉, c)}. By our convention, r2 matches on Π[2]. Further-
more, by Definition 6, we have Vdet = {(〈•, b〉, c̆)} and V̂det = {(〈•, b′〉, c̆)}. Since
there is only one rule, we can only construct check {r2}. From this, by Defi-
nition 8, we obtain two networks (〈s,Lr2

κ 〉, {(〈a, b〉, c), (〈•, b), c̆〉}) and (〈s,Rr2

κ 〉,
{(〈a, b〉, c), (〈•, b〉, c̆), (〈•, b′〉, c̆)}), with s a placeholder state. For both networks,

the synchronous composition after Hdet
ϕ -hiding is the LTS s0

c̆
−→ s1 with κ-loops

for s0 and s1. The fact that the networks are DSBB indicates that both net-
works have the same potential for synchronisation with other system parts. This
ensures that for a given Ldsbr

µ -property ϕ satisfied by M, the transformed M
satisfies ϕ as well.

Exclusivity Nacs. Consider an LTS L = s0
compute
−−−−−→ s1

send
−−−→ s0, in which

some computation is performed and the result is sent to another process using a
law ({send, rec}, com). Furthermore, consider that we wish to transform the send -

transition through a rule system Σ containing a single rule with Lr = 0
send
−−−→ 1

and Rr = 0
τ
−→ 2

send
−−−→ 1. This rule is displayed on the left in Fig. 4. When

analysing the rule patterns in isolation, which can be achieved by determining
the sets of detaching laws, Σ turns out not to be property preserving for any
ϕ, since added κ-loops prevent that, which is shown in the middle of Fig. 4. In
particular, state 2 in the right LTS is not DSBB to state 0 on the left, due to
the absence of an outgoing κ0-transition. However, for our LTS L, the κ-loops
do not truly represent the situation, since from state s1, one can only perform a
send action, but in the comparison, state 0, directly resulting from the glue-state
matched on s1, has other options, represented by the κ0-transition.

To remove this limitation, we extend the notion of a rule further with exclu-
sive out and exclusive in/out glue-states. Exclusive out glue-states are glue-states
with the condition that they can only be matched on process LTS states for which
all outgoing transitions are matched by the rule left pattern, i.e. they have no
outgoing transition with a target state that is not matched. With exclusive out
glue-states, a user can express that from particular states, one can only engage
in matched behaviour, and not leave the pattern. In addition to this, exclusive
in/out glue-states also have a similar condition for incoming transitions.

We extend the definition of a rule r with a set of exclusive out glue-states Er
out ,

and a set of exclusive in/out glue-states Er
in/out , with Er

in/out ⊆ Er
out ⊆ ILr (and

therefore, they are also subsets of IRr). We define Er = Er
out ∪ Er

in/out .

These glue-states can be formalised using Nacs. For a given rule r = 〈Lr,Rr, Er
out ,

Er
in/out〉, we add for each glue-state s ∈ Er a Nac s

∗
−→ s′ to a set of Nacs N r, with

s′ a new state and ∗ a label place-holder indicating ‘any label’, and for each glue-
state s ∈ Er

in/out , we add a Nac s′

∗
−→ s, again with s′ a new state and ∗ a label

place-holder.
The patterns can be extended, taking exclusive glue-states into account.

Definition 9. Given rule r = 〈Lr,Rr, Er
out , E

r
in/out〉, the κ-extended rκ = 〈Lr

κ,

Rr
κ, Er

out,κ, Er
in/out,κ〉 is (re-)defined as follows:

– For G = {L,R}, Gr
κ = 〈SGr

κ
,AGr

κ
, TGr

κ
, IGr

κ
〉, where:

• SGr
κ

= SGr ∪ {⊥}
• AGr

κ
= AGr ∪ {κs | s ∈ IGr \ Er

in/out} ∪ {κ′
s | s ∈ IGr \ Er}

• TGr
κ

= TGr ∪ {〈⊥, κs, s〉 | s ∈ IGr \ Er
in/out} ∪ {〈s, κ′

s,⊥〉 | s ∈ IGr \ Er}

• IGr
κ

= Er
in/out ∪ {⊥}

– Er
out,κ = Er

out

– Er
in/out,κ = Er

in/out

with ⊥ a new initial state.

The new situation for our example is displayed on the right in Fig. 4, given
that state 0 in the rule is an exclusive out glue-state (indicated by the fact that
it is square in the rule on the left). The new state ⊥ represents all the states in
an LTS outside of a pattern match, and is used to formalise how a match of a
pattern can relate to those states.

From ⊥, the pattern can be entered via glue-states, and exited via non-
exclusive glue-states. From state 0, one no longer has an alternative to performing
the cŏm (or τ)-transition, leading to the two LTSs being DSBB. In the next
section, an example of using exclusive in/out glue-states is presented.

Correctness. The extensions presented in this section do not break the correct-
ness of property preservation checking. First of all, exclusive glue-states can be
handled in the proof by using the fact that such states do not have unmatched
outgoing transitions (and incoming transitions, in the case of exclusive in/out
glue-states). Second of all, the extensions concerning the detaching laws and the
new synchronisation condition requires a more involved change to the proof.

Essentially, the extensions allow to determine that the LTS described by a
subsystem under transformation in isolation is DSBB to the LTS described by
the transformed subsystem. Since synchronisation with the remainder of the
system can only be done via detaching laws, we know that both the original and
the transformed subsystem will interact in the system in bisimilar ways, hence
the overall system LTS maintains its structure.

An Example: Developing a Distributed System Finally, we demonstrate the
use of the improvements presented in this section as part of our system devel-
opment technique. We do this by means of an example of a producer-consumer
system.

Produce Consume Produce Consume

Ch1

Ch2

{({s1, r1}, c1), ({r2, s2}, c2)}

c0

c1c2

produce

s1

r2
s0

s1s2

r1

s2

consume

{({s1,1, r1,1}, c1,1), ({s1,2, r1,2}, c1,2), ({s2,1, r2,1}, c2,1),

({s2,2, r2,2}, c2,2)}

0

{3}
0

1

r1,1s1,2 0

{4}
0

1

r2,1s2,2

0 1 2
s1 r2

0 1 2
s1,1 r2,2

0 1 2
r1 s2

0 1 2
r1,2 s2,1

Fig. 5. Introducing channel components in a distributed system

Produce Consume

Ch1,1 Ch1,2

L1

K1

Ch2,1 Ch2,2
L2

K2

{({s1,1,1, r1,1,1}, c1,1,1), . . .

0

{5}

3

4

1

5

6

20
r1,1,1(T)

τ

τ r1,1,1(F)

τ

τ

s1,1,2(T)

s1,1,2(e)

s1,1,2(F)

s1,1,2(e)

0

1

r1,1
s1,2

0 1 2

345

r1,1 s1,1,1(T)

r1,1,4(F/e)
r1,1,4(T)

r1,1s1,1,1(F)

r1,1,4(T/e)
r1,1,4(F)

0

{6}

3 0

1 2

4

56

7

r1,1,2(F/e)

s1,1,3(F) r1,1,2(T)
s1,2

s1,1,3(T)

r1,1,2(T/e)

s1,1,3(T)r1,1,2(F)
s1,2

s1,1,3(F)

Fig. 6. Introducing ABP

In the left upper corner of Fig. 5,
a schematic overview is given of a
system in which the first compo-
nent produces and sends a message,
and the second one consumes that
and sends a report back. We capture
the semantics as displayed below the
overview; two LTSs describe the com-
ponents, in which the initial states
are indicated by an incoming arrow-
head, and two laws establish their
synchronisation (the laws for produce
and consume are not displayed).

In order to capture the use of
channels more explicitly, we intro-
duce two new components Ch1, Ch2
through a rule system Σ1. The new
system is presented schematically to
the right of the initial model, and rule
system Σ1 is displayed below that.

The extension to introduce new
processes is crucial; the numbers
above the transformation arrows

indicate the IDs of the newly introduced process LTSs within the new net-
work. Exclusive in/out glue-states are displayed as black, square states with
an incoming arrowhead. They can accurately represent the initial states of
newly introduced process LTSs, since those states neither have incoming,

nor outgoing transitions that are not present in the pattern introducing the
process LTS. Say we want to check the preservation of an Ldsbr

µ -property
ϕ = [true

∗] [produce] ([(¬consume)∗] ¬deadlock ∧ [¬consume] ⊣), with dead-
lock = [true

∗][¬τ]false ∧ [τ] ⊣ expressing the presence of a deadlock. This
expresses the inevitable reachability of a consume action after a produce
action. After hiding all actions except for produce and consume [21], Σ1 passes
the check, i.e. relevant combinations of rule patterns lead to DSBB LTSs
w.r.t. ϕ.

In the final step in Fig. 6, we introduce the Alternating Bit Protocol (ABP)
for both channels, to reflect that in the final implementation, these channels will
be lossy. Rule system Σ2 consists of several rules, all of one of the three types
that are displayed; the first one introduces a lossy channel, in this case L1, but
K1, L2, and K2 are introduced in a similar way. The second rule is used to
transform Ch1 into Ch1,1, which sends messages with an alternating bit to one
lossy channel, and receives acknowledgements over the other channel.

Component Ch2 is transformed similarly to Ch2,2. Finally, components Ch1,2
and Ch2,1 are introduced, which receive the messages, and, depending on the
alternating bit, requests them to be resent, or forwards them to the other party.
After hiding w.r.t. ϕ and detaching laws related to actions s1,2, r1,1, s2,2, and
r2,1, i.e. the actions of the original channels that need to synchronise with the
producer and consumer, Σ2 does not preserve DSBB, since it introduces diver-
gence, but it preserves BB, hence ϕ is preserved under the fairness condition
that sending a message cannot fail infinitely often.

Note that in the final step, we do not have rules for the Consume and Pro-
duce components. Thanks to the detaching laws technique, we can analyse the
introduction of ABP in isolation, without incorporating the remainder of the sys-
tem. Without it, we would have to resort to analysing the whole system again,
since all components are (indirectly) dependent on each other. Now, the largest
LTS analysed contains 38 states, as opposed to an LTS of 1,720 states when
performing the check without the detaching laws.

Finally, the use of exclusive glue-states is crucial. They accurately reflect the
possible relation between matches of rule systems and the remaining states of
process LTSs in general. This provides us with more potential to define trans-
formations that can be verified in a model-independent way.

6 Implementation and Benchmark Results

Refiner is implemented in Python and can be run from the command-line.
It is platform-independent, and allows performing behavioural transformations
of networks of LTSs, and checking property preservation. It integrates with the
action-based, explicit-state model checking toolsets Cadp [8] and mCRL2 [5].
These tools can be used to specify and verify concurrent systems. Refiner uses
the mCRL2 tool LtsCompare to perform bisimilarity comparisons.

Definitions 5 and 8 indicate how property preservation checking could be
performed in parallel; once the set of rule vectors Υ has been derived, system

Fig. 7. Runtime comparisons (in seconds) of verification and property preservation
checking. (re)MC = Model Checking (after transformation). PP = prop. pres. PP+ =
improved prop. pres. PP+ 4 = 4-threaded PP+

LTSs must be constructed and compared for each (non-empty) subset of each
D ∈ Υ . The individual comparisons can be done independently of each other.
Refiner can launch multiple comparison threads, thereby exploiting multi-core
architectures.

We ran Refiner on a machine with a quad-core intel xeon E5520 2.27 GHz
processor, 1 TB RAM, running Fedora 12. As test input, we selected nine case
studies, two newly created ones, three from the set of mCRL2 models distributed
with its toolset, and four from the set of Cadp models.6 Each model was sub-
jected to one or two transformations, of the following types: (1) adding internal
computations, (2) adding support for lossy channels by introducing the Alter-
nating Bit Protocol (the ABP case), and (3) breaking down broadcast synchroni-
sations as in Fig. 3 (the broadcast and the HAVi leader election case). To give an
indication of the state spaces sizes: the ACS case state space after transformation
consists of about 22 thousand states, while after the second transformation, the
HAVi-LE state space consists of 3 billion states. Relative to that, the verification
runtimes are indicative of the sizes of the other state spaces.

Figure 7 compares runtimes for each model of verifying a property using the
Cadp 2011-b tools Generator and Evaluator (this involves system LTS
generation), and checking property preservation of the transformation using
Refiner. Note the logarithmic scale. We performed one transformation per
model for the experiments on the left, and two for those on the right (‘[2]’ indi-
cates the runtimes after the second transformation).

The experiments demonstrate that preservation checking with Refiner is
several orders of magnitude faster compared to verifying the property again,
if the state space is of reasonable size. This is not surprising, as the check only
focusses on the applied change, not the resulting state space. Comparing the run-
times with those of other model checkers therefore leads to the same conclusion.

6 The required files are available at http://www.win.tue.nl/∼awijs/refiner.

Furthermore, the results demonstrate that the check with the improvements of
Sect. 5 is often about 4 times faster than the original check, and linear speedups
can be obtained on top of that with parallel checking. The parallel checks were
performed using the four cores available on the test machine (PP+ 4), and fur-
ther parallelisation is trivial. To give an indication of the number of bisimilarity
checks performed, the largest number was 315 checks, for the first transformation
in the ABP case.

7 Conclusions and Future Work

We presented a number of improvements of our property preservation checking
technique for step-wise system development. Now, we are able to compositionally
add new components and we have improved the ability to verify rule systems.
With the new features, verification is made less intrusive to the designer, and
she has more possibilities to step-wise construct her system through verified
transformation steps.

As future work, we will continue to determine through experimentation
whether there are more limitations in our technique that should be removed.
Our final goal is to have a mature theory for verifying rule systems, and based
on that, construct a model transformation language suitable for expressing ver-
ifiable transformation steps at the level of action-based modelling languages.
This theory should also support timed behaviour, either using a timed version of
bisimilarity, e.g. [7], or by modelling time in an untimed setting, e.g. [26]. Finally,
possible applications of directed search techniques [27,30] will be investigated.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82, 253–284 (1991)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

3. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis,
J.: Rigorous component-based system design using the Bip framework. IEEE Softw.
28(3), 41–48 (2011)

4. Blech, J.O., Glesner, S., Leitner, J.: Formal verification of Java code generation
from UML models. In: Fujaba Days 2005, pp. 49–56 (2005)

5. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013).
LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013)

6. Engelen, L.J.P., Wijs, A.J.: Checking property preservation of refining transforma-
tions for model-driven development. CS-Report 12–08, TU Eindhoven (2012)

7. Fokkink, W.J., Pang, J., Wijs, A.J.: Is timed branching bisimilarity an equivalence
indeed? In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp.
258–272. Springer, Heidelberg (2005)

8. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

9. Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards verified model
transformations. In: 3rd International Workshop on Model Development, Valida-
tion and Verification (MoDeVVa 2006), pp. 78–93. IEEE Press, New York (2006)

10. Giese, H., Lambers, L.: Towards automatic verification of behavior preservation for
model transformation via invariant checking. In: Ehrig, H., Engels, G., Kreowski,
H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 249–263. Springer,
Heidelberg (2012)

11. van Glabbeek, R.J., Luttik, B., Trčka, N.: Branching bisimilarity with explicit
divergence. Fundam. Inform. 93(4), 371–392 (2009)

12. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

13. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3–4), 287–313 (1996)

14. Heckel, R.: Graph transformation in a nutshell. Electron. Notes Theor. Comput.
Sci. 148, 187–198 (2006)

15. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, Ch., Wehrheim,
H.: Showing full semantics preservation in model transformation - a comparison of
techniques. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183–198.
Springer, Heidelberg (2010)

16. Kahsai, T., Roggenbach, M.: Property preserving refinement for Csp-Casl. In:
Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 206–220.
Springer, Heidelberg (2009)

17. Kozen, D.: Results on the propositional µ-calculus. Theoret. Comput. Sci. 27,
333–354 (1983)

18. Kundu, S., Lerner S., Gupta, R.: Automated refinement checking of concurrent
systems. In: 26th International Conference on Computer-Aided Design (ICCAD
2007), pp. 318–325. IEEE Press, New York (2007)

19. Lambers, L., Ehrig, H.: Efficient conflict detection in graph transformation systems
by essential critical pairs. Electron. Notes Theor. Comput. Sci. 211, 17–26 (2008)

20. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional,
and on-the-fly verification Methods. In: Romijn, J.M.T., Smith, G.P., van de Pol,
J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

21. Mateescu, R., Wijs, A.: Property-dependent reductions for the modal mu-calculus.
In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823, pp.
2–19. Springer, Heidelberg (2011)

22. Narayanan, A., Karsai, G.: Towards verifying model transformations. Electron.
Notes Theor. Comput. Sci. 211, 191–200 (2008)

23. Sokolsky, O.V., Smolka, S.A.: Incremental model checking in the modal mu-
calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 351–363. Springer,
Heidelberg (1994)

24. Swamy, G.M.: Incremental methods for formal verification and logic synthesis.
Ph.D. thesis, University of California (1996)

25. Varró, D., Pataricza, A.: Automated formal verification of model transformations.
In: Critical Systems Development with UML (CSDUML 2003), pp. 63–78 (2003)

26. Wijs, A.J.: Achieving Discrete relative timing with untimed process algebra. In:
12th International Conference on Engineering of Complex Computer Systems
(ICECCS 2007), pp. 35–44. IEEE Press, New York (2007)

27. Wijs, A.J.: What to do next?: analysing and optimising system behaviour in time.
Ph.D. thesis, VU University, Amsterdam (2007)

28. Wijs, A.J., Engelen, L.J.P.: Incremental formal verification for model refining. In:
9th International Workshop on Model Development, Validation and Verification
(MoDeVVa 2012), pp. 29–34. ACM Press, New York (2012)

29. Wijs, A., Engelen, L.: Efficient property preservation checking of model refine-
ments. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 565–579. Springer, Heidelberg (2013)

30. Wijs, A.J., Lisser, B.: Distributed extended beam search for quantitative model
checking. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI), vol.
4428, pp. 166–184. Springer, Heidelberg (2007)

