
Efficient Property Preservation Checking

of Model Refinements

Anton Wijs and Luc Engelen

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
{A.J.Wijs,L.J.P.Engelen}@tue.nl

Abstract. In model-driven software development, models and model re-
finements are used to create software. To automatically generate
correct software from abstract models by means of model refinement,
desirable properties of the initial models must be preserved. We propose
an explicit-state model checking technique to determine whether refine-
ments are property preserving. We use networks of labelled transition
systems (LTSs) to represent models with concurrent components, and
formalise refinements as systems of LTS transformation rules. Property
preservation checking involves determining how a rule system relates to
an input network, and checking bisimilarity between behaviour subjected
to transformation and the corresponding behaviour after transformation.
In this way, one avoids generating the entire LTS of the new model. Ex-
perimental results demonstrate speedups of several orders of magnitude.

1 Introduction

Model-driven software development [2] entails creating implementations on a
low level of abstraction from designs represented by models on a high level of
abstraction. Implementation details, for example motivated by hardware restric-
tions, are added incrementally to these abstract models by means of refining
model transformations. Usually, an implementation must satisfy a number of re-
quirements that can be expressed as properties of the model that forms its design.
Then, the transformations should preserve these properties. Model checking [4]
can help to determine whether this is the case, but verifying the properties from
scratch for each new model along the development chain not only requires much
time, but it is also likely to become unfeasible very quickly, as the related state
space of a model tends to grow exponentially when applying a refinement.

In this paper, we present an explicit-state model checking technique tailored
for incremental refinement of models of concurrent systems. If the model that
forms the initial design of such a system is relatively small, then at this stage,
properties can still be verified using traditional techniques based on explicit state
space exploration. When a refinement needs to be applied, then instead of the
refined model, the technique analyses the formal semantics of the refinement,
and determines whether application of the refinement is guaranteed to preserve

a particular property. This can be either a safety, liveness, or fairness property.
This property-preservation checking is purely done by reasoning about the struc-
tures of Labelled Transition Systems (LTSs), which we use to express the seman-
tics of both the models and the refinements. For a model, the semantics of each
process in the model is expressed as an LTS, and the semantics of the complete
concurrent system is expressed implicitly by a network of LTSs [19], describing
how these process LTSs interact. A refinement is formalised as a system of LTS
transformation rules, where each rule has a left LTS pattern, describing what
should be changed, and a right LTS pattern, describing what the result of the
change should be. Furthermore, such a system can add to the interaction mech-
anism of the processes. By focussing on LTSs, our technique is applicable to any
modelling language, either to describe models or refinements, whose semantics
can be expressed by LTSs.

Mateescu and Wijs [21] developed an automatic technique called maximal
hiding, whichworks for a particular, but still very expressive, fragment of themodal
µ-calculus [17]. It identifies all system behaviour not relevant for a given property,
and hides all this behaviour, i.e. renames the transition labels to τ . Furthermore, it
is compatible with divergence-sensitive branching bisimilarity (DSBB) [11]. DSBB
is a useful equivalence that respects branching-time and cycles of internal
behaviour, and is therefore not only suitable for safety properties, but also live-
ness and fairness properties. The compatibility lies in the fact that if two LTSs are
maximally hidden w.r.t. the same property, and they are DSBB, then they both
do or do not satisfy the property. By identifying all irrelevant behaviour, maximal
hiding maximises the potential for a positive DSBB comparison result.

We use these results to focus on the following question: given a model M
satisfying a property ϕ written in the µ-calculus fragment, and given a system of
transformation rules Σ, when and how can we determine whether it is guaranteed
that Σ will not structurally alter the maximally hidden LTS of M when it is
applied to it, i.e. will the resulting LTS of the new model M′ be DSBB to the
one of M, if both are maximally hidden? As it turns out, this can be done
without investigating the LTS of M′ if some reasonable conditions regarding the
applicability of Σ on M are met.

Shifting the focus from models to model refinements implicitly assumes that
a modeller likewise focusses on defining refinements to move her initial model to
increasingly lower levels of abstraction, and it is in these refinements where she
can influence the development. One could also imagine building a dictionary of
reusable refinement patterns, including a pattern to, for example, add function-
ality to cope with lossy communication channels. In our experimental section,
we demonstrate that our technique is applicable for such refinements, in fact it
runs several orders of magnitude faster than verifying the refined model.

This paper is structured as follows. Section 2 introduces the preliminaries.
In Section 3, we formalise LTS transformation. Next, in Section 4, we discuss
our technique for determining whether transformations preserve properties. Ex-
perimental results are given in Section 5. Section 6 discusses related work, and
Section 7 contains conclusions and pointers to future work.

2 Preliminaries

Labelled transition system. An LTS G is a tuple 〈SG ,AG , TG , IG〉, where SG is
a (finite) set of states, AG is a set of actions (including the invisible action τ),
TG ⊆ SG ×AG ×SG is a transition relation, and IG ⊆ SG is a set of initial states.
Actions in AG are denoted by a, b, c, etc. We use s1

a
−→G s2 as a shorthand for

〈s1, a, s2〉 ∈ TG . If s1
a
−→G s2, this means that in G, an action a can be performed

in state s1, leading to state s2.

Network of LTSs. We represent models consisting of a finite number of finite-
state concurrent processes by a number of LTSs and a set of synchronisation
rules defining how these LTSs interact. For this, we use the concept of networks
of LTSs [19]. Given an integer n > 0, 1..n is the set of integers ranging from 1
to n. A vector v of size n contains n elements indexed by 1..n. For i ∈ 1..n, v[i]
denotes element i in v.

Definition 1. A network of LTSs M of size n is a pair 〈Π,V〉, where

– Π is a vector of n (process) LTSs. For each i ∈ 1..n, we write Π [i] =
〈Si,Ai, Ti, Ii〉, and s1

b
−→i s2 is shorthand for s1

b
−→Π[i] s2;

– V is a finite set of synchronisation rules. A synchronisation rule is a tuple
〈t, a〉, where a is an action label, and t is a vector of size n called a synchro-
nisation vector, in which for all i ∈ 1..n, t[i] ∈ Ai ∪ {•}, where • is a special
symbol denoting that Π [i] performs no action.

With A1..n, we refer to the union of the Ai. Furthermore, for 〈t, a〉, Ac(t) =
{i | i ∈ 1..n ∧ t[i] 6= •} refers to the set of processes active for 〈t, a〉, and
A(t) = {t[i] | i ∈ 1..n} \ {•} refers to the set of actions participating in 〈t, a〉.

A network of LTSs M = 〈Π,V〉 is an implicit description of all possible
system behaviour of the model. We call the explicit description the system
LTS 〈SM,AM, TM, IM〉. It can be obtained by combining the Π [i] according
to the rules in V :

– IM = {〈s1, . . . , sn〉 | ∀i ∈ 1..n.si ∈ Ii};
– AM = {a | 〈t, a〉 ∈ V};
– SM = S1 × . . .× Sn;
– TM is the smallest transition relation satisfying: 〈t, a〉 ∈ V ∧∀i ∈ 1..n.(t[i] =

• ∧ s′[i] = s[i]) ∨ (t[i] 6= • ∧ s[i]
t[i]
−−→i s

′[i]) =⇒ s
a
−→M s′.

On the left of Figure 1, a network consisting of three process LTSs and four
synchronisation rules is shown. The black states are initial. The network LTS
representing the behaviour of this network is shown on the right. The figure
demonstrates the expressiveness of networks of LTSs. It shows, for example,
that multi-party synchronisation is offered, as illustrated with the synchroni-
sation rule 〈〈f, f, f〉, f〉. This rule specifies that action f in the system LTS
is the result of the synchronisation of the actions f of the three processes.
Rule 〈〈b, d, •〉, e〉 specifies a synchronisation between processes Π [1] and Π [2],
rule 〈〈a, •, •〉, a〉 specifies that action a of process Π [1] can be executed indepen-
dently, and rule 〈〈•, c, •〉, c〉 specifies the same for action c of process Π [2].

! "

! " !

! " !

" !

#$%$&

'$%$&

($%$&

)$%$&

)$*$&

'$*$&

#$*$&

($*$&

+

,$-$&

!

!

.

!!!"#$#"#$#""#!"

!!#$"#%"#$#""#%"

!!&"#'"#$#""#("

!!)#"#)#"#)#""#)"%

*

"

-

/.

'

#

!

(

!

)

!

,

0! .

&

.

Fig. 1. A network of LTSs and its sys-
tem LTS

Synchronisation rules can also be used
to introduce non-deterministic behaviour,
by specifying multiple rules for the same
actions. By adding the rule 〈〈a, c, •〉, g〉,
Π [1] and Π [2] can either synchronise on
a and c, or perform them independently.

Hiding. To abstract from certain actions
in networks, we define the hiding operator
τH , which renames all actions in action
set H , i.e. the hiding set, to τ : τH(M) =
〈Π, {(〈t, a〉 ∈ V | a 6∈ H}∪{〈t, τ〉 | 〈t, a〉 ∈
V∧a ∈ H}〉. Intuitively, hidden behaviour
should neither be subjected to synchroni-

sation, nor renamed: ∀〈t, a〉 ∈ V .τ ∈ A(t) =⇒ |Ac(t)| = 1 ∧ a = τ . Hidden be-
haviour should also always be enabled: ∀i ∈ 1..n.∃〈t, τ〉 ∈ V .A(t) = {τ}∧Ac(t) =
{i}. We only consider networks for which these conditions hold.

Maximal Hiding. Mateescu and Wijs [21] explained how to derive for LTS G and
temporal logic formula ϕ the largest possible hiding set hAG

(ϕ), if ϕ is written in
a fragment of the modal µ-calculus [17] called Ldsbr

µ . Hiding this set, i.e. applying
maximal hiding, allows moving to the highest possible level of abstraction without
disturbing the truth-value of ϕ. Ldsbr

µ can express safety, liveness, and fairness
properties. We denote the maximally hidden LTS G w.r.t. ϕ by τ̃ϕ(G).

Divergence-Sensitive Branching Bisimulation. To compare LTSs, we use the
equivalence relation divergence-sensitive branching bisimulation (DSBB) [11]. It
supports hidden behaviour, and is sensitive to the branching structure of an
LTS, including τ -cycles. Hence besides safety properties, it also supports fair-
ness (e.g. livelock), and liveness properties. We call a state s diverging, iff an
infinite τ -path is reachable from s. For finite LTSs, this means that a τ -cycle is
reachable via τ -transitions. A formal definition of DSBB is not required for the
understanding of this paper; the interested reader is referred to [11].

DSBB is compatible with maximal hiding. This allows reasoning about LTSs
w.r.t. properties. Given a Ldsbr

µ formula ϕ and LTSs G1 and G2, if we know that
G1 satisfies ϕ, we can conclude whether or not G2 satisfies ϕ by applying maximal
hiding onboth LTSs, and determining whether τ̃ϕ(G1) is DSBB to τ̃ϕ(G2). Based on
this, our proposedpreservation check, formulated in Section 4, determines whether
an LTS transformation application possibly alters the branching structure of an
LTS. If not, we can conclude that ϕ is preserved after transformation.

3 LTS Transformations

In this section, we formalise refinement steps as transformations of networks of
LTSs. A network is transformed by transforming the individual process LTSs
that constitute it and adding additional synchronisation rules.

3.1 Transformation Rules

LTSs are transformed by applying transformation rules. These rules are defined
as follows.

Definition 2. A transformation rule r = 〈Lr ,Rr〉 consists of a left pattern LTS
Lr = 〈SLr ,ALr , TLr , ILr〉 and a right pattern LTS Rr = 〈SRr ,ARr , TRr , IRr 〉,
with ILr = IRr = (SLr ∩ SRr).

States SLr ∩ SRr , also referred to as the glue-states, are all initial and define
how Rr should replace Lr . All changes to an LTS are applied relative to these
glue-states. We call a rule r = 〈Lr,Rr〉 applicable on an LTS G iff there exists a
match mr : SLr →֒ SG (an embedding) for which the following holds:

Definition 3. A transformation rule r = 〈Lr ,Rr〉 has a match mr : SLr →֒ SG

on an LTS G = 〈SG ,AG , TG , IG〉 iff mr is injective and

1. ∀s1
a
−→Lr s2.mr(s1)

a
−→G mr(s2);

2. ∀s ∈ SLr \ SRr , p ∈ SG :
– mr(s) = p =⇒ ¬∃s′ ∈ SLr ∩ SRr .mr(s

′) = p;

– mr(s)
a
−→G p =⇒ ∃s′ ∈ SLr .s

a
−→ s′ ∧mr(s

′) = p;

– p
a
−→G mr(s) =⇒ ∃s′ ∈ SLr .s′

a
−→ s ∧mr(s

′) = p.

The second point of Definition 3 expresses the gluing conditions [14]. The first
condition, the identification condition, says that in a single match, there may
not be a contradiction concerning the removal of states, which could happen
if both a glue-state and a non-glue-state are matched on the same state. The
remaining two points express the dangling condition, which rules out the removal
of transitions in G that are not explicitly represented in Lr, i.e. it is not allowed
that only one state of a transition is matched on and scheduled to be removed.
We follow the double-pushout approach (DPO) [7], i.e. if the gluing condition is
violated, the match is not valid. If we would apply transformation on a match
even though the condition is violated, then the effect would be unpredictable,
which would also limit our ability to reason about the structure of the result.

Fig. 2. Rule matching

In the middle of Figure 2, a transfor-
mation rule is shown. All initial and glue-
states are coloured black in this figure.
The rule defines that any state matched
on state ii of the left pattern of the rule
should be removed and replaced by a new
state, which is labeled iv in the rule. There-
fore, the left pattern can be matched on
states {0, 1, 2} of the LTS on the left of the

figure, but not on states {1, 2, 3}. The latter match would result in the removal
of state 2 and lead to a dangling transition.

Transformation of a network of LTSs proceeds as follows: First, the largest set
of matches for a rule on each process LTS is determined. Then, for each match,

DPO is applied to replace left pattern matches by copies of the right pattern, i.e.
first remove all states and transitions matched by Lr \Rr, and then place a copy
of Rr \Lr in the result. Using this approach, termination of transformation is no
issue; we do not recompute the set of matches for intermediate transformation
results, and since the Π [i] are finite, there is a finite number of matches initially.

Figure 2 illustrates the application of a transformation rule. The LTS on the
right is the result of applying the rule in the middle to the LTS on the left.

3.2 Rule Systems

With transformation rules, a rule system Σ = 〈R, V̂〉 can be built, with R a set
of transformation rules and V̂ a set of synchronisation rules to be introduced
in the result of a transformation. Transformation of a network of LTSs via a
rule system is done by determining for every Π [i] and every rule the set of all
matches, and applying transformation on these matches.

Here, a rule system defines how a network of LTSs should be transformed
into a more refined network. In that context, it is important that a rule sys-
tem is confluent, i.e. application always produces the same result. When a user
defines a transformation, she desires to obtain a single, refined model. From
graph theory, it is known that confluence is undecidable for general rule sys-
tems, but it is decidable under certain conditions [18]. Here, we ensure that a
rule system Σ = 〈R, V̂〉 is confluent for an LTS G by 1) requiring that the ac-
tion sets of left patterns of rules are disjoint, i.e. ∀r1, r2 ∈ R.ALr1 ∩ ALr2 = ∅,
and 2) checking for each Π [i] that no two matches of a single rule intersect, i.e.
∀r ∈ R.¬∃m1

r ,m
2
r, s1, s2 ∈ SLr .m1

r 6= m2
r ∧m1

r(s1) = m2
r(s2). By 1) and the dan-

gling condition, transformation of a match of one rule cannot influence a match
of another rule, and by 2), neither can it influence the matches of the same rule.
The first condition can efficiently be checked before matches are determined,
and the second can be done while matches are determined. Note that these re-
strictions are more strict than technically required, but they still allow efficient
confluence checking. If a rule system is not confluent, it often indicates that the
user overlooked something; if not, then usually a confluent rule system can be
obtained by e.g. rewriting actions, merging rule patterns, and / or splitting rule
systems in multiple ones.

4 Checking Property Preservation

Our property preservation check for rule systems actually entails a number of
computations and checks, which have been implemented in a new tool called
Refiner. The only required input is a network of LTSs and a rule system,
specified by the user. Figure 3 gives an overview of the approach.

Given M and Σ, the tool takes the following steps, which will be explained
in more detail in this section:

1. Check that the new synchronisation rules V̂ are well-formed w.r.t. M;
2. Generate a set Υ of rule sets ;

!"#"$%&"

'()"*+"&,

-!.

!"#"$%&"

/011"#

23+,

45"67

8+99

'()"

:"&;<$7,

'()"

+=,&">

!

! " #

$ %&

?$<@"$&=

"

23+,

<$
:"&;<$7

<A*23+,

45"67

'()"*+=,&">

;"))BA<$>"1#",,
<$

'()"

:"&;<$7,

C11

10D"$E"#6=

0#A<$>%&0<#

Fig. 3. Checking well-formedness and property preservation of a rule system

3. Check that Υ only contains well-formed sets w.r.t. M;
4. Optionally, add divergency information to the rule sets;
5. For each rule set ρ ∈ Υ , generate pairs of corresponding system LTSs and

apply maximal hiding;
6. For each pair of LTSs, perform a DSBB comparison. If all DSBB comparisons

in the previous step were positive, then Σ preserves ϕ.

We introduce two simplifications to facilitate explanation. First of all, we assume
that in M = 〈Π,V〉, all the Ai are disjoint. This is not a fundamental limitation,
since renaming of actions and modifying the synchronisation rules can enforce
this. For a rule system Σ = 〈R, V̂〉, this implies that each r ∈ R can be applicable
on at most one process LTS. If a similar transformation must be applied to
multiple process LTSs, including in Σ multiple copies of a rule with appropriately
renamed actions suffices. Based on this, we define a function I : 2A1..n×N→ 2Ai ,
with, given an action set A, I(A, i) = A ∩Ai.

Second of all, for M and Σ, we assume that each Π [i] is matched on by exactly
one r. This is expressed by indexing the r ∈ R such that rule ri is matched
on Π [i]. This is also not a real limitation; if multiple rules are applicable on a
Π [i], Σ can be rewritten since it is confluent. This is done by splitting the rule
system into multiple ones, and applying these one after the other.

1. Well-formedness of V̂. We restrict the ability to introduce new synchronisation
rules in order to determine property preservation. Otherwise, by defining new
synchronisation rules over already existing actions, a model could be altered
without actually defining any transformation rules. We check that each rule in
V̂ only contains actions in its vector that are introduced by Σ:

∀〈t, a〉 ∈ V̂ , i ∈ 1..n.t[i] ∈ (ARri \ Ai) ∪ {•}

This does not limit the ability to express transformations, however; e.g. if two
existing actions a and b should synchronise after transformation, one can define
two transformation rules renaming these to a′ and b′, respectively, and define a
new synchronisation rule for these new actions.

2. Generate Rule Sets. The synchronisation rules of M directly give rise to a
dependency function δ for actions in the Ai, where for each b, we have δ(b) =⋃

〈t,a〉∈V{t[j] | j ∈ 1..n ∧ b ∈ Ai ∧ t[i] = b} \ {•}. It defines the set of actions on

which b depends to be able to synchronise in M. This function can be used to
identify the set of dependent actions containing the action set of the left pattern
of an ri ∈ R; it is the smallest closed set C(ALri) of ALri w.r.t. δ and the
subset relation, i.e. ALri ⊆ C(ALri) and for all b ∈ C(ALri), δ(b) ⊆ C(ALri).
This C(ALri) implies a set of dependent rules including ri, namely ρi = {rj |
I(C(ALri), j) 6= ∅}. We define Υ = {ρi | ri ∈ R}.

Example 1. Consider Σ with n = 4 and for all r1, . . . , r4 ∈ R, we have Lri =
〈{si, s

′
i}, {ai}, {〈si, ai, s

′
i〉}, {si}〉. We also have an M with V = {〈〈a1, a2, a3, •〉, b〉,

〈〈•, •, •, a4〉, a4〉}. Now, ρ1 = ρ2 = ρ3 = {r1, r2, r3} and ρ4 = {r4}.

3. Well-formedness of Rule Sets. One condition to check property preservation
is that the ρ ∈ Υ are complete w.r.t. synchronising behaviour. In other words, we
check that each action in C(ALri) is in the left pattern action set of some ri ∈ ρ:
C(ALri) ⊆

⋃
rj∈ρALrj . If this does not hold, then some relevant behaviour is not

present in any of the left patterns, making it impossible to determine property
preservation based on the rule patterns alone. Often, such a situation can be
fixed by including rules for relevant behaviour that actually do not transform
anything, i.e. the left pattern is equal to the right pattern.

Another condition concerns the applicability of Σ on M: if rule ri contains
behaviour in its left pattern that requires synchronisation, then ri must be ap-
plicable on all occurrences of that behaviour in Π [i]. We call this universal ap-
plicability of ri on Π [i] (note that action a requires synchronisation iff |δ(a)| > 1,
and that ran(mri) refers to the range of mri):

∀ri ∈ R, a ∈ ALri .|δ(a)| > 1 =⇒ ∀s1
a
−→i s2.∃mri .{s1, s2} ⊆ ran(mri)

Example 2. Consider the Σ of Example 1 again, but now without r2. Then,
ρ1 = {r1, r3} is not complete, since C(ALr1) = {a1, a2, a3}, and a2 6∈ ALr1∪ALr3 .
The same holds for ρ3.

Example 3. Consider an M with n = 2 and Π [1] having the structure p1
a
−→ p2

a
−→

p3
b
−→ p4. Furthermore, V contains a rule 〈〈a, c〉, d〉. We also have a Σ contain-

ing r1 with Lr1 having the structure s1
a
−→ s2

b
−→ s3. Now, r1 is not universally

applicable, since in Π [1], not all occurrences of a are matched on by r1. If in-
stead, we had a synchronisation rule 〈〈a, •〉, d〉 in V , then r1 would be universally
applicable, if b also requires no synchronisation.

4. Add Divergency Information. Transformation rules may introduce loops that
after maximal hiding result in τ -loops. These may lead to a negative DSBB
comparison result, since a non-diverging glue-state s in the left pattern of a rule
can become diverging in the right. However, if the hidden system LTS of the
input network already contains diverging behaviour, it could be the case that
the matches of that rule only relate to those parts of the LTS where behaviour
is already diverging, i.e. each process state p matched on by s is only part of
diverging system state vectors in the system LTS. The introduction of additional

!

!!! !!

"!

"!!"!!!

!

!!! "!!!

"!

!! "!!

$$

Fig. 4. An extended transformation rule

diverging behaviour will then not lead to a system LTS that is not DSBB to the
original one. Such situations can be taken into account by first of all identifying
which states are diverging in the hidden system LTS (this can be done in linear
time with a slightly altered version of Tarjan’s Strongly Connected Component
detection algorithm [27]), propagating this information back to the process LTSs
(a process state p is called diverging iff there exists no system state containing p

that is non-diverging), and finally, adding a τ -selfloop to each s in the patterns
of a rule if s is only matched on diverging process states.

Step 4 is optional, since it should only be done for transformation rules that do
not remove diverging behaviour, since the added τ -loops will result in ignoring
such removal. Removal of diverging behaviour can be detected by checking that
each τ -loop in the left-pattern of a rule is represented in the right pattern.

5. Generate and Hide Relevant LTSs. To check property preservation of Σ, we
need to make some structural information explicit in its rule patterns. If in a
process LTS, a state is matched on by a glue-state, then it will remain in the
LTS after transformation. This should be incorporated in a DSBB comparison.
Consider the example in Figure 4. In this rule, the labels a and b are swapped
between the transitions. Without the selfloops, a DSBB comparison will conclude
that the two LTSs are equivalent, but it will not relate state ii (and iii) from
the left pattern with state ii (and iii) from the right pattern, which indicates a
structural change. To avoid such an erroneous conclusion, we introduce for each
glue-state j a selfloop with a unique (fresh) label κj , and add a synchronisation
rule to V stating that κj can be fired independently. Since only from state j

action κj can be performed, both in the left and right pattern, a positive DSBB
comparison outcome necessarily depends on being able to relate state j with
itself. We refer with rκi to rule ri after application of the κ-modification.

Now, each ρ ∈ Υ directly defines two vectors vL, vR, where for G ∈ {L,R}
and all i ∈ 1..n, we have vG [i] = Gri if ri ∈ ρ, and vG [i] = 〈{s}, ∅, ∅, {s}〉 (a
place-holder) otherwise. These vectors lead to two networks Ξ

ρ
L = 〈vL,V〉 and

Ξ
ρ
R = 〈vR,V ∪ V̂〉. The behaviour of Ξρ

R represents the result in the system of
applying the rule system to the behaviour of Ξρ

L.
Besides this pair of LTSs, we also derive LTSs for each non-empty subset of

ρ, i.e. for all sets in 2ρ \ {∅}. The subsets represent system states where some
parties are able to perform synchronisation, whereas others may not be. The
need to consider these states is illustrated by Example 4 described below.

6. DSBB Comparison of LTSs. For each ρ ∈ Υ , we perform a DSBB comparison

on all the (Ξρ′

L ,Ξ
ρ′

R), with ρ′ ∈ 2ρ \ ∅.

!"#

$"#

%

!"&

'

$"&

'

("#

! %

!")

*

$")

*

("&

!' %

(")

!

!

*

+",

!

-.

.

/

-.

.

/$

0

-

--

1$

2+2$-

--

1

2

!"#"$!!%&'"(""'"%&"'"!!)&'"*&"'")&*&"'

#!!%+'","'"%+,"-
."#"$%&'")&*&'"%+,-

! !

!"#

$"#

%

!"&

'

!

$"&

' %

!")

*

!

$")

*

+",

! %

!

3"4"526"1/7

89:; < 89:; <

!

$

%

(

2$2+

+

1$

#

&

'

0

,

/$

)

*

#

&

'

,

/

)

*

!

$

%

2

+

1

!"#"$!!/'"(""'"/"'"!!%'"(""'"%"'

##!!"('"0"'"0"'"!!"('"1""'"1"'

##!!)'"*"'")*"-

!

"

Fig. 5. The transformation of a network of LTSs

!!"# $%

!"# $&!

!!"# $%

!"#

!!!"#

$&

!

(a)

!"!#

!!!"!#

!!"#

$% $&

! !

$&

!

$'$(

!"!#

!!"#

!

$($'

$&$%!

(b)

!"# $%

!"&# $' !"&# $'

!"# $%

(c)

Fig. 6. DSBB comparisons of networks of (a) {1}, (b) {1, 2}, and (c) {2}

Example 4. On the left of Figure 5, a network of LTSs M is shown together with
its system LTS after hiding hALTS(M)

(ϕ) = {b, ce}, which is the hiding set for
some property ϕ. On the right, a rule system Σ consisting of two transformation
rules and some synchronisation rules to be introduced at transformation is shown.
Applying Σ on M results in network M′ shown to the right of Σ with its system
LTS after hiding hA

LTS(M′)
(ϕ) = {b1 , c1e1 , b2g}. Transformation rules 1 and 2

are clearly dependent, since actions c and e in the left patterns must synchronise
according to V . Thus, we have ρ1 = ρ2 = {1, 2}. In Figure 6b, the two networks
of LTSs described by {1, 2} are compared after hiding the actions in h. The
dotted lines in this figure illustrate that a DSBB exists for these two networks.

Even though a DSBB exists between these networks, the system LTSs of M
and M′ are not DSBB. This illustrates that it is not sufficient to only look at the
combination of rule patterns. Instead, we also need to consider configurations in
which some parties are able to perform synchronisation, whereas some parties
are not. For example, the system LTS of M contains a state (1 3), which has
a τ -loop that cannot be simulated by the system LTS of M′. This τ -loop is
the result of hiding the b-loop of state 1 in the leftmost process of M. This
process can perform action b independently. After transformation, however, a
τ -cycle can only result from synchronisation between the transformed process
LTSs of M′ (b2 has to synchronise with g). In system states where this required
synchronisation is impossible, as is the case in the system LTS of M′ in state (1
3), only one τ -action can be performed. By considering ‘subnetworks’ of {1, 2},
we detect this difference in the form of a negative DSBB comparison result (see
Fig. 6a).

Correctness. Our check correctly determines whether a rulesystem is property
preserving or not. This is proven in [8].

Complexity and Scalability. The bottleneck lies in computing the system LTS of
a network, relating to state-space explosion. Most steps, however, do not involve
this LTS. Only step 4 requires full analysis of the system LTS; however, diver-
gency information can be propagated along property preserving transformations,
i.e. it does not need to be recomputed for each new system LTS along a sequence
of transformations. Given that we assume that the initial M can be verified, this
does not introduce an additional time or space bottleneck.

Let k and m be the upper-bounds to the number of states and transitions,
respectively, in a left or right rule pattern. Then, step 6 can be done for each ρ

in O(2|ρ| − 1 · (k|ρ| · (k|ρ| +m|ρ|)). Efficient DSBB detection takes O(k|ρ| · (k|ρ| +
m|ρ|)) [13], assuming the τ -loops have been compressed using Tarjan’s algorithm,
and there are 2|ρ| − 1 relevant subsets of ρ. An interesting observation is that
the checks for the relevant subsets can be done fully independently, allowing for
straightforward parallelisation. The space complexity of step 6 is O(k|ρ| +m|ρ|).

In steps 5 and 6, worst-case, Σ would completely describe M in the left
patterns of rules, and the right patterns would completely describe the refined
model. In that case, the check actually boils down to generating the complete
new LTS and checking if it is DSBB to the old one, which would not mitigate
the state-space explosion problem. However, this would not be in line with the
idea behind our technique. Typically, the rules in Σ contain patterns that are
much smaller than the process LTSs. Then, the state spaces in step 5 will be
exponentially smaller than the one of the transformed network.

Finally, our approach can only be successful if LTS transformation can be
done efficiently; for a given rule, matching can be done linear to the size of the
input LTS [6]. In our case, this is reasonable, as the process LTSs are usually
exponentially smaller than the system LTS. Besides that, the use of transition
labels means that we usually do not experience the worst-case complexity.

5 Experimental Results

Our check can be performed fully automatically by a new tool called Refiner,
which integrates with the model checking toolsets CADP [10] and mCRL2 [12];
e.g., µ-calculus formulas can be verified using CADP, and in fact the mCRL2

tool ltscompare is used by Refiner to perform DSBB comparisons. Refiner

has been implemented in Python, and can be run very efficiently using the Pypy
interpreter1. Both Refiner and the CADP tool Exp.Open [19] can generate
the system LTSs of networks; the latter is more efficient in doing so, but Refiner

also stores how combinations of process states relate to the system states, which
is required when computing divergency information in step 4 of our check.

We validated our approach using nine case studies on a machine with a quad-
core intel xeon E5520 2.27 GHz processor, 1 TB RAM, running Fedora 12.

1
http://www.pypy.org

Table 1. LTS generation results

LTS size time
(# states) (sec.)

M0 3,484 1.93
ACS

M1 21,936 9.95

M0 198,692 13.95
1394-fin

M1 6,679,222 305.02

M0 78,919 15.29
wafer

M1 474,457 96.97

M0 1,024 86.77

M1 60,466,176 3486.76broadcast
M2 60,466,176 4259.79

M0 759,375 29.97

M1 380,204,032 26,509.29ABP
M2 656,356,768 56,365.93

M0 15,688,570 587.55

M1 190,208,728 7,343.60HAVi-LE
M2 3,048,589,069 335,130.67

M0 6,539,813 4,003.58

M1 19,434,968 12,117.29Sieve
M2 135,159,971 84,893.19

M0 91,394 26.73
ODP

M1 7,699,456 117.13

M0 64,498,297 771.26
DES

M1 64,498,317 814.20

Table 2. Preservation checking results

hiding div. ϕ-pres.
(sec.) (sec.) # (sec.) ϕ

ACS M0 → M1 0.26 0.37 56 10.26 3

1394-fin M0 → M1 0.79 3.21 36 8.30 3

wafer M0 → M1 0.85 1.57 17 3.21 3

M0 → M1 0.48 1.07 4 0.90 7
broadcast

M0 → M2 - - 70 21.10 3

M0 → M1 5.46 15.74 22 5.63 7
ABP

M0 → M2 - - 315 19.95 3

M0 → M1 325.52 690.28 127 39.74 3
HAVi-LE

M1 → M2 - - 31 6.02 3

M0 → M1 85.77 215.00 51 45.86 3
Sieve

M1 → M2 - - 51 25.25 3

ODP M0 → M1 1.71 3.54 31 8.30 3

DES M0 → M1 792.69 1468.86 3 255.14 3

For each case study, we performed a number of refinements, and both verified
the resulting system LTSs and checked property preservation of the refinements.
We chose not to compare with other incremental approaches (see Section 6),
because the latter support only transformations of ‘flat’ system LTSs, while we
focus on refinements of individual process LTSs in a network. In particular, other
approaches do not consider the interaction of processes in a system.

Table 1 displays the size in number of states and the verification time in sec-
onds of the relevant system LTSs using Exp.Open, where M0 is the initial model.
The first three cases stem from the set of examples distributed with the mCRL2

toolset, the last four are slightly altered versions of CADP models, and ABP
and broadcast are two cases modelled by us. For each, we applied one of three
different types of refinements to the process LTSs in their network: 1) adding
non-synchronising transitions, representing additional internal computations or
logging of messages (the first three and the last three cases), 2) adding support
for lossy channels by introducing instances of the Alternating Bit Protocol (the
ABP case), and 3) breaking down broadcast synchronisations into sequences of
two-party synchronisations (the broadcast and the HAVi leader election case).
All three types introduce new behaviour irrelevant for the property to be checked.

Table 2 displays the numbers related to preservation checking: per transfor-
mation, the time needed to hide irrelevant actions, the time needed to compute
divergencies, and information related to the actual checking is shown. For the
checking, the number of DSBB comparison checks, the total runtime, and the
outcome of the check is displayed. The time needed for transformation is not
displayed, but it takes at most as long as preservation checking, since the lat-
ter also involves rule matching. Note that hiding and divergency computation is
only required before applying the first transformation on the initial model; for the
same property, subsequent transformations can reuse the hidden network, and
divergency information is updated when transforming. For the refinements of
type 1, the standard preservation check sufficed, but for the other refinements,

divergency information was required. The results clearly show the benefits of
our approach: when the check concludes that a rule system preserves a property,
exploration of the resulting system LTS can be avoided; this is fruitful if the
transformation does not alter the LTS that much, as is the case for the DES pro-
tocol,2 but the check really pays off when transformation leads to much larger
LTSs. For example, in the HAVi leader election case, we have one subnetwork
of three managers and one of three messaging systems, both of which involve
three-party synchronisation. One practical refinement is to break these down into
several two-party synchronisations, and in two transformation steps, this leads
to models M1 and M2. Completely analysing the system LTS of M2 takes 93
hours, but the check can be done in about 6 seconds if hiding and divergency
computation has already been done, and 17 minutes if this is not the case. In
this case, we hid all behaviour irrelevant for a particular liveness property.

6 Related Work

Our work is related to incremental model checking. Early papers on this sub-
ject propose techniques to reuse model checking results of safety properties for a
given LTS to determine whether it still satisfies the same property after some al-
terations [25,26]. Large speedups are reported compared to complete rechecking,
but the memory requirements are at least as high, since all states plus addi-
tional bookkeeping per state must reside in memory. Our technique does not
require this. Furthermore, we do not deal with large, flat LTSs directly, but with
networks and transformation rules that both consist of relatively small LTSs.
Finally, we do not recheck a property after transformation, but check bisimula-
tion instead.

In the context of Dynamic graph algorithms [9], reachability is an unbounded
problem [23,25], i.e. it cannot be determined solely based on the changes. Thanks
to the gluing conditions and our criteria, this is not an issue in our context.

Saha [24] presents an incremental algorithm for updating bisimulation rela-
tions based on changes of a graph. The goal of Saha is to efficiently maintain a
bisimulation, whereas the goal of our work is to assess whether a bisimulation is
guaranteed to remain without actually constructing or maintaining it.

Work on finding refinement mappings, e.g. [1], is related, but the question
whether there exists a mapping between two given models, establishing that
one is an implementation of another, is different from having a model and a
formalisation of how to transform it, and asking whether the transformation will
preserve a property without looking at the application result. Work related to B,
e.g. [20], is on strictly refining existing functionalities. We also support adding
new functionality, as long as it is not relevant for the desired property.

Monotonically adding functionality, as opposed to refining, is addressed in
e.g. [3]. The focus is on updating property formulae; it could be interesting to
see if this is applicable in our setting to update properties.

2 Note the long runtime of the divergency computation for the DES protocol, relative
to generating its LTS with Exp.Open. Further improvement of the implementation
of Refiner is expected to resolve this.

Combemale et al. [5], Hülsbusch et al. [15], and Karsai and Narayanan [16,22]
check semantics preservation of model transformations using either strong or
weak bisimilarity. They consider transformation to other modelling languages,
whereas we focus on model refinement.

7 Conclusions and Future Work

We presented a technique aimed at verifying the correctness of complex mod-
els that are the result of iterative refinement through model transformation. It
checks whether safety, liveness, and fairness properties are preserved by rule sys-
tems if they are well-formed w.r.t. the semantics of the input model. If a rule
system preserves a property that holds for a given input model, construction and
exploration of the new LTS can be avoided. Experiments show that preservation
checking is several orders of magnitude faster than rechecking the property.

For future work, first, the concept of networks of LTSs could be extended to
support additional features such as asynchronous communication. Furthermore,
the relation between the formal notion of rule system and practical languages
for the implementation of model transformations needs further study.

References

1. Abadi, M., Lamport, L.: The Existence of Refinement Mappings. Theoretical Com-
puter Science 82, 253–284 (1991)

2. Beydeda, S., Book, M., Gruhn, V. (eds.): Model-Driven Software Development.
Springer, Heidelberg (2005)

3. Braunstein, C., Encrenaz, E.: CTL-Property Transformations Along an Incremen-
tal Design Process. In: Proceedings of the Fourth International Workshop on Auto-
mated Verification of Critical Systems. Electronic Notes in Theoretical Computer
Science, vol. 128, pp. 263–278. Elsevier (2004)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
5. Combemale, B., Crégut, X., Garoche, P.-L., Thirioux, X.: Essay On Semantics

Definition in MDE - An Instrumented Approach for Model Verification. Journal of
Software 4(9), 943–958 (2009)

6. Dodds, M., Plump, D.: Graph Transformation in Constant Time. In: Corradini,
A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS,
vol. 4178, pp. 367–382. Springer, Heidelberg (2006)

7. Ehrig, H., Pfender, M., Schneider, H.: Graph Grammars: an Algebraic Approach.
In: IEEE Conference Record of 14th Annual Symposium on Switching and Au-
tomata Theory, pp. 167–180. IEEE (1973)

8. Engelen, L.J.P., Wijs, A.J.: Checking Property Preservation of Refining Transfor-
mations for Model-Driven Development. CS-Report 12-08, Eindhoven University
of Technology (2012)

9. Eppstein, D., Galil, Z., Italiano, G.: Dynamic Graph Algorithms. In: CRC Hand-
book of Algorithms and Theory of Computation, ch. 22. CRC Press (1997)

10. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for
the Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg
(2011)

11. van Glabbeek, R.J., Luttik, B., Trčka, N.: Branching Bisimilarity with Explicit
Divergence. Fundamenta Informaticae 93(4), 371–392 (2009)

12. Groote, J.F., Keiren, J., Mathijssen, A., Ploeger, B., Stappers, F., Tankink, C.,
Usenko, Y., van Weerdenburg, M., Wesselink, W., Willemse, T., van der Wulp,
J.: The mCRL2 Toolset. In: Proceedings of the 1st International Workshop on
Academic Software Development Tools and Techniques (2008)

13. Groote, J.F., Vaandrager, F.: An Efficient Algorithm for Branching Bisimulation
and Stuttering Equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443,
pp. 626–638. Springer, Heidelberg (1990)

14. Heckel, R.: Graph Transformation in a Nutshell. In: Proceedings of the School of
SegraVis Research Training Network on Foundations of Visual Modelling Tech-
niques. Electronic Notes in Theoretical Computer Science, vol. 148, pp. 187–198.
Elsevier (2006)

15. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim,
H.: Showing Full Semantics Preservation in Model Transformation - A Comparison
of Techniques. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183–
198. Springer, Heidelberg (2010)

16. Karsai, G., Narayanan, A.: On the Correctness of Model Transformations in the
Development of Embedded Systems. In: Kordon, F., Sokolsky, O. (eds.) Monterey
Workshop 2006. LNCS, vol. 4888, pp. 1–18. Springer, Heidelberg (2007)

17. Kozen, D.: Results on the Propositional µ-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

18. Lambers, L., Ehrig, H., Orejas, F.: Efficient Detection of Conflicts in Graph-based
Model Transformation. In: Proceedings of the International Workshop on Graph
and Model Transformation. Electronic Notes in Theoretical Computer Science,
vol. 152, pp. 97–109. Elsevier (2006)

19. Lang, F.: Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-The-Fly Verification Methods. In: Romijn, J., Smith, G., van de Pol, J.
(eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

20. Lano, K.: The B Language and Method, A Guide to Practical Formal Development.
Springer, Heidelberg (1996)

21. Mateescu, R., Wijs, A.: Property-Dependent Reductions for the Modal Mu-
Calculus. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823, pp.
2–19. Springer, Heidelberg (2011)

22. Narayanan, A., Karsai, G.: Towards Verifying Model Transformations. In: Proceed-
ings of the International Workshop on Graph Transformation and Visual Modeling
Techniques. Electronic Notes in Theoretical Computer Science, vol. 211, pp. 191–
200 (2008)

23. Ramalingam, G., Reps, T.: On The Computational Complexity of Dynamic Graph
Problems. Theoretical Computer Science 158, 233–277 (1996)

24. Saha, D.: An Incremental Bisimulation Algorithm. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 204–215. Springer, Heidelberg (2007)

25. Sokolsky, O.V., Smolka, S.A.: Incremental Model Checking in the Modal Mu-
Calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 351–363. Springer,
Heidelberg (1994)

26. Swamy, G.M.: Incremental Methods for Formal Verification and Logic Synthesis.
PhD thesis, University of California (1996)

27. Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing 1(2), 146–160 (1972)

