
REFINER: Towards Formal Verification

of Model Transformations

Anton Wijs and Luc Engelen

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
{A.J.Wijs,L.J.P.Engelen}@tue.nl

Abstract. We present the Refiner tool, which offers techniques to de-
fine behavioural transformations applicable on formal models of concur-
rent systems, reason about semantics preservation and the preservation of
safety and liveness properties of such transformations, and apply them
on models. Behavioural transformations allow to change the potential
behaviour of systems. This is useful for model-driven development ap-
proaches, where systems are designed and created by first developing
an abstract model, and iteratively refining this model until it is con-
crete enough to automatically generate source code from it. Properties
that hold on the initial model and should remain valid throughout the
development in later models can be maintained, by which the effort of
verifying those properties over and over again is avoided. The tool in-
tegrates with the existing model checking toolsets mCRL2 and Cadp,
resulting in a complete model checking approach for model-driven system
development.

1 Introduction

Refiner1 is a tool to verify so-called behavioural transformations of formal mod-
els of concurrent systems. Such transformations allow to manipulate the potential
behaviour of the processes in a model. The ability to verify them opens up the
possibility to step-wise develop complex concurrent systems, while preserving
important system properties. Step-wise system development allows a developer
to start the design phase with an abstract model, and making it more and more
concrete through small, manageable transformations, until a model has been
obtained with sufficient information to generate source code from it.

With Refiner, a developer can construct behavioural transformations, which
the tool can efficiently analyse to determine if it preserves the semantics of models
it is applied on, and if it preserves given safety or liveness properties. To the best of
our knowledge, this is the first tool that can automatically check property preser-
vation of user-defined model transformations, independent of source models. The
topic is related to refinement checking. However, tools such as Rodin [1], FDR2,2

1 Available at http://www.win.tue.nl/~awijs/refiner
2
http://www.fsel.com/documentation/fdr2/html



Csp-Casl-Prover [2] can establish refinements between given models, but not
verify transformation rules. Atelier B3 uses a notion comparable to transforma-
tion rules, but verifies resulting models instead of the rules themselves.

Semantics and property preservation checking is done by a single analysis tech-
nique. The first case is useful for refactoring and restructuring of models, while
the second one allows for behaviour refinements. The technique is independent
of the input and output models; it does not involve the state space of either of
them, hence it usually works many orders of magnitude faster than repeated ver-
ification of the models through standard model checking, and it allows to build a
repository of verified transformations. The tool integrates with the action-based,
explicit-state model checking toolsets Cadp [3] and mCRL2 [4]. These tools can
be used to model concurrent systems in process algebras and automata, and to
verify that the models satisfy functional properties. The semantics of the pro-
cesses in such models can be represented by Labelled Transition Systems (LTSs),
and the process LTSs can be combined using synchronisation composition. In
Refiner, transformations are formalised as LTS transformations, defining which
patterns in the LTSs need to be transformed into particular new patterns.

The theoretical basis has been published as [5–7]. Since then, a prototype
implementation has been further developed to a complete tool, with a graphical
user interface and multi-core computation capability.

2 Models and Model Transformations

Refiner uses a compositional action-based formalisation of system behaviour,
i.e. LTSs are used to define the potential behaviour of individual processes and of
systems as a whole. Its techniques are therefore applicable on any model with an
LTS semantics, e.g. expressed in a process algebra. An LTS is a quadruple G =
〈SG ,AG , TG , sG〉, with sG the initial state, SG the (finite) set of states reachable
from sG , AG a set of actions used to identify events, τ �∈ AG being a special action
representing internal events, and TG : SG ×AG ∪ {τ} × SG a relation expressing
which actions can be performed in which states, and what the resulting state is.
With s

a
−→G s′, we express that 〈s, a, s′〉 ∈ TG .

Process LTSs can be combined into a system. This is formalised as a network
of LTSs [8]. In the following, given an integer n > 0, 1..n is the set of integers
ranging from 1 to n. A vector v of size n contains n elements indexed by 1..n.
For i ∈ 1..n, v[i] denotes element i in v.

Definition 1 (Network of LTSs). A network of LTSs M of size n is a
pair 〈Π,V〉, where

– Π is a vector of n (process) LTSs. For each i ∈ 1..n, we write Π [i] =
〈Si,Ai, Ti, Ii〉, and s1

b
−→i s2 is shorthand for s1

b
−→Π[i] s2;

– V is a finite set of synchronisation laws. A synchronisation law is a tuple
〈t, a〉, where a is an action label, and t is a vector of size n called a synchro-
nisation vector, in which for all i ∈ 1..n, t[i] ∈ Ai ∪{•}, where • is a special
symbol denoting that Π [i] performs no action.

3
http://www.atelierb.eu



M0

req

get(p)

show(p)

M1

(〈isreq, irreq〉, req),
(〈irget, isget〉, iget), . . .

isreq

irget(p)

show(p)

irreq

ereq get(p)

isget(p)

M2

isreq

irget(p)

show(p)

irreq

check

isget(p)

check

ereq

get(p)

store

isget(p)

Fig. 1. Three versions of a network modelling an agent fetching pages

0

2

1

req

get(p)

r0

0

2

1

isreq

irget(p)

p0

0

1 2

3

irreq

ereq get(p)

isget(p)

isreq irreq �→ req, isget irget �→ iget

0

1 2

3

irreq

ereq get(p)

isget(p)

r1
0

1

2 3

4

5

6
irreq

check

isget(p)

check

ereq

get(p)

store

isget(p)

Fig. 2. Rules r0, p0 of rule system R0, and r1 of rule system R1

The synchronous composition LTS(M) defined by a network M represents
the state space of M, and is an LTS with s = 〈s1, . . . , sn〉, A = {a | 〈t, a〉 ∈ V},
S = S1 × . . .× Sn, and T is the smallest relation satisfying:

〈t, a〉 ∈ V ∧ (∀i ∈ 1..n)

(

(t[i] = • ∧ s′[i] = s[i])

∨ (t[i] �= • ∧ s[i]
t[i]
−−→i s

′[i])

)

=⇒ s
a
−→ s′.

We formalise behavioural model-to-model transformations from networks of
LTSs to new networks of LTSs as rule systems, containing a finite number of LTS
transformation rules. Such a rule consists of a pair of LTSs L → R. The used
transformation mechanism is the double-pushout method from graph transforma-
tion [9]: L defines a pattern, to be found and replaced in a given LTS G (for this,
a match, i.e. an injective homomorphism, m : L → G must be established), and
R defines the pattern that should replace all occurrences of L in G. Apart from
some conditions that need to hold in order to have a valid match of L on an LTS
G,4 a subset of so-called glue-states S ⊆ SL ∩SR is defined, which indicates how
L relates to R. When applying transformation on a match m : L → G, resulting
in a new LTS T (G), first, all states matched on SL \S and all related transitions
are removed, and second, each state in SR \ S (and related transitions) leads to
a new state in ST (G) (and new related transitions in TT (G)).

Rules are applied on process LTSs of a network to transform it, but rule sys-
tems also include left and right synchronisation laws, expressing how behaviour
in the left and right rule patterns, respectively, should synchronise with each
other and the outside world. In order for a rule system R to be applicable on a
network M, the left laws of R must be compatible with those of M, and if so,
then the right laws of R are introduced when transforming.

4 The interested reader is referred to [6,9].



Figs. 1 and 2 show a small, but illustrative example of the approach. In Fig. 1,
network M0 is an abstract specification of an agent, for instance a web browser,
which can request a page (req), receive a page p (get(p)), and display it (show(p)).
Initial states of LTSs are marked with an incoming arrowhead. Actually, M0 is
still very abstract, and we wish to specify that the communication with the out-
side world is handled by an additional component. This is added in M1, and we
have two new laws expressing the need for synchronisation between the two com-
ponents over actions internal to the system (these actions are prefixed by ‘i ’). We
can obtain M1 from M0 by transforming the latter using a rule system R0 defined
in Fig. 2. There, black states are glue-states, and square black states are glue-states
with the added condition that states matched on them do not have outgoing tran-
sitions that are not covered by the left pattern. Rule r0 rewrites the component
we already had in M0, and p0 is a special kind of rule called a process adding rule,
which adds a new component. It can be interpreted as a rule with an empty left
pattern. Finally, it introduces two new laws, expressed without using vectors, since
the rules have no fixed order. When transforming, these are matched on the input
network to derive concrete new laws for the new network.

Likewise, M1 can be transformed to M2 with the motivation that the com-
munication component should have a local buffer, and check for each request
whether that page is already in the buffer before attempting communication
with the outside world. Rule r1 of Fig. 2 can be applied on M1 to obtain M2.

In this example, the networks are not much larger than the rule systems, but
in practice, they usually are, and rules are often applicable in multiple places.

Verification of Transformations. Refiner can check whether a rule system R is
confluent, i.e. leads to a unique target model, and verify whether it is semantics
preserving and/or correctness preserving, i.e. that it preserves a desired system
property. In both cases, it identifies, based on the left and right laws of R, which
transformation rules are dependent on each other. Two rules r = Lr → Rr,
r′ = Lr′ → Rr′ are dependent iff in Lr (or Rr), there is at least one transition
that needs to synchronise with a transition in Lr′ (or Rr′). This partitions the set
of rules in R into sets of dependent rules. For each set D of dependent rules,5 the
left patterns and the right patterns of all the elements are combined into two new
networks DL and DR. For semantics preservation, it is checked if LTS(DL) and
LTS(DR) are (strongly) bisimilar, i.e. whether they can be considered equivalent.

A more general approach is required to check the preservation of particular
properties. In order to allow the semantics to be altered, DL and DR should be
compared w.r.t. a given property, instead of the entire semantics. For this, we
move the LTS(DL) and LTS(DR) to an appropriate level of abstraction before
the analysis, using the maximal hiding technique [10]. For any property ϕ written
in the µ-calculus fragment Ldsbr

µ [10], maximal hiding hides all actions in an LTS,
i.e. renames them to τ , that are not crucial for the truth-value of ϕ. Furthermore,
it is shown in [10] that if ϕ is satisfied by an LTS G1, and G1 is divergence-sensitive

5 In addition to each D, also all their subsets are involved in the analysis, the latter
representing situations with unsuccessful synchronisation. For the details, see [6].



Fig. 3. The graphical user interface of Refiner

branching bisimilar [11] (DSBB)6 to an LTS G2, then also G2 satisfies ϕ. This
allows comparing LTSs w.r.t. ϕ. We apply maximal hiding w.r.t. a given ϕ to
the LTS(DL) and LTS(DR), before checking that they are DSBB. If the checks
pass for all DL and DR, then R preserves ϕ. Semantics preservation checking is
actually the special case in which maximal hiding has no effect.

Consider again the example rule systems of Fig. 2, and the Ldsbr
µ property

ϕ = [true∗][τ∗.req]([(¬get(p))∗]¬deadlock ∧ [¬get(p)] ⊣), where ‘deadlock’ is a
formula expressing the presence of a deadlock. This property expresses that after
every req, eventually a get(p) will occur (for the semantics of Ldsbr

µ , see [10]).
Based on this, maximal hiding will hide all transition labels, except for req and
get(p). Combining the left- and right-patterns of r0 and p0, constructing the
synchronous compositions, and applying this hiding, leads to DSBB LTSs. This
is also the case for r1 in isolation. Hence, both rule systems preserve ϕ.

3 Implementation

Refiner has been implemented in Python 3, and consists of about 5,000 lines
of code. It is platform-independent, and has a graphical user interface (Fig. 3),
implemented using the TkInter module, but it can also be run from the com-
mand line. It provides the functionality to create and edit rule systems, load
and save them, apply them on models, and verify them in various ways. The
tool does not focus on creating and verifying models; instead, this can be done
using the model checker toolsets Cadp and mCRL2. With these tools, Refiner

shares file formats for LTSs, networks of LTSs, and Ldsbr
µ properties.

For verification, Refiner allows to check semantics preservation of rule sys-
tems, model-independent preservation of properties, and property preservation

6 DSBB is, like weak and branching bisimilarity [11], sensitive to τ -transitions, but
also to divergences, i.e. the ability to perform infinite sequences of τ -transitions [11].
As such, it preserves safety and liveness properties.



w.r.t. particular models. Besides this, there are the fine-tuning options ‘fairness’,
by which divergences in a rule system will be ignored (useful for safety prop-
erties), and ‘divergency’, by which the divergences already present in an input
network will be taken into account, allowing for a more relaxed check.

Finally, Refiner has multi-core computation capability. Verifying a rule sys-
tem may involve many DSBB checks. Since these can be done independently,
parallelisation is straight-forward. Experiments have shown that this scales lin-
early [7]. As demonstrated in [6], Refiner can, through model transformation
verification, determine in mere seconds that transformed networks with state
spaces of multiple billions of states satisfy a particular property. Model check-
ing those networks would take many orders of magnitude more time. For future
work, we plan to support timing [12], and directed search techniques [13].

References

1. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin: An
OpenToolset forModelling andReasoning inEvent-B. STTT12(6), 447–466 (2010)

2. Kahsai, T., Roggenbach, M.: Property Preserving Refinement for Csp-Casl. In:
Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 206–220.
Springer, Heidelberg (2009)

3. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the Con-
struction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

4. Cranen, S., Groote, J., Keiren, J., Stappers, F., de Vink, E., Wesselink, W.,
Willemse, T.: An Overview of the mCRL2 Toolset and Its Recent Advances. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013)

5. Engelen, L., Wijs, A.: Incremental Formal Verification for Model Refining. In:
MoDeVVa 2012, pp. 29–34. ACM (2012)

6. Wijs, A., Engelen, L.: Efficient Property Preservation Checking of Model Re-
finements. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 565–579. Springer, Heidelberg (2013)

7. Wijs, A.: Define, Verify, Refine: Correct Composition and Transformation of Con-
current System Semantics. In: Xue, J., Fiadeiro, J.L., Liu, Z. (eds.) FACS 2013.
LNCS, Springer (2013) (to appear)

8. Lang, F.: Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-the-Fly Verification Methods. In: Romijn, J.M.T., Smith, G.P., van de Pol, J.
(eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

9. Heckel, R.: Graph Transformation in a Nutshell. In: FoVMT 2004. ENTCS, vol. 148,
pp. 187–198. Elsevier (2006)

10. Mateescu, R., Wijs, A.: Property-Dependent Reductions for the Modal Mu-
Calculus. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823,
pp. 2–19. Springer, Heidelberg (2011)

11. van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM 43(3), 555–600 (1996)

12. Fokkink, W., Pang, J., Wijs, A.: Is Timed Branching Bisimilarity an Equiva-
lence Indeed? In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829,
pp. 258–272. Springer, Heidelberg (2005)

13. Wijs, A.: What To Do Next?: Analysing and Optimising System Behaviour in Time.
PhD thesis, VU University Amsterdam (2007)


