Compact Timed Automata for PLC Programs

H.X. Willems*

University of Nijmegen
Computing Science Institute
P.O.Box 9010
6500 GL Nijmegen, The Netherlands

November 24, 1999

Abstract

In this work a set of tools is developed to convert programs for Programmable Logic
Controllers (PLCs) into timed automata in order to facilitate the verification of such pro-
grams. It is shown that our timed automata models of PLC programs can be dissected into
a timed and an untimed part. Typically, the untimed part is much larger than the timed
part and can be reduced in size by using the CADP toolset. The reduction in state space is
substantial, even for small PLC programs.

Keywords: Programmable Logic Controllers, PLC-Automata, Timed Automata
AMS Subject Classification (1991): 68N20, 68Q05, 68Q55, 68Q60

CR Subject Classification (1994): C.3, D.2.4, D.2.5, D.3.2, D.3.4, F.3.1

*Permanent address: Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands,
Rik.Willems@philips.com

1 Introduction

Programmable Logic Controllers (PLCs) are increasingly used for safety critical applications in
a variety of industrial settings. The purpose of the work reported here is the verification of
programs for PLC applications. Because many of the processes that are controlled by PLCs
are time critical, time is considered to be an integral part of control as exerted by PLCs. The
formalism of timed automata seems to be appropriate for modelling PLC systems because it
allows to include real-time aspects. Furthermore, a number of model checking tools is available
to facilitate verifying of systems of timed automata [1, 2, 3].

copy input copy memory
to memory to output

SEeNsors memory actuators

input interface >
output interface >

N

calculate output
from input

calculation cycle

progression of time

Figure 1: The operational structure of a PLC.

The PLCs considered here have an operational structure as depicted in figure 1. At the start
of each cycle, the PLC reads all sensors from the environment and places their actual state
in a memory location accessible to the PLC program. Subsequently the instructions that are
programmed into the PLC are executed and the results of that computation are written to
(other) memory locations. In a third step, these results are mapped to the actuators controlled
by the PLC. After this output is completed, a new cycle can start. In this work, we consider

only simple PLCs, i.e. PLCs that do not support multitasking and interrupts, because these
features would make the problems encountered even more complex.

One of the problems encountered when verifying PLC applications is the state space explosion. If
we have for instance a PLC that controls 30 valves (which is not uncommon) and each valve can
be open or closed, the state space resulting from the valve positions alone comprises 230 states.
However, many of these states may be inaccessible because certain combinations of valve posi-
tions can not occur. To reduce the state space a number of algorithms have been described [4, 5,
6, 7]. State space reduction is supported by the Caesar/Aldebaran Development Package (CADP
toolset) which can be obtained from http://www.inrialpes.fr/vasy/cadp.html. However,
these algorithms (and the toolset) do not take into account aspects of time and therefore state
space reduction as offered by CADP can not be used directly for the state space reduction of
PLC systems. In this work, we split the PL.C systems into a timed and an untimed part and use
state reduction on the latter. In this respect it is fortunate that of the two parts the untimed
part turns out to be the largest by far.

In the next section a subset of a PLC language is presented that can be translated to timed
automata and the construction of a compiler for that translation is discussed. Section 3 focuses
on the use of CADP for the reduction of state spaces of PLC systems and the compilers that
have been developed for the generation of reduced timed automata. Section 4 presents and
discusses some results obtained on PLC systems with the compilers as developed in the preceding
sections, section 5 gives the conclusions drawn from this research and section 6 offers some
recommendations for further research.

2 Compiler construction

This section introduces the Instruction List (IL) language as defined in IEC standard 1131-3 [8]
along with some timer constructs. In section 2.2 some restrictions on the base language are made
to simplify the construction of the compilers. Also introduced is the model checker Uppaal which
in this work is used to perform the model checking on the timed automata. Compilers to convert
from IL to an intermediate format and from that format to Uppaal Timed Automaton format
are described along with the design decisions taken. The Uppaal Timed Automaton format
will be indicated with TA in the remainder of the text (in Uppaal it is referred to as the ‘.ta’
format). The descriptions (timed automatons) generated with the compilers are indicated as
‘PLC automatons’ in the remainder of the text.

2.1 Base language: Instruction List

IL is a low level language which has a structure similar to a simple machine assembler. The Inter-
national Electro-technical Commission (IEC) has embraced IL [8] because it is ‘simple, easy to
learn [and] ideal for solving small straight-forward problems where there are few decision points
and where there is a limited number of changes in program execution flow’ [9]. Furthermore
it is sometimes regarded as ‘the base language of an TEC compliant PLC, in which all other
languages [defined in the standard] can be converted’ [9]. A small program written in IL is given
in figure 2.

LD Cycle (* Load Cycle and *)
ADD 1 (* increase by 1 x)
ST Cycle (* Store Cycle *)
LD Speed (* Load Speed and *)
GT 1000 (x test if > 1000 *)
JVMPNC VOLTS 0K (* Jump if not *)
LD Volts (* Load Volts and *)
SUB 10 (* reduce by 10 *)
ST Volts (* Store Volts *)
LD 1 (* Load 1 *)
R Ready (* Reset Ready *)
JMP END (* Go to End *)
VOLTS_OK: LD 1 (* Load 1 *)
S Ready (x Set Ready *)
END: LD 0 (* Don’t care *)

Figure 2: A simple program written in IL.

An IL program consists of a series of instructions where each instruction is on a new line. An
instruction consists of (at least) an operator and an operand; the operator can be preceded by
a label, and its meaning can be changed by appending so—called modifiers to it. An overview of
the operators that can be used in IL and the modifiers and operands allowed for each operator
are given in table 2.1. Finally, each operand can optionally be followed by a comment.

Table 1: An overview of IL operators

operator Modifiers Operand Semantics

LD N any Load operator into actual register

ST N any Store actual register into operand

S BOOL® Set operand to true if actual register is 1°
R BOOL Reset operand to false if actual register is 1°
AND N, (BOOL Boolean AND

& N, (BOOL Boolean AND (equivalent to AND operator)
OR N, (BOOL Boolean OR

XOR N, (BOOL Boolean exclusive OR

ADD (any Addition

SUB (any Subtraction

MUL (any Multiplication

DIV (any Division

GT (any Comparison greater than

GE (any Comparison greater than or equal

EQ (any Comparison equal

NE (any Comparison not equal

LE (any Comparison less than or equal

LT (any Comparison less than

JMP N,C LABEL Jump to label

CAL N,C NAME€®¢ Call function block

RET N,C Return from function block

) Execute the last suspended operator

¢ Boolean type
® Ref [9] forgets to mention the condition.

¢ The name of a function block

Some syntactical details: a label starts with a letter, consists of letters and digits and ends
with a colon (VOLTS_OK: and END: in figure 2 are labels). The modifiers recognized are ‘N’ (for
~bitwise- negation), ‘C’ (for conditional) and ‘(’, (indicating a ‘suspended operation’, i.e. the
part between the parentheses has to be evaluated first). The operands that are present in an IL
instruction can be boolean values, integers or variable names. In IL, labels and variable names
are not case sensitive. The comments that can be present in an instruction start with ‘(*’ and
end with **)” and do not contain ‘newlines’.

To obtain a program for a PLC the IL code is enveloped in a ‘program type definition’ which
starts with the keyword PROGRAM and is terminated with the keyword END_PROGRAM.
The definition contains a list of input, output and internal variable declarations in addition to
the (IL) program text. A sample program type definition is given in figure 3.

The semantics of IL programs are described by Mader and Wupper for boolean variables [10].
Extension of this work to encompass integers is straightforward. However, there is one problem:

PROGRAM SpeedCheck

VAR_INPUT
Speed: INT;
END_VAR
VAR
Cycle: INT;
END_VAR
VAR_OUTPUT
Ready: BOOL;
Volts: INT;
END_VAR

Here for instance the text of figure 2

END_PROGRAM

Figure 3: A sample program type definition

there is a special variable called the actual register (AE) which represents the value in the
accumulator of the central processing unit of the PLC, and it should hold both boolean and
integer values. As we don’t want to use overloaded variables, this register should have a single
type associated with it. It was decided to use an integer for the type of the register and to
represent true with ‘1’ and false with ‘0.

2.2 Restrictions on the base language

With respect to timers: this work considers only on-delay timers (“TON’ timers) which are
standard timers described in IEC 1131-3 that have two inputs (‘IN’ and ‘PT’) and two outputs
(‘Q’ and ‘ET’). The layout of such a timer is given in figure 4 (upper part). The IN input
determines whether the clock is running; if it is made frue, the timer will wait for a time given
by PT before it will make @ true. During this waiting time, the ET parameter gives the time
since the timer started; if the waiting time is over, ET has the value of PT. In figure 4 (lower
part) the relations between the terminals of a TON timer are given. This kind of timer can be
thought of as representing a kitchen alarm: if it is set it will ring after a specified time.

This type of timer is realised by a software—construction (not by hardware) and as a result of this
delays are introduced compared to ideal timers. This inaccuracy is not addressed explicitly in
the remainder of the text. Furthermore, the output values of the timer do not change unless the
timer is called: the timer does not influence the variables directly but a CAL timer statement
has to be used to update the Q and ET values.

As a result of the parsing used here, the inputs of the timer have to be loaded before the call and
an input list (which can be used in standard IL) can not be used. Because the target formats
do not support variable names containing points, these points are translated to underscores
(TIMER.PT is translated to TIMER_PT). If a TON timer is found in the input, the program

Timer TON

]

IN

ET y PT

L
Q N L
| L

T

PT PT P .
- -~ time

Figure 4: The inputs and outputs of a TON timer (top) and the relation
between these signals (bottom). See text for further explanation.

adds four variables to its variable list: <timer name>_IN, <timer name> PT, <timer name>_ET
and <timer name>_ Q. The <timer name> PT variable should have a single value associated with
it for each program. The reason for this will become clear in section 2.4.2.

Other types of timers could be treated similarly. Mader and Wupper show how such a timer
can be converted into a timed automaton. For details the reader is referred to the original
article [10]. In this conversion the parameter ET is not used, so we also do not use it.

The ‘N’ modifier for operators (see table 2.1) should be a bitwise negation according to the
standard. In this work this is interpreted differently for booleans and integers: for booleans it is
interpreted as as a logical negation (e.g. LDN B1 —where B1 is a boolean variable with the value
true— would result in the value 0 in the actual register) while for integers it is interpreted as
changing the sign of the integer (e.g. LDN 1 results in AE=-1). Note that the use of true and
false as operand is not permitted in the translator developed here: these boolean values remain
unscathed in the translation to intermediate format (see the next paragraph), but will cause
problems further on (because they will be interpreted as —undeclared— identifiers); instead, 1
and 0 should be used. However, this can lead to problems if the original program contains one of
the statements LDN true or LDN false, because LDN 1 will lead to AE =-1 instead of AE=0.
Therefore the use of the operator LDN should not be used with ¢rue or false (use LD with 0 or
1 instead).

The translation used here recognizes only three base types (BOOL, INT and TON) and three
use types (INPUT, OUTPUT and NORMAL) while the standard defines more types for both.

The reason for restricting the base types is that a lot can be done with integers and booleans
and that a lot of model checkers do not support more elaborate types like for instance reals
for efficiency reasons. The reason for restricting the use types is that as far as verification is
concerned a PLC does not need to have variables other than those three: the other types (e.g.
‘retain’ variables) can be easily incorporated if needed, but will not yield additional problems.

Furthermore, functions are not recognized, except when a TON timer is called (this implies
that the CAL operator is only implemented for timers and that the RET operator is not im-
plemented). This was done because for verification it does not matter whether the code is
sequential or contains function calls and all PLC programs with function calls can be rewritten
into programs without function calls. Generally, programs containing functions calls can not be
rewritten simply in sequential programs. However, because recursive functions are not permitted
in applications with a bounded cycle time [11] (such as for instance PLC programs'), functions
degenerate into simple macros and rewriting the programs becomes possible.

Finally, absolute adresses defined in the standard (for instance %IW40) are not recognized, and
identifiers should be used instead.

2.3 From instruction list to intermediate format

Initially, it was expected that we could use an Extended Affix Grammar (EAG) compiler to
convert IL to a timed automaton, but this approach resulted in a compiler that was too slow
and this approach was abandoned further on. We then decided to use a C program for the
translation and as we already had the EAG parser we used it to generate an intermediate
format that could be read easily by a C program.

The intermediate format has the name of the program on the first line (in ASCII), the number of
declarations on the next line followed bij the declarations. Each declaration line has the format
variable name : base_type : use_type where the base_type is BOOL, INT or TON and the
use_type is INPUT, OUTPUT or NORMAL. The next line contains the number of instructions of the
IL file, followed by the instructions in the format sequence number : level : 1label :
operator : modifiers : operand, each on a new line.

While the latter elements of this format are self-explanatory, the sequence number and the
level may need some introduction. The level is the number of leading parentheses for a certain
statement. The reason for introducing such a level is that we intend to model nested parentheses
not with a stack but with different variables for each level. We do this because we want to end
up with a finite automaton (the number of nested parentheses can be determined statically).
The construction depicted in figure 5a is translated in that depicted in figure 5b. It can be
observed that the sequence of the statements in 5b (‘postfix’ notation) is different from those
in 5a ‘prefix’ notation). The postfix notation of figure 5b is necessary to treat the bracket
construction appropriately. The structure in 5b will later (see sections 2.4 and 3) be modelled
with variables ae0 and ael for the main level and the nested level respectively.

See the end of the report for the availability of the literal text of the EAG grammar (and related
files). The EAG compiler itself can be obtained from ftp://ftp.cs.kun.nl/pub/eag.

! Actually, recursive functions are forbidden in the standard.

Lbll: LD Top : LBL1 : LD : <no_entry> : TOP

1:0
ADDN(5 2:1:<no_entry>:LD: <no_entry>:5
MUL MID 3:1:<no_entry>: MUL: <no_entry> : MID
) 4:0:<no_entry>: ADD : N : <SUSPENDED>
5:0

ST Bottom : <no_entry> : ST : <no_entry> : BOTTOM

a b

Figure 5: The IL text (a) and the corresponding intermediate text (b).

2.4 From intermediate format to TA format

The model checker Uppaal (http://www.docs.uu.se/docs/rtmv/uppaal/) was chosen because
it supports integers and most of the elements of the IL language (assignments, arithmetic and
comparisons). Furthermore, real-time constructs can be modelled, and as indicated above this
is important for PLC applications. The package does not support booleans (only integers)
and this coincides nicely with the choice of implementation of the actual register as discussed
above. An additional advantage is that the TA input format that is supported by this package is
fairly simple (note: the DIV operator is not implemented to maintain similarity with the i2lotos
compiler, see section 3.1).

2.4.1 Main translation characteristics
The main characteristics of the translation are

e Every statement in the IL program is translated into a (number of) transition(s) between
two states. These two states can be thought of as ‘before the execution of the statement’
and ‘after the execution of the statement’. It is evident that the ‘result state’ of one
statement is the ‘begin state’ of the subsequent statement.

e The actual number of transitions and the conditions for each transition are determined by
the operator and the operand of that statement. For instance the ‘LD’ operator with an
integer operand results in a single transition with the action the actual register acquires
the value of the operand (e.g. ae0:=TOP, where TOP is the name of a variable), while
the same operator with a boolean operand gives rise to two transitions, one in which the
actual register acquires the value 1 and another in which it acquires the value 0. In the
latter case, both transitions are needed, because at the time of translation it can not be
determined whether the boolean at the time of execution is true or false.

e An additional transition is introduced to model the input phase of the PLC. In this transi-
tion the variables that are in the input list of the PLC (the variables with usetype ‘INPUT’)
are copied from their values in the environment. The value of a variable in the environment
is modelled with an additional variable; the name of that additional environment variable
is <variable name>_env (see also next point). This transition is added to the beginning
of the description of the PLC automaton. The associated state is referred to as the input
state in the remainder of this text.

e The environment is modelled with an additional automaton, which manipulates the
<variable name> env variables. For each boolean variable there are two transitions in
this automaton representing set boolean to true and set boolean to false. For each integer
variable there is a transition which increases the value of the variable and one which
decreases its value. To obtain correspondence with the reduced automata (see section 3)
the values of the integer values are restricted to the interval [-9..9], which is achieved by
adding guards to the transitions?.

e An additional transition is introduced in the PLC automaton to model the output phase
of the PLC. Because the present model does not use the output values of the PLC, no
real actions are performed in this transition; if actions in the output phase are required
for instance at a later stage of the research it is easy to add them here. This transition
is added to the end of the description of the PLC automaton. The associated state is
referred to as the output state in the remainder of this text. Furthermore, the transition
can be used to control the timing behaviour of the PLC (see section 2.4.2).

e The last extra transition that is added to the PLC automaton is the initialisation of the
PLC. This transition models the event of starting the program for the first time, e.g. after
it has been downloaded from a PC; in that case, all variables are initialised to zero. So-
called ‘Retain variables’ defined in the standard are not supported, because they are not
important for the present verification effort. These variables could be added if consequences
of power failures are to be studied.

2.4.2 Timing aspects

For each TON timer present in the PLC code, a separate timer automaton is added to the system.
This timer automaton has a structure as depicted in figure 6 [10]. The timer is synchronized
with the rest of the system through the CALzy TIMER! synchronization statements, where the
symbols zy are replaced by ff, tf or tt. In these statements, the value of z indicates the value of
IN that is sent to the timer and y indicates the value of Q that is returned.

The time-out value for each timer (the PT value) has a fixed value for each timer automaton.
This restriction is imposed partly by good programming practice (semantics of changing a PT
value of a running timer are not defined) and partly because Uppaal does not allow variables
in state invariants (and the PT value is used in a state invariant for one of the timer states).
Note (1) that the use of PT in a state invariant is due to the particular translation that we
use here (from [10]): it is not a fundamental problem, (2) that the PT value is treated as a
variable in the program, and therefore values can be assigned to it during program execution.
It is difficult to extract PT values from the IL program text without imposing strict coding
rules on the assignment of values to PT variables, which doesn’t appeal to us at this moment.
Therefore the PT values have to be entered by hand in each produced TA file when the code
comprises at least one TON timer.

The description so far has not taken into account the timing aspects of the PLC itself. To
circumvent the problems of Zenoness (the possibility of performing infinitely many transitions

2 If another environmental behaviour is more appropriate, the entire environment automaton can be replaced
with a new automaton by using an ASCII editor.

10

CALff_TIMER! CALtf_TIMER!
CALtf_TIMER!

running

10:=0 t0<=TIMER.PT

CALff_TIMER! tO==TIMER.PT

timeout

CALtt_TIMER!

Figure 6: A timed automaton for a TON timer (cf. [10]).

without the progression of time) two different approaches have been incorporated in the compiler:
the ‘epsilon model’ and the ‘change event model’.

In the epsilon model, the minimum and the maximum cycle time of the PLC are explicitly given
(epsilon_1 and epsilon_2 respectively). This is more or less in accordance with reality, where
minimum and maximum cycle times of control programs can be determined. To this end, a
clock PLCsystime is added to the system and this clock is set to zero upon initialisation of the
PLC. Every state in the PLC automaton except the initialisation state now has an invariant
PLCsystime<=epsilon_2 to limit the maximum time spent in each state. The transition from the
output state to the input state is now guarded with PLCsystime>=epsilon_1 and performs the
assignment PLCsystime:=0. The compiler sets the values of these constants to 1 (epsilon_1)
and 2 (epsilon_2) respectively. If other values are required, the text in the TA file has to
be edited (as these files are in ASCII, this can be done quite simply). This model has the
disadvantage that an additional clock is added to the system, which enlarges the state space.

In the change event model it is assumed that the computational steps can be performed in
zero time. However, between two consecutive program executions the input of the PLC has to
change. The implicit assumption is then that the changes in the environment do not occur in
zero time and that therefore the problem of Zenoness is circumvented. The change event model
comes in two flavours. The first model has additional guards on the transition from output state
to input state, the second also incorporates an additional variable to explicitly record a change
in the environment.

The first model has a guard <variable name>!=<variable name>_ env for each input variable
(a separate transition is supplied for each variable because Uppaal does not support logical ‘OR’
constructs). As long as nothing changes in the environment, no return to the input phase is
possible. These guards could also be added to the transition from the input state (that would
be more in accordance with reality), but as there are no real output actions in the model used
here these transitions can be added here, which is simpler. Note that for each input variable a
separate transition from the output state emerges.

The second model has a guard PLC_env_change==1 and an extra assignment PLC_env_change:=0

11

on the input transition. In addition, it has the assignment PLC_env_change :=1 on each transition
in the environment model. Compared to the previous model this has the disadvantage of an
additional (boolean) variable, but the advantage is that a similar construction can be used on
the reduced automata produced with CADP (section 3.2), which is not possible with the first
construction (see section 3.3).

Both change event models are only correct for the class of PLC programs where the same
input always leads to the same output (‘history free’). A commonly used algorithm to control
temperature in for instance a furnace is the so-called ‘PID’ controller: this controller does not
only use the temperature reading itself but also uses the integral and the derivative of this
value (hence its name). Such an algorithm is not ‘history free’. In general, programs which
contain (TON) timers are not history free because the output of the program will be different
for differing states of the timer. Because the timer could generate an event going from its running
state to its timeout state, this problem could be circumvented (we did not do that in this work
because we wanted the timers to have an identical structure for the three types of translation,
but the addition of an additional assignment PLC_env_change:=1 to the transition mentioned
would solve the problem for the second change event model).

The compiler generates a system with an epsilon model by default. Change event models can
be obtained by specifying —-opt or -ce on the command line (for the first and second model
respectively). The option -eps generates a system with an epsilon model (same as no option
specified).

An illustrative example of a translation from intermediate format to TA format is rather space—
consuming and will therefore be omitted. A comprehensive example of a translation is given in
section 4 where a graphical representation of the (TA) automatons is used which is more concise.

12

3 State space reduction with Caesar/Aldebaran

State space reduction can be performed with the CADP toolset. However, this toolset can not
handle timed automata. Therefore we split the PLC system in a timed and an untimed part and
use state reduction on the latter. For that purpose, a compiler was constructed that abstracts
from timing and is able to produce a description of the PLC automaton in LOTOS, which is
one of the input languages supported by the CADP toolset. The reduced automaton can be
saved in a number of formats, of which the AUT format (the standard CADP output, extension
‘.aut’) is the most simple. These outputfiles can then be translated to TA format and in this
process the timing information can be added again. The translation from intermediate format
to LOTOS is described in section 3.1, the translation from AUT to TA in section 3.3.

3.1 From intermediate format to LOTOS format

The syntax of LOTOS is a little bit more complicated than the syntax of for instance TA. A
typical outline of a LOTOS program obtained from a IL program is given in figure 7. The
identifiers between square brackets (Read, Write, XTIMER) are the externally visible gates
(communication channels) of the PLC automaton. In the Process description part we find a
description of the states and transitions analogous to the description in the TA file (but of
course in LOTOS’ own dialect). For details about the LOTOS syntax see [12].

The main characteristics of the translation are:

specification PLCspec[Read, Write, XTIMER]: noexit
library
X_INTEGER, X_NATURAL, X_BOOLEAN
type PLCstates is Boolean
sorts State_Type
opns state 0 (x! constructor *), state_l (x! constructor *),...
staten (*! constructor *) : -> State_Type
-eq_: State_Type, State_Type -> Bool
eqns forall x,y: State_Type
ofsort Bool
X eq X = true;
x eq y = false

3

endtype

behaviour PLC [Read, Write, XTIMER] (state_O0, false, O of Int,...)
where

Process description

endproc

endspec

Figure 7: A typical outline of a LOTOS program describing a PLC.

® This construction may not be completely fail safe [13].

13

e Just as in the transition to TA format (section 2.4) every statement is translated into one
or more transitions and the number of transitions and the conditions for each transition
are determined by the operator and the operand of that statement.

e Both input and output are now explicitly modelled with an additional state and synchro-
nisation statements.

e The initialisation of the PLC is not an additional state but is contained in the behaviour
clause in the LOTOS file.

e As LOTOS has a library which supports booleans, boolean variables are now translated
as booleans. This generates slightly more complex code, but this is needed to keep the
state space small.

e The DIV operator present in the IL language has no corresponding construct in the LOTOS
library and is therefore not implemented.

e The integer library of LOTOS only supports integers in the range [-9..9] which is rather
limited. However, this also helps to keep the state space small while making available 19
levels for input or output variables. Doing arithmetic with this limited value range could
possibly be dangerous.

e The clock functionality is abstracted away, but the communication with the clocks remains
in the description of the PLC automaton. In this translation the CAL Timer statement is
converted into a sequence of events: first the value of TIMER_IN is written to the timer gate
(XTIMER in figure 7); then the value of TIMER Q is read from the timer gate and finally the
PLC is ‘promoted’ to the next state. In an execution of such a PLC program there are four
ways in which this statement can be executed: both TIMER_IN and TIMER_Q can be either
true or false. This is of importance when we try to translate the minimised automaton to
TA format (see section 3.3).

3.2 State space reduction of the timeless automaton

The automaton described with the LOTOS file does not contain timers and can thus be processed
by the CADP toolset to reduce the state space. If the file produced with i2lotos has for instance
the name proc2.lotos then we need two additional files with names proc2.t and proc2.f;
their contents are given in figure 8. The tool Eucaliptus can be used for easy manipulation of
the files and as an interface for the Caesar/Aldebaran tools. Alternatively these tools can be
used from the command line, which is more in accordance with the pipe-and-filter architecture
of the other programs; however, the command line syntax is rather complex and you may not
want to use it. See the documentation included in the toolset for further information on CADP
and Eucalyptus.

3.3 From Caesar/Aldebaran AUT format to Uppaal TA format

The AUT files produced by CADP contain a Labeled Transition System (LTS). An example of an
AUT file is given in figure 9. The first line of such a file gives the start state, the total number
of transitions and the total number of states. The other lines each describe one transition:

14

#define CEASAR_ADT EXPERT.F 4.4 #define CAESAR_ADT EXPERT.T 4.4

#include "X_BOOLEAN.h"
#include "X_NATURAL.h"
#include "X_INTEGER.h"

a b

Figure 8: The contents of files proc2.f (a) proc2.t (b).

des (0, 8, 6)

(0, "READ !'FALSE", 2)
(0, "READ !TRUE",3)
(1, "WRITE !TRUE",0)
(2, "XTIMER !FALSE",4)
(3, "XTIMER !TRUE",4)
(4, "XTIMER !FALSE",5)
(4, "XTIMER !TRUE",1)
(5, "READ !FALSE",0)

Figure 9: The contents of a sample file in AUT format.

subsequently the originating state, the label of the transition and the resulting state are given.
It can be observed that the original structure of the IL program is completely lost.

Because the structure of this file is different from the original program, the resulting TA file
does not have completely the same style as the TA file obtained directly from the IL program.

The differences with i2ta and the design decisions taken in developing this compiler are:

e The variables do not have their original names. This is caused mainly by the fact that
CADP removes the variables that are not used by the program from its variable set and
reconstruction becomes tiresome. However, the sequence of variables in input and output
statements seems to be undisturbed compared to the LOTOS inputfile, which in turn uses
the sequence of the declarations of the variables and thus the ordering of the variable
declarations can possibly be used to reassign variables their original names if required.
The program assigns names to the variables in order of appearance; input variables are
assigned names IVARO, IVAR1, IVAR2, ... etc and output variables are assigned names
OVARO, OVAR1, OVAR2, ... etc.

e There is no explicit input state. The input actions are coded in the "READ !FALSE
ITRUE. . ." labels of the LTS. These are translated in the TA program as guards IVARO==0,
IVAR1==1,... (remember that there are no boolean variables in TA).

e The Environment automaton now acts on the input variables themselves, i.e. it contains
assignments for each input variable (for instance IVARO:=1 and IVARO:=0).

15

AUT contents: TA contents:

(2, "XTIMER !FALSE",4) state 2 -> state5 {

(3, "XTIMER !TRUE",4) sync CALff _XTIMER?;
(4, "XTIMER !FALSE",5) },
(4, "XTIMER !TRUE",1) state 3 -> state5 {

sync CALtf _XTIMER?;
b
state 3 -> state_1 {
sync CALtt_XTIMER?;

b

Figure 10: An example of the translation of a timer from AUT to TA format.

e There is no single output state. The output actions are coded in the "WRITE !FALSE
ITRUE..." labels of the LTS. These are translated in the TA program as assignments
OVARO:=0, OVAR1l:=1,....

e As indicated earlier (section 3) the timers are abstracted away in the LOTOS file, but the
communications with the timers remain in the description. This communication behaviour
is still present in the reduced automaton. For each timer, there is a state that can be
reached in two ways (TIMER_IN is true or false) and that can be left in two ways (TIMER_Q
is true or false). Because each timer has its own communication channel (gate) these four
transitions can be identified for each timer. We can now replace these four transitions
by three transitions that use the same synchronisation events as the timers used earlier
(section 2.4). The loss of one transition is brought about by the fact that for a TON
timer it is impossible to respond a TIMER_IN that is false with a TIMER_Q that is true
(CALft_XTIMER does not exist). As a result of this replacement the ‘central timer state’
is removed from the automaton. To avoid problems with transitions the remaining states
are not renumbered and the central timer states are simply removed from the declaration
of states. Figure 10 shows an example.

e The timer constants (XTIMER_PT) are now coded as constants and the value of each
timer constant should be set to its appropriate value in the TA file (default value is 1).
The code for the timers is identical to the code for the timers produced by i2ta.

e The Zenoness of the resulting automaton again needs to be established. To handle this, two
models have been incorporated: an epsilon model analogous to the epsilon model described
in section 2.4 and a change event model analogous to the second model described in the
same section. The first change event model can not be used because there is no difference
here between the variables that are handled by the environment and the internal variables
of the program (as a matter of fact, the PLC program actually has no internal variables
anymore).

16

4 Results and discussion

To show the working of the compilers we give here an example of an (extremely simple) IL
based PLC program, that has one input (a button) and one output (a light). If the button is
pushed long enough (i.e. longer than the time-out of the timer, which in this case is 5) the
light will come on. The IL and intermediate texts are given in figure 11. It is assumed that a
pushed button and a burning light are represented as true, while an unpressed button and an
extinguished light are represented as false.

Original program: Intermediate program:

PROGRAM TimeResp TIMERESP
VAR_INPUT 3
start: BOOL; START : INPUT : BOOL
END_VAR TIMER : NORMAL : TON
VAR LED : OUTPUT : BOOL
timer: TON; 7
END_VAR 0:0:<no_entry>:LD:<no_entry>:5
VAR_OUTPUT 1:0:<no_entry>: ST : <no_entry> : TIMER_PT
led: BOOL; 2:0:<no_entry>: LD : <no_entry> : START
END_VAR 3:0:<no_entry>: ST : <no_entry> : TIMER_IN
LD 5 4 :0:<no_entry>: CAL : <no_entry> : TIMER
ST timer.PT 5:0:<no_entry>: LD : <no_entry> : TIMER_Q
LD start 6 :0:<no_entry>: ST : <no_entry> : LED
ST timer.in
CAL timer
LD timer.q
ST led

END_PROGRAM

Figure 11: The ‘TimeResp’ program in IL and intermediate format.

This program can be converted into TA format with the program i2ta. The timed PLC au-
tomaton that is the result of this conversion (in this case with the epsilon model) is given in
figure 12. The complete system consists of this automaton, a timer, an automaton representing
the environment and some declarations. The timer and the environment automaton are shown
in figure 13.

From figure 12 it can be seen that the i2ta translator as produced in this work is not optimal:
the coding of (IL) statements that contain booleans is rather inefficient (see for instance the
transition from state_3 to state_4). This is caused by the fact that the i2ta translator was
developed from the i2lotos translator, where conversion between boolean variables and (integer
type) actual registers has to be performed.

17

START:=0,LED:=0,TIMER_PT:=0,TIMER_ET:=0,TIMER_Q:=0,TIMER_IN:=0,3€0:=0,PL Csystime:=0
initPLC

START:=START_env ae0:=5 TIMER_PT := ae0
() M)) _PT -
@ x« / ~_/ =) dtate 3

sate 0 state 1 state 2 PL Qsystime<=epsilon_2

PL Csystimg<=epsilon_2 PLCsystime<=epsilon_2 PLCsystime<=epsilon_2

. . START==1 START==0
PLCsystime>=epsilon_1 a0 =1 a0:=0
PLCsystime:=0 B ‘
gg state 8 state 4 C
PL Csystime<=epsilon_2 PL Csystime<=epsilon_2
LED := a0 caltf_TIMER? TIMER_IN := a0
TIMER_IN==1

PL Csystime<=epsilon_2 IMER Q=

state 6

~N_ TIMER Q=21 calff_TIMER?
TIMER_IN==0

TIMER_Q:=0

state 7
PL Csystime<=epsilon_2

state 5
PL Csystime<=epsilon_2

dtt_TIMER?
a0:=0 TIMER_IN==1
TIMER_Q:=1

Figure 12: PLC automaton in Uppaal format resulting from direct transla-
tion of the intermediate text of the ‘TimeResp’ program.

CALff_TIMER! CALtf_TIMER!
— CALtf_TIMER! —

t0:=0

idle running
t0<=5
tO==TIMER_PT
timeout world
CALtt_TIMER! START_env:=1

Figure 13: The automata for the timer (left) and the environment (right) in
Uppaal format (‘TimeResp’ program).

18

PL Csystime<=epsilon_2
state 0

PL Csystime:=0,0VAROQ:=1

IVARO==0
PLCsystime>=epsilon_1

PL Csystime<=epsilon_2
state 1

state 2
PL Csystime<=epSilon_ :

CALtt_XTIMER? CALff_XTIMER?

CALtf_XTIMER?
state 3

PL Csystime<=epsilon_2

state 5
PL Csystime<=epsilon_2

Figure 14: Reduced PLC automaton in Uppaal format (‘TimeResp’ pro-
gram).

CALff_XTIMER! CALtf_XTIMER!
N CALtf_XTIMER!

t0:=0

running

tO<=XTIMER_PT

CALff_XTIMER! t0==XTIMER_PT

IVARO:=0
timeout world
CALtt XTIMER! IVARO :=1

Figure 15: The automata for the timer (left) and the environment (right) in
Uppaal format (reduced ‘TimeResp’ program).

19

Table 2: State space reduction of PLC automata with the CADP toolset.

Program name Original automaton Reduced automaton
States Transitions States Transitions

TimeResp 25 34 5¢ 7

VHS_CS1_B2 279 496 10 12

* Actually, the reduced automaton contains 6 states and 8 transitions in the AUT
file, but aut2ta reduces both by one (see also figure 10).

To be able to use the CADP toolset, the same intermediate format can be translated to LOTOS;
in that process the timer functionality is removed from the description (only the communication
with the timer remains). It is fortunate that of the two parts the untimed part turns out to
be the largest by far. If the reduced automaton produced by the CADP toolset is translated
to Uppaal format (with aut2ta), the automaton shown in figure 14 is obtained instead of the
automaton shown in figure 12. The timer (reintroduced by aut2ta) and the environment are
given in figure 15.

To give an impression of the state space reduction obtained, table 2 gives some data for the
original and the reduced automaton. The ‘Original automaton’ is the finite state machine
constructed by the CADP toolset from the LOTOS file (note that the ‘Original automaton’ has
more states and transitions than the extended finite state machine from the TA file). The same
table also contains data for a somewhat more elaborate IL program; this examples was taken
from a case study in the field of PLC verification [14]. It can be observed that the state space
reduction is substantial, even for these small examples.

20

5 Conclusions

The compilers produced in this work are able to perform the translations given in figure 16: [2;
converts IL into intermediate format and this can be translated directly into TA by i2ta or via
i2lotos to input for CADP, the output of which can be translated to TA with aut2ta.

| wtos

LOTOS

i2i

i2ta IL reduction CADP

AUT

TA 4/aut2ta

Figure 16: Translations from IL to TA.

-

The method of dissecting a PLC program into a timed and an untimed part can be performed
quite elegantly. The untimed part is much larger than the timed part and can be reduced in
size by using the CADP toolset. The reduction in state space is substantial, even for small PL.C
programs.

21

6 Recommendations for further research

First some more experience has to be gathered with size reduction as presented here, especially
for larger and more realistic PLC programs. To be able to handle more realistic programs,
the compilers will most likely have to be able to handle function invocation and DIV / MOD
operations. As the latter is dependent on the (integer) library used with LOTOS, it may be
necessary to write a more complete library for this purpose. Function invocation could for
instance be treated as expansion of the sequential program or it could be treated as message
passing to a separate ‘function automaton’. The former seems to be rather straightforward
while the latter holds the promise of a more elegant solution (but maybe at the cost of greater
complexity).

Another elaboration is the use of other PLC programming languages from the IEC standard, like
for instance Structured Text (ST) or Sequential Function Chart (SFC). For this work, additional
compilers should be written, either to convert from ST, SFC etc. to the intermediate format or
to IL (if that is really possible for all languages). It is also possible to use the i2ta and i2lotos
compilers developed here as a basis and incorporate the support for different languages here (not
recommended, as it increases the complexity and decreases the modularity of the compilers).

It should be (formally 7) verified that the (TA) timed automatons produced via the two ways
described here (direct translation versus translation with reduction) are in fact equivalent.

The method outlined here can possibly be used for the verification of a large variety of control
tasks where timing is important. Especially the power to decrease the state space of programs
in this way seems to be promising.

Availability

The translators are coded as C programs (except for i12i, which is an EAG grammar). Because
these translators are written in ANSI C they can be compiled with any general C compiler (gcc,
cc etc). The executables can be used from the command line. The programs read their input
from STDIN and write their output to STDOUT.

This document and the source codes of the compilers is available from
http://www.cs.kun.nl/"mader/rik/rik vhs.html.

Acknowledgement

Thanks are due to Angelika Mader for her help with the semantics of PLC programs, to Judi
Romijn for her help with the CADP toolset and LOTOS and to Frits Vaandrager for initializing
this research and for usefull questions and comments. Marco Hollenberg (Philips Research) is
acknowledged for his comments on the manuscript. This work was carried out in the context of
the ESPRIT project 26270, Verification of Hybrid Systems (VHS).

22

References

[1]

[10]

[11]

[12]

[13]
[14]

[15]

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL: a tool suite for
the automatic verification of real-time systems, pages 232—-243. Volume 1066 of Alur et al.
[15], 1996.

C. Daws, A Olivero, S. Tripakis, and S. Yovine. The tool KRONOS, pages 208-219. Volume
1066 of Alur et al. [15], 1996.

T. Henzinger and P.-H. Ho. HyTech: The Cornell HYbrid TECHnology tool. In U. Engberg,
K. Larsen, and A. Skou, editors, Proceedings of the workshop on tools and algorithms for
the construction and analysis of systems, volume NS-95-2 of BRICS Notes Series, pages
29-43. Department of Computer Science, University of Aarhus, Denmark, may 1995.

P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86(1):43-68, 1990.

R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on Com-
puting, 16(6), December 1987.

J-C. Fernandez. An implementation of an efficient algorithm for bisimulation equivalence.
Science of Computer Programming, 13(2-3):219-236, 1990.

A. Bouajjani, J.-C. Fernandez, N. Halbwachs, and P. Raymond. Minimal state graph
generation. Science of Computer Programming, 18(3):247-269, June 1992.

IEC International Standard 1131-3, Programmable Controllers, Part 3: Programming Lan-
guages, 1993.

R. W. Lewis. Programming industrial control systems using IEC 1131-3, volume 50 of IEEE
Control Engineering Series. The Institution of Electrical Engineers, London, UK, 1995.

A. Mader and H. Wupper. Timed automaton models for simple programmable logic con-
trollers. In preparation; an earlier version of this paper has appeared in the Proceedings of
the Euromicro Conference on Real-Time Systems that was held in York (UK) on june 9-11,
1999.

P. Pushner and C. Koza. Calculating the maximum execution time of real time programs.
Real-Time Systems, 1(2):159-176, 1989.

E. Brinksma, editor. Information processing systems — Open systems interconnection —
LOTOS - A formal description technique based on the temporal ordering of observational
behaviour. Technical Report ISO/TC 97/SC 21, International Organisation for Standard-
ization, 1987.

Private communication Dr. J. M. T. Romijn.

Verification of Hybrid Systems (ESPRIT project 26270), case study 1, pro-
gram B2. More information on the VHS project can be obtained from
http://www-verimag.imag.fr//VHS/main.html.

R. Alur, T. Henzinger, and E. Sontag, editors. Hybrid Systems III, volume 1066 of Lecture
Notes in Computer Science. Springer, 1996.

23

A Abbreviations and acronyms

ANSI
ASCII
AUT
CADP
EAG
IEC

IL
LOTOS
LTS
PC
PLC
SFC
ST

TA
TON
Uppaal

American National Standardisation Institute

American Standard Code for Information Interchange (‘plain text’)
Caesar/Aldebaran (.aut) format

Caesar/Aldebaran Development Package

Extended Affix Grammar

International Electro-technical Commission

Instruction List

Language Of Temporal Ordering Specification

Labeled Transition System

Personal Computer

Programmable Logic Controller

Sequential Function Chart

Structured Text

Timed Automaton (.ta) language of Uppaal

On-delay timer

Model checker developed by the universities of Uppsala and Aalborg

24

