
LOTOS Code Generation for Model Checking of STBus Based SoC :
the STBus interconnect

Pierre Wodey, Geoffrey Camarroque,
Fabrice Baray

ISIMA - LIMOS
BP 10125

F-63173 AUBIERE Cedex - FRANCE�
Pierre.Wodey, Geoffrey.Camarroque,Fabrice.Baray�@isima.fr

Richard Hersemeule, Jean-Philippe Cousin
Advance Systems Technology-AST

STMicrolectronics
12, Rue Jules Horowitz

F-38000 GRENOBLE - FRANCE�
Richard.Hersemeule,Jean-Philippe.Cousin�@st.com

Abstract

In the design process of SoC (System on Chip), valida-
tion is one of the most critical and costly activity. The main
problem for industrial companies like STMicroelectronics,
stands in validation at the complete system level. At this
level, the properties to verify concern the well behaviour
composed of the different processes interconnected around
the system bus. In our work we consider the deadlock-free
property. In this paper we present an approach for deadlock
detection consisting in generating automatically a LOTOS
description of the system. Then, by using CADP toolbox
developed at INRIA by the VASY team, the LOTOS descrip-
tion can then be used for the evaluation of temporal logic
formulæ, either on-the-fly or after the generation of a La-
belled Transition System (LTS). The automatic LOTOS code
generation is decomposed in two parts, the code generation
of the processes behaviour (work under progress) and the
code generation for the interconnection of processes on a
given SoC bus. This paper presents the principles of inter-
connect abstraction showing that deadlock detection has to
take into account properties of the implemented communi-
cation channel, avoiding the possibility to build a general
deadlock detection tool. The resulting principles are then
applied on the STMicroelectronics proprietary SoC bus, the
STBus, leading in the development of the LOTOS code gen-
eration software.

1. Introduction

This paper presents the work conduced by the SE-
MANTSYS (for SYStems SEMANTics) team at the
LIMOS laboratory, in collaboration with STMicroelectron-
ics. The aim is to be able to check automatically some prop-
erties of SoC at the global system level. Let us first intro-

duce the industrial SoC design and validation problems and
then our approach for validation, presented in this paper.

1.1 SoC design and validation in industry

For several years the trend in microelectronics area is to
integrate more and more functionalities. This larger inte-
gration is mainly due to technology improvement. With a� �����

technology we may foresee 100 million transistors
and hundreds of thousands of code lines embedded on the
same chip.

If the design paradigms have changed for some years,
the architecture of new systems on chip (SoC) evolves also
significantly.

Most system architectures are now built around a system
bus, several MCU and DSP and complex IP (Intellectual
Property) blocks providing a high level of communication
and programmability. Consequently the number of transac-
tions between blocks is growing.

EDA tools are efficient enough to provide sufficient
productivity in term of gates and software. Nevertheless,
the main emerging problem stands in the lack of efficient
verification methods. We estimate that 60% of the time is
dedicated to functional verification of IP and the whole sys-
tem level where the most events are asynchronous. Whereas
there exist satisfying verification solutions for IP blocks
(synchronous), at the present time, there do not exist accept-
able solutions for the whole system. In order to deal with
larger complexity, the verification strategy consists, rather
than undertaking a verification process very late in the de-
sign (RTL level), in the introduction of verification at the
same time we start the design (HW and SW). The complex-
ity of the communication engine on a SoC is probably the
area where most bugs occur.

That is the reason why we need to turn our attention to
protocols and deadlock-free communications validation.

Verification and validation also include an economic as-
pect. We have to take into account that a mask on a

� �����
costs around 500 K$. Thus, it is necessary to reduce po-
tential errors, using even more sophisticated technologies,
as, for instance, the automatic model checking of the whole
system whose first step study is presented in this paper.

1.2 Our approach for SoC model checking

Since 1997, SEMANTSYS team studies the problems of
introducing the verification by model checking in Codesign
methodologies at the system level [11, 2, 1]. These stud-
ies have been lead on general Codesign approaches consist-
ing in architecture exploration and communication synthe-
sis [6].

The main problem pointed out stands in the communica-
tion architecture and protocol, whose characteristics highly
influence the global system behaviour. The aim of our work
consists in generating automatically the verification model
of the system and also the temporal logic formulæ to vali-
date the deadlock-free property.

For properties verification, we use the CADP toolbox
based on OPEN-CÆSAR [4], developed at INRIA Rhône-
Alpes, by the VASY team. This toolbox is based on the
notion of Labelled Transition System (LTS) [8], describing
the behaviour of the system by means of states and transi-
tions, a transition being labelled by the name of the action
performed by the system.

In order to generate the LTS of a system, we will gen-
erate at first a LOTOS [7] description of the system. This
language being one of the entries of the CADP toolbox and
its semantic being clearly and well defined by means of an
LTS.

The LOTOS description is generated from the design de-
scriptions of the system, the aim being to use LOTOS as an
intermediate format not seen by the designer.

The global structure of the LOTOS code generator is de-
composed in two parts :

� the code generator at the top level, instantiating pro-
cesses and synchronizing them or not, according to a
given STBus architecture. This is the part described in
this paper ;

� the code generation for the processes behaviour, from
a given high level description (existing in the design
environment) such as a functional model or, better, a
transactional level model (TLM) as, for instance, de-
fined in SystemC [5]. The study of this part is under
way and some corresponding perspectives described in
the conclusion.

Considering the LOTOS code generation of an inter-
connect of processes, it is necessary to take into account

some properties of the implemented communication chan-
nel : process blocking or synchronization conditions, atom-
icity of bus transactions, etc... This is illustrated in section
2 on a simple example independent of STBus. This sec-
tion presents different ways of modeling manually a sys-
tem and gives the main properties to be preserved in a LO-
TOS model. One result of this study is that deadlock de-
tection is dependent from the implemented communication
channel, and thus avoids to intend to build a more general
deadlock detection tool. These principles have then to be
applied automatically on an STBus interconnect. Section 2
contains also a short introduction to LOTOS.

Section 3 presents a brief overview of STBus features.
Section 4 and 5 describe the LOTOS code generation for

an STBus interconnect, with respect to the principle of sec-
tion 2. Section 4 presents how to abstract the bus arbitration
by considering a single node. Then general STBus func-
tionalities are taken into account in section 5.

2. System level abstraction for model checking

In order to tackle the complexity at the system level, a
maximal abstraction of the behaviour is needed. Generally,
abstraction is made by the use of a specification language
which can be a Formal Description Technique (FDT) such
as SDL [10] or LOTOS. But, according to the aim of dead-
lock detection, the abstract model of the system has to pre-
serve the interesting properties of the real system behaviour.
These properties concern :

� the communication channels properties : blocking
conditions, atomicity of communication operations
and memorization in the channel and access policy of
memorized values.

� the asynchronism and non-determinism among pro-
cesses or tasks due to : the scheduling strategy of op-
erating systems managing software tasks on a given
microprocessor and non deterministic interrupt arrivals
from the outside world of the system, non constant
computing time of processes when data dependant.

In this section we show a simple example of three pro-
cesses communicating and the problems of abstract model-
ing. At first, we present the example and the semantic of the
implemented system where a deadlock is present. Then we
show a SDL and a LOTOS specification of the system and
their associated LTS demonstrating that these descriptions
do not preserve the right properties of the system to detect
the deadlock. Finally, we present a Transaction Level LO-
TOS Model of the system whose associated LTS is equiva-
lent to the implemented system one.

2.1 Implemented system description

We consider a simple system composed of three pro-
cesses named

�
, � and� . Each process has an entry queue

with infinite capacity, these are named�� , �� and�� .
These processes exchange messages composedby the identi-
ficationof thesenderprocess�� � , �� � , �� � . The communi-
cation operations are :write(queue,id), sends a mes-
sage with identification�� to the queue ;read(id), the
process reads from its queue the first message if the sender
was the process with identification��.

The properties of the communication channel are :

� non blocking write,

� blocking read when the entry queue is empty,

� blocking read if the head of the queue has not the right
identification (this will lead to deadlock),

� a single communication operation,read or write,
is atomic, which is not the case of any succession of
operations.

The behaviour of the processes is the following :

Process A : Process B : Process C :
while true { while true{ while true{
write(QB, idA); read(idA); read(idB);
read(idC); write(QC,idB); write(QA,idC);

} read(idC); write(QB,idC);
end Process } }

end Process end Process

The behaviour of this system is as follows :

� sequentially : A writes to the queue of B, then B reads
from its queue, then B writes to the queue of C, then C
reads from its queue, then C writes in the queue of A.

� then a non deterministic behaviour : either C writes
into the queue of B before A reads and writes into
the queue of B, the system continues on step (1), or
A reads from its queue and write into the queue of B
before C writes into the queue of B, the system falling
in the deadlock state.

The LTS of the implemented system is shown in figure 1
in which the deadlock state is state 11 (state without outgo-
ing transition).

2.2 Abstract SDL model

When considering an abstract model of this system, one
can choose to build up a model in SDL. This model is given
by figure 2.

According to the SDL semantic, a transition between two
states, which corresponds to the reception, computing and

0

1

2

3

4

5

6

7

8

9
10

11

ProcA_write(QB,idA)

ProcB_read(idA)

ProcB_write(QC,idB)

ProcC_read(idB)

ProcC_write(QA,idC)

ProcC_write(QB,idC)ProcA_read(idC)

ProcB_read(idC)

ProcA_(read,idC)

ProcA_read(idC)

ProcC_write(QB,idC)

ProcA_write(QB,idA)

ProcB_read(idC)

ProcC_write(QB,idC)

Figure 1. LTS for the implemented system

sending of messages, is atomic in the global system be-
haviour. This means that, for instance, in process� , the
three operations (one read and the two writes) constitute
an unique atomic action in the system behaviour. Thus,
as shown in the corresponding LTS (see figure 3), there is
no deadlock in the system with SDL semantic. This model
shows the inadequation of an SDL model due to the non
respect of atomicity properties in the channels.

1 2

1 2

B

A C

1

2

2

1

1

2

AtoB

CtoB

CtoA

BtoC

Proc C

Proc B

write(QA)

write(QB)write(QB) read(C)

write(QB)

read(A)

write(C)

read(C)

read (B)Proc B

Figure 2. Processes SDL behaviour

4

0

5

1

2

3

ProcA_read(idC);ProcA_write(QB,idA)

ProcA_write(QB,idA)

ProcA_read(idC);ProcA_write(QB,idA)
ProcB_read(idA);ProcB_write(QC,idB)ProcB_read(idC)

ProcC_read(idB);ProcC_write(QA,idC);ProcC_write(QB,idC)

ProcB_read(idC)

Figure 3. System LTS with SDL semantic

2.3 Abstract LOTOS model with rendez-vous

Let us illustrate another problem when considering an
abstract LOTOS description in which the queues are no
more described and the communication directly modeled by
rendez-vous. The LOTOS model is described in figure 4, at
the top level three gates are used to synchronize the pro-
cesses in pair, and the interconnect is shown in figure 5.

Let us shortly introduce LOTOS operators on behaviours
B1 op B2 : || the two behaviours are synchronized on all
common gates,||| the interleaving operator (no synchro-
nizations),|[G1,..,Gn]|, the two behaviour are syn-
chronized on the listed gates and[] is thenondeterministic
choice betweenB1 andB2. A gate operation can be com-
pleted by an offer which is a list of value either forced by
!value or free? variable:type. The synchroniza-
tion between two behaviours on a gate is performed if the
forced values are the same on the two offers or values and
free offer type are compatible. The offers are used to trans-
fert data but can also be used to route the information by
mean of source and destination identifiers defined by forced
value offers. A LOTOS expression can also instantiate (call)
a process which has some gates and some parameters. In
a process, a recursive terminal call (not followed by any
action) consists in iterating the process from the start with
eventually new value parameters.

Process A [GAB,GCA]:noexit :=
GAB!idA;GCA!idC;A[GAB,GCA]

endproc

Process B [GAB,GBC]:noexit :=
GAB!idA;GBC!idB;GBC!idC;B[GAB,GBC]

endproc

Process C [GCA,GBC]:noexit :=
GBC!idB;GCA!idC;GBC!idC;B[GCA,GBC]

endproc

Figure 4. Processes abstract LOTOS model

The semantic of LOTOS rendez-vous between processes
induces that :

GCA

GBC

Process A

A[GAB,GCA] || B[GAB,GBC] || C[GCA,GBC]

Process C

Process B

GAB

Figure 5. LOTOS processes interconnection

� a communication is done in one atomic action (the
write and corresponding read are done atomically);

� the queue QB is replaced by two distinct gates���
and��� , so process B when refusing the synchro-
nization with A is still able to accept the synchroniza-
tion with C.

This induces that the global system becomes sequential and
any interleaving of actions is avoided. The result is also
that no deadlock is detectable with this semantic, as shown
in figure 6.

0

1

2

3

GAB !idA

GBC !idB

GCA !idC

GBC !idC

Figure 6. Abstract LOTOS model LTS

2.4 TLM LOTOS model

The LOTOS model presented in the previous section
does not respect the communication semantic of the imple-
mented system. The aim of this section is build out a LO-
TOS model with the same communication semantic, this
corresponds to a TLM LOTOS model of the system.

We consider thus a LOTOS model where the queues
are instantiated and described by LOTOS processes. When
writing into a queue a process perfoms a rendez-vous with
FIFO process. Symetrically a process reads from its queue
by means of a rendez-vous.

The code of a queue process is shown in figure 7, the data
type being ommitted (consend, car, cdr andnil hav-
ing a common meaning as in LISP for instance). The pro-
cess has one input gate, one output gate and the memorized
messages implemented in a parameter named file (built up
as a list), initialized to nil.

The LOTOS specification is shown graphically in figure
8, also including the LOTOS expression. In this version, the
processes C has three gates.

Process queue [GIN,GOUT](file:list):noexit :=
(GIN?id:proc_id;queue[GIN,GOUT](consend(id,file)))

[]
[not (list eq nil)]->

(GOUT!car(list);queue[GIN,GOUT](cdr(list)))
endproc

Figure 7. Queue LOTOS model

GIN_B

GA GIN_A

GB
GIN_C

GC

(A[GIN_B,GA] ||| B[GB,GIN_C] ||| C[GC,GIN_A,GIN_B])
 ||

Process A queue A Process C

queue C

Process B

queue B

(queue[GIN_B,GA](nil) ||| queue[GIN_B,GB](nil) ||| queue[GIN_C,GC](nil))

Figure 8. LOTOS specification with queues

The resulting LTS is not shown as it is the same as the
LTS of the implemented system shown in figure 1, modulo
the labels names.

2.5 Conclusion on abstraction

The different exposed models of the system illustrate
that, for deadlock detection, it is necessary to preserve the
right channel properties and processes asynchronism. This
illustrates also that LOTOS can be used to model a system
interconnect with the right channel properties. The right
LOTOS model is a Transaction Level Model of the system.

3 STBus features overview

This section presents an overview of STBus features
which is illustrated by an example of Set Top Box SoC.
These features have to be taken into account in the LO-
TOS code generator in order to build up a LOTOS inter-
connect generator including the well defined abstractions,
in the same way as they where described in section 2.

STBus is an STMicroelectronics proprietary On Chip
Bus protocol. It is dedicated to high bandwidth systems on
chip for applications such as audio/video processing. The
STBus interfaces and protocols are closely related to the in-
dustry standard developed by the open VCI (Virtual Com-
ponent Interface) body defined by VSIA. A STBus inter-
connects components which can be either an initiator (when
initiating transactions on the bus by sending requests) or a
target (when responding to the requests). The bus archi-
tecture is decomposed in nodes (sub-bus in which initiators
and targets can directly communicate), internode communi-
cations being performed through buffers (FIFOs).

3.1 Protocols

“Peripheral” protocol (STBus Type 1) is equivalent
to the Peripheral VCI protocol. The peripheral or Type
1 STBus interface is the simplest of the STBus family
and is targeted at modules which require a low complexity
medium data rate communications path with the rest of the
system. This typically includes standalone modules such as
general-purpose input/output or modules which require in-
dependent control interfaces in addition to their main mem-
ory interface.

”Basic” protocol (STBus Type 2) is equivalent to the
Basic VCI protocol. The Type 2 interface increases the per-
formance and functionality of the STBus port, it supports
all type 1 functionalities and adds split transactions and the
ability to support all transactions including compound oper-
ations, source labeling and some priority and transaction la-
beling. It is aimed at devices which need high performances
but do not require the additional system efficiency associ-
ated with shaped request/response packets or the ability to
re-order outstanding operations to improve performance.

”Advanced” protocol (STBus Type 3) is equivalent
to the Advanced VCI protocol. The Type 3 supports all
type 1 and 2 functionalities, while enabling increasing sig-
nificantly system/interface performances. This is enabled
through support of a more efficient packet protocol (the
number of cells might differ between request and response),
and allowing the system to reorder operations. It allows
performance improvements either by allowing more oper-
ations to occur concurrently, or by rescheduling the opera-
tions more efficiently.

3.2 Components

Associated with those protocols, hardware components
have been designed in order to build complete reconfig-
urable interconnections between Initiators and Targets. A
toolkit has been developed around this STBus (graphical in-
terface) to generate automatically Top level backbone, Cy-
cle accurate High level model generation, way to implemen-
tation, bus analysis (latencies, bandwidth), bus verification
(protocol and behavior).

An STBus system includes three generic components as
skeletons :

� Switch or node : it arbitrates and routes the requests
and optionally, the responses. It can be crossbar, to full
cross-bar, implement filtering features, initiator/target
priority management...

� Converter or bridge domain : it converts the request
from a protocol to another (”basic” to ”advanced”).
Each component is configurable to implement specific
features : bus size, ordering support...

� Size Converter: it is used between two buses of same
type but of different widths. It includes buffering ca-
pability.

3.3 STBus interconnection example

Definition of STBus interconnect must take non triv-
ial criteria such as performance constraints, initiators pro-
cess constraints, type and size constraints, floorplan con-
straints... Figure 9 is an example of a complete System On
Chip designed for Set Top Box application. It is composed
of different nodes and buses interconnected by means of FI-
FOs or type converters.

Figure 9. Set Top Box STBus based SoC

Interconnect clearly appears to be one of the critical part
of the SoC, this bottleneck will certainly increase in next
systems on-chip generation. Many efforts have been done to
improve on chip bus architectural exploration, design pro-
cess and verification around those fields. Verification chal-
lenges for complex On Chip Bus such as VCI based STBus
will require more efficient methodologies than simulation.
This is why in next few years formal methods should be
used intensively.

4 TLM LOTOS model for single node system

Let us at first explain that for the LOTOS model of a
STBus interconnect, we concentrate, at this point of our
study, on the synchronizations and routing of messages. We
will thus not consider data messages or operations, but just
source (initiator) identifier and destination (target identi-
fier). Thus all communications on the STBus are gate action
with offer composed of four fieldGATE !sN!I!dN!T be-
ing respectively the source node number, the initiator num-
ber, the destination node number and the target number.

One can notice that in type 3 protocol, there is one addi-
tional field namedtid, the packet identification number.

We consider a single node system constituted by a��

initiators and�� targets, all of type 2 protocol. We describe
the different abstractions made on the arbitration strategies
and on the communication phases (request/grant).

4.1 Arbitration strategy abstraction

The STBus can implement various strategies of arbitra-
tion and allows to change them dynamically. Arbitration is
used when multiple initiators (resp. targets) simultaneously
request (resp. response request) access on the bus in order
to choose one of them by granting it.

One can notice that when a single process requests ac-
cess on the bus, it is granted independently from the arbitra-
tion strategy.

When considering the asynchronism among processes,
they may, non-deterministically request acces on the bus ei-
ther simultaneously (case 1), or in any given order (case
2). When requesting simultaneously the arbitration strategy
will determine one order, which is included in the orders of
case 2.

Consequently, the generated LOTOS model will not im-
plement the arbitration strategy, it just implements the non
deterministic choice of granting one of the requesting pro-
cesses. The corresponding LTS will thus cover all the orders
of request arrivals and also be arbitration-strategy indepen-
dent for the simultaneous requests.

4.2 Single node communications

In a node, a communication between one initiator and a
target is performed in several steps :

1. a request/grant step between the initiator and the node,
corresponding to an atomic rendez-vous operation of
the system,

2. the transfer by the node of the request to the target,

3. a response-request/grant between the target and the
node,

4. the transfer by the node of the response-request to the
initiator.

To generate the LOTOS model we have studied two
possibilities, the first named channel-oriented in which a
channel process is modeled and the second named system-
oriented. We compare these two approaches by means of an
example.

4.3 Channel-oriented model

In this model the four communication steps are gener-
ated as four atomic operations between the initiators/targets
and two processes named respectivelyARB (for abstract
ARBiter) for the requests andr_ARB for the response-
requests.

Figure 10 shows the structure of the LOTOS specifica-
tion, where processes are interconnected by means of four
gates, each dedicated to a given communication step.

All initiators and targets are interleaved, there is no di-
rect synchronization, but each is synchronized with the two
abstract arbiters (interleaved) on their common gates. The
LOTOS description is given by the following LOTOS ex-
pression :

(INI_1[I_req,I_r_req] ||| INI_2[I_req,I_r_req]
||| INI_3[I_req,I_r_req] ||| TAR_1[I_req,T_r_req]
||| TAR_2[T_req,T_r_req] ||| TAR_3[T_req,T_r_req]
)
||
(ARB[I_req, T_req] ||| r_ARB[I_r_req,T_r_req])

The behaviour of an abstract arbiter, a request arbiter for
instance, consists in accepting a request from a given ini-
tiator and transferring it to the corresponding target before
accepting another request.

We have generated the LTS in which any initiator can co-
municate with any target, the internal behaviour consisting
in waiting for the response before sending another request.
The associated LTS, which is not shown, is composed of
151 states and 328 transitions.

ARB r_ARB

INI_1 INI_2 INI_3

TAR_1TAR_2

T_r_req

I_r_reqI_req

T_req

TAR_3

Figure 10. Channel-oriented model of exam-
ple node

4.4 System-oriented model

In the system oriented model we consider direct rendez-
vous between a given initiator and a target. As an arbiter
(for request or response) transfers sequentially the infor-
mation before accepting another request, the two steps are
atomic in the arbiter point of view. It is also the same when
considering an initiator or a target.

In this point of view, the abstract arbiter processes are
omitted, as shown in figure 11.

The initiators are interleaved and this behaviour synchro-
nized with the interleaved targets, as described by the fol-
lowing LOTOS expression :
(INI_1[I_req,I_r_req] ||| INI_2[I_req,I_r_req]
||| INI_3[I_req,I_r_req])
||

(TAR_1[I_req,T_r_req] ||| TAR_2[T_req,T_r_req]
||| TAR_3[T_req,T_r_req]

)

With the same initiator and target processes as for the
channel oriented model, the corresponding LTS is com-
posed of 15 states and 46 transitions.

req

INI_3

TAR_3

INI_2

TAR_2

INI_1

r_req

TAR_1

Figure 11. System oriented model of example
node

4.5 Conclusion on the single node model

The results of the two approaches indicate that the LTS
obtained by the system-oriented model is about 10 times
smaller than that of the channel-oriented model.

The question is about the semantic of the two models re-
garding the implementation of the system. The difference
between these two versions stands in the fact that a request
and a response can both transit on the bus. As simultane-
ous actions are interpreted as non deterministic sequential
actions in the LOTOS semantic, we have the two following
behaviours : in thechannel-orientedmodel, there is an in-
terleaving between two sequences of two actions (thus three
states), producing a part of LTS composed of 9 states ; in the
system-orientedmodel, the interleaving is between two se-
quences of one action (thus two states), producing a part of
LTS composed of 4 states.

In the system oriented model, the bus internal actions
are omitted, and the four states describe the four possible
states of the interconnected processes. In the channel ori-
ented model, some states correspond to internal bus states,
real processes states are those following two request steps
or two response steps. In the set of 9 states, only four states
have this property.

So when considering the system validation, rather than
bus validation, we have to consider the system oriented
model which describes all the interesting processes states
and system executions.

5 LOTOS TLM model for general STBus

Let us consider a STBus interconnect, composed of :

1. � nodes, named
� � � � � � � � �

,

2. each node
� �

is composed of � �� initiators,
named �� �� � � � � � �� �� �� , and �	 � targets, named	 ��� � � � � � 	 � ��� � ,

3. inter-node communication links, represented by the set
of pairs
 	 � �� � � � � � �
�, such that�� � � � �
 	
means there is a communication from node

��
to node��

4. for each inter-node communication� � � �� � � � �
 	 ,
let � �� �� be the size of the internode FIFO,

5. for each node
��

, we consider the destination nodes
set �� ��� � �� � �� � � � � � �
 � �� � � � �

 	
 and source nodes set�� ��� � �� �
�� � � � � � �
 � �� � �� �
 	

At first we consider the basic STBus interconnect. The
size converters and protocol type converters will be consid-
ered later.

5.1 Basic STBus interconnect

The LOTOS model of a given STBus interconnect in-
stantiates processes corresponding to initiators, targets and
internode FIFOs. The LOTOS expression describes the syn-
chronizations on gates between these processes.

In a given node, the initiators are interleaved together,
and are synchronized with the targets (interleaved on their
side). We nameREQ_i the LOTOS request gate of node��

, andR_REQ_i the response request gate of node
��

.
The LOTOS behaviour of the internode FIFO is always

the same, only the size of the FIFO is parameterized at the
instantiation. An internode FIFO from node

��
to node

��
is synchronized with the initiators of node

��
and the targets

of node
��

for the requests and for the responses. It is seen
as a target for node

��
and an initiator for node

��
. An

internode FIFO is composed of two internal FIFOs of same
size, one for the requests and one for the responses.

As the FIFOs are synchronized separately on the two
nodes, the global topology is, in the general case, not lin-
ear and cannot be expressed in LOTOS by using the same
request and response gates as those used between initiators
and targets in a node (i.e.REQ_i andR_REQ_j...). Thus
it is necessary to define a specific gate for each destination
and source node. We nameFIFO_i_j, the FIFO for the
internode communication from node

��
to node

��
. Such

a FIFO has four gates :

� S_REQ (request) andS_R_REQ (response) for the
synchronizations with the initiators of node source (

��
in the example),

� D_REQ (request) andD_R_REQ (response) for the
synchronizations with the targets of destination node
(
��

in the example).

Each node
� �

has following LOTOS gates :

� REQ_i_i_j and R_REQ_i_i_j for each
� �

�� ���, being the request and response gates in node��
(connected to the initiators of

��
) for the com-

munications from node
��

to
��

and toS_REQ and
S_R_REQ of the bufferFIFO_i_j,

� REQ_i_j_i and R_REQ_i_j_i for each
� �

�� ���, being the request and response gates in
��

(connected to the targets of node
� �

) for the com-
munications from node

��
to

��
and toD_REQ and

D_R_REQ of the bufferFIFO_j_i.

Figure 12 illustrates the case of a system composed of
two nodes

��
and

�� , each constituted by two initiators
and two targets, and internode communication from

��
to�� and from

�� to
� �

.

INI_1_1 INI_1_2

TAR_1_1 TAR_1_2

TAR_2_2TAR_2_2

INI_2_2INI_2_2

T r_FIFO I

T FIFO I

I FIFO T

I r_FIFO T

FIFO_1_2

FIFO_2_1

r_req_2_1_2

req_1_2_1 req_2_2_1

r_req_1_1_2

r_req_1

req_1

req_2

r_req_2

req_2_1_2

r_req_2_2_1r_req_1_2_1

req_1_1_2

Node N1 Node N2

Figure 12. Two nodes LOTOS model

The interface of the processes of node
� �

are :

� the initiators have gatesREQ_i, R_REQ_i and�� �
�� ���, the gatesREQ_i_i_j andR_REQ_i_i_j,
this list of gates is calledGI(Ni), for Initiator gates
of node

� �
,

� the targets have the gatesREQ_i,R_REQ_i and�� �
�� ���, the gateREQ_i_j_i and R_REQ_i_j_i,
this list of gates is calledGT(Ni), for target gates of
node

� �
.

Figure 13 shows the LOTOS description of a general
STBus interconnect.

5.2 Protocol types and bus sizes

In the previous section we did not consider the protocol
types and bus sizes. The protocol types of processes and the

/* nodes : initiators and targets */
(
/* Node N1 */
((I_1_1[GI(N1)] ||| ... ||| I_1_nI1[GI(N1)])
|[REQ_1, R_REQ_1]|
(T_1_1[GT(N1)] ||| ... ||| T_1_nT1[GT(N1)]))

||| ... |||
/* Node Ni */
((I_i_1[GI(Ni)] ||| ... ||| I_i_nIi[GI(Ni)])
|[REQ_i, R_REQ_i]|
(T_i_1[GT(Ni)] ||| ... ||| T_i_nTi[GT(Ni)]))

||| ...|||
/* Node Nn */
((I_n_1[GI(Nn)] ||| ... ||| I_n_nIi[GI(Nn)])
|[REQ_n, R_REQ_n]|
(T_n_1[GT(Nn)] ||| ... ||| T_i_nTn[GT(Nn)]))

)
/* synchonized on all common gates with internode FIFOs */
||
(/* for all (i,j) in TF = {(i1,j1), ..., (ik,jk)} */
FIFO_i1_j1[REQ_i1_i1_j1, R_REQ_i1_i1_j1,

REQ_j1_i1_j1, R_REQ_j1_i1_j1](s(i1,j1),nil, nil)
||| ...|||
FIFO_ik_jk[REQ_ik_ik_jk, R_REQ_ik_ik_jk,

REQ_jk_ik_jk, R_REQ_jk_ik_jk](s(ik,jk), nil nil)
)

Figure 13. General LOTOS expression

converters (size or protocol type) may have an influence on
the global system behaviour.

At first let us consider the size converters. When a given
initiator communicates with a target with different bus size,
a converter is introduced in order to split packets or merge
packets. But the overall operation is still atomic on the
bus, and especially for these two processes. Thus, the size
converters are not generated in the LOTOS abstract model,
but rather all the processes communicating directly with the
greatest bus size on single rendez-vous.

Secondly, the protocol type 2 and 3 have different be-
haviour :

� type 2 protocol preserves the order of requests and re-
sponses. One constraint is that, when communicating
with a given target, an initiator cannot send a request to
a new target until it has received all the responses from
the current target. The unresponded requests are called
“pending requests”, and this constraint is controlled by
a pending request controller ;

� a given type 2 target is assumed to send the responses
in the same order as the requests arrival order ;

� in type 3 protocol, the order of responses may not be
guaranteed, and an initiator can communicate with any
target, even if it has not received all the responses from
a previous one ;

Two nodes may be of different protocol types, type 2 and
type 3 for instance, and then a type converter is used :

� a converter from type 2 to type 3 has to transform the
type 2 request packets by adding a “tid”, and reorder

(by memorization) the type 3 responses to generate the
responses for the type 2 initiator ;

� a type 3 to type 2 converter consists in deleting the
tid (ie transaction identifier) of type 3 requests and
regenerating thetid on the type 2 responses (coming
in order) for the type 3 initiator.

In order to model the behaviour of the system with re-
spect to these properties, the generated LOTOS model has
the following additional properties :

� a type 2 initiator process is completed with a pend-
ing request controller (PRC) LOTOS process, syn-
chronized on all its gates. Thus in the node, the re-
quests and responses are performed on a rendez-vous
between 3 processes (initiator/target/pending request
controller). The PRC process just counts the requests
and responses for a given target, and allow or not the
initiator to communicate with a new target ;

� in a given
� �

type 2 node, the source internode buffers
(for incoming requests from node

��
), are also con-

sidered as initiators and, thus, synchronized with their
own PRC ;

� in the same way, a type 3 to type 2 converter is consid-
ered as an initiator in the type 2 node and, thus, syn-
chronized with its own PRC ;

� we have modeled a type 2 to type 3 converter, param-
eterized by the size of the FIFOs, and it replaces an
internode FIFO presented in the general STBus case ;

� a type 3 to type 2 converter is modeled by a specific
process.

5.3 Pending request controller for type 2 protocol

Let us consider a node
��

with � �� initiators, and�� ���
the destination nodes and�� ��� the source nodes. Each ini-
tiator � �� ��� is synchronized on all its gates with its own PRC
process. An initiator PRC of node

� �
is namedPRC_I_i,

the gates of the process depending on the node. Each in-
coming FIFO,FIFO_j_i from node

��
to the current

node
� �

, is synchronized on its gatesREQ_D andR_REQ_D
with its own PRC. A FIFO PRC is namedPRC_FIFO.

The profile of thePRC_I_i process of node
��

is de-
fined by :

� the gates REQ_i, R_REQ_i and the gates
REQ_i_i_j andR_REQ_i_i_j, � � � �� ��� ;

� and the parametersinit, initiator number in the
node,node the node number,last_target and
last_node the identification of the last or cur-
rent target with which the initiator communicates and

nb_pending, the number of pending requests with
the current target.

The LOTOS model of the interconnection including
these features is the one of figure 13 in which some FIFOs
are replaced by protocole type converters and :

� the type 2 protocol initiator instances are replaced by
the expression
(I_i_k[GATES] ||PRC_I_i[GATES](k,i,0,00))

� all the buffers (or converters) instances, from a node��
to a node

��
of type 2, are replaced by the follow-

ing expression :
PRC_FIFO[REQ_j_i_j, R_REQ_j_i_j](0,0)

5.4 LOTOS code generation tool

The input of the generator, is a structural description of
the interconnect consisting in : the nodes identification, for
each node, it protocole type, the identification of the initia-
tors and targets, for each initiator or target, and all possible
internode communications (from/to), the size of the associ-
ated buffer. The generator builds the LOTOS expression in-
stantiating initiator and target processes. Buffers, convert-
ers and PRC are instances of generic predefined LOTOS
processes.

6 Conclusion and perspectives

The LOTOS code generator has been implemented in
C++. The generator as well as the different LOTOS mod-
els (internode BUFFER, type converters, pending request
controllers) have been validated by analyzing (by mean of
simulation and temporal logic formulæ evaluation) the LTS
generated for different kinds of systems (STBus intercon-
nect) and different arbitrary LOTOS processes for the ini-
tiators and targets. This part has to be completed by taking
into account the type 1 protocol in which request and re-
sponse are performed atomically on the bus. As LOTOS
semantic does not allow to build a response depending on
a request in one single rendez-vous, one solution consists
in perfoming 2 successive actions non interleaved with any
other action by means of an non-interleaving process [1].

In the same way this work treats SoC bus, it is necessary
to take into account the RT-OS properties (scheduling strat-
egy, inter-task communication mechanisms) for the pro-
cesses implemented in software on a same microprocessor.
One can refer to SystemC Version 3 for instance. The de-
scribed approach can also easily be applied on other SoC
buses such as AMBA Bus for instance.

In order to generate automatically the LOTOS model of
a complete system future work will be conduced on the pro-
cesses behaviour. At first, defining a behavioural translator

from a design description language (SystemC) into a LO-
TOS process. Then, in order to avoid the state space explo-
sion, we will need to apply abstraction on data computing
and on control domains. For this, we start a study consist-
ing in merging static code analysis on SystemC (by means
of abstract interpretation, for instance) with the system tem-
poral model checker. On one hand, the results of static
analysis should conduce to automatically abstract data and
control domains. This is an important step as we will con-
sider compositional LTS generation in which, for a given
process, the entry domain has to be limited by means of in-
terface process [3]. Furthermore, the state space can also
be reduced by limiting the interleaving of actions from in-
dependent subsystems or processes. This has been studied
and defined as partial ordering [9].

A first step has been made in the aim the generate auto-
matically LOTOS code, temporal formulæ for a given SoC.
By completing this work it would be possible to check auto-
matically a given SoC by a design engineering, with much
concepts being masked to him.

References

[1] F. Baray.Contribution to the Integration of Model Checking
in the Codesign Process of Systems (in french). PhD thesis,
University Blaise Pascal, Clermont-Ferrand II, FRANCE,
July 2001.

[2] F. Baray and P. Wodey. Verification in the Codesign Pro-
cess by Means of LOTOS based Model-Checking. In5th
International Workshop on Formal Methods for Industrial
Critical Systems (FMICS), April 2000.

[3] H. Garavel and F. Lang. Svl: a scripting language for com-
positional verification. In M. Kim, B. Chin, S. Kang, and
D. Lee, editors,Proceedings of the 21st IFIP WG 6.1 Inter-
national Conference on Formal Techniques for Networked
and Distributed Systems FORTE’2001 (Cheju Island, Ko-
rea), pages 377–392. IFIP, Kluwer Academic Publishers,
Aug. 2001. Full version available as INRIA Research Re-
port RR-4223.

[4] H. Garavel, F. Lang, and R. Mateescu. An overview of cadp
2001. Rapport technique RT 254, INRIA, Dec. 2001.

[5] T. Grötker, S. Lian, G. Martin, and S. Swan.System Design
with SystemC. Kluver Academic Publisher, 2002.

[6] T. Ismail and A. Jerraya. Synthesis Steps and Design Models
for Codesign.IEEE Computer, February 1995.

[7] ISO-8807. LOTOS, A Formal Description Technique Based
on the Temporal Ordering of ObservationalBehaviour.1988.

[8] R. Keller. Formal verification of parallel programs.Com-
munications of the ACM, 19, 1976.

[9] D. Peled. Combining partial order reduction with on-the-fly
model-checking.In Dill , 19:371–384, 1997.

[10] SDL. CCITT. Recommendation Z.100: Specification and
Description Language, volume X.1-X.5, 1988.

[11] P. Wodey and F. Baray. Linking Codesign and verification
by means of E-LOTOS FDT. In B. Werber, editor,Euromi-
cro, 99 Digital Systems Design. IEEE Computer Society,
September 1999.

