
Proving Linearizability via Branching Bisimulation∗

Xiaoxiao Yang1,2, Joost-Pieter Katoen2, Huimin Lin1, and Hao Wu2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

2 Software Modeling and Verification, RWTH Aachen University, Germany

Abstract
Linearizability and progress properties are key correctness notions for concurrent objects. How-
ever, model checking linearizability has suffered from the PSPACE-hardness of the trace inclusion
problem. This paper proposes to exploit branching bisimulation, a fundamental semantic equival-
ence relation developed for process algebras which can be computed efficiently, in checking these
properties. A quotient construction is provided which results in huge state space reductions. We
confirm the advantages of the proposed approach on more than a dozen benchmark problems.

1998 ACM Subject Classification please refer to http://www.acm.org/about/class/ccs98-html

Keywords and phrases Linearizability, Concurrent Data Structures, Branching Bisimulation,
Verification

Digital Object Identifier 10.4230/LIPIcs...13

1 Introduction

A concurrent data structure, or a concurrent object, provides a set of methods that allow
client threads to simultaneously access and manipulate a shared object. Linearizablity [17] is
a widely accepted correctness criterion for implementations of concurrent objects. Intuit-
ively, an implementation of a concurrent object is linearizable with respect to a sequential
specification if every method call appears “to take effect”, i.e. changes the state of the
object, instantaneously at some time point between its invocation and its response, behaving
as defined by the specification. Such a time point, which corresponds to the execution
of some program statement, is referred to as the linearization point of the method call.
The difficulties (and confusions) encountered in verifying linearizability for concurrent data
structures stemmed from the fact that the linearization points of different calls of the same
method may correspond to different statements in the method’s, or even other method’s,
program text.

The subtlety of linearization points can be illustrated using the heavily studied Herlihy
and Wing queue algorithm [17], shown in Figure 1. It has two methods, Enq (enqueue)
and Deq (dequeue). The queue is implemented by an array AR of unbounded length, with
back as the index of the next unused slot in AR. Each element of AR is initialized to a
special value null, and back is initialized to 1. An Enq execution contains two steps, it first
gets a local copy i of back and increments back, then stores the new value at AR[i]. A Deq
execution may take several steps to find a non-null element to be dequeued, by visiting AR
in ascending order, starting from index 1 and ending at back − 1. At each slot i, the current
element AR[i] is swapped with null. If Deq finds a non-null value, it will return that value,
otherwise it tries the next slot. If no element is found in the entire array, Deq restarts the

∗ This work was supported by NSFC 61100063 and Alexander von Humboldt.

© Xiaoxiao Yang, Joost-Pieter Katoen, Huimin Lin, Hao Wu;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

60
9.

07
54

6v
5

 [
cs

.P
L

]
 3

0
Se

p
20

16

http://www.acm.org/about/class/ccs98-html
http://dx.doi.org/10.4230/LIPIcs...13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Proving Linearizability via Branching Bisimulation

search. The Enq and Deq methods can be executed concurrently by any number of client
threads. Every execution step is atomic.
E0 Enq(x:T) {
E1 (i, back):=(back , back +1); /* increment */
E2 AR[i]:=x; /* store */
E3 return
E4 }

D0 Deq () {
D1 while true do {
D2 range := back;
D3 for (0 < i < range) do {
D4 (x, AR[i]):=(AR[i], null); /* swap */
D5 if (x != null) then return (x)
D6 } } }

Figure 1 Herlihy and Wing queue.

t2 .D eq

t1 .En q (a)

t3.E nq (b)
t1.E 1 t3.E1 t2.D2

t3.E2

t1.E2

t2.D4 t3.E2 t2 .ret(a) t3.re t

t1.E2

t3.E2

tt t

t2.D4
t t t

t t t

t

ttt

t

t
t3.E2 t1.E2

t2.D4 t1.E2

t2.D4

t3. ret

t2. ret(a)

t2.r et(b)

t3.ret

t1.re t

t1.re t

t1.re t

s

q1 q2 q3 q4 q5 q6

s1 s2 s3 s4 s5 s6 s7

r r1 r2 r3

r 7 r 8 r9 r10 r11

s0

t2.D4

t2.D4

t2.D4

t2.D2

t2.ret(b) t3. ret

r4 r5 r6
s8

t2.D4
t

t2.D2

t

t2.D4
t

t3.E2
t

t1 .ret

t

t

Figure 2 A part of the transition system for the Herlihy and Wing queue.

The behavior of a concurrent object system can be modeled as a labeled transition system.
For the HW-queue example, consider a system of three client threads t1, t2 and t3, with t1
executing Enq(a), t2 executing Deq and t3 executing Enq(b) concurrently. A part of the
transition graph generated from the system is depicted in Figure 2, where s0 is the initial
state, and the invocation events of the Enq and Deq methods (i.e., statements E0 and D0) of
a thread t are denoted by t.Enq(v) and t.Deq(), respectively. All internal computation steps
of a method call are regarded as invisible, and labeled with τ . For the sake of readability, each
τ transition is also marked with the corresponding line number (Ei or Di) in the program
text. A sequence of τ transitions will be denoted by =⇒. The states marked with ◦ have
some additional transitions which are irrelevant to the discussions below and hence omitted.

Some linearization points are colored red in the figure. For instance, τ(t1.E1) is the
linearization point for the call of Enq(a) by t1 (starting at s0 and ending at r8) on the
execution trace from s0 to r11, since dequeuer t2 first reads AR[1] then returns t2.ret(a).
However, it is not a linearization point on the trace from s0 to r6, since the dequeuer t2 first
meets the non-null slot at AR[2] and returns t2.ret(b). Instead, the linearization point of
the call of the same method by t1 on the latter trace is r2

τ(t1.E2)−−−−−→ r3.
An interesting linearization point is s τ(t3.E2)−−−−−→ r of the call of Enq(b) by thread t3. It

X. Yang, J. -P. Katoen, H. Lin and H. Wu 13:3

stores b at AR[2] successfully, changing the empty queue to the queue with just one element
b, so that the dequeuer t2 eventually returns b (as witnessed by the r4

t2.ret(b)−−−−−→ r5 transition)
on the trace from s0 to r6. It is not difficult to see that s and r have the same set of traces.
First, since s τ−−→ r and τ transitions are abstracted away, every trace of r is also a trace
of s. The other direction of inclusion can be seen by observing, for instance, that the two
traces from s below

s =⇒ s2
t1.ret−−−−→ s3 =⇒ q4

t2.ret(a)−−−−−−→ q5
t3.ret−−−−→ q6 and

s =⇒ s2
t1.ret−−−−→ s3 =⇒ s5

t2.ret(b)−−−−−→ s6
t3.ret−−−−→ s7

can be matched, respectively, by the following traces from r

r =⇒ r7
t1.ret−−−−→ r8 −−→ r9

t2.ret(a)−−−−−−→ r10
t3.ret−−−−→ r11 and

r =⇒ r3
t1.ret−−−−→ r4

t2.ret(b)−−−−−→ r5
t3.ret−−−−→ r6

This is a well-known phenomenon in concurrency: although s and r have the same set
of traces, their behaviors are different because the execution from s branches at s3, after
performing t1.ret, while the execution from r branches at r, before performing t1.ret. Thus
branching potentials play a vital role in determining linearization points.

Linearizability can be verified by trace inclusion [21], which is infeasible in practice
because checking trace inclusion is PSPACE-hard. The purpose of this paper is to propose a
state space reduction technique based on quotient construction to alleviate the problem. To
this end we need to find a suitable equivalence relation satisfying the following conditions: (1)
it should have an efficient algorithm, (2) the resulted quotient systems should be substantially
smaller than the original ones, and (3) it should preserve linearization points. Conditions (1)
and (2) are obvious. Condition (3) is also important because verification will be carried out
on the quotient systems, thus the diagnoses generated by verification tools will not be of
much help if the information on linearization points got lost in the quotient construction.

As mentioned before, a linearization point is an internal computation step of a method
call that “takes effect” to change the object’s state. A common understanding is that an
object owns a shared data structure, and changing its state means changing the value stored
in the data structure. In the HW-queue algorithm, a queue is represented by two pieces of
data: an array AR and an index back. An Enq method call modifies them in two separate
steps E1 and E2, which can be interleaved with the executions of either Enq or Deq methods
by other threads. Which of the two steps actually “takes effect” to change the queue’s state
can only be determined by the values later returned by the calls of Deq, as manifested by
the visible actions ret(a) or ret(b) in the example discussed above. This leads us to take an
observational approach. We need to distinguish between two kinds of τ -steps: those change
the overall state of the transition system, and those do not. Linearization points belong to the
former. Such distinction is captured by a well-established notion of behavioral equivalence in
concurrency theory – branching bisimulation, which preserves computation together with the
branching potentials of all intermediate states that are passed through. As a consequence,
two branching bisimilar states have the same observational behavior along not only ordinary
traces but also traces at any higher levels [31]. Moreover, branching bisimulation can be
computed efficiently [12, 13]. We shall prove in Section 3.2 that branching bisimulation
quotients indeed preserve linearizability (Theorems 9 and 10).

These results provide us with a powerful tool for verifying linearizability, with several
advantages: (1) We can use existing bisimulation checking tools (there are many) to prove
linearizability; (2) We can check linearizability on branching bisimulation quotients, resulting
in huge state space reductions; (3) Our approach does not rely on prior identification of

13:4 Proving Linearizability via Branching Bisimulation

linearization points; (4) We can verify progress properties in the same framework, using
divergence-sensitive branching bisimulation. Our approaches are summarized in Figure ??.

To test the effectiveness of our approaches, we have conducted a series of experiments on
more than a dozen concurrent data structures, using the existing proof toolbox CADP [10],
originally developed for concurrent systems. The results of our experiments demonstrate
that huge state space reductions were achieved due to quotient constructions. A new bug
violating lock-freedom was found and a known bug on linearizability was confirmed.

Organization Section 2 briefly reviews object systems and linearizability. Section 3
introduces branching bisimulation and defines the quotient construction. Section 4 presents
our approach to checking progress properties. Section 5 summarizes our experiments on
various benchmarks. Section 6 provides a comparison with related work. Section 7 concludes.

2 Object Systems and Linearizability

2.1 Object Systems

The behaviors of a concurrent object can be adequately described as a labeled transition
system. We assume there is a language for describing concurrent algorithms, and the language
is equipped with an operational semantics to generate labeled transition systems as defined
below, also called “object systems”, from textual descriptions. We will use the term “object
systems” to refer to either the transition systems or the program texts, depending on the
context.

To generate an object’s behaviour, we use the most general clients [11, 21], which
repeatedly invoke an object’s methods in any order and with all possible parameters. We
assume a fixed collection O of objects.

I Definition 1 (Labeled transition systems for concurrent objects). A labled transition system
∆ is a quadruple (S,−→,A, s0) where
• S is the set of states,
• A = {(t, call, o.m(n)), (t, ret(n′), o.m), (t, τ) | o ∈ O, t ∈ {1 . . . k}}, where k is the number

of threads, is the set of actions.
• −→ ⊆ S ×A× S is the transition relation,
• s0 ∈ S is the initial state.
We shall write s a−→ s′ to abbreviate (s, a, s′) ∈−→.

When analysing the behaviours of a concurrent object, we are interested in the interactions
(i.e., call and return) between the object and its clients, while the internal operations of
the object are considered invisible. Thus the visible actions of an object system are of
the following two forms: (t, call, o.m(n)) and (t, ret(n′), o.m), where t is a thread identifier.
(t, call, o.m(n)) indicates an invocation of the method m(n) of object o by thread t with the
parameter n, and (t, ret(n′), o.m) marks the returning of a call to the method m of o by t
with the return value n′. All other operations are regarded invisible and modeled by the
silent action τ .

We write s τ−→ s′ to mean s (t,τ)−−−→ s′ for some t. A path starting at a state s of an object
system is a finite or infinite sequence s a1−−→ s1

a2−−→ s2
a3−−→ · · · . A run is a path starting from

the initial state, which represents an entire computation of the object system. A trace of
state s is a sequence of visible actions obtained from a path of s by omitting states and
invisible actions, which describes the interactions of a client program with an object.

X. Yang, J. -P. Katoen, H. Lin and H. Wu 13:5

2.2 Linearizability
Linearizability is defined using histories. A history is a finite execution trace starting from
the initial state and consisting of call and return actions. Given an object system ∆, its
set of histories is denoted by H(∆). If H is a history and t a thread, then the projection
of H on t, written H|t, is called the subshitory of H on t. A history is sequential if (1) it
starts with a method call, (2) calls and returns alternate in the history, and (3) each return
matches immediately the preceding method call. A sequential history is legal if it respects
the sequential specification of the object. A call is pending if it is not followed by a matching
return. Let complete(H) denote the history obtained from H by deleting all pending calls.

An operation e in a history is a pair which consists of an invocation event (t, call, o.m(n))
and the matching response event (t, ret(n’), o.m). We shall use e.call and e.ret to denote,
respectively, the invocation and response events of an operation e. The operation ordering
in H can be formally described using an irreflexive partial order <H by requiring that
(e, e′) ∈ <H if e.ret precedes e′.call in H. Operations that are not related by <H are said to
be concurrent (or overlapping). If H is sequential then <H is a total order.

The key idea behind linearizability is to compare concurrent histories to sequential
histories. We define the linearizability relation between histories.

I Definition 2 (Linearizability relation between histories). H vlin S, read “H is linearizable
w.r.t. S”, if (1) S is sequential, (2) H|t = S|t for each thread t, and (3) <H ⊆ <S . ut

Thus H vlin S if S is a permutation of H preserving (1) the order of actions in each
thread, and (2) the non-overlapping method calls in H. We use H(Γ) to denote the set of all
histories of the sequential specification Γ.

I Definition 3 (Linearizability of object systems). An object system ∆ is linearizable w.r.t. a
sequential specification Γ, if ∀H1 ∈ H(∆). (∃S ∈ H(Γ). complete(H1) vlin S). ut

An object is linearizable if all its completed histories are linearizable w.r.t. legal sequential
histories. Figure 3 shows a linearizable history H of a queue object w.r.t. the legal sequential
history S and its thread subhistories.

1 (t1, call, q.Enq(a)) (t1, call, q.Enq(a)) (t1, call, q.Enq(a)) (t2, call, q.Enq(b))
2 (t2, call, q.Enq(b)) (t1, ret(), q.Enq) (t1, ret(), q.Enq) (t2, ret(), q.Enq)
3 (t1, ret(), q.Enq) (t2, call, q.Enq(b)) (t1, call, q.Deq)
4 (t2, ret(), q.Enq) (t2, ret(), q.Enq) (t1, ret(a), q.Deq)
5 (t1, call, q.Deq) (t1, call, q.Deq)
6 (t1, ret(a), q.Deq) (t1, ret(a), q.Deq)

H S H | t1 H | t2

Figure 3 Example for a linearizable history and its thread subhistories.

Linearizability is a local property, i.e., a system is linearizable iff each object is linearizable.
Without loss of generality, we consider one object at a time.

2.3 Linearizable Specification and Trace Refinement
Given a concrete object system ∆, we define its corresponding linearizable specification [11,
21, 20], denoted Θsp, by turning the body of each method in ∆ into a single atomic block.
Such a specification allows non-terminating method calls which may overlap each other.
Thus, any method with non-terminating and overlapping execution intervals in the concrete
implementation can be reproduced in the specification. A method execution in a linearizable
specification Θsp includes three main steps: the call action (t, call, o.m(n)), the internal action
τ , and the return action (t, ret(n), o.m). The internal action corresponds to the computation

13:6 Proving Linearizability via Branching Bisimulation

based on the sequential specification of the object. Each of the three actions is executed
atomically.

Linearizability can be casted as trace refinement [8, 21, 18]. Trace refinement is a subset
relationship between traces of two object systems, an implementation and a specification.
Let trace(∆) denote the set of all traces in ∆.

I Definition 4 (Refinement). Let ∆1 and ∆2 be two object systems. ∆1 refines ∆2, written
as ∆1 vtr ∆2, if and only if trace(∆1) ⊆ trace(∆2).

The following theorem shows that trace refinement exactly captures linearizability. A
proof of this result can be found in [21].

I Theorem 5. Let ∆ be an object system and Θsp the corresponding specification. All
histories of ∆ are linearizable if and only if ∆ vtr Θsp.

3 Branching Bisimulation for Concurrent Objects

3.1 Branching Bisimulation

Branching bisimulation [31] refines Milner’s weak bisimulation by requiring two related states
should preserve not only their own branching structure but also the branching potentials of
all intermediate states that are passed through.

I Definition 6. Let ∆ = (S,→,A, s0) be an object system. A symmetric relation R on S is
a branching bisimulation if for all (s1, s2) ∈ R the following holds:
1. if s1

a−−→ s′1 where a is a visible action, then there exists s′2 such that s2 ==⇒ a−−→ s′2 and
(s′1, s′2) ∈ R.

2. if s1
τ−−→ s′1, then either (s′1, s2) ∈ R, or there exist l and s′2 such that s2 ==⇒ l

τ−−→ s′2,
(s1, l) ∈ R and (s′1, s′2) ∈ R.

Let ≈def=
⋃
{R | R is a branching bisimulation}. Then ≈ is the largest branching bisimulation

and is an equivalence relation.

In the second clause of the above definition, for s2 ==⇒ l we only require (s1, l) ∈ R,
without referring to the states that are passed through in s2 ==⇒ l. The following Stuttering
Lemma, quoted from [31], shows that such omitting causes no problem.

I Lemma 7. If r τ−−→ r1
τ−−→ · · · τ−−→ rm

τ−−→ r′ is a path such that r ≈ s and r′ ≈ s, then
ri ≈ s for all i such that 1 ≤ i ≤ m.

Thus the second clause in Definition 6 can be expanded to:
2. if s1

τ−−→ s′1, then either (s′1, s2) ∈ R, or there exist l1, · · · , li, i ≥ 0, and s′2 such that
s2

τ−−→ l1
τ−−→ · · · τ−−→ li

τ−−→ s′2 and (s1, l1) ∈ R, · · · , (s1, li) ∈ R, (s′1, s′2) ∈ R.

In contrast, branching potentials of the intermediate states are overlooked in weak
bisimulation [24]. As a result, weak bisimulation fails to preserve linearization points. An
example showing this is deferred to Appendix A.

For finite state systems, branching bisimulation can be computed in polynomial time.
The algorithm proposed in [12] has time complexity O(|A|+ |S| × | −→ |). This result has
recently been improved to O(| −→ | × (log|Act|+ log|S|)) in [13].

X. Yang, J. -P. Katoen, H. Lin and H. Wu 13:7

3.2 Checking Linearizability via Branching Bisimulation Quotienting
Given an object system ∆ = (S,−−→,A, s0), for any s ∈ S, let [s]≈ be the equivalence class
of s under ≈, and S/≈ = {[s]≈ | s∈S} the set of the equivalence classes under ≈.

I Definition 8 (Quotient transition system). For an object system ∆ = (S,−−→,A, s0), the
quotient transition system ∆/≈ is defined as: ∆/≈ = (S/≈,−−→≈, Act, [s0]≈), where the
transition relation −−→≈ is generated by the following rules:

(1) s
α−−→ s′

[s]≈
α−−→≈ [s′]≈

(α 6= τ) (2) s
τ−−→ s′

[s]≈
τ−−→≈ [s′]≈

((s, s′) 6∈≈)

I Theorem 9. ∆/≈ preserves linearizability. That is, ∆ is linearizable if and only if ∆/≈
is linearizable.

Proof: Let Θsp be the corresponding specification of ∆. Then it is also the corresponding
specification of ∆/≈. From Definition 6, it is easy to see that trace(∆) = trace(∆/≈). Thus,
we have trace(∆) ⊆ trace(Θsp) iff trace(∆/≈) ⊆ trace(Θsp). By Definition 4, ∆ vtr Θsp iff
∆/≈ vtr Θsp. Further, by Theorem 5, it follows that ∆ is linearizable w.r.t. Θsp iff ∆/≈ is
linearizable w.r.t. Θsp. ut

I Theorem 10. An object system ∆ with the corresponding specification Θsp is linearizable
if and only if ∆/≈ vtr Θsp/≈.

Proof: By Theorems 5 and 9. ut

It is well-known that deciding trace inclusion is PSPACE-complete. Hence verifying
linearizability in an automated manner by directly resorting to Definition 3 is infeasible in
practice. Since an object system contains a lot of invisible transitions, among them only
a few are responsible for changing the system’s states, and non-blocking synchronization
usually generate a large number of interleavings, its branching bisimulation quotient is usually
much smaller than the object system itself. Furthermore, branching bisimulation quotients
can be computed efficiently. Thus Theorem 10 provides us with a practical solution to the
linearizability verification problem:

Given an object system ∆ and a specification Θsp, first compute their branching
bisimulation quotients ∆/≈ and Θsp/≈, then check ∆/≈ vtr Θsp/≈.

In practice, this approach results in huge reductions of state spaces. Details of our
experiments are reported in Section 5.

4 Progress Properties

We exploit divergence-sensitive branching bisimulation between a concrete and an abstract
object to verify progress properties of concurrent objects. The main result that we will
establish is that for divergence-sensitive branching bisimilar abstract and concrete objects, it
suffices to check progress properties on the abstract objects.

Lock-freedom and wait-freedom are the most commonly used progress properties in
non-blocking concurrency [16]. Informally, a method is wait-free if it satisfies that each
thread finishes a method call in a finite number of steps, while lock-freedom guarantees that
some thread can complete a started method call in a finite number of steps [16]. Their formal
definitions specified using next-free LTL are given in [25, 7].

A linearizable specification is an atomic abstraction of concurrent objects. It is not hard
to see that the object system for the linearizable specification satisfies the lock-free property.

13:8 Proving Linearizability via Branching Bisimulation

To obtain wait-free object systems, we need to enforce some fairness assumption on transition
systems to guarantee the fair scheduling of processes. The most common fairness properties
(such as strong and weak fairness) can all be expressed in next-free LTL.

I Lemma 11. The linearizable specification Θsp is lock-free.

Proof: Θsp consists of a single atomic block (see Section 2.3), of which the internal execution
corresponds to the computation of the sequential specification that by assumption is always
safe and terminating. Hence for any run of Θsp, there always exists one thread to complete
its method call in finite number of steps. ut

A pending call of a run is blocking if it requires to wait for other method call to complete.
Let us recall the Herlihy and Wing queue. When the queue is empty, the call of Deq is
blocking, as it will stay forever in a τ -loop (e.g., s τ−−→ s1 =⇒ s in Figure 2) that does not
perform any return action if no element is enqueued. Such behavior is called divergent. To
distinguish infinite series of internal transitions from finite ones, we treat divergence-sensitive
branching bisimulation [31].

I Definition 12 (Divergence sensitivity). Let ∆ = (S,−→,A, s0) be an object system and R
an equivalence relation on S.

A state s ∈ S is R-divergent if there exists an infinite path s a1−−→ s1
a2−−→ s2 −−→ · · · such

that (s, sj) ∈ R for all j > 0.
R is divergence-sensitive if for all (s1, s2) ∈ R: s1 is divergent iff s2 is divergent.

I Definition 13 ([31]). States s1, s2 in object system ∆ are divergent-sensitive branching
bisimilar, denoted s1 ≈div s2, if there exists a divergence-sensitive branching bisimulation R
on ∆ such that (s1, s2) ∈ R.

This notion is lifted to object systems in the standard manner, i.e., object systems ∆1
and ∆2 are divergent-sensitive branching bisimilar whenever their initial states are related
by ≈div in the disjoint union of ∆1 and ∆2.

Divergence-sensitive branching bisimulation implies (next-free) LTL and CTL∗-equivalen-
ce [12]. This also holds for countably infinite transition systems that are finitely branching.
Thus, O ≈div Θ implies the preservation of all next-free LTL and CTL∗-formulas. Since
the lock-freedom (and other progress properties [7]) can be formulated in next-free LTL, for
abstract object Θ and concrete object O, it can be preserved by the relation O ≈div Θ.

For a concrete object its abstract object is a coarser-grained concurrent implementation.
If an appropriate abstract object for a concrete algorithm can be provided, one can check
progress properties on the (usually much simpler) abstract objects. For finite-state abstract
programs, off-the-shelf model checking tools can be readily applied to check their properties.

I Theorem 14. For the abstract object Θ and concrete object O, if O ≈div Θ, then Θ is
lock-free iff O is lock-free.

The process of constructing an abstract object is often manually and the discussion about
it is outside the scope of the paper. However, for objects with static linearization points such
as Treiber stack [27] and stacks with hazard pointers [22], since there is only one linearization
point for each method, which behaves in accordance with the behaviour of atomic block of
the linearizable specification, the specification can be directly as the abstract object. Thus,
we can provide an easier way to verify linearizability and lock-free property together for this
kind of object.

X. Yang, J. -P. Katoen, H. Lin and H. Wu 13:9

I Corollary 15. Let O be an object with static linearization points and Θsp its specification.
If O ≈div Θsp, then O is lock-free and linearizable.

Proof: For lock-free property, it is straightforward by Lemma 11 and Theorem 14. For
linearizability, since O ≈div Θsp, it follows trace(O) = trace(Θsp). By Definition 4, O vtr Θsp.
Thus, by Theorem 5, O is linearizable. ut

5 Experiments

To illustrate the effectiveness and efficiency of our techniques for proving linearizability as
well as progress properties, we conduct experiments on a number of practical concurrent
algorithms, including 4 queues (3 lock-free, 1 lock-based), 4 lists (1 lock-free, 3 lock-based),
3 (lock-free) stacks and 2 extended CAS (compare-and-swap) operations, some of which
are used in the java.util.concurrent package. We employ the Construction and Analysis of
Distributed Processes (CADP) [10] toolbox1 for these experiments. The case studies are
summarized in Table 1.

Table 1 Case studies and overview of their verification.

Case study Linearizability & Lock-freedom Non-fixed LPs branch bisim./trace ref. Java Pkg
1. Treiber stack [27] X X
2. Treiber stack+HP [22] X X
3. Treiber stack+HP [9] ××× Lock-freedom ×××
4. MS queue [23] X X X X
5. DGLM queue [6] X X X
6. CCAS [28] X X X
7. RDCSS [14] X X X

Case study Linearizability Non-fixed LPs branch bisim./trace ref. Java Pkg
8. Fine-grained syn. list [16] X X
9-1. HM lock-free list [16] ××× Linearizability X ×××
9-2. HM lock-free list (revised) X X X X
10. Optimistic list [16] X X X
11. Heller et al. lazy list [15] X X
12. MS two-lock queue [23] X X
13. Herlihy-Wing queue [17] X X X

5.1 Proving linearizability and progress properties

Linearizability has been proven by checking trace refinement between two branching bisimilar
quotients—the concrete object and its specification, cf. Figure ?? (a) and Theorem 10. Our
technique does not rely on linearization points and can check all algorithms covered in [18].
As indicated in Table 1, all but one data structure in the case study are linearizable.

Progress properties were checked by checking divergence-sensitive branching bisimilarity
between an abstract and concrete object, cf. Figure ?? (b) and Theorem 14 and Corollary 15.
We successfully verified lock-freedom for 6 algorithms. For objects with non-fixed linearization
points, abstract objects were constructed for MS queue, DGLM queue, CCAS and RDCSS. For
objects with static linearization points, no abstract objects need to be built (see Corollary 15).
Our technique can verify lock-freedom of complex algorithms that are not included in [19],
such as CCAS, RDCSS and the Trebier stack with hazard pointers (a garbage collection
mechanism). The details of verification results can be found in [33].

1 http://cadp.inria.fr/

13:10 Proving Linearizability via Branching Bisimulation

5.2 Automated bug hunting

Our techniques are fully automated (for finite-state systems) and rely on efficient existing
algorithms. In contrast to proof techniques [29, 30, 18, 19, 3] for linearizabilty and progress,
our approach is able to generate counterexamples in an automated manner. As indicated in
Table 1, we found a single linearizability violation and a lock-freedom violation.
1. We found a—to our knowledge so far unknown-violation of lock-freedom in the revised

Treiber stack [9]. This revised version avoids the ABA problem at the expense of violating
the wait-free property of hazard pointers in the original algorithm [22]. We found this
bug by an automatically generated counterexample of divergence-sensitive branching
bisimilarity checking by CADP with just two concurrent threads. The error-path ends in
a self-loop in which one thread keeps reading the same hazard pointer value of another
thread without making any progress.

2. Our experiments confirmed a (known) bug in the HM lock-free list [16] which was
amended in the online errata of [16]. The counterexample is generated by the trace
inclusion checking on the quotients of the concrete versus the specification. It consecutively
removes the same item twice, which violates the specification of being a list.

5.3 Efficiency and state-space savings

Checking branching bisimilarity as well as computing branching bisimulation quotients are
efficient; they both can be done in polynomial time. This stands in contrast to directly
checking trace refinement—the main technique so far for model checking linearizability—
which is PSPACE-complete. The result of our experiments show that checking lock-freedom
and linearizability for models with millions of states is practically feasible.

102 103 104 105 106
102

103

104

105

106

107

108

109

1010

1X

10X

100X

1000X

10000X

 MS lock-free Queue

 DGLM Queue

 HW Queue

102 103 104 105 106
102

103

104

105

106

107

108

1X

10X

100X

1000X

Lazy List

Optimistic List

FGS List

HM List

102 103 104 105 106
102

103

104

105

106

107

108

109

1X

10X

100X

1000X

10000X

Treiber Stack

Treiber Stack + HP

RDCSS

CCAS

Figure 4 State-space reduction using ≈-quotienting.

All experiments run on a server which is equipped with a 4×12-core AMD CPU @ 2.1
GHz and 192 GB memory under 64-bit Debian 7.6. Figure 4 shows the state-space savings
for 11 algorithms (for two threads invoking methods for 2-10 times). Note that both the x-
and the y-axis are in log-scale; for the sake of clarity we have indicated the lines with state
space reduction factor 1 up to 10000 explicitly. Branching bisimulation quotient construction
has yielded state-space savings of up to four orders of magnitude in the best cases, and to
two to three orders for most cases. And in general, for the non-blocking implementation,
the larger the system the higher the state space reduction factor. The largest reductions
were obtained for the Treiber stack with hazard pointers (Treiber stack+HP) and the MS
lock-free queue yielding a quotient with 0.01% and 0.02% of the size of the concrete objects,
respectively. Verifying linearizability directly on the concrete state space would be practically
infeasible.

X. Yang, J. -P. Katoen, H. Lin and H. Wu 13:11

6 Related Work

Linearizability has been intensively investigated in the literature. A comparison with all
works goes outside the scope of this paper; instead, we focus on the closest related works.

A plethora of proof-based techniques has been developed for verifying linearizability. Most
are based on rely-guarantee reasoning [29, 30, 18], or establishing simulation relations [3, 4, 26].
These techniques often involve identifying linearization points which is a manual non-trivial
task. Of the more recent works, Liang et al. [18] propose a program logic tailored to rely-
guarantee reasoning to verify complex algorithms. This method is applicable to a wide
range of popular non-blocking algorithms but is restricted to certain types of linearization
points. Challenging algorithms such as the Herlihy-Wing queue ([17] and [5]) fall outside
this method. Our techniques do not rely on identifying linearization points, and are aimed
to exploit established notions from concurrency theory.

Model checking methods to verify linearizability have been proposed in e.g., [21, 2, 32, 1].
Liu et al. [21] formalize linearizability as trace refinement and use partial-order and symmetry
reduction techniques to alleviate the state explosion problem. Their experiments are limited
to simple concurrent data structures such as counters and registers, and their technique is
not applicable to checking progress properties. Cerny et al. [2] propose method automata
to verify linearizability of concurrent linked-list implementations, which is restricted to two
concurrent threads. An experience report with the model checker SPIN [32] introduces
an automated procedure for verifying linearizability, but the method relies on manually
annotated linearization points.

For the verification of progress properties, [11, 19, 20] recently propose refinement tech-
niques with termination preservation. These techniques are limited to checking lock-freedom
of some non-blocking algorithms (e.g., Treiber stack, MS and DGLM queues). Neither more
complex non-blocking algorithms nor other progress properties are discussed. Our approach
can check a large class of progress properties—in fact all properties expressible in CTL∗
(containing LTL) without next. Our experiments treat 7 non-blocking algorithms and found a
lock-free property violation in the revised stack [9]. Some formulations of progress properties
using next-free LTL are discussed in [25, 7].

7 Conclusion

This paper proposed to exploit branching bisimulation (denoted ≈) — a well-established
notion in the field of concurrency theory — for proving linearizability and progress properties
of concurrent data structures. A concurrent object O is linearizable w.r.t. a linearizable
specification Θsp iff their quotients under ≈ are in a trace refinement relation. Unlike
competitive techniques, this result is independent of the type of linearization points. If
the abstract and concrete object are divergence-sensitive branching bisimilar, then progress
properties of the — typically much smaller and simpler — abstract object carry over to
the concrete object. This entails that progress properties such as lock- and wait-freedom
(in fact all progress properties that can be expressed in the next-free fragment of CTL∗)
can be checked on the abstract program. Our approaches can be fully automated for finite-
state systems. We have conducted experiments on 13 popular concurrent data structures
yielding promising results. In particular, the fact that counterexamples can be obtained in
an automated manner is believed to be a useful asset. Our experiments confirmed a known
linearizability bug and revealed a new lock-free property violation.

Acknowledgement We thank the CADP support team for their helps and patience during

13:12 Proving Linearizability via Branching Bisimulation

the experiments.

References
1 Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. Line-up: A Com-

plete and Automatic Linearizability Checker. In PLDI 2010, pages 330–340. ACM, 2010.
2 Pavol Cerný, Arjun Radhakrishna, Damien Zufferey, Swarat Chaudhuri, and Rajeev Alur.

Model Checking of Linearizability of Concurrent List Implementations. In CAV 2010, LNCS
vol.6174, pages 465–479. Springer, 2010.

3 Robert Colvin, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal Verification of
a Lazy Concurrent List-Based Set Algorithm. In CAV 2006, LNCS vol.4144, pages 475–488.
Springer, 2006.

4 John Derrick, Gerhard Schellhorn, and Heike Wehrheim. Verifying Linearisability with
Potential Linearisation Points. In FM 2011, LNCS vol.6664, pages 323–337. Springer,
2011.

5 Mike Dodds, Andreas Haas, and Christoph M. Kirsch. A scalable, correct time-stamped
stack. In POPL 2015, pages 233–246, 2015.

6 Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal Verification
of a Practical Lock-Free Queue Algorithm. In FORTE 2004, LNCS vol.3235, pages 97–114.
Springer, 2004.

7 Brijesh Dongol. Formalising Progress Properties of Non-Blocking Programs. In ICFEM
2006, LNCS vol.4260, pages 284–303. Springer, 2006.

8 Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for
Concurrent Objects. Theor. Comput. Sci., 411(51-52):4379–4398, 2010.

9 Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. Reasoning about Optimistic
Concurrency Using a Program Logic for History. In CONCUR 2010, LNCS vol.6269, pages
388–402. Springer, 2010.

10 Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011: a
toolbox for the construction and analysis of distributed processes. STTT, 15(2):89–107,
2013.

11 Alexey Gotsman and Hongseok Yang. Liveness-Preserving Atomicity Abstraction. In IC-
ALP 2011, LNCS vol.6756, pages 453–465. Springer, 2011.

12 Jan Friso Groote and Frits W. Vaandrager. An Efficient Algorithm for Branching Bisimula-
tion and Stuttering Equivalence. In ICALP 1990, LNCS vol.443, pages 626–638. Springer,
1990.

13 Jan Friso Groote and Anton Wijs. An o(m\log n) algorithm for stuttering equivalence and
branching bisimulation. In TACAS 2016, pages 607–624, 2016.

14 Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A Practical Multi-Word Compare-and-
Swap Operation. In DISC 2002, LNCS vol.2508, pages 265–279. Springer, 2002.

15 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer III, and
Nir Shavit. A Lazy Concurrent List-Based Set Algorithm. Parallel Processing Letters,
17(4):411–424, 2007.

16 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

17 Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for
Concurrent Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

18 Hongjin Liang and Xinyu Feng. Modular Verification of Linearizability with Non-Fixed
Linearization points. In PLDI 2013, pages 459–470. ACM, 2013.

19 Hongjin Liang, Xinyu Feng, and Zhong Shao. Compositional Verification of Termination-
Preserving Refinement of Concurrent Programs. In CSL-LICS 2014, page 65. ACM, 2014.

X. Yang, J. -P. Katoen, H. Lin and H. Wu 13:13

20 Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao. Characterizing Progress
Properties of Concurrent Objects via Contextual Refinements. In CONCUR 2013, LNCS
vol.8052, pages 227–241. Springer, 2013.

21 Yang Liu, Wei Chen, Yanhong A. Liu, Jun Sun, Shao Jie Zhang, and Jin Song Dong.
Verifying Linearizability via Optimized Refinement Checking. IEEE Trans. Software Eng.,
39(7):1018–1039, 2013.

22 Maged M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.
IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, 2004.

23 Maged M. Michael and Michael L. Scott. Simple, Fast, and Practical Non-Blocking and
Blocking Concurrent Queue Algorithms. In PODC 1996, pages 267–275, 1996.

24 Robin Milner. Communication and Concurrency. PHI Series in computer science. Prentice
Hall, 1989.

25 Erez Petrank, Madanlal Musuvathi, and Bjarne Steensgaard. Progress Guarantee for Par-
allel Programs via Bounded Lock-Freedom. In PLDI 2009, pages 144–154. ACM, 2009.

26 Gerhard Schellhorn, Heike Wehrheim, and John Derrick. How to Prove Algorithms Linear-
isable. In CAV 2012, pages 243–259, 2012.

27 R.K. Treiber. Systems Programming: Coping with Parallelism. Research Report RJ 5118.
IBM Almaden Research Center, 1986.

28 Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer.
Logical Relations for Fine-Grained Concurrency. In POPL 2013, pages 343–356. ACM,
2013.

29 Viktor Vafeiadis. Modular Fine-Grained Concurrency Verification. Technical Report
UCAM-CL-TR-726, University of Cambridge, Computer Laboratory, July 2008.

30 Viktor Vafeiadis. Automatically Proving Linearizability. In CAV 2010, LNCS vol.6174,
pages 450–464. Springer, 2010.

31 Rob J. van Glabbeek and W. P. Weijland. Branching Time and Abstraction in Bisimulation
Semantics. J. ACM, 43(3):555–600, 1996.

32 Martin T. Vechev, Eran Yahav, and Greta Yorsh. Experience with Model Checking Lin-
earizability. In SPIN 2009, LNCS vol.5578, pages 261–278. Springer, 2009.

33 Xiaoxiao Yang, Joost-Pieter Katoen, Huimin Lin, and Hao Wu. Proving linearizability via
branching bisimulation (experimental report). URL: https://moves.rwth-aachen.de/
wp-content/uploads/concur_2016_sub14_appendix.pdf.

https://moves.rwth-aachen.de/wp-content/uploads/concur_2016_sub14_appendix.pdf
https://moves.rwth-aachen.de/wp-content/uploads/concur_2016_sub14_appendix.pdf

13:14 Proving Linearizability via Branching Bisimulation

A A Discussion on Weak Bisimulation

Weak bisimulation, ≈w, is obtained by replacing the second clause of Definition 6 with:

2. if s1
τ−−→ s′1, then either (s′1, s2) ∈ R, or there exists s′2 such that s2 ==⇒ τ−−→ s′2 and

(s′1, s′2) ∈ R.
Compared with branching bisimulation, weak bisimulation does not require the interme-

diate states passed through to be matched. We present an example showing that, because of
this, weak bisimulation failed to preserve linearization points.

The example is Michael-Scott lock-free queue (MS queue) [23], shown in Figure 5. The
queue is implemented by a linked-list, where Head and Tail refer to the first and the last
node respectively. It provides two methods: (1) enq(v), which inserts an element in the end
of the queue; and (2) deq, which removes the first element in the queue if there is one, and
returns EMPTY otherwise.

1 enq(v) {
2 local x, t, s, b;
3 x := cons(v, null);
4 while (true) {
5 t := Tail; s := t.next;
6 if (t = Tail) {
7 if (s = null) {
8 b:=cas(&(t.next),s,x);
9 if (b) {
10 cas (& Tail ,t,x);
11 return ; }
12 }else cas (& Tail , t,s);
13 }
14 }
15}

16 deq () {
17 local h, t, s, v, b;
18 while (true) {
19 h := Head; t := Tail;
20 s := h.next;
21 if (h = Head)
22 if (h = t) {
23 if (s = null)
24 return EMPTY ;
25 cas (& Tail ,t,s);
26 }else {
27 v := s.val;
28 b:=cas(&Head,h,s);
29 if(b) return v; }
30 } }

Figure 5 The algorithm of MS lock-free queue.

S0

t1.r e t(1 0 0) t1 .re t(10 0) t1 .re t(10 0) t1 .re t(1 0 0)

t2 .re t(E mp ty)

t2.L 2 1 (tr u e)

t1 .L 2 8(tr ue)
t2 .L2 0 t2 .L 21 (tru e)

t2 .L 2 0

t1 .en q (1 0 0)

t1.ret

t2.L 2 8 (tr u e)

t2.ret100)

t1.e n q (1 0 0)

t1.ret

t2 .L2 1 (tr u e)

t2.ret(Empty)

t1 .en q (1 0 0)

t1.deq
t1.ret(100) t2.ret(100)

t1 .en q (10 0)

t1.ret

t2.ret(Empty)

t2 .r et(Emp ty)t2.L 2 1 (tr u e)

S1

S3 S4 S5

S6 S7 S8

q1
r1 r2

q2

t2 .re t(Emp ty)S2 The trace from initial state s0 to s1:

(t2, call, enq(200))

(t2, ret, enq)

(t2, call, deq)

(t2, ret(200), deq)

(t2, call, deq)

(t2, ret, deq(Empty))

(t2, call, deq)

(t2, ret, deq(Empty))

(t2, call, deq)

(t1, call, enq(100))

(t1, ret, enq)

(t1, call, deq)

t1.ret

t
t

t t

t t

t t t

t

t

t

t

t

S9

Figure 6 The (part) transition system for the MS lock-free queue.

Consider a system consisting of 2 client threads, each invoking methods enq(v) and deq
5 times. The transition system is partly depicted in Figure 6, where s0 is the initial state,

X. Yang, J. -P. Katoen, H. Lin and H. Wu 13:15

and � means ==⇒. The trace from s0 to s1 (shown in dotted line in the figure) is listed in
text form on the right.

The transition s1
τ(t1.L28)−−−−−−→ s3 corresponds to a successful execution of cas(Head, h, s)

removing an element from the queue, and is a linearization point of the call of deq by t1.
Checking weak bisimulation with the CADP tool, it returns s1 ≈w s3, along with it

s2 6≈w s4 and s2 ≈w s5. For branching bisimulation, the tool reports s1 6≈ s3, along with it
s2 6≈ s4 and s2 ≈ s5.

To explain the difference, consider, for instance, the transition s1
τ−−→ s2. In weak

bisimulation, it can be matched by s3
τ==⇒ s4

τ−−→ s5, despite that s2 6≈w s4. However, this is
not allowed in branching bisimulation because s2 6≈ s4.

	1 Introduction
	2 Object Systems and Linearizability
	2.1 Object Systems
	2.2 Linearizability
	2.3 Linearizable Specification and Trace Refinement

	3 Branching Bisimulation for Concurrent Objects
	3.1 Branching Bisimulation
	3.2 Checking Linearizability via Branching Bisimulation Quotienting

	4 Progress Properties
	5 Experiments
	5.1 Proving linearizability and progress properties
	5.2 Automated bug hunting
	5.3 Efficiency and state-space savings

	6 Related Work
	7 Conclusion
	A A Discussion on Weak Bisimulation

