
ELSE: A new symbolic state generator for timed
automata

Sarah Zennou, Manuel Yguel and Peter Niebert

Laboratoire d’Informatique Fondamentale de Marseille
Université de Provence – CMI

39, rue Joliot-Curie / F-13453 Marseille Cedex 13
[zennou,niebert]@cmi.univ-mrs.fr

Abstract. We present ELSE, a new state generator for timed automata.
ELSE is based on VERIMAG’s IF-2.0 specification language and is de-
signed to be used with state exploration tools like CADP. In particular,
it compiles IF-2.0 specifications to C programs that link with CADP. It
thus concentrates on the generation of comparatively small state spaces
and integrates into existing tool chains. The emphasis of the ELSE de-
velopment is on fundamentally different data structures and algorithms,
notably on the level of zones. Rather than representing possible values
of clocks at a given symbolic state, event zones represent in an abstract
way the timing constraints of past and future events. This approach is
useful for certain partial order reduction approaches.

1 Introduction

Timed automata [AD94] are a powerful tool for the modeling and analysis of
timed systems. They extend classical automata by clocks, continuous variables
“measuring” the flow of time. A state of a timed automaton is thus a combi-
nation of its discrete control locations and the clock values taken from the real
domain. While the resulting state spaces are infinite, clock constraints have been
introduced to abstract the state spaces to a finite set of equivalence classes, thus
yielding a finite (although often huge) symbolic state graph on which reachability
and some other verification problems can be resolved.

While the theory, algorithms and tools like Kronos [NSY92,BFG+99] and
Uppaal [LPY95] for timed automata represent a considerable achievement, they
suffer for various reasons from combinatory explosion which still limits their ap-
plicability in practice. A great effort has been invested into optimization of rep-
resentations of clock constraints, e.g. [DY96,BLP+99]. Another line of research
is devoted to the overall reduction of reachability to logic constraint solving, e.g.
[NMA+02].

ELSE, developed at the Laboratoire d’Informatique in Marseille, is a new
state generator – engine of algorithmic analysis – for timed automata incor-
porating alternative semantics that allow certain partial order reduction ap-
proaches. ELSE is designed to be compatible with IF [BFG+99], notably the
IF-2.0 specification language, for which it implements a new semantics allowing



state space reduction with respect to parallelism while preserving reachability
properties: The components of a parallel system (like networks of communicat-
ing transition systems) can sometime progress independently, sometimes inter-
act. Basic verification techniques rely on an interleaving approach, where global
states are tuples of local states. The resulting global transition systems can have
a very redundant structure (which is responsible for the state explosion) includ-
ing so called diamonds, pairs of commuting transitions that can be executed
in either order leading to the same state. Partial order reduction techniques
[Val89,Pel93,God96,NHZL01] together with their tools (e.g. SPIN) give an an-
swer to this phenomenon in reducing the search space based on this redundancy
for discrete systems.

Partial order reduction methods for timed automata. A natural question is the
applicability of partial order reductions to networks of timed automata. However,
as has been observed by several authors, the standard interleaving semantics
combined with symbolic states via clock constraints results in transitions that
do not commute. Several kinds of answers have been given to this problem: Adapt
persistent set method [YS97]; Define a local time semantics [BJLY98,Min99]. In
[DT98], the authors starts adapting the notion of equivalence classes of transition
sequences in timed automata.

This approach followed by ELSE is formally defined in [LNZ03]. Basically,
the chosen semantics relaxes constraints between independent components (au-
tomata and clocks) so that diamonds are almost preserved. The termination and
bound on the number of symbolic states, a problem known from [BJLY98,Min99],
is ensured by adding certain constraints (which we call lower catch up and upper
catch up) as for the interleaving approach. The price for this guarantee, that our
symbolic transition systems are not bigger than those resulting from the classical
approach, is that “independent transitions” commute in a weaker sense than for
discrete systems.

2 Scope and Architecture of ELSE

The generator ELSE is a tool to automatically translate a description of a net-
work of timed automata in the IF syntax to C code providing following: A data
structure for the symbolic states as defined in [LNZ03]; A mechanism to compute
symbolic transitions from a given symbolic state. These elements can then be
used by tools for exploring a symbolic reachability graph, CADP in particular.
ELSE thus remains just one, yet a crucial component in a tool chain: Specifica-
tions may either directly be written in IF or obtained by (existing) translations
to IF from various commonly used specification languages; ELSE provides a state
generator; CADP may be used to explore it for reachability or more complex
verification algorithms.

To achieve this, ELSE is composed of:
– A compiler, else2c, which generates the symbolic transition systems. It trans-

lates the description of a set of timed automata into functions C which com-
pute them. The description must be done in a language called Else;

2



– A library computing operations on clock constraints, called elsezone. This
one contains all functions which are needed by functions generated by the
compiler.

To summurize, the following figure shows how ELSE works: Given a network of
timed automata which are described in Else (file sys.els), the compiler else2c gen-
erates C functions (file sys.c) computing the corresponding symbolic transition
system. The functions of computing transitions of this one may call functions on
clock constraints in the library of clock constraints (file elsezone.c).

sys.els
else2c

elsezone.c

sys.c

Internals of else2c. After the syntaxic verification of the system description,
the generation of the C code used as entry by the graph explorer is done in
two main steps: First, create the C representation of (symbolic) states of the
reachability graph. The generated data structure, a static record with some
dynamic attachments, repesents in a hierarchical manner the hierarchy of the
system structure, as much as is possible in C, e.g. the automata are represented
as subrecords, etc. Zones in our setting do not have a fixed size and are kept
apart.

Then the translator computes a function for the interface, which, given a
symbolic state of the reachability graph, computes and returns implicitly the
list of its successors. This function is compatible with different kinds of search
like DFS or BFS, etc. Partial order reductions are transparent for CADP: The
transition systems it sees are already reduced, in particular concerning operations
on “event zones” which are internal functions of the library elsezone. The initial
state can be generated by calling a specific function.

3 Event zones and the library elsezone

For this section, we assume some familiarity with zones as used in classical timed
automata tools.

The library elsezone contains all the functions computing the operations on
constraints, called event zones, as defined in [LNZ03]:

Compared to classical zones, which represent sets of clock values, we have
done a philosophical shift for else: Event zones represent constraints for the

3



occurrence times of certain event. A constraint “C ≤ 3” guarding a transition
can indeed be read in two ways: (a) at the moment of occurrence of the transition,
clock C must have a value inferior to 3;. (b) the difference of occurrence times
of the transition in question and the last preceeding reset of clock C is ≤ 3.

The first – classical – view (a) means on the level of the symbolic states this
means that the transition is only possible if the set of clock value tuples before
the transition contains such a concrete value, checked by cutting the clock value
polyhedron with a hyperplain corresponding to the condition.

In view (b), we do not explicitely model clock values, nor the passage of
time, but constraints between event occurrences. An event is an occurrence of
a transition in an execution, in a concrete execution each one having a time of
occurrence. View (b) tells you under which conditions such a vector of occurrence
times is possible. As a new transition is added, it is linked to some preceeding
occurrences of transitions, adding a new dimension and new constraints.

However, the constraints linking future events with the events already added
to a symbolic path result either from clock constraints or from causality (an
event f causally depending on a preceeding event e must occur later). After a
reset of clock C, no preceeding reset of C can be linked to by a clock constraint
on C in a future transition. Since no more reference to this event is possible, we
can remove it like “garbage collection”. In particular, for each clock, just one
past event can be addressed, limiting the number of events in an event zone

This gives rise to the data structure of event zones: An event zone consists
of a set of variables corresponding to event occurrences E = {e1, . . . , en}, two
vectors from references (mostly for the clocks, some for causality) to E, one for
use with upper bound constraints to future events, another for use with lower
bound constraints to future events. Moreover, there is a rectangular matrix of
constraints between elements of E, more precisely between events e that can be
linked to future events by an upper bound and events f that can be linked to
future events by a lower bound.

As a transition occurs,(1) add a new event, (2) recompute constraints with
respect to its links to previous events (this is an incremental Floyd-Warshall
algorithm that is at worst of quadratic complexity), (3) change references, (4)
collect garbage lines and columns in the matrix that lack a reference on either
side (upper or lower bound), then (5) remove completely unreferenced events.

Static analysis techniques used to check whether a certain clock will be ref-
erenced before its next reset, may be integrated here and refined to consider
separately its use in upper and in lower bounds. Note also that the dimension of
the constraints is not constant and implicitly compact (an event resetting two
clocks will be represented by just one dimension). The initial zone has dimension
1. As the system evolves, the number of dimensions may grow but is limited to
n + m, where n is the number of clocks and m is a measure for the degree of
parallelism in the system. In case of a fully sequential system, this bound is equal
to n + 1 which corresponds to the dimension of classical zones (one dimension
per clock and one dimension for “0”).

4



Depending on the constraints inserted into event zones, we may or may not
obtain the same semantics on the level of state reachability. However, the tran-
sitions of the symbolic transition system are not identical, compared to IF for
instance, event zones do not provide a transition to symbolize an unspecific
passage of time. It is therefore obvious that event zones are more than just a
different representation of constraints but are tightly coupled to the code of the
transition generator of the symbolic transition system.

4 Status of development and future work

The development of ELSE is recent, up to now the invested effort is about 10
person months. The complete translation chain is running, i.e. syntactic analysis,
semantic analysis and code generation, and there exists a prototype implemen-
tation of the elsezone library. However, coverage of the IF-2.0 language is very
partial, we add code when we need it for modelling.

We have begun experimenting with the prototype, in particular exploring
artificial academic examples where the event zone approach seems superior to
classical zones. On some example series, exponential savings in running Else
against itself with the two semantics have been achieved.

The main direction in the near future is to improve the efficiency of the zone
library and to fully integrate partial order reductions that are currently only
partially realized.

References

[AD94] R. Alur and D. Dill, A theory of timed automata, Theoretical Computer
Science 126(2) (1994), 183–235.

[BFG+99] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Susanne Graf, Jean-
Pierre Krimm, and Laurent Mounier, IF: An intermediate representa-
tion and validation environment for timed asynchronous systems, World
Congress on Formal Methods (1), 1999, pp. 307–327.

[BJLY98] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi, Partial order reductions for
timed systems, Proceedings, Ninth International Conference on Concurrency
Theory, Lecture Notes in Computer Science, vol. 1466, Springer-Verlag,
1998, pp. 485–500.

[BLP+99] G. Behrmann, K. Larsen, J. Pearson, C. Weise, W. Yi, and J. Lind-Nielsen,
Efficient timed reachability analysis using clock difference diagrams, Inter-
national Conference on Computer Aided Verification (CAV), Lecture Notes
in Computer Science, vol. 1633, 1999, pp. 341–353.

[DT98] D. D’Souza and P.S. Thiagarajan, Distributed interval automata: A subclass
of timed automata, 1998, Internal Report TCS-98-3.

[DY96] C. Daws and S. Yovine, Reducing the number of clock variables of timed
automata, IEE Real-Time Systems Symposium, December 1996, pp. 73–81.

[God96] P. Godefroid, Partial-order methods for the verification of concurrent sys-
tems: an approach to the state-explosion problem, Lecture Notes in Com-
puter Science, vol. 1032, Springer-Verlag Inc., New York, NY, USA, 1996.

5



[LNZ03] Denis Lugiez, Peter Niebert, and Sarah Zennou, Clocked mazurkiewicz
traces for partial order reductions of timed automata, 2003, draft.

[LPY95] K. Larsen, P. Pettersson, and W. Yi, Model-checking for real-time systems,
Fundamentals of Computation Theory, Lecture Notes in Computer Science,
August 1995, Invited talk, pp. 62–88.

[Min99] Marius Minea, Partial order reduction for verification of timed systems,
Ph.D. thesis, Carnegie Mellon University, 1999.

[NHZL01] P. Niebert, M. Huhn, S. Zennou, and D. Lugiez, Local first search – a new
paradigm in partial order reductions, International Conference on Concur-
rency Theory (CONCUR), LNCS, no. 2154, 2001, pp. 396–410.

[NMA+02] P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, N. Jain, and O. Maler,
Verification of timed automata via satisfiability checking, Formal Techniques
in Real-Time and Fault-Tolerant Systems, LNCS, vol. 2469, 2002, pp. 225–
244.

[NSY92] X. Nicollin, J. Sifakis, and S. Yovine, Compiling real-time specifications
into extended automata, IEE Transactions on Software Engineering, vol. 18,
September 1992, pp. 794–804.

[Pel93] D. Peled, All from one, one for all: On model checking using representatives,
International Conference on Computer Aided Verification (CAV), Lecture
Notes in Computer Science, vol. 697, 1993, pp. 409–423.

[Val89] A. Valmari, Stubborn sets for reduced state space generation, 10th Interna-
tional Conference on Application and Theory of Petri Nets, vol. 2, 1989,
pp. 1–22.

[YS97] Tomohiro Yoneda and Bernd-Holger Schlingloff, Efficient verification of par-
allel real-time systems, Formal Methods in System Design 11 (1997), no. 2,
197–215.

6


