
An Improved Fault-Tolerant Routing Algorithm for a

Network-on-Chip Derived with Formal AnalysisI

Zhen Zhanga,∗, Wendelin Serweb,c,d, Jian Wue, Tomohiro Yonedaf,
Hao Zhengg, Chris Myersa

aDept. of Elec. & Comp. Eng., Univ. of Utah, Salt Lake City, UT, USA
bInria

cUniv. Grenoble Alpes, LIG, F-38000 Grenoble, France
dCNRS, LIG, F-38000 Grenoble, France

eToshiba America Electronic Components, Inc., San Jose, CA, USA
fNational Institute of Informatics, Tokyo, Japan

gDept. of Comp. Sci. & Eng., Univ. of S. Florida, Tampa, FL, USA

Abstract

A fault-tolerant routing algorithm in Network-on-Chip (NoC) architectures
provides adaptivity for on-chip communications. Adding fault-tolerance adap-
tivity to a routing algorithm increases its design complexity and makes it
prone to deadlock and other problems if improperly implemented. Formal
verification techniques are needed to check the correctness of the design. This
paper describes the discovery of a potential livelock problem through formal
analysis on an extension of the link-fault tolerant NoC architecture intro-
duced by Wu et al. In the process of eliminating this problem, an improved

IThis material is based upon work supported by the National Science Foundation under
grants CNS-0930510 and CNS-0930225. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. Part of this work was performed dur-
ing a visit of the first author at the Inria Grenoble–Rhône-Alpes research centre. A subset
of the experiments presented in this paper were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see https://www.grid5000.fr).

∗Corresponding author.
Email addresses: zhen.zhang@utah.edu (Zhen Zhang), Wendelin.Serwe@inria.fr

(Wendelin Serwe), bjwujian@gmail.com (Jian Wu), yoneda@nii.ac.jp
(Tomohiro Yoneda), zheng@cse.usf.edu (Hao Zheng), myers@ece.utah.edu
(Chris Myers)

Preprint submitted to Science of Computer Programming July 1, 2016

routing architecture is derived. The improvement simplifies the routing archi-
tecture, enabling successful verification using the CADP verification toolbox.
The routing algorithm is proven to have several desirable properties including
deadlock and livelock freedom, and tolerance to a single-link-fault.

Keywords: fault-tolerant routing, formal methods, model checking,
network-on-chip, process calculus

1. Introduction

Cyber-physical systems (CPS) have ubiquitous applications in many safety
critical areas such as avionics, traffic control, robust medical devices, etc. As
an example, the automotive industry makes active use of CPS: modern ve-
hicles can have up to 80 electronic control units (ECUs), which control and
operate everything from the engine and brakes to door locks and electric
windows. Currently, each ECU is statically tied to its specific sensors and
actuators. This means that processing power between different ECUs cannot
be shared, which degrades the performance of the chip due to imbalanced
workload on each ECU. More importantly, this structure is susceptible to
faults since if an ECU fails, it causes a malfunction in the corresponding
sensor and/or actuator. With advances in semiconductor technology, it is
now possible to have multiple cores on a single chip that communicate using
the Network-on-Chip (NoC) paradigm. A NoC approach allows a flexible
mapping of ECUs to processing elements, which makes it possible for ECUs
to share processing power and tolerate faults by having spare units.

Wormhole routing has been utilized in many NoC designs, such as Aethe-
real [1], Hermes [2], and QNoC [3]. It is a switching technique that routes
a packet of data in small units, known as flits. A packet travels through
the network like a worm, and it typically consists of a header flit with the
packet’s destination, body flits carrying the packet’s information, and a tail
flit indicating the end of the packet. This paper presents the verification of
an asynchronous NoC architecture that supports a link-fault tolerant rout-
ing algorithm [4] extended to a multiflit wormhole routing setting. A unique
feature of the routing algorithm for this NoC architecture is that it uses a
deadlock avoidance rather than a deadlock prevention scheme. In other words,
rather than creating a routing algorithm that is proven to be deadlock-free,
potential deadlocks are detected and avoided by dropping packets. To the
best of our knowledge, this work is the first formal verification of a dead-

2

lock avoidance routing function. The verification takes advantage of the
CADP (Construction and Analysis of Distributed Processes) toolbox [5] and
its process-algebraic modeling language LNT (formerly LOTOS New Tech-
nology) [6].

Previous work on the verification of this routing algorithm [7] applies
data abstractions to enable model checking of deadlock freedom and single-
link fault tolerance. It, however, is flawed in that the abstract model does not
include certain routing failure cases that are present in its concrete counter-
part. This paper uses an example to illustrate the flaws in the abstraction and
provides a refined, corrected abstraction. During this correction process, re-
dundant fault-tolerance behaviors are found to cause livelocks in the presence
of multiple faults. Through a series of diagnostic examples on the concrete
model, an improvement to avoid livelocks is made on the NoC architecture
and model. Deadlock and livelock freedom, single link-fault tolerance, and
packet delivery are formally analyzed. Finally, this paper describes several
remaining challenges to the verification of this and similar systems.

This paper is organized as follows. Section 2 describes the NoC architec-
ture and routing algorithm. Section 3 discusses a livelock problem discovered
through formal analysis. Section 4 presents an improvement of the NoC rout-
ing algorithm to avoid livelocks. Section 5 presents verification results for
deadlock and livelock freedom, and properties of single-link fault tolerance
and packet delivery. Section 6 surveys related work. Section 7 discusses
the insights obtained from using model checking in the design of the NoC
architecture and some future research directions.

2. Network-on-Chip Architecture and Routing Algorithm

A fully functional NoC system has to be fault-tolerant and free of dead-
locks. The Glass/Ni fault-tolerant routing algorithm [8], guarantees deadlock
freedom by disallowing certain turns (i.e., changes in routing direction) in the
network, so that communication cycles cannot occur. However, the Glass/Ni
routing algorithm uses the node-fault model, where a fault in an incoming
link is interpreted as the complete node failing. Not only does this mean los-
ing the ability to route to an otherwise functional node, but if the node does
not actually stop operating, it can potentially introduce deadlock in the net-
work. Imai et al. proposed a modified version [9] that achieves one link-fault
tolerance by introducing a mechanism to forward link fault locations to a
neighboring routing node allowing for a route selection that avoids the faulty

3

link. This fault forwarding method though can still result in a deadlock at
the edges of a mesh network, so in these cases, it must revert to the node-fault
model. Wu et al. described an improvement [4] that is capable of handling
link faults anywhere in the network. A feature of this routing algorithm is
its flexible fault-tolerance mechanism. It handles transient link failures and
allows illegal turns whenever there is no danger of a cyclic communication
dependency creating a deadlock. In case a potential cyclic communication
dependency is detected, deadlock is avoided by dropping the packet that at-
tempts to make an illegal turn, which effectively breaks the cycle. In other
words, this routing algorithm only drops packets whenever there is a poten-
tial to form a cycle of dependencies. It is this deadlock avoidance scheme
that this paper attempts to improve upon and to formally verify.

There are nine types of router nodes for this architecture as depicted in
the three-by-three mesh shown in Figure 1. Namely, there are four types of
corner nodes (i.e., nodes 00, 02, 20, and 22), four types of edge nodes (i.e.,
nodes 01, 10, 12, 21), and one type of center node (i.e., node 11). A larger
network would include duplicates of the routers shown here. This architecture
implements an extended version of the routing algorithm [4] described by Wu
et al . The original algorithm assumed single-flit packets and that each node
could route only a single packet at a time, while this modified architecture
allows each node to potentially have several multi-flit packets in flight at
a time. For example, node 00 may be routing a packet from node 01 to
node 10, while simultaneously routing a packet from node 10 to node 01. To
accomplish this, each node xy is composed of several independent routers
(r D xy) and arbiters (arb D xy), where D ∈ {PE,E,N, S,W} corresponds
to the direction the packet is coming from in the case of routers and going to
in the case of arbiters. Notice that because arbiters need storage capacity to
avoid deadlocks [7, Section 4.2], it is necessary to keep them separate from
the routers.1

The routing algorithm works as follows. Each node communicates with its
corresponding processing element (PE), and when the PE of a node xy wishes
to send a packet to the PE of another node x′y′, it injects that packet into

1One might argue that it is not necessary to include the arbiters arb PE xy in the
model, because we assume that a processing element is always ready to consume a packet,
so that there is nothing to arbitrate. However, to be closer to the real circuit, we prefer
to keep these processes, in particular because they do induce only a small performance
penalty in verification execution time.

4

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

������� ��������

��������

��������

��������� ������

������

������

������

�������

��������

��������

���������

������

������

��������������

���������

��������

��������

������

�������

������

������

�������

��������

��������

���������

������

������

������

��������

���������

��������

��������

������ �������

�������

��������

��������

��������

��������

���������

Figure 1: Architecture of the nine routing nodes in a three-by-three mesh.

the network via its router (r PE xy). Based upon the intended destination
of the packet, a router determines a direction D to which to try to forward
the packet, and then attempts to communicate with the arbiter (arb D xy)
in charge of the corresponding link. At this point, one of three things can
occur. First, the link may be busy, and the router must wait its turn to
use the link. Second, the link may be faulty, and the router is instructed to
find an alternate route. Finally, the link may be free, and the arbiter may
non-deterministically select to communicate with this router over any other
routers that may be trying to obtain this link. The arbiter then forwards the
packet one flit at a time to the succeeding router (i.e., the router the output

5

of the arbiter is connected to), which then executes the same algorithm. Once
a packet reaches its destination x′y′, the packet is consumed by the arbiter
connected to its PE (arb PE x′y′).

To guarantee deadlock freedom, the routing algorithm disallows certain
turns in the network. Namely, a packet that is moving north in the network
is not allowed to turn to the west, and a packet moving east in the network is
not allowed to turn to the south. Hence, in order to avoid illegal turns, each
router sends packets south and west, as needed, before sending them north
and east. One exception is that if the destination is one node away and to
the east (or north) of the source node, i.e. (x′ = x+ 1 and y′ = y) or (x′ = x
and y′ = y + 1), then the r PE xy router sends such packets directly east (or
north) first.

Assuming there is at most one link-fault, an alternate route always exists,
but it may require an illegal turn. For example, consider the two-by-two
mesh shown in Figure 2 and assume that node 10 wishes to send a packet
to node 01. In this case, a west then north route is the prefered option. If
arb W 10 reports a fault on its link to r E 00, r PE 10 must communicate
with arb N 10 instead. Once the packet reaches r S 11, this router must
make an illegal turn and route the packet west through arb W 11. However,
arb W 11 may be busy routing a packet from node 11 to node 00. This
packet in turn may be blocked because arb S 01 is busy routing a packet
from node 01 to node 10. Similarly, this packet may be blocked because
arb E 00 is busy routing a packet from node 00 to node 11. Finally, this
packet is blocked because arb N 10 is busy due to the packet from node
10 to node 01. Taken all together, there is a communication cycle causing a
deadlock, as is illustrated in Figure 2. In this case, arb W 11 sends a negative
acknowledgment to r S 11, indicating its unavailability to accept a packet
from this router, which tells this router (r S 11) to drop the incoming packet,
removing the communication cycle and avoiding the potential deadlock.

To summarize, the computation of the direction tries to obey the negative-
first rules proposed by Glass/Ni [8] (rules 1 and 2 below), but when necessary,
due to faults, it can make an illegal turn assuming the link is available,
otherwise it must drop the packet to avoid deadlock (rule 3):

1. Route the packet west and south to the destination or farther west and
south than the destination, avoiding routing the packet to a negative
edge (i.e., a west or south edge) for as long as possible.

2. Route the packet east and north to the destination, avoiding routing

6

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

��

��

��

��

Figure 2: Illustration of a deadlock caused by a cyclic communication de-
pendency. Each packet is represented by a circle containing its destination.
A solid line coming out of a packet indicates the router where it is currently
traveling to. A dashed line indicates the remaining route of a packet. The
crossed link indicates that the link from node 10 to node 00 is faulty.

7

the packet as far east or north as the destination for as long as possible.

3. If no legal non-faulty link is available, the packet can make an illegal
turn (i.e., an east or north going packet may be routed west or south),
if the link is available. If the link is busy, the packet must be dropped
to avoid deadlock.

Notice that this routing algorithm is not symmetric: Although all routers
execute the same algorithm, not all routers behave in exactly the same way,
because the routing decision depends not only on the destination of the
packet, but also the position of the router.

We modeled the routing architecture in LNT [6], a language for the de-
scription of asynchronous concurrent systems and the recommended model-
ing language for the CADP toolbox (Construction and Analysis of Distributed
Processes) toolbox [5]. On the one hand, LNT is rooted in concurrency the-
ory, and equipped with a formal semantics in terms of labeled transition sys-
tems. On the other hand, to reduce the learning curve, LNT uses a syntax
close to those of common programming languages. The complete LNT model
is available at http://www.async.ece.utah.edu/~zhangz/research/lnt_

modeling.

3. Potential Livelock Problem

To analyze the routing protocol, a straightforward approach consists in
generating the corresponding Labeled Transition System (LTS). If successful,
the generated LTS can be used to analyze functional properties of the proto-
col. The CADP toolbox supports compositional techniques [10] to alleviate
the exponential growth of the number of states. In a nutshell, compositional
LTS generation proceeds in a “bottom-up” manner, starting with individual
processes and alternating generation and minimization steps. CADP features
the Script Verification Language (SVL) [11], which automates the composi-
tional LTS generation, implementing heuristics [12] to optimize the order
processes are taken into account.

Our initial analysis has focused on a two-by-two NoC shown in Figure 3,
since state space generation for the three-by-three NoC even using composi-
tional techniques is challenging. The intermediate state space corresponding
to only 13 out of the 66 components in the three-by-three NoC already has
several hundred million states. Including just one more component to con-
struct the next intermediate LTS almost doubles the size of the LTS. Since

8

http://www.async.ece.utah.edu/~zhangz/research/lnt_modeling
http://www.async.ece.utah.edu/~zhangz/research/lnt_modeling

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

Figure 3: Architecture of the four routing nodes in a two-by-two mesh.

there are still 52 components to be included, it is clear that this growth of the
intermediate state spaces is unmanageable. Although it might be surprising,
these large state spaces can be explained by the fact that each of the 66 com-
ponents can store a packet (or be empty), resulting in a theoretical state space
size of more than 1014 states for 14 components of the three-by-three NoC.
Although the content of a packet is abstracted to just its destination coordi-
nates, which are necessary to precisely determine a packet’s next forwarding
direction, the existence of many possible data values further contributes to
the combinatorial state explosion.

To alleviate the state explosion problem, a data abstraction method appli-
cable to the network packets is described in our previous work [7]: a packet
no longer contains the destination of the packet, and the routing decision
steps in the concrete model are replaced by a nondeterministic choice in the
abstract model. After receiving a packet, an abstract router nondeterministi-

9

cally selects either its own node, representing that the packet has reached its
destination, or one of the (two, three, or four) forwarding directions, without
the need to examine the packets destination. While the exact destination is
not needed, it is necessary to keep a Boolean value indicating whether the
packet has been diverted, because a router should allow an illegal turn only
for packets that have been diverted previously.

Although this data abstraction enables successful verification of prop-
erties like deadlock freedom and single-link-fault tolerance, proving packet
delivery is impossible, since it is always possible that some, if not all, pack-
ets produced get continuously dropped in the network. Using the available
information in an abstract packet, one cannot know if a packet reaches its
destination or gets dropped by a router on the way. In order to check packet
delivery while keeping intermediate state spaces manageable, we investigated
a hybrid modeling scheme, combining concrete and abstract packets. The
idea is that for one experiment, one node generates a single concrete packet
followed by repeated abstract packets while all other nodes only generate ab-
stract packets. In this way, the delivery of a particular concrete packet can be
checked with the existence of abstract packets to model network traffic. All
routers are modified to handle both types of packets. A router determines the
packet’s next forwarding direction either precisely based on its destination
coordinates or nondeterministically if the packet is abstract. We can then
exhaustively run all experiments for every possible concrete packet produced
by all four nodes, combined with all possible single fault locations, and check
packet delivery properties on the LTS generated for each experiment.

Consider the situation shown in Figure 4 with a faulty link, namely the
output of arb W 10. Router r PE 10 of node 10 generates a concrete packet
destined for node 01. The generated LTS for the concrete model shows that
router r N 10 might fail to find a route for this packet. However, this failure
does not exist in the generated LTS for the corresponding abstract model [7].
This mismatch indicates that the abstraction for this router is not correct.
The issue is that the fault-tolerant concrete routing logic for r N 10 pro-
vides only one forwarding direction (W) and the only alternative route (N)
is forbidden. No routing occurs if the only available route is faulty. How-
ever, the corresponding abstract routing behavior still provides the second
routing choice, avoiding the routing failure when the first choice is not avail-
able. Below, we discuss this problematic example in detail to illustrate the
incorrectness of the abstraction and show how it should be fixed.

To send a concrete packet to node 01, r PE 10 first attempts to send

10

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

��

Figure 4: Illustration of the problem with the abstract model. The crossed
link indicates that link from node 10 to node 00 is faulty. Solid thick arrows
end in the routers handling packets. The dashed arrow indicates the route
for the packet from node 10 to node 01, taken into account the failed link.

it west to arb W 10, but fails because of the faulty link. Then, it diverts
the packet to send it north to r S 11, which then diverts the packet south
to r N 10 because its first preference to the west is blocked (as arb W 11 is
serving another packet). Receiving a concrete packet destined for node 01,
r N 10 of the concrete model only attempts the west direction, and signals
a routing failure if the attempt is not successful — r N 10 does not redirect
this packet back to arb N 10, because it can infer that this packet has been
diverted already, based on its location and the packet’s destination. Assume
a node only generates packets destined for nodes other than itself. So a
packet destined for node 01 can only be generated by node 00, 11, or 10.
The first choice to forward this packet is north for node 00, and west for

11

node 11, as either node has two equal choices to send the packet and the first
choice is to the shortest path to node 01. For node 10, the preferred choice
for this packet is west. Note that none of the preferred choices for node 10
go through r N 10, which means that if r N 10 receives a packet for node 10,
it must have been diverted.

The LNT description of the abstract model for r N 10 is shown in Fig-
ure 5a. An LNT process has two kinds of parameters: gates (between
square brackets) and value parameters (between parentheses). The latter
have the usual meaning, whereas the former define the set of interaction
points of the process and yield the labels that may appear on the transi-
tions of the corresponding LTS. LNT uses an Ada-like syntax with usual
constructs, such as “ if−then−else’’ or “loop ... end loop”. Variables are
declared by a “var ... in ... end var” construct. The LNT construction
“select A [] B [] C end select” is a non-deterministic choice between A, B,
and C. Comments start with “--” and extend to the end of the line. For
a full description of LNT, its syntax and semantics, the reader is referred
to [6].

The router r N 10 is modeled by the LNT process “r N 10 abs”. The first
gate parameter “inp” corresponds to the incoming link (connected to the
south arbiter of node 11). The next three gate parameters “out PE”, “out W”,
and “out N” correspond to the three externally visible communication links
(r N 10 → arb PE 10), (r N 10 → arb W 10), and (r N 10 → arb N 10) in
Figure 3, respectively. The fifth gate parameter “ fail ” does not correspond
to a physical communication link but is used for making routing failures
visible. The router process uses the variable “pkt” of type Bool to store
the (contents of the) packet it forwards. Because the router r N 10 can
never make an illegal turn, the Boolean value contained in a packet is never
consulted. Variable “arb out” of type Bool stores the availability of the arbiter,
to which the router is attempting to forward the packet.

The behavior of process “r N 10 abs” is a non-terminating loop consist-
ing of a rendezvous “inp (?pk)”, which synchronizes on gate “inp” and stores
the received packet in variable “pkt”, followed by a non-deterministic choice
between sending the packet to its own PE (gate “out PE”, connected to
the arbiter arb PE 10), or forwarding the packet first to the west (gate
“out W”, connected to arb W 10), or to the north (gate “out N”, connected
to arb N 10). Two-way gate rendezvous is used to model packet forwarding:
the gate on the router’s side can synchronize with the gate on its connected
arbiter’s side (not shown on the figure). In the non-deterministic choice,

12

the packet is sent only to a gate that is ready for synchronization; if more
than one gate is ready, the choice is non-deterministic; if no gate is ready,
the process waits until one of the gates becomes ready. During the ren-
dezvous on a gate, both processes can exchange offers. For example, the
“out PE” gate represents the routers side of the communication link “r N 10
→ arb PE 10”; hence the value of the packet “pkt” is passed to the receiving
arbiter arb PE 10. A rendezvous on a gate can only happen if both partic-
ipating processes are ready; otherwise a gate blocks process execution when
it waits for synchronization. In the second choice, r N 10 checks the output
link status of its connected arbiter arb W 10 before sending a packet. This is
represented by the rendezvous “out W(?arb out)”, which waits to receive the
status from this arbiter. It sends the packet west through “out W” if the link
is available, otherwise it tries to direct it to the north. If neither choice is
feasible, the router performs a rendezvous on gate “ fail ”; this rendezvous is
always possible, because it is not synchronized with any process. This gate
rendezvous is referred to as “route-failure rendezvous” in the rest of this pa-
per. Execution of a rendezvous on a gate produces a transition labeled with
the gate’s name and the values of the offer (if any). Notice that the order of
the nested “ if−then−else” constructs depends on the router, reflecting the
asymmetry of the routing function.

The reason why the abstract model does not contain a route failure is that
r N 10 abs provides an alternative choice for any packet. Moreover, it does
not use a packet’s diversion status to limit the redundant alternative choice.
Consider the case of a packet destined to another node (those destined to
10 can always be routed without failure). Because the other arbiter that
r N 10 connects to, namely arb N 10, is not faulty in the situation depicted
in Figure 4, this means that r N 10 always sends the packet to arb N 10 so
that the “ fail ” gate rendezvous never occurs. To refine the abstract model,
the router should only divert a packet to an alternative route if it has not
been diverted already. Figure 5b shows the added check for the diversion
status for the second choice in Figure 5a. A similar correction is made on
the third choice which is omitted on Figure 5b.

Although the general principle for the fault-tolerance routing is to provide
as much adaptivity as possible, this error in the abstract model illustrates
that making multiple diversions can introduce incorrect functional behavior.
As described above, r N 10 can infer the diversion status from a concrete
packet destined for node 01 and use it to avoid multiple diversions. On the
other hand, if r N 10 keeps diverting a packet destined for node 01 back to the

13

process r N 10 ab s [inp , out PE , out W , out N , f a i l : any] i s
var pkt : F l i t , a r b ou t : Bool i n loop

i np (? pkt) ;
s e l e c t

out PE (pkt) −− send packe t to arb PE 10
[] out W (? a r b ou t) ; −− check arb W 10 ’ s output

i f a r b ou t then −− west l i n k to node 00 OK
out W(pkt) −− send packe t to arb W 10

e l s e −− west l i n k to node 00 f a u l t y
out N (? a r b ou t) ; −− check arb N 10 ’ s output
i f a r b ou t then −− north l i n k to node 11 OK

out N (true) −− send t rue as packe t d i v e r t e d
e l s e −− north l i n k to node 11 f a u l t y

f a i l (pkt) −− f a i l u r e to route the packe t
end i f end i f

[] out N (? a r b ou t) ;
i f a r b ou t then

out N (pkt)
e l s e

out W (? a rb ou t) ;
i f a r b ou t then out W(true) e l s e f a i l (pkt) end i f

end i f
end se l e c t

end loop end var end process

(a) The original LNT process for abstract r N 10.

out W (? a rb ou t) ;
i f a r b ou t then

out W(pkt)
e l s i f g e t d i v e r s i o n (pkt) then

f a i l (pkt) −− mu l t i p l e d i v e r s i on : route f a i l u r e
e l s e −− f i r s t d i v e r s i on : same behav ior as above

out N (? a r b ou t) ;
i f a r b ou t then out N (true) e l s e f a i l (pkt) end i f

end i f

(b) Added check for diversion before sending on alternate route.

Figure 5: The original and modified LNT process for abstract r N 10.

14

direction it comes from, it is possible that this packet gets stuck in an infinite
livelock loop: r N 10 → arb N 10 → r S 11 → arb S 11 → r N 10, as shown
in Figure 6. Livelock is a scenario where a packet circles around a loop
infinitely often without ever reaching its destination. Therefore, avoiding
multiple diversions on a NoC is an effective way to prevent livelock. On the
fault-free two-by-two NoC in Figure 6, there are only two circular paths, the
clockwise inner path and the counterclockwise outer path, that a packet can
take to reach any of the four nodes. A router diverts a packet only if it is
unable to continue forwarding it on the current circular path due to a link
fault. Every time a router diverts a packet, it switches the packet from its
current path to the other, effectively reversing its routing direction. The
router hopes to deliver the packet through the alternative path. However,
if the packet encounters another faulty link on the alternative path, making
another diversion puts the packet back to its previous failure path, and the
packet is guaranteed to hit the previous faulty link again before it reaches the
destination. So having multiple diversions allows a packet to infinitely circle
around a loop, which is formed by segments of the two circular paths, i.e.,
the connected routers and arbiters except for any processing element arbiter
(arb PE xy).

4. Eliminating Livelock

The existence of livelocks in a NoC routing algorithm can significantly de-
grade a network’s performance, since packets stuck in livelock loops never get
delivered, but rather occupy limited bufferring capacities, causing network
congestion. Also, repeatedly forwarding packets in livelock loops results in
unnecessary power consumption. It is, therefore, important to remove live-
locks in our routing algorithm. The simplest solution to eliminate livelocks
is to keep track of the diversion status on a packet using an added Boolean
variable. This variable, however, requires further space in the packets header
(and aggravates the already challenging state explosion problem). It would
be better to deduce the diversion status solely from a packet’s destination
information. This section presents a solution based on this idea through a se-
ries of diagnostic examples, which leads to simplifications in both the routing
architecture and the routing algorithm.

Clearly, routers making only illegal turns (besides delivering the packet
to its destination PE) have superfluous diversions, because in order to make
the first illegal turn, the packet must have been diverted already. In a two-

15

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

Figure 6: Illustration of the two circular paths that a packet can reach any
node and the livelock loop r N 10 → arb N 10 → r S 11 → arb S 11 →
r N 10.

by-two NoC, for example, on receiving a packet, r S 11 tries a north-to-west
turn first, and tries the north-to-south turn only if the first choice fails.
This alternative second choice corresponds to a second diversion and the
router should drop the packet if the first route is not available. This also
means that r S 11 does not need to communicate with arb S 11 and the link
between them can be safely removed. This simplification potentially leads
to a reduction in the number of gate rendezvous between the two processes
during the compositional state space generation. Similarly, the link from
r W 11 to arb W 11 can be removed.

In general however, inferring the diversion status is difficult as a router
does not know a packet’s entire forwarding history. As an example, consider
all packets that r N 10 has to forward to its neighboring nodes. It receives all

16

south-going packets from arb S 11, and then sends them to either arb W 10
or arb N 10. Packets destined for node 11 (arb PE 11) are not sent through
arb S 11 and hence do not reach r N 10, and packets destined for node 10
(arb PE 10) are not forwarded by r N 10 to its neighbors. This means that
packets of interest are destined for either node 01 (arb PE 01) or the node
00 (arb PE 00). We know from the previous analysis that all packets des-
tined for node 01 must have been diverted to reach this router. For packets
destined for node 00, if they are generated at either node 01 or node 10, then
they must have been diverted before reaching r N 10 as they failed on their
preferred choices, i.e., their respective shortest paths to node 00. If a packet
is generated at node 11, then its diversion status is not clear as it could be
diverted if r PE 11 forwards it west first or not diverted if south is the first
choice. This uncertainty makes it impossible for r N 10 to infer the diversion
status for a packet, since it has no information about the packet’s source and
its routing preferences.

According to the original description [4] of the routing algorithm by Wu
et al, there is no defined order between the two equal routing choices. This
means that the implementation of the routing algorithm can bias towards one
choice without violating the routing rules. For example, if r PE 11 always
chooses west over south for all packets destined for arb PE 00, then the said
uncertainty at r N 10 can be resolved. This means that all packets received
by r N 10 are diverted, and this router does not need to divert them again
by sending them back north, and the link from r N 10 to arb N 10 can be
removed. The new LNT process for r N 10 is shown in Figure 7. After re-
ceiving a packet on its “inp” gate that is connected to the output of arb S 11,
it extracts the packet’s destination and stores it in “pkt dest”. It then com-
pares the coordinates of the packet’s destination with its own location — as
usual, the “ .” notation expresses access to the field of a record. If the des-
tination is reached, it delivers the packet by synchronizing on gate “out PE”
with arb PE 10. Otherwise, it forwards the packet west if arb W 10’s out-
put link is functional, and fails if it is faulty. A symmetric improvement
is made to r S 01 by tweaking r PE 00 to make east as its preferred route.
This resolves a similar uncertainty that all packets generated by r PE 00
and destined for arb PE 11 are routed to the east first. The result is that
r S 01 only receives diverted packets to forward to its east, and the router
does not need its output to arb S 01. This breaks the livelock loop, i.e.,
arb N 00→r S 01→arb S 01→r N 00→arb N 00. Moreover, this modifica-
tion makes the north-to-south illegal turn disappear, preventing packet drop

17

process r N 10 c on c r e t e [inp , out PE , out W , f a i l : any]
(n od e l o c : Coo rd i n a t e s) i s

var pkt : F l i t , a r b s t a t u s : Bool i n
loop

i np (? pkt) ;
i f pkt . d e s t == node l o c then

out PE (pkt) −− d e s t i n a t i on reached
e l s e −− Only need to t r y west

out W (? a r b s t a t u s) ;
i f a r b s t a t u s then

out W(pkt)
e l s e

f a i l (pkt)
end i f

end i f
end loop

end var end process

Figure 7: The new LNT process for r N 10.

at this router. Note that the assigned ordering between two equal choices
is only limited to the mentioned two PE routers when they forward packets
destined for nodes in their diagonal directions. Both are equal choices for
routing such a packet since each have the same distance to the destination,
and therefore no performance penalty is introduced.

Since livelock always occurs on a closed path on the routing architecture,
i.e., a path formed by alternating routers and arbiters that enables a packet
to circle around indefinitely, it is possible to find livelock by identifying closed
paths. For example, a packet destined for arb PE 11 loops infinitely on the
closed path if the output links of arb N 00 and arb N 10 are faulty: arb E 00
→ r W 10 → arb W 10 → r E 00 → arb E 00. In this case, r E 00 can be
modified to not divert the packet back east, but only send it north.

The resultant NoC architecture is shown in Figure 8. Note that multiple
diversions still exist in some routers. This is because a packet’s destination
information alone is not sufficient to determine its diversion status at these
routers. For example, the packets received by r E 01 can be diverted, if
they are forwarded by r S 11, and not diverted, if they come from r PE 11.
However, livelock does not occur even if r E 01 diverts a packet forwarded

18

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

Figure 8: Improved two-by-two NoC architecture with livelock removal. Note
that the modifications to avoid livelock have led to the removal of four con-
nections that are no longer needed (i.e., between r S 01 and arb S 01, r W 11
and arb W 11, r S 11 and arb S 11, and r N 10 and arb N 10).

by r S 11 again because this packet is sent to r N 10 where it gets squashed
to avoid multiple diversions. While the improved routing algorithm cannot
guarantee that a packet is not diverted more than once, it does guarantee
that it is not diverted infinitely often for the two-by-two NoC. This property,
however, needs to be formally verified.

Figure 9 presents the decision tree of the livelock free routing protocol in
pseudo code. For simplicity, this pseudo code only describes the decision, and
it does not provide details on the communication between the routers and
arbiters. In particular, determining if a link is faulty requires a communica-
tion with the arbiter to determine its current status. This communication is
crucial to enable the protocol to adapt to transient failures. Furthermore, in

19

the case of an illegal turn, the router must determine if the arbiter is busy,
and in this case, if it is found to be busy, it drops the packet. Notice that also
the modified routing protocol is not symmetric, because the possible routes
depend on both the address of the router and the destination of the packet.

5. Verification Results

We applied a two-phase approach to verify a NoC model using the CADP
toolbox: first generating the LTS from the LNT specification, and then an-
alyzing the LTS to verify properties of interest. The LTS for each investi-
gated model is generated compositionally [10], i.e., by first generating and
minimizing the LTSs for each process separately before alternating combina-
tion, hiding, and minimization operations to obtain the LTS of the complete
system. For the combination, we applied smart reduction [12], which uses
heuristics to find an optimal ordering of the combination and minimization
operations to keep the intermediate LTSs manageable. The maximal num-
ber of LTSs that can be composed in one step is set to 5. Hiding operations
transform into internal transitions those labels that are no longer necessary
for further synchronisations or the verification of the properties of interest,
greatly enhancing the effectiveness of minimization and verification [13]. To
ease the verification tasks, we hide all labels, except those corresponding
to route failures and packet drops. Minimization is performed with respect
to divergence-sensitive branching bisimulation equivalence [14], a stronger,
livelock-preserving variant of branching bisimulation [15].

A desktop machine with a CPU of eight 3.60 GHz cores and 16GB of
available RAM is used to generate the results in this section. One core is used
at any time for the parallel composition and state minimization steps. One
interesting observation is that with the removal of links and simplification
of the routing algorithm presented in Section 4, it is possible to completely
generate the LTSs of models with concrete packets. All results presented
here are based on the two-by-two NoC models with concrete packets. The
properties of interest are: (1) the routing algorithm is free of deadlocks and
always tolerates a single link fault; (2) it guarantees packet delivery without
network traffic; and (3) it is free of livelocks.

5.1. Deadlock Freedom and Single-link-fault Tolerance

In all experiments described in this subsection, each of the four PE routers
repeatedly executes the following steps: it first generates a packet with a

20

– If the packet has reached its destination, deliver the packet.
– else if the packet is one hop away and the corresponding link is available, send on that link
– else

– go west if:
1)the current node is not on the west edge,
2)the packet is going in the west/south direction or just injected,
3)the west link is fault-free, and
4)the current node is at or east of the destination OR

it is at or south of the destination and the south link is faulty
– else go south if:

1)the current node is not on the south edge,
2)the packet is going in the west/south direction or just injected,
3)the south link is fault-free, and
4)the current node is at or north of the destination OR

it is at or west of the destination and the west link is faulty
– else go east if:

1)the destination is more than one node to the east OR
the destination is east of the current node AND exactly one row north,

2)the packet is not traveling west, and
3)the east link is fault-free

– else go north if:
1)the destination is north of the current node,
2)the packet is not traveling south, and
3)the north link is fault-free

– else
– go west if:

1)the current node is not the west edge,
2)the current node is at or east of the destination,
3)the packet is not traveling east OR the destination is directly north, and
4)the west link is fault-free

– else south if:
1)the current node is not the south edge,
2)the current node is at or north of the destination,
3)the packet is not traveling north, and
4)the south link is fault-free

– else go east if:
1)the current node is at or west of the destination,
2)the east link is fault-free, and
3)the packet is not traveling west OR

the destination is in the current column OR
the destination is one node to the east AND not one node north

– else go north if:
1)the current node is at or south of the destination,
2)the north link is fault-free, and
3)the packet is not traveling south OR

the current node is at or west of the destination

Figure 9: Pseudo-code of the routing protocol.

21

Table 1: LTSs of the two-by-two NoCs generated for the verification of dead-
lock freedom and one-fault tolerance.

Failure Largest Interm. LTS Final LTS Performance
Link States Transitions St. Tr. RAM Time
none 87,040 677,184 1 1 154.7 208.8

00→ 01 622,080 5,214,528 1 2 224.5 217.7
00→ 10 469,632 4,252,000 1 2 261.5 221.0
01→ 00 7,541,100 65,866,878 3 7 7,316.5 910.3
01→ 11 1620 10,422 1 1 133.6 196.1
10→ 00 397,575 3,445,506 3 7 133.9 226.7
10→ 11 2,980,593 27,889,224 1 2 2,752.0 477.6
11→ 01 1,848 11,830 1 1 138.7 196.0
11→ 10 52,752 484,572 1 1 139.3 208.2

nondeterministically chosen destination (except to itself), and then sends
the packet to its next forwarding direction, which is determined based on the
packet’s destination. Since each PE router is free to nondeterministically send
a packet to any possible destination at any time, our verification generates all
possible network traffic patterns. It is necessary to model all possible network
traffic for the verification of deadlock freedom, since a deadlock can only
occur when multiple packets in the network create a communication cycle as
described in Section 2, and this cycle is broken by dropping one of the packets.
Table 1 shows the LTS information for nine two-by-two mesh models: the
first row represents a mesh without any link failure, and the remaining eight
rows each represent the same NoC with one failure link whose location is
shown in the first column. The columns under “Largest Interm. LTS” show
the number of states and transitions of the largest intermediate LTS, and
the columns under “Final LTS” show those of the LTS corresponding to the
complete model obtained at the end of the compositional generation. The
two columns under “Performance” display the maximal amount of allocated
virtual memory (in MB) and the total execution time (in seconds) to generate
each LTS.

Because the LTS for each model is generated by hiding all gates that
represent the links between the routers and the arbiters, the only two visible
gates are the route-failure gates and the packet-drop gates. Rendezvous on
the former happen when a router has exhausted all options to forward a

22

packet; rendezvous on the later occurs when a router drops a packet. To
model a single link fault in LNT, a working arbiter process is replaced by an
arbiter that sends false status to all its connected input routers.

Deadlock freedom is a global property, which requires reasoning about
the complete system, and cannot always be inferred from the components
taken in isolation. A system has a deadlock if its LTS contains a state/-
transition sequence that starts from the initial state and ends in a terminal
state, i.e., a state without outgoing transitions. A straightforward approach
for deadlock detection is to search for such states in the corresponding LTS.
Using the CADP toolbox, it is found that no such sequence exists in any LTS
of Table 1. Note that the number of states of the largest intermediate LTS
is not proportional to the memory usage. For example, the largest interme-
diate LTS for the “00 → 01” experiment has more states than the one for
the “00 → 10” experiment, but the latter experiment requires less memory.
Similarly, the largest intermediate LTSs in the “01 → 11” and “10 → 00”
experiments are substantially different in size, but their memory usage is
comparable. All experiments show that the peak memory usage is a result of
minimizing the largest intermediate LTS in each model. Memory usage for
state minimization depends, however, not only on the size of the LTS, but
also on its branching structure, which explains the weak correlation between
the largest LTS and peak memory usage. It is also worth noting that the
differences in the state counts clearly show the asymmetry of the routing
protocol. Since the entries in Table 1 cover all possible single-link fault con-
figurations, we can conclude that the link-fault tolerant algorithm is free of
deadlock for the improved routing algorithm on the two-by-two NoC.

To prove that a router is always able to route a packet, it is necessary
to verify that no route-failure gate rendezvous occurs. Since these gates are
not hidden during parallel composition, it is straightforward to check their
existence in each LTS. Table 2 shows that no transitions are labeled with
route-failure labels. This table also shows that with a single failure link in
the network, packets may be dropped, namely when the attempt to make an
illegal turn could potentially cause a deadlock. The packet drop labels in this
table show the location where the drop happens together with the destination
of the dropped packet. For example, “drop Sr 11!Coordinates(0,1)” means a
packet destined for node 01 is dropped by the southern router of node 11. The
internal transition label is indicated by “i”. Therefore, in a highly congested
network, dropping packets might happen. Note also that the occurrence of
packet drop is more sensitive to certain fault locations than others. Faults

23

Table 2: Labels of the LTS’s corresponding to two-by-two NoCs generated
for the verification of deadlock freedom and one-fault tolerance.

Failure Labels
none i

00→ 01 i, drop Sr 11 !Coordinates (0, 1)

00→ 10 i, drop Wr 11 !Coordinates (1, 0)

01→ 00 i, drop Wr 11 !Coordinates (1, 0), drop Wr 11 !Coordinates (0, 0)

01→ 11 i

10→ 00 i, drop Sr 11 !Coordinates (0, 0), drop Sr 11 !Coordinates (0, 1)

10→ 11 i, drop Wr 10 !Coordinates (1, 1)

11→ 01 i

11→ 10 i

in one of node 00’s two incoming links from node 01 and 10 are responsible
for the largest variety of packet drops. But faults in one of node 11’s two
outgoing links can be entirely tolerated by the routing algorithm without any
packet loss.

5.2. Packet Delivery

After the successful verification of deadlock freedom and single-link-fault
tolerance, it is important to thoroughly check that each packet can reach
its destination. The models of interest for this verification task have at
most a single link fault. From the analysis in Section 3, it is known that
with two (or more) faulty links, certain routing failures are unavoidable,
therefore packet delivery is not guaranteed. Since the routing algorithm
guarantees single-link-fault tolerance, it makes sense to check packet delivery
on models with at most a single faulty link. Moreover, Table 2 shows that
with network traffic, some packets may get dropped instead of reaching their
destinations, with even a single link fault. However, packet drop only occurs
to avoid deadlock, which requires the existence of network traffic. This means
that packet delivery can only be checked on models without any additional
network traffic. Therefore, while packet delivery can be verified using the
CADP toolbox, in this simple case, it can be ensured by simply confirming
that the network remains connected after removing a single failing link.

24

5.3. Livelock Freedom
In Section 4, a series of diagnostic examples are provided to eliminate

livelock issues, which led to simplifications of the NoC architecture. This
subsection provides formal analysis of livelock freedom on the simplified NoC.
Since it requires at least two faulty links to cause a livelock, with eight
external links, there is a total number of

(
8
2

)
= 28 different combinations of

fault locations. The livelock freedom verification is divided into 28 individual
tasks in which each one generates a LTS from a NoC model with a unique
pair of link faults.

Similar to the packet delivery verification tasks, only one packet is al-
lowed in the network. A single packet in the network is sufficient for livelock
detection, since only a link fault can trigger packet diversion and with multi-
ple diversions a livelock can potentially occur. Traffic may cause a packet to
be dropped, but it never causes a packet to be diverted. Therefore, network
traffic does not contribute to the cause of livelock. The same configuration
for PE routers from Section 5.2 can be used here. As mentioned before,
the drawback of this configuration is the introduction of deadlock. Besides,
with two link faults, it is unavoidable to have a routing failure that causes
deadlock. So, it is certain that some deadlock state exists on the final LTS.
However, this fact does not change the results of livelock freedom verifica-
tion. Livelock is characterized as the existence of an infinite loop on a LTS
containing only internal transitions. The goal of checking livelock freedom is
to guarantee the absence of such a loop on the final LTS. Thus, the existence
of a deadlock state is of no relevance for this verification goal. It is, however,
necessary to perform state minimization with respect to divergence-sensitive
branching bisimulation equivalence to preserve any actual livelock loop in
the NoC model.

For each of the 28 verification tasks, there are 4 different experiments in
which one node generates a single packet and then becomes inactive while
the other three nodes remain inactive. Gate hiding for each experiment is
applied to all communication gates in the model. This means that all previ-
ously visible gates are hidden, including the routing-failure gates and packet’s
generation and consumption gates. Note that gate hiding has the potential
danger of turning a cycle into a livelock loop, which causes a false negative
result on the final LTS. A cycle differentiates from a livelock loop in that
it is a loop with at least one visible transition label representing a commu-
nication with its environment. This factor, however, is eliminated in the
proposed experiment setting, since with a single packet in the network, there

25

does not exist meaningful cycles of transitions, such as continuous generation
of packets. Hence it does not hamper the detection of real livelocks.

Livelock freedom is verified by checking a simple property requiring the
presence of a livelock cycle, which can be expressed in the Model Checking
Language (MCL) [16] by the following formula:

< true ∗ > < ” i ” > @

where “< ”i” > @” specifies an infinite loop of internal transitions labeled
with “ i”. The property is satisfied if there exists a state with an outgoing
looping internal transition. Violation of this property guarantees that no
such state exists and thus shows absence of livelock.

It is found that none of the 112 experiments satisfies the livelock property
which proves livelock freedom on the improved routing architecture. From
all experiments, the largest intermediate LTS has 112,176 states and 718,564
transitions, and the longest runtime is 175.08 seconds. Each final LTS has
a single deadlock state and no transitions. For all experiments, the peak
virtual memory used is 114 MB and the total time is about 5.28 hours.

6. Related Work

Besides the Glass/Ni [8] routing algorithm and its link-fault extensions [9,
4], a variety of approaches have been proposed for fault-tolerant NoC routing.
A reconfigurable routing table, e.g. [17, 18], is deployed to pre-compute and
store routes to avoid faulty links. This method, however, can only avoid per-
manent faults. Duato analyzes in [19] the effective redundancy for adaptive
fault-tolerant routing algorithms, which requires at least four virtual chan-
nels per physical channel. However, the use of virtual channels introduces
additional area and energy cost. Also, in the case of a single faulty physical
link, all virtual links belonging to that faulty physical link become faulty as
well. Nordbotten et al. [20] use intermediate nodes as backup mechanisms to
route packets around network failures. This solution, however, requires extra
virtual channels to handle deadlocks, and has to pause all running processes
to identify intermediate nodes when a fault is encountered.

Wu presented a fault-tolerant algorithm [21] without the need of using
virtual channels. It combines multiple faults to faulty-blocks and routes
packets around these faulty-blocks. Similar ideas of binding faulty links and
nodes into faulty polygons, chains, and rings have been presented in [22, 23,
24]. Packets are routed around these faulty regions to achieve fault tolerance.

26

However, a major problem of these approaches is that they create heavy
traffic load on the nodes having to route packets around the faulty areas. To
obtain a balanced traffic distribution, local or global traffic updates (e.g. [25,
26, 27]) are considered by nodes in the network to route packets.

There have been several previous works that have applied model checking
to NoC routing algorithms. For example, to facilitate the use of model check-
ing techniques, automatic translations are developed from the asynchronous
hardware description language CHP (Communicating Hardware Processes)
to networks of automata [28] and to the process-algebraic language LO-
TOS [29]. The latter approach is applied to verify an input controller [30] for
an asynchronous NoC [31] that implements a deadlock-free routing algorithm
based on the odd-even turn model [32]. However, this NoC does not handle
failures. Deterministic XY routing algorithms, whose routing logic are sig-
nificantly simpler than the fault-tolerant routing algorithm presented in this
paper, have been previously studied [33, 34], leading to the verification of
functional properties requiring little network traffic, such as packet delivery.
Also, Chen et al. face state explosion when attempting to verify deadlock
freedom [33], and Palaniveloo and Sowmya mention no results on deadlock
verification [34]. Lugan et al. verified an optical NoC with four initiators
and four targets using Uppaal [35]. To reduce the verification time, their ver-
ification used a two-level approach (a first verification on an abstract level,
complemented by a more detailed verification of a part of the NoC). Their
NoC, however, is not fault-tolerant, and it has highly symmetric processes.

An interesting alternative to model checking is to use static analysis.
Verbeek and Schmaltz [36] proposed a necessary and sufficient condition for
deadlock-free wormhole routing that can be statically computed indepen-
dently from the network status. This condition is used in a decision pro-
cedure for deadlock detection on large networks from a wide range of NoC
topologies and routing algorithms [37]. With the help of the DCI2 (Deadlock
Checker In Designs of Communication Interconnects) tool [38], Alhussien et
al. [39] proved deadlock-freeness, livelock-freeness and packet delivery of a
fault-tolerant wormhole routing logic for large scale mesh networks. A formal
NoC specification and validation environment, GeNoC (Generic Network-
on-Chip), implemented in the ACL2 theorem prover was first proposed by
Borrione et al. [40]. It was used to verify a non-minimal adaptive rout-
ing algorithm in [41]. Recently, an improvement of the GeNoC model [42]
is proposed to enable static verification of deadlock freedom and livelock
freedom, as well as functional correctness. It was shown to prove these prop-

27

erties on an adaptive west-first routing algorithm on a Hermes NoC, with
approximately 86 percent of the proof automatically derived. By using static
analysis, both the DCI2 and GeNoC approaches are extremely efficient for
checking the same properties checked in this paper for deadlock prevention
routing algorithms. This efficiency enables them to be applied to large net-
works. These approaches, however, are not capable of verifying properties of
deadlock avoidance algorithms as this requires a dynamic analysis.

To better understand the value of static analysis, we attempted to en-
code our NoC routing algorithm using the DCI2 approach. Using DCI2, the
routing algorithm is encoded as a function in the C language. This function
determines the next direction to route based on the current state (i.e., cur-
rent node, destination of packet, and where the packet came from). While
the LNT description includes implementation details, such as the connections
between the routers and arbiters and their interaction between routers and
arbiters to check for availability, the DCI2 approach abstracts away these
details. So, while DCI2 can verify a static model of the protocol, it does
not verify the implementation architecture for the protocol nor its dynamic
behavior. Using DCI2, it is possible to show that the routing protocol with-
out faults is deadlock-free and livelock-free for larger networks (we checked
up to five-by-five router nodes). It is also possible to verify that there are
no disconnected routes in the presence of a single fault. In the single fault
case though, DCI2 reports deadlocks, since there is no mechanism to encode
packet dropping to avoid deadlock in DCI2. Finally, in the double fault case,
DCI2 reports both deadlocks and disconnected routes though no livelocks
are found. While this is reassuring, these results should be confirmed with
model checking, because our deadlock avoidance routing protocol cannot be
precisely encoded in DCI2.

7. Discussion

In order to enable the verification of packet delivery, this paper first
presents a hybrid modeling scheme as an extension to the previously pre-
sented pure abstract model [7]. The discovery of routing failure hidden by
the abstract model for router r N 10 leads to the detection of the potential
danger of multiple packet diversions in the original routing algorithm. It is
found that excessive fault-tolerance in terms of multiple packet diversions not
only fails to increase the chance of delivering a packet, but also potentially

28

causes livelock problems where a packet circles around an infinite loop and
never reaches its destination.

Multiple packet diversions are then analyzed in detail through a series
of diagnostic examples on the concrete NoC model. The routing algorithm
is corrected and certain routers are restricted to avoid multiple diversions
and eliminate potential livelock loops. Since the diversion status is not di-
rectly encoded in a concrete packet, it is not always possible to infer from
the packet’s destination information. Therefore, biased choice between two
equally preferred routes is assigned to some PE routers, so that only diverted
packets are received by those routers that cannot always decide upon the di-
version status of packets. These modifications make it possible to remove
redundant communication links on the routing architecture. This simplifica-
tion eventually leads to manageable state space generation of the concrete
model for the two-by-two NoC.

With the help of the CADP verification toolbox, several interesting func-
tional behaviors of the improved routing algorithm are analyzed. Deadlock
freedom and single-link-fault tolerance are proved in a congested network
with zero or one link fault. Under the single-link-fault condition, a packet is
successfully delivered to its destination or dropped due to deadlock avoidance.
Without the network traffic, packet delivery is guaranteed. The absence of
livelock is proved under two link-fault conditions.

Experience gained in livelock elimination for the two-by-two case provides
us valuable insights to determine the appropriate fault tolerance in the rout-
ing algorithm. These insights can guide the design of more complex routing
behaviors in a large network, as well as abstractions of these complex designs.
Formal analysis of these complex designs is necessary to guarantee their func-
tional correctness. Also, diagnostic counterexamples generated from property
checking may potentially be useful to refine a model’s abstraction.

While model checking is needed to check implementation details, such as
connectivity of routers and arbiters, and dynamic properties, such as dead-
lock avoidance, static analysis methods such as those used by DCI2 and
GeNoC can be much more efficient. Therefore, an interesting area of future
research is to develop methodologies that leverage both techniques. For ex-
ample, DCI2 can be used to refine a routing protocol to eliminate deadlocks,
livelocks, and disconnected route conditions. Once the routing protocol is
developed, model checking can be employed to check the implementation
architecture and verify dynamic properties.

Table 2 indicates that packet drop can limit the effectiveness of the routing

29

algorithm, especially when a particular link is faulty. Packet drop, however,
is necessary for deadlock avoidance in our link-fault routing algorithm. It is a
challenging task to justify the performance of the routing algorithm in terms
of packet drop due to deadlock avoidance in a pure functional verification
setting. To obtain a more accurate justification, it seems promising to an-
notate transitions on the LTS obtained for the functional analysis with link
failure probabilities, and then apply quantitative methods such as Markov
Chain analysis to evaluate its performance.

[1] K. Goossens, J. Dielissen, A. Rădulescu, ÆThereal network on chip:
Concepts, architectures, and implementations, IEEE Design & Test of
Computers 22 (5) (2005) 414–421. doi:10.1109/MDT.2005.99.

[2] F. Moraes, N. Calazans, A. Mello, L. Möller, L. Ost, Hermes: An in-
frastructure for low area overhead packet-switching networks on chip,
Integration, the VLSI Journal 38 (1) (2004) 69–93. doi:10.1016/j.

vlsi.2004.03.003.

[3] E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny, Qnoc: Qos architecture
and design process for network on chip, Journal of Systems Architure
50 (2-3) (2004) 105–128. doi:10.1016/j.sysarc.2003.07.004.

[4] J. Wu, Z. Zhang, C. Myers, A fault-tolerant routing algorithm for a
network-on-chip using a link fault model, in: Virtual Worldwide Forum
for PhD Researchers in Electronic Design Automation, 2011.

[5] H. Garavel, F. Lang, R. Mateescu, W. Serwe, CADP 2011: a toolbox
for the construction and analysis of distributed processes, Springer In-
ternational Journal on Software Tools for Technology Transfer (STTT)
15 (2) (2013) 89–107. doi:10.1007/s10009-012-0244-z.

[6] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, C. McKinty,
V. Powazny, F. Lang, W. Serwe, G. Smeding, Reference manual of
the LNT to LOTOS translator (version 6.3), INRIA/VASY/CONVECS
(Nov. 2015).

[7] Z. Zhang, W. Serwe, J. Wu, T. Yoneda, H. Zheng, C. Myers, For-
mal analysis of a fault-tolerant routing algorithm for a network-on-
chip, in: F. Lang, F. Flammini (Eds.), Formal Methods for Indus-
trial Critical Systems, Vol. 8718 of Lecture Notes in Computer Sci-

30

http://dx.doi.org/10.1109/MDT.2005.99
http://dx.doi.org/10.1016/j.vlsi.2004.03.003
http://dx.doi.org/10.1016/j.vlsi.2004.03.003
http://dx.doi.org/10.1016/j.sysarc.2003.07.004
http://dx.doi.org/10.1007/s10009-012-0244-z

ence, Springer International Publishing, 2014, pp. 48–62. doi:10.1007/
978-3-319-10702-8_4.

[8] C. J. Glass, L. M. Ni, Fault-tolerant wormhole routing in meshes, in:
Digest of Papers of the Twenty-Third Annual International Symposium
on Fault-Tolerant Computing FTCS-23 (Toulouse, France), IEEE Com-
puter Society, 1993, pp. 240–249. doi:10.1109/FTCS.1993.627327.

[9] M. Imai, T. Yoneda, Improving dependability and performance of
fully asynchronous on-chip networks, in: Proceedings of the 2011 17th
IEEE International Symposium on Asynchronous Circuits and Systems,
ASYNC ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp.
65–76. doi:10.1109/ASYNC.2011.15.

[10] H. Garavel, F. Lang, R. Mateescu, Compositional Verification of Asyn-
chronous Concurrent Systems using CADP, Acta Informatica 52 (4)
(2015) 337–392. doi:10.1007/s00236-015-0226-1.

[11] H. Garavel, F. Lang, SVL: a Scripting Language for Compositional
Verification, in: Proceedings of the 21st IFIP WG 6.1 International
Conference on Formal Techniques for Networked and Distributed Sys-
tems FORTE’2001, Kluwer Academic Publishers, 2001, pp. 377–392, full
version available as INRIA Research Report RR-4223. doi:10.1007/

0-306-47003-9_24.

[12] P. Crouzen, F. Lang, Smart Reduction, in: D. Giannakopoulou, F. Ore-
jas (Eds.), Proceedings of the 14th International Conference on Funda-
mental Approaches to Software Engineering FASE 2011 (Saarbrücken,
Germany), Vol. 6603 of Lecture Notes in Computer Science, Springer
Verlag, 2011, pp. 111–126. doi:10.1007/978-3-642-19811-3_9.

[13] R. Mateescu, A. Wijs, Property-Dependent Reductions for the Modal
Mu-Calculus, in: A. Groce, M. Musuvathi (Eds.), Proceedings of
the 18th International SPIN Workshop on Model Checking Software
SPIN’2011 (Snowbird, UT, USA), Vol. 6823 of Lecture Notes in
Computer Science, Springer Verlag, 2011, pp. 2–19. doi:10.1007/

978-3-642-22306-8_2.

[14] R. J. van Glabbeek, B. Luttik, N. Trcka, Branching bisimilarity with
explicit divergence, Fundamenta Informaticæ 93 (4) (2009) 371–392.

31

http://dx.doi.org/10.1007/978-3-319-10702-8_4
http://dx.doi.org/10.1007/978-3-319-10702-8_4
http://dx.doi.org/10.1109/FTCS.1993.627327
http://dx.doi.org/10.1109/ASYNC.2011.15
http://dx.doi.org/10.1007/s00236-015-0226-1
http://dx.doi.org/10.1007/0-306-47003-9_24
http://dx.doi.org/10.1007/0-306-47003-9_24
http://dx.doi.org/10.1007/978-3-642-19811-3_9
http://dx.doi.org/10.1007/978-3-642-22306-8_2
http://dx.doi.org/10.1007/978-3-642-22306-8_2

[15] R. J. van Glabbeek, W. P. Weijland, Branching-Time and Abstrac-
tion in Bisimulation Semantics (extended abstract), CS R8911, Centrum
Wiskunde & Informatica (CWI), Amsterdam, The Netherlands, also in
Proceedings of the 11th IFIP World Computer Congress, San Francisco,
1989 (1989).

[16] R. Mateescu, D. Thivolle, A model checking language for concurrent
value-passing systems, in: Proceedings of the 15th International Sym-
posium on Formal Methods FM’08 (Turku, Finland), Vol. 5014 of Lec-
ture Notes in Computer Science, Springer Verlag, 2008, pp. 148–164.
doi:10.1007/978-3-540-68237-0_12.

[17] R. Casado, A. Bermúdez, F. J. Quiles, J. L. Sánchez, J. Duato, A pro-
tocol for deadlock-free dynamic reconfiguration in high-speed local area
networks, IEEE Transactions on Parallel and Distributed Systems 12 (2)
(2001) 115–132. doi:10.1109/71.910868.

[18] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, D. Blaauw, A
Highly Resilient Routing Algorithm for Fault-tolerant NoCs, in: Pro-
ceedings of the Conference on Design, Automation and Test in Europe,
European Design and Automation Association, 2009, pp. 21–26.

[19] J. Duato, A theory of fault-tolerant routing in wormhole networks, IEEE
Transactions on Parallel and Distributed Systems 8 (8) (1997) 790–802.
doi:10.1109/71.605766.

[20] N. A. Nordbotten, M. E. Gómez, J. Flich, P. López, A. Robles,
T. Skeie, O. Lysne, J. Duato, A fully adaptive fault-tolerant rout-
ing methodology based on intermediate nodes, in: Network and Par-
allel Computing, IFIP International Conference, NPC 2004, Wuhan,
China, October 18-20, 2004, Proceedings, 2004, pp. 341–356. doi:

10.1007/978-3-540-30141-7_49.

[21] J. Wu, A fault-tolerant and deadlock-free routing protocol in 2d meshes
based on odd-even turn model, IEEE Transactions on Computers 52 (9)
(2003) 1154–1169. doi:10.1109/TC.2003.1228511.

[22] R. Boppana, S. Chalasani, Fault-tolerant wormhole routing algorithms
for mesh networks, IEEE Transactions on Computers 44 (7) (1995) 848–
864. doi:10.1109/12.392844.

32

http://dx.doi.org/10.1007/978-3-540-68237-0_12
http://dx.doi.org/10.1109/71.910868
http://dx.doi.org/10.1109/71.605766
http://dx.doi.org/10.1007/978-3-540-30141-7_49
http://dx.doi.org/10.1007/978-3-540-30141-7_49
http://dx.doi.org/10.1109/TC.2003.1228511
http://dx.doi.org/10.1109/12.392844

[23] K. Chen, G. Chiu, Fault-tolerant routing algorithm for meshes without
using virtual channels, J. Inf. Sci. Eng. 14 (4) (1998) 765–783.

[24] J. Zhou, F. C. M. Lau, Adaptive fault-tolerant wormhole routing in 2d
meshes, in: Proceedings of the 15th International Parallel & Distributed
Processing Symposium (IPDPS-01), San Francisco, CA, April 23-27,
2001, 2001, p. 56. doi:10.1109/IPDPS.2001.925000.

[25] T. T. Ye, L. Benini, G. De Micheli, Packetization and routing analysis of
on-chip multiprocessor networks, Journal of Systems Architecture 50 (2-
3) (2004) 81–104. doi:10.1016/j.sysarc.2003.07.005.

[26] I.-G. Lee, J. Lee, S.-C. Park, Adaptive routing scheme for NoC commu-
nication architecture, in: Advanced Communication Technology, 2005,
ICACT 2005. The 7th International Conference on, Vol. 2, 2005, pp.
1180–1184. doi:10.1109/ICACT.2005.246172.

[27] T. Schonwald, J. Zimmermann, O. Bringmann, W. Rosenstiel, Fully
adaptive fault-tolerant routing algorithm for network-on-chip architec-
tures, in: Digital System Design Architectures, Methods and Tools,
2007. DSD 2007. 10th Euromicro Conference on, 2007, pp. 527–534.
doi:10.1109/DSD.2007.4341518.

[28] D. Borrione, M. Boubekeur, L. Mounier, M. Renaudin, A. Sirianni, Val-
idation of asynchronous circuit specifications using IF/CADP, in: VLSI-
SOC: From Systems to Chips, Selected papers from the 12th IFIP Inter-
national Conference on VLSI, Vol. 200, International Federation for In-
formation Processing, 2006, pp. 85–100. doi:10.1007/0-387-33403-3_
6.

[29] H. Garavel, G. Salaün, W. Serwe, On the semantics of communicating
hardware processes and their translation into LOTOS for the verification
of asynchronous circuits with CADP, Sci. Comput. Program. 74 (3)
(2009) 100–127. doi:10.1016/j.scico.2008.09.011.

[30] G. Salaün, W. Serwe, Y. Thonnart, P. Vivet, Formal verification of CHP
specifications with CADP illustration on an asynchronous Network-on-
Chip, in: Asynchronous Circuits and Systems, 2007. ASYNC 2007. 13th
IEEE International Symposium on, 2007, pp. 73–82. doi:10.1109/

ASYNC.2007.18.

33

http://dx.doi.org/10.1109/IPDPS.2001.925000
http://dx.doi.org/10.1016/j.sysarc.2003.07.005
http://dx.doi.org/10.1109/ICACT.2005.246172
http://dx.doi.org/10.1109/DSD.2007.4341518
http://dx.doi.org/10.1007/0-387-33403-3_6
http://dx.doi.org/10.1007/0-387-33403-3_6
http://dx.doi.org/10.1016/j.scico.2008.09.011
http://dx.doi.org/10.1109/ASYNC.2007.18
http://dx.doi.org/10.1109/ASYNC.2007.18

[31] E. Beigné, F. Clermidy, P. Vivet, A. Clouard, M. Renaudin, An Asyn-
chronous NOC Architecture Providing Low Latency Service and Its
Multi-Level Design Framework, in: Proceedings of the 11th Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and
Systems ASYNC 2005 (New York, USA), IEEE Computer Society, 2005,
pp. 54–63. doi:doi:10.1109/ASYNC.2005.10.

[32] G.-M. Chiu, The odd-even turn model for adaptive routing, IEEE
Transaction on Parallel and Distributed Systems 11 (7) (2000) 729–738.
doi:10.1109/71.877831.

[33] Y.-R. Chen, W.-T. Su, P.-A. Hsiung, Y.-C. Lan, Y.-H. Hu, S.-J. Chen,
Formal modeling and verification for network-on-chip, in: Green Circuits
and Systems (ICGCS), 2010 International Conference on, 2010, pp. 299–
304. doi:10.1109/ICGCS.2010.5543050.

[34] V. A. Palaniveloo, A. Sowmya, Application of formal methods for
system-level verification of network on chip, in: IEEE Computer Soci-
ety Annual Symposium on VLSI, ISVLSI 2011, 4-6 July 2011, Chennai,
India, 2011, pp. 162–169. doi:10.1109/ISVLSI.2011.57.

[35] L. G. Iugan, G. Nicolescu, I. O’Connor, Modeling and formal verification
of a passive optical network on chip behavior, Electronic Communica-
tions of the EASST 21. doi:10.14279/tuj.eceasst.21.302.

[36] F. Verbeek, J. Schmaltz, On necessary and sufficient conditions for
deadlock-free routing in wormhole networks, IEEE Transactions on
Parallel and Distributed Systems 22 (12) (2011) 2022–2032. doi:

10.1109/TPDS.2011.60.

[37] F. Verbeek, J. Schmaltz, A decision procedure for deadlock-free routing
in wormhole networks, IEEE Transactions on Parallel and Distributed
Systems 25 (8) (2014) 1935–1944. doi:10.1109/TPDS.2013.121.

[38] F. Verbeek, J. Schmaltz, Automatic verification for deadlock in
networks-on-chips with adaptive routing and wormhole switching, in:
NOCS 2011, Fifth ACM/IEEE International Symposium on Networks-
on-Chip, Pittsburgh, Pennsylvania, USA, May 1-4, 2011, 2011, pp. 25–
32.

34

http://dx.doi.org/doi:10.1109/ASYNC.2005.10
http://dx.doi.org/10.1109/71.877831
http://dx.doi.org/10.1109/ICGCS.2010.5543050
http://dx.doi.org/10.1109/ISVLSI.2011.57
http://dx.doi.org/10.14279/tuj.eceasst.21.302
http://dx.doi.org/10.1109/TPDS.2011.60
http://dx.doi.org/10.1109/TPDS.2011.60
http://dx.doi.org/10.1109/TPDS.2013.121

[39] A. Alhussien, F. Verbeek, B. van Gastel, N. Bagherzadeh, J. Schmaltz,
Fully reliable dynamic routing logic for a fault-tolerant NoC architec-
ture, Journal of Integrated Circuits and Systems 8 (1) (2013) 43–53.

[40] D. Borrione, A. Helmy, L. Pierre, J. Schmaltz, A formal approach to the
verification of networks on chip, EURASIP Journal Embedded Systems
2009 (2009) 2:1–2:14. doi:10.1155/2009/548324.

[41] A. Helmy, L. Pierre, A. Jantsch, Theorem proving techniques for the
formal verification of NoC communications with non-minimal adaptive
routing, in: Proceedings of the 13th IEEE International Symposium
on Design and Diagnostics of Electronic Circuits and Systems DDECS
2010 (Vienna, Austria), 2010, pp. 221–224. doi:10.1109/DDECS.2010.
5491781.

[42] F. Verbeek, J. Schmaltz, Easy formal specification and validation of
unbounded networks-on-chips architectures, ACM Transactions on De-
sign Automation of Electronic Systems 17 (1) (2012) 1:1–1:28. doi:

10.1145/2071356.2071357.

35

http://dx.doi.org/10.1155/2009/548324
http://dx.doi.org/10.1109/DDECS.2010.5491781
http://dx.doi.org/10.1109/DDECS.2010.5491781
http://dx.doi.org/10.1145/2071356.2071357
http://dx.doi.org/10.1145/2071356.2071357

	Introduction
	Network-on-Chip Architecture and Routing Algorithm
	Potential Livelock Problem
	Eliminating Livelock
	Verification Results
	Deadlock Freedom and Single-link-fault Tolerance
	Packet Delivery
	Livelock Freedom

	Related Work
	Discussion

