
Network Working Group E. Rescorla
Internet-Draft RTFM, Inc.
Obsoletes: 5077 , 5246 (if approved) February 15, 2018
Updates: 4492 , 5705 , 6066 , 6961 (if
 approved)
Intended status: Standards Track
Expires: August 19, 2018

 The Transport Layer Security (TLS) Protocol Version 1.3
 draft-ietf-tls-tls13-24

Abstract

 This document specifies version 1.3 of the Transport Layer Security
 (TLS) protocol. TLS allows client/server applications to communicate
 over the Internet in a way that is designed to prevent eavesdropping,
 tampering, and message forgery.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 19, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4 .e of

Rescorla Expires August 19, 2018 [Page 1]

https://tools.ietf.org/pdf/rfc5077
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc5705
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6961
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS February 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 5
 1.1 . Conventions and Terminology 6
 1.2 . Change Log . 7
 1.3 . Major Differences from TLS 1.2 15
 1.4 . Updates Affecting TLS 1.2 17
 2. Protocol Overview . 17
 2.1 . Incorrect DHE Share 20
 2.2 . Resumption and Pre-Shared Key (PSK) 21
 2.3 . 0-RTT Data . 23
 3. Presentation Language . 25
 3.1 . Basic Block Size . 25
 3.2 . Miscellaneous . 25
 3.3 . Vectors . 26
 3.4 . Numbers . 27
 3.5 . Enumerateds . 27
 3.6 . Constructed Types . 28
 3.7 . Constants . 28
 3.8 . Variants . 29
 4. Handshake Protocol . 30
 4.1 . Key Exchange Messages 31
 4.1.1 . Cryptographic Negotiation 31
 4.1.2 . Client Hello . 32
 4.1.3 . Server Hello . 35
 4.1.4 . Hello Retry Request 37
 4.2 . Extensions . 39
 4.2.1 . Supported Versions 42
 4.2.2 . Cookie . 44
 4.2.3 . Signature Algorithms 44
 4.2.4 . Certificate Authorities 48
 4.2.5 . OID Filters . 49
 4.2.6 . Post-Handshake Client Authentication 50

Rescorla Expires August 19, 2018 [Page 2]

Internet-Draft TLS February 2018

 4.2.7 . Negotiated Groups 50
 4.2.8 . Key Share . 52
 4.2.9 . Pre-Shared Key Exchange Modes 55
 4.2.10 . Early Data Indication 56
 4.2.11 . Pre-Shared Key Extension 58
 4.3 . Server Parameters . 62
 4.3.1 . Encrypted Extensions 62
 4.3.2 . Certificate Request 63
 4.4 . Authentication Messages 64
 4.4.1 . The Transcript Hash 65
 4.4.2 . Certificate . 66
 4.4.3 . Certificate Verify 71
 4.4.4 . Finished . 73
 4.5 . End of Early Data . 75
 4.6 . Post-Handshake Messages 75
 4.6.1 . New Session Ticket Message 75
 4.6.2 . Post-Handshake Authentication 78
 4.6.3 . Key and IV Update 78
 5. Record Protocol . 79
 5.1 . Record Layer . 80
 5.2 . Record Payload Protection 82
 5.3 . Per-Record Nonce . 84
 5.4 . Record Padding . 85
 5.5 . Limits on Key Usage 86
 6. Alert Protocol . 86
 6.1 . Closure Alerts . 88
 6.2 . Error Alerts . 89
 7. Cryptographic Computations 92
 7.1 . Key Schedule . 92
 7.2 . Updating Traffic Keys and IVs 95
 7.3 . Traffic Key Calculation 96
 7.4 . (EC)DHE Shared Secret Calculation 96
 7.4.1 . Finite Field Diffie-Hellman 97
 7.4.2 . Elliptic Curve Diffie-Hellman 97
 7.5 . Exporters . 98
 8. 0-RTT and Anti-Replay . 98
 8.1 . Single-Use Tickets 100
 8.2 . Client Hello Recording 100
 8.3 . Freshness Checks . 101
 9. Compliance Requirements 103
 9.1 . Mandatory-to-Implement Cipher Suites 103
 9.2 . Mandatory-to-Implement Extensions 103
 9.3 . Protocol Invariants 104
 10. Security Considerations 106
 11. IANA Considerations . 106
 12. References . 107
 12.1 . Normative References 107
 12.2 . Informative References 110

Rescorla Expires August 19, 2018 [Page 3]

Internet-Draft TLS February 2018

 Appendix A . State Machine 118
 A.1 . Client . 118
 A.2 . Server . 119
 Appendix B . Protocol Data Structures and Constant Values 119
 B.1 . Record Layer . 120
 B.2 . Alert Messages . 120
 B.3 . Handshake Protocol 122
 B.3.1 . Key Exchange Messages 122
 B.3.2 . Server Parameters Messages 127
 B.3.3 . Authentication Messages 128
 B.3.4 . Ticket Establishment 129
 B.3.5 . Updating Keys . 129
 B.4 . Cipher Suites . 130
 Appendix C . Implementation Notes 131
 C.1 . Random Number Generation and Seeding 131
 C.2 . Certificates and Authentication 132
 C.3 . Implementation Pitfalls 132
 C.4 . Client Tracking Prevention 133
 C.5 . Unauthenticated Operation 134
 Appendix D . Backward Compatibility 134
 D.1 . Negotiating with an older server 135
 D.2 . Negotiating with an older client 136
 D.3 . 0-RTT backwards compatibility 136
 D.4 . Middlebox Compatibility Mode 136
 D.5 . Backwards Compatibility Security Restrictions 137
 Appendix E . Overview of Security Properties 138
 E.1 . Handshake . 138
 E.1.1 . Key Derivation and HKDF 141
 E.1.2 . Client Authentication 142
 E.1.3 . 0-RTT . 142
 E.1.4 . Exporter Independence 142
 E.1.5 . Post-Compromise Security 143
 E.1.6 . External References 143
 E.2 . Record Layer . 143
 E.2.1 . External References 144
 E.3 . Traffic Analysis . 144
 E.4 . Side Channel Attacks 145
 E.5 . Replay Attacks on 0-RTT 146
 E.5.1 . Replay and Exporters 147
 E.6 . Attacks on Static RSA 148
 Appendix F . Working Group Information 148
 Appendix G . Contributors . 148
 Author’s Address . 155

Rescorla Expires August 19, 2018 [Page 4]

Internet-Draft TLS February 2018

1. Introduction

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for this
 draft is maintained in GitHub. Suggested changes should be submitted
 as pull requests at https://github.com/tlswg/tls13-spec .
 Instructions are on that page as well. Editorial changes can be
 managed in GitHub, but any substantive change should be discussed on
 the TLS mailing list.

 The primary goal of TLS is to provide a secure channel between two
 communicating peers. Specifically, the channel should provide the
 following properties:

 - Authentication: The server side of the channel is always
 authenticated; the client side is optionally authenticated.
 Authentication can happen via asymmetric cryptography (e.g., RSA
 [RSA], ECDSA [ECDSA], EdDSA [RFC8032]) or a pre-shared key (PSK).

 - Confidentiality: Data sent over the channel after establishment is
 only visible to the endpoints. TLS does not hide the length of
 the data it transmits, though endpoints are able to pad TLS
 records in order to obscure lengths and improve protection against
 traffic analysis techniques.

 - Integrity: Data sent over the channel after establishment cannot
 be modified by attackers.

 These properties should be true even in the face of an attacker who
 has complete control of the network, as described in [RFC3552]. See
 Appendix E for a more complete statement of the relevant security
 properties.

 TLS consists of two primary components:

 - A handshake protocol (Section 4) that authenticates the
 communicating parties, negotiates cryptographic modes and
 parameters, and establishes shared keying material. The handshake
 protocol is designed to resist tampering; an active attacker
 should not be able to force the peers to negotiate different
 parameters than they would if the connection were not under
 attack.

 - A record protocol (Section 5) that uses the parameters established
 by the handshake protocol to protect traffic between the
 communicating peers. The record protocol divides traffic up into
 a series of records, each of which is independently protected
 using the traffic keys.

Rescorla Expires August 19, 2018 [Page 5]

https://github.com/tlswg/tls13-spec
https://tools.ietf.org/pdf/rfc8032
https://tools.ietf.org/pdf/rfc3552

Internet-Draft TLS February 2018

 TLS is application protocol independent; higher-level protocols can
 layer on top of TLS transparently. The TLS standard, however, does
 not specify how protocols add security with TLS; how to initiate TLS
 handshaking and how to interpret the authentication certificates
 exchanged are left to the judgment of the designers and implementors
 of protocols that run on top of TLS.

 This document defines TLS version 1.3. While TLS 1.3 is not directly
 compatible with previous versions, all versions of TLS incorporate a
 versioning mechanism which allows clients and servers to
 interoperably negotiate a common version if one is supported by both
 peers.

 This document supersedes and obsoletes previous versions of TLS
 including version 1.2 [RFC5246]. It also obsoletes the TLS ticket
 mechanism defined in [RFC5077] and replaces it with the mechanism
 defined in Section 2.2 . Section 4.2.7 updates [RFC4492] by modifying
 the protocol attributes used to negotiate Elliptic Curves. Because
 TLS 1.3 changes the way keys are derived it updates [RFC5705] as
 described in Section 7.5 it also changes how OCSP messages are
 carried and therefore updates [RFC6066] and obsoletes [RFC6961] as
 described in section Section 4.4.2.1 .

1.1 . Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are used:

 client: The endpoint initiating the TLS connection.

 connection: A transport-layer connection between two endpoints.

 endpoint: Either the client or server of the connection.

 handshake: An initial negotiation between client and server that
 establishes the parameters of their subsequent interactions.

 peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is not the primary subject of discussion.

 receiver: An endpoint that is receiving records.

 sender: An endpoint that is transmitting records.

Rescorla Expires August 19, 2018 [Page 6]

https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc5077
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc5705
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6961
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc8174

Internet-Draft TLS February 2018

 server: The endpoint which did not initiate the TLS connection.

1.2 . Change Log

 RFC EDITOR PLEASE DELETE THIS SECTION.

 (*) indicates changes to the wire protocol which may require
 implementations to update.

 draft-24

 - Require that CH2 have version 0303 (*)

 - Some clarifications

 draft-23 - Renumber key_share (*)

 - Add a new extension and new code points to allow negotiating PSS
 separately for certificates and CertificateVerify (*)

 - Slightly restrict when CCS must be accepted to make implementation
 easier.

 - Document protocol invariants

 - Add some text on the security of static RSA.

 draft-22 - Implement changes for improved middlebox penetration (*)

 - Move server_certificate_type to encrypted extensions (*)

 - Allow resumption with a different SNI (*)

 - Padding extension can change on HRR (*)

 - Allow an empty ticket_nonce (*)

 - Remove requirement to immediately respond to close_notify with
 close_notify (allowing half-close)

 draft-21

 - Add a per-ticket nonce so that each ticket is associated with a
 different PSK (*).

 - Clarify that clients should send alerts with the handshake key if
 possible.

Rescorla Expires August 19, 2018 [Page 7]

https://tools.ietf.org/pdf/draft-24
https://tools.ietf.org/pdf/draft-23
https://tools.ietf.org/pdf/draft-22
https://tools.ietf.org/pdf/draft-21

Internet-Draft TLS February 2018

 - Update state machine to show rekeying events

 - Add discussion of 0-RTT and replay. Recommend that
 implementations implement some anti-replay mechanism.

 draft-20

 - Add "post_handshake_auth" extension to negotiate post-handshake
 authentication (*).

 - Shorten labels for HKDF-Expand-Label so that we can fit within one
 compression block (*).

 - Define how RFC 7250 works (*).

 - Re-enable post-handshake client authentication even when you do
 PSK. The previous prohibition was editorial error.

 - Remove cert_type and user_mapping, which don’t work on TLS 1.3
 anyway.

 - Added the no_application_protocol alert from [RFC7301] to the list
 of extensions.

 - Added discussion of traffic analysis and side channel attacks.

 draft-19

 - Hash context_value input to Exporters (*)

 - Add an additional Derive-Secret stage to Exporters (*).

 - Hash ClientHello1 in the transcript when HRR is used. This
 reduces the state that needs to be carried in cookies. (*)

 - Restructure CertificateRequest to have the selectors in
 extensions. This also allowed defining a
 "certificate_authorities" extension which can be used by the
 client instead of trusted_ca_keys (*).

 - Tighten record framing requirements and require checking of them
 (*).

 - Consolidate "ticket_early_data_info" and "early_data" into a
 single extension (*).

 - Change end_of_early_data to be a handshake message (*).

Rescorla Expires August 19, 2018 [Page 8]

https://tools.ietf.org/pdf/draft-20
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7301
https://tools.ietf.org/pdf/draft-19

Internet-Draft TLS February 2018

 - Add pre-extract Derive-Secret stages to key schedule (*).

 - Remove spurious requirement to implement "pre_shared_key".

 - Clarify location of "early_data" from server (it goes in EE, as
 indicated by the table in S 10).

 - Require peer public key validation

 - Add state machine diagram.

 draft-18

 - Remove unnecessary resumption_psk which is the only thing expanded
 from the resumption master secret. (*).

 - Fix signature_algorithms entry in extensions table.

 - Restate rule from RFC 6066 that you can’t resume unless SNI is the
 same.

 draft-17

 - Remove 0-RTT Finished and resumption_context, and replace with a
 psk_binder field in the PSK itself (*)

 - Restructure PSK key exchange negotiation modes (*)

 - Add max_early_data_size field to TicketEarlyDataInfo (*)

 - Add a 0-RTT exporter and change the transcript for the regular
 exporter (*)

 - Merge TicketExtensions and Extensions registry. Changes
 ticket_early_data_info code point (*)

 - Replace Client.key_shares in response to HRR (*)

 - Remove redundant labels for traffic key derivation (*)

 - Harmonize requirements about cipher suite matching: for resumption
 you need to match KDF but for 0-RTT you need whole cipher suite.
 This allows PSKs to actually negotiate cipher suites. (*)

 - Move SCT and OCSP into Certificate.extensions (*)

 - Explicitly allow non-offered extensions in NewSessionTicket

Rescorla Expires August 19, 2018 [Page 9]

https://tools.ietf.org/pdf/draft-18
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/draft-17

Internet-Draft TLS February 2018

 - Explicitly allow predicting client Finished for NST

 - Clarify conditions for allowing 0-RTT with PSK

 draft-16

 - Revise version negotiation (*)

 - Change RSASSA-PSS and EdDSA SignatureScheme codepoints for better
 backwards compatibility (*)

 - Move HelloRetryRequest.selected_group to an extension (*)

 - Clarify the behavior of no exporter context and make it the same
 as an empty context.(*)

 - New KeyUpdate format that allows for requesting/not-requesting an
 answer. This also means changes to the key schedule to support
 independent updates (*)

 - New certificate_required alert (*)

 - Forbid CertificateRequest with 0-RTT and PSK.

 - Relax requirement to check SNI for 0-RTT.

 draft-15

 - New negotiation syntax as discussed in Berlin (*)

 - Require CertificateRequest.context to be empty during handshake
 (*)

 - Forbid empty tickets (*)

 - Forbid application data messages in between post-handshake
 messages from the same flight (*)

 - Clean up alert guidance (*)

 - Clearer guidance on what is needed for TLS 1.2.

 - Guidance on 0-RTT time windows.

 - Rename a bunch of fields.

 - Remove old PRNG text.

Rescorla Expires August 19, 2018 [Page 10]

https://tools.ietf.org/pdf/draft-16
https://tools.ietf.org/pdf/draft-15

Internet-Draft TLS February 2018

 - Explicitly require checking that handshake records not span key
 changes.

 draft-14

 - Allow cookies to be longer (*)

 - Remove the "context" from EarlyDataIndication as it was undefined
 and nobody used it (*)

 - Remove 0-RTT EncryptedExtensions and replace the ticket_age
 extension with an obfuscated version. Also necessitates a change
 to NewSessionTicket (*).

 - Move the downgrade sentinel to the end of ServerHello.Random to
 accommodate tlsdate (*).

 - Define ecdsa_sha1 (*).

 - Allow resumption even after fatal alerts. This matches current
 practice.

 - Remove non-closure warning alerts. Require treating unknown
 alerts as fatal.

 - Make the rules for accepting 0-RTT less restrictive.

 - Clarify 0-RTT backward-compatibility rules.

 - Clarify how 0-RTT and PSK identities interact.

 - Add a section describing the data limits for each cipher.

 - Major editorial restructuring.

 - Replace the Security Analysis section with a WIP draft.

 draft-13

 - Allow server to send SupportedGroups.

 - Remove 0-RTT client authentication

 - Remove (EC)DHE 0-RTT.

 - Flesh out 0-RTT PSK mode and shrink EarlyDataIndication

 - Turn PSK-resumption response into an index to save room

Rescorla Expires August 19, 2018 [Page 11]

https://tools.ietf.org/pdf/draft-14
https://tools.ietf.org/pdf/draft-13

Internet-Draft TLS February 2018

 - Move CertificateStatus to an extension

 - Extra fields in NewSessionTicket.

 - Restructure key schedule and add a resumption_context value.

 - Require DH public keys and secrets to be zero-padded to the size
 of the group.

 - Remove the redundant length fields in KeyShareEntry.

 - Define a cookie field for HRR.

 draft-12

 - Provide a list of the PSK cipher suites.

 - Remove the ability for the ServerHello to have no extensions (this
 aligns the syntax with the text).

 - Clarify that the server can send application data after its first
 flight (0.5 RTT data)

 - Revise signature algorithm negotiation to group hash, signature
 algorithm, and curve together. This is backwards compatible.

 - Make ticket lifetime mandatory and limit it to a week.

 - Make the purpose strings lower-case. This matches how people are
 implementing for interop.

 - Define exporters.

 - Editorial cleanup

 draft-11

 - Port the CFRG curves & signatures work from RFC4492bis.

 - Remove sequence number and version from additional_data, which is
 now empty.

 - Reorder values in HkdfLabel.

 - Add support for version anti-downgrade mechanism.

 - Update IANA considerations section and relax some of the policies.

Rescorla Expires August 19, 2018 [Page 12]

https://tools.ietf.org/pdf/draft-12
https://tools.ietf.org/pdf/draft-11

Internet-Draft TLS February 2018

 - Unify authentication modes. Add post-handshake client
 authentication.

 - Remove early_handshake content type. Terminate 0-RTT data with an
 alert.

 - Reset sequence number upon key change (as proposed by Fournet et
 al.)

 draft-10

 - Remove ClientCertificateTypes field from CertificateRequest and
 add extensions.

 - Merge client and server key shares into a single extension.

 draft-09

 - Change to RSA-PSS signatures for handshake messages.

 - Remove support for DSA.

 - Update key schedule per suggestions by Hugo, Hoeteck, and Bjoern
 Tackmann.

 - Add support for per-record padding.

 - Switch to encrypted record ContentType.

 - Change HKDF labeling to include protocol version and value
 lengths.

 - Shift the final decision to abort a handshake due to incompatible
 certificates to the client rather than having servers abort early.

 - Deprecate SHA-1 with signatures.

 - Add MTI algorithms.

 draft-08

 - Remove support for weak and lesser used named curves.

 - Remove support for MD5 and SHA-224 hashes with signatures.

 - Update lists of available AEAD cipher suites and error alerts.

Rescorla Expires August 19, 2018 [Page 13]

https://tools.ietf.org/pdf/draft-10
https://tools.ietf.org/pdf/draft-09
https://tools.ietf.org/pdf/draft-08

Internet-Draft TLS February 2018

 - Reduce maximum permitted record expansion for AEAD from 2048 to
 256 octets.

 - Require digital signatures even when a previous configuration is
 used.

 - Merge EarlyDataIndication and KnownConfiguration.

 - Change code point for server_configuration to avoid collision with
 server_hello_done.

 - Relax certificate_list ordering requirement to match current
 practice.

 draft-07

 - Integration of semi-ephemeral DH proposal.

 - Add initial 0-RTT support.

 - Remove resumption and replace with PSK + tickets.

 - Move ClientKeyShare into an extension.

 - Move to HKDF.

 draft-06

 - Prohibit RC4 negotiation for backwards compatibility.

 - Freeze & deprecate record layer version field.

 - Update format of signatures with context.

 - Remove explicit IV.

 draft-05

 - Prohibit SSL negotiation for backwards compatibility.

 - Fix which MS is used for exporters.

 draft-04

 - Modify key computations to include session hash.

 - Remove ChangeCipherSpec.

Rescorla Expires August 19, 2018 [Page 14]

https://tools.ietf.org/pdf/draft-07
https://tools.ietf.org/pdf/draft-06
https://tools.ietf.org/pdf/draft-05
https://tools.ietf.org/pdf/draft-04

Internet-Draft TLS February 2018

 - Renumber the new handshake messages to be somewhat more consistent
 with existing convention and to remove a duplicate registration.

 - Remove renegotiation.

 - Remove point format negotiation.

 draft-03

 - Remove GMT time.

 - Merge in support for ECC from RFC 4492 but without explicit
 curves.

 - Remove the unnecessary length field from the AD input to AEAD
 ciphers.

 - Rename {Client,Server}KeyExchange to {Client,Server}KeyShare.

 - Add an explicit HelloRetryRequest to reject the client’s.

 draft-02

 - Increment version number.

 - Rework handshake to provide 1-RTT mode.

 - Remove custom DHE groups.

 - Remove support for compression.

 - Remove support for static RSA and DH key exchange.

 - Remove support for non-AEAD ciphers.

1.3 . Major Differences from TLS 1.2

 The following is a list of the major functional differences between
 TLS 1.2 and TLS 1.3. It is not intended to be exhaustive and there
 are many minor differences.

 - The list of supported symmetric algorithms has been pruned of all
 algorithms that are considered legacy. Those that remain all use
 Authenticated Encryption with Associated Data (AEAD) algorithms.
 The ciphersuite concept has been changed to separate the
 authentication and key exchange mechanisms from the record
 protection algorithm (including secret key length) and a hash to
 be used with the key derivation function and HMAC.

Rescorla Expires August 19, 2018 [Page 15]

https://tools.ietf.org/pdf/draft-03
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/draft-02

Internet-Draft TLS February 2018

 - A 0-RTT mode was added, saving a round-trip at connection setup
 for some application data, at the cost of certain security
 properties.

 - Static RSA and Diffie-Hellman cipher suites have been removed; all
 public-key based key exchange mechanisms now provide forward
 secrecy.

 - All handshake messages after the ServerHello are now encrypted.
 The newly introduced EncryptedExtension message allows various
 extensions previously sent in clear in the ServerHello to also
 enjoy confidentiality protection from active attackers.

 - The key derivation functions have been re-designed. The new
 design allows easier analysis by cryptographers due to their
 improved key separation properties. The HMAC-based Extract-and-
 Expand Key Derivation Function (HKDF) is used as an underlying
 primitive.

 - The handshake state machine has been significantly restructured to
 be more consistent and to remove superfluous messages such as
 ChangeCipherSpec.

 - Elliptic curve algorithms are now in the base spec and includes
 new signature algorithms, such as ed25519 and ed448. TLS 1.3
 removed point format negotiation in favor of a single point format
 for each curve.

 - Other cryptographic improvements including the removal of
 compression and custom DHE groups, changing the RSA padding to use
 PSS, and the removal of DSA.

 - The TLS 1.2 version negotiation mechanism has been deprecated in
 favor of a version list in an extension. This increases
 compatibility with servers which incorrectly implemented version
 negotiation.

 - Session resumption with and without server-side state as well as
 the PSK-based ciphersuites of earlier TLS versions have been
 replaced by a single new PSK exchange.

 - Updated references to point to the updated versions of RFCs, as
 appropriate (e.g., RFC 5280 rather than RFC 3280).

Rescorla Expires August 19, 2018 [Page 16]

https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc3280

Internet-Draft TLS February 2018

1.4 . Updates Affecting TLS 1.2

 This document defines several changes that optionally affect
 implementations of TLS 1.2:

 - A version downgrade protection mechanism is described in
 Section 4.1.3 .

 - RSASSA-PSS signature schemes are defined in Section 4.2.3 .

 - The "supported_versions" ClientHello extension can be used to
 negotiate the version of TLS to use, in preference to the
 legacy_version field of the ClientHello.

 An implementation of TLS 1.3 that also supports TLS 1.2 might need to
 include changes to support these changes even when TLS 1.3 is not in
 use. See the referenced sections for more details.

 Additionally, this document clarifies some compliance requirements
 for earlier versions of TLS; see Section 9.3 .

2. Protocol Overview

 The cryptographic parameters used by the secure channel are produced
 by the TLS handshake protocol. This sub-protocol of TLS is used by
 the client and server when first communicating with each other. The
 handshake protocol allows peers to negotiate a protocol version,
 select cryptographic algorithms, optionally authenticate each other,
 and establish shared secret keying material. Once the handshake is
 complete, the peers use the established keys to protect the
 application layer traffic.

 A failure of the handshake or other protocol error triggers the
 termination of the connection, optionally preceded by an alert
 message (Section 6).

 TLS supports three basic key exchange modes:

 - (EC)DHE (Diffie-Hellman over either finite fields or elliptic
 curves)

 - PSK-only

 - PSK with (EC)DHE

 Figure 1 below shows the basic full TLS handshake:

Rescorla Expires August 19, 2018 [Page 17]

Internet-Draft TLS February 2018

 Client Server

Key ^ ClientHello
Exch | + key_share*
 | + signature_algorithms*
 | + psk_key_exchange_modes*
 v + pre_shared_key* -------->
 ServerHello ^ Key
 + key_share* | Exch
 + pre_shared_key* v
 {EncryptedExtensions} ^ Server
 {CertificateRequest*} v Params
 {Certificate*} ^
 {CertificateVerify*} | Auth
 {Finished} v
 <-------- [Application Data*]
 ^ {Certificate*}
Auth | {CertificateVerify*}
 v {Finished} -------->
 [Application Data] <-------> [Application Data]

 + Indicates noteworthy extensions sent in the
 previously noted message.

 * Indicates optional or situation-dependent
 messages/extensions that are not always sent.

 {} Indicates messages protected using keys
 derived from a [sender]_handshake_traffic_secret.

 [] Indicates messages protected using keys
 derived from [sender]_application_traffic_secret_N

 Figure 1: Message flow for full TLS Handshake

 The handshake can be thought of as having three phases (indicated in
 the diagram above):

 - Key Exchange: Establish shared keying material and select the
 cryptographic parameters. Everything after this phase is
 encrypted.

 - Server Parameters: Establish other handshake parameters (whether
 the client is authenticated, application layer protocol support,
 etc.).

 - Authentication: Authenticate the server (and optionally the
 client) and provide key confirmation and handshake integrity.

Rescorla Expires August 19, 2018 [Page 18]

Internet-Draft TLS February 2018

 In the Key Exchange phase, the client sends the ClientHello
 (Section 4.1.2) message, which contains a random nonce
 (ClientHello.random); its offered protocol versions; a list of
 symmetric cipher/HKDF hash pairs; either a set of Diffie-Hellman key
 shares (in the "key_share" extension Section 4.2.8), a set of pre-
 shared key labels (in the "pre_shared_key" extension Section 4.2.11)
 or both; and potentially additional extensions.

 The server processes the ClientHello and determines the appropriate
 cryptographic parameters for the connection. It then responds with
 its own ServerHello (Section 4.1.3), which indicates the negotiated
 connection parameters. The combination of the ClientHello and the
 ServerHello determines the shared keys. If (EC)DHE key establishment
 is in use, then the ServerHello contains a "key_share" extension with
 the server’s ephemeral Diffie-Hellman share which MUST be in the same
 group as one of the client’s shares. If PSK key establishment is in
 use, then the ServerHello contains a "pre_shared_key" extension
 indicating which of the client’s offered PSKs was selected. Note
 that implementations can use (EC)DHE and PSK together, in which case
 both extensions will be supplied.

 The server then sends two messages to establish the Server
 Parameters:

 EncryptedExtensions: responses to ClientHello extensions that are
 not required to determine the cryptographic parameters, other than
 those that are specific to individual certificates.
 [Section 4.3.1]

 CertificateRequest: if certificate-based client authentication is
 desired, the desired parameters for that certificate. This
 message is omitted if client authentication is not desired.
 [Section 4.3.2]

 Finally, the client and server exchange Authentication messages. TLS
 uses the same set of messages every time that authentication is
 needed. Specifically:

 Certificate: the certificate of the endpoint and any per-certificate
 extensions. This message is omitted by the server if not
 authenticating with a certificate and by the client if the server
 did not send CertificateRequest (thus indicating that the client
 should not authenticate with a certificate). Note that if raw
 public keys [RFC7250] or the cached information extension
 [RFC7924] are in use, then this message will not contain a
 certificate but rather some other value corresponding to the
 server’s long-term key. [Section 4.4.2]

Rescorla Expires August 19, 2018 [Page 19]

https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7924

Internet-Draft TLS February 2018

 CertificateVerify: a signature over the entire handshake using the
 private key corresponding to the public key in the Certificate
 message. This message is omitted if the endpoint is not
 authenticating via a certificate. [Section 4.4.3]

 Finished: a MAC (Message Authentication Code) over the entire
 handshake. This message provides key confirmation, binds the
 endpoint’s identity to the exchanged keys, and in PSK mode also
 authenticates the handshake. [Section 4.4.4]

 Upon receiving the server’s messages, the client responds with its
 Authentication messages, namely Certificate and CertificateVerify (if
 requested), and Finished.

 At this point, the handshake is complete, and the client and server
 derive the keying material required by the record layer to exchange
 application-layer data protected through authenticated encryption.
 Application data MUST NOT be sent prior to sending the Finished
 message and until the record layer starts using encryption keys.
 Note that while the server may send application data prior to
 receiving the client’s Authentication messages, any data sent at that
 point is, of course, being sent to an unauthenticated peer.

2.1 . Incorrect DHE Share

 If the client has not provided a sufficient "key_share" extension
 (e.g., it includes only DHE or ECDHE groups unacceptable to or
 unsupported by the server), the server corrects the mismatch with a
 HelloRetryRequest and the client needs to restart the handshake with
 an appropriate "key_share" extension, as shown in Figure 2. If no
 common cryptographic parameters can be negotiated, the server MUST
 abort the handshake with an appropriate alert.

Rescorla Expires August 19, 2018 [Page 20]

Internet-Draft TLS February 2018

 Client Server

 ClientHello
 + key_share -------->
 <-------- HelloRetryRequest
 + key_share

 ClientHello
 + key_share -------->
 ServerHello
 + key_share
 {EncryptedExtensions}
 {CertificateRequest*}
 {Certificate*}
 {CertificateVerify*}
 {Finished}
 <-------- [Application Data*]
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 Figure 2: Message flow for a full handshake with mismatched
 parameters

 Note: The handshake transcript includes the initial ClientHello/
 HelloRetryRequest exchange; it is not reset with the new ClientHello.

 TLS also allows several optimized variants of the basic handshake, as
 described in the following sections.

2.2 . Resumption and Pre-Shared Key (PSK)

 Although TLS PSKs can be established out of band, PSKs can also be
 established in a previous connection and then reused ("session
 resumption"). Once a handshake has completed, the server can send to
 the client a PSK identity that corresponds to a unique key derived
 from the initial handshake (see Section 4.6.1). The client can then
 use that PSK identity in future handshakes to negotiate the use of
 the associated PSK. If the server accepts it, then the security
 context of the new connection is cryptographically tied to the
 original connection and the key derived from the initial handshake is
 used to bootstrap the cryptographic state instead of a full
 handshake. In TLS 1.2 and below, this functionality was provided by
 "session IDs" and "session tickets" [RFC5077]. Both mechanisms are
 obsoleted in TLS 1.3.

Rescorla Expires August 19, 2018 [Page 21]

https://tools.ietf.org/pdf/rfc5077

Internet-Draft TLS February 2018

 PSKs can be used with (EC)DHE key exchange in order to provide
 forward secrecy in combination with shared keys, or can be used
 alone, at the cost of losing forward secrecy for the application
 data.

 Figure 3 shows a pair of handshakes in which the first establishes a
 PSK and the second uses it:

 Client Server

 Initial Handshake:
 ClientHello
 + key_share -------->
 ServerHello
 + key_share
 {EncryptedExtensions}
 {CertificateRequest*}
 {Certificate*}
 {CertificateVerify*}
 {Finished}
 <-------- [Application Data*]
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->
 <-------- [NewSessionTicket]
 [Application Data] <-------> [Application Data]

 Subsequent Handshake:
 ClientHello
 + key_share*
 + pre_shared_key -------->
 ServerHello
 + pre_shared_key
 + key_share*
 {EncryptedExtensions}
 {Finished}
 <-------- [Application Data*]
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 Figure 3: Message flow for resumption and PSK

 As the server is authenticating via a PSK, it does not send a
 Certificate or a CertificateVerify message. When a client offers
 resumption via PSK, it SHOULD also supply a "key_share" extension to
 the server to allow the server to decline resumption and fall back to
 a full handshake, if needed. The server responds with a

Rescorla Expires August 19, 2018 [Page 22]

Internet-Draft TLS February 2018

 "pre_shared_key" extension to negotiate use of PSK key establishment
 and can (as shown here) respond with a "key_share" extension to do
 (EC)DHE key establishment, thus providing forward secrecy.

 When PSKs are provisioned out of band, the PSK identity and the KDF
 hash algorithm to be used with the PSK MUST also be provisioned.

 Note: When using an out-of-band provisioned pre-shared secret, a
 critical consideration is using sufficient entropy during the key
 generation, as discussed in [RFC4086]. Deriving a shared secret
 from a password or other low-entropy sources is not secure. A
 low-entropy secret, or password, is subject to dictionary attacks
 based on the PSK binder. The specified PSK authentication is not
 a strong password-based authenticated key exchange even when used
 with Diffie-Hellman key establishment.

2.3 . 0-RTT Data

 When clients and servers share a PSK (either obtained externally or
 via a previous handshake), TLS 1.3 allows clients to send data on the
 first flight ("early data"). The client uses the PSK to authenticate
 the server and to encrypt the early data.

 As shown in Figure 4, the 0-RTT data is just added to the 1-RTT
 handshake in the first flight. The rest of the handshake uses the
 same messages as with a 1-RTT handshake with PSK resumption.

Rescorla Expires August 19, 2018 [Page 23]

https://tools.ietf.org/pdf/rfc4086

Internet-Draft TLS February 2018

 Client Server

 ClientHello
 + early_data
 + key_share*
 + psk_key_exchange_modes
 + pre_shared_key
 (Application Data*) -------->
 ServerHello
 + pre_shared_key
 + key_share*
 {EncryptedExtensions}
 + early_data*
 {Finished}
 <-------- [Application Data*]
 (EndOfEarlyData)
 {Finished} -------->

 [Application Data] <-------> [Application Data]

 + Indicates noteworthy extensions sent in the
 previously noted message.

 * Indicates optional or situation-dependent
 messages/extensions that are not always sent.

 () Indicates messages protected using keys
 derived from client_early_traffic_secret.

 {} Indicates messages protected using keys
 derived from a [sender]_handshake_traffic_secret.

 [] Indicates messages protected using keys
 derived from [sender]_application_traffic_secret_N

 Figure 4: Message flow for a zero round trip handshake

 IMPORTANT NOTE: The security properties for 0-RTT data are weaker
 than those for other kinds of TLS data. Specifically:

 1. This data is not forward secret, as it is encrypted solely under
 keys derived using the offered PSK.

 2. There are no guarantees of non-replay between connections.
 Protection against replay for ordinary TLS 1.3 1-RTT data is
 provided via the server’s Random value, but 0-RTT data does not
 depend on the ServerHello and therefore has weaker guarantees.
 This is especially relevant if the data is authenticated either

Rescorla Expires August 19, 2018 [Page 24]

Internet-Draft TLS February 2018

 with TLS client authentication or inside the application
 protocol. The same warnings apply to any use of the
 early_exporter_master_secret.

 0-RTT data cannot be duplicated within a connection (i.e., the server
 will not process the same data twice for the same connection) and an
 attacker will not be able to make 0-RTT data appear to be 1-RTT data
 (because it is protected with different keys.) Appendix E.5 contains
 a description of potential attacks and Section 8 describes mechanisms
 which the server can use to limit the impact of replay.

3. Presentation Language

 This document deals with the formatting of data in an external
 representation. The following very basic and somewhat casually
 defined presentation syntax will be used.

3.1 . Basic Block Size

 The representation of all data items is explicitly specified. The
 basic data block size is one byte (i.e., 8 bits). Multiple byte data
 items are concatenations of bytes, from left to right, from top to
 bottom. From the byte stream, a multi-byte item (a numeric in the
 example) is formed (using C notation) by:

 value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) |
 ... | byte[n-1];

 This byte ordering for multi-byte values is the commonplace network
 byte order or big-endian format.

3.2 . Miscellaneous

 Comments begin with "/*" and end with "*/".

 Optional components are denoted by enclosing them in "[[]]" double
 brackets.

 Single-byte entities containing uninterpreted data are of type
 opaque.

 A type alias T’ for an existing type T is defined by:

 T T’;

Rescorla Expires August 19, 2018 [Page 25]

Internet-Draft TLS February 2018

3.3 . Vectors

 A vector (single-dimensioned array) is a stream of homogeneous data
 elements. The size of the vector may be specified at documentation
 time or left unspecified until runtime. In either case, the length
 declares the number of bytes, not the number of elements, in the
 vector. The syntax for specifying a new type, T’, that is a fixed-
 length vector of type T is

 T T’[n];

 Here, T’ occupies n bytes in the data stream, where n is a multiple
 of the size of T. The length of the vector is not included in the
 encoded stream.

 In the following example, Datum is defined to be three consecutive
 bytes that the protocol does not interpret, while Data is three
 consecutive Datum, consuming a total of nine bytes.

 opaque Datum[3]; /* three uninterpreted bytes */
 Datum Data[9]; /* 3 consecutive 3-byte vectors */

 Variable-length vectors are defined by specifying a subrange of legal
 lengths, inclusively, using the notation <floor..ceiling>. When
 these are encoded, the actual length precedes the vector’s contents
 in the byte stream. The length will be in the form of a number
 consuming as many bytes as required to hold the vector’s specified
 maximum (ceiling) length. A variable-length vector with an actual
 length field of zero is referred to as an empty vector.

 T T’<floor..ceiling>;

 In the following example, mandatory is a vector that must contain
 between 300 and 400 bytes of type opaque. It can never be empty.
 The actual length field consumes two bytes, a uint16, which is
 sufficient to represent the value 400 (see Section 3.4). Similarly,
 longer can represent up to 800 bytes of data, or 400 uint16 elements,
 and it may be empty. Its encoding will include a two-byte actual
 length field prepended to the vector. The length of an encoded
 vector must be an exact multiple of the length of a single element
 (e.g., a 17-byte vector of uint16 would be illegal).

 opaque mandatory<300..400>;
 /* length field is 2 bytes, cannot be empty */
 uint16 longer<0..800>;
 /* zero to 400 16-bit unsigned integers */

Rescorla Expires August 19, 2018 [Page 26]

Internet-Draft TLS February 2018

3.4 . Numbers

 The basic numeric data type is an unsigned byte (uint8). All larger
 numeric data types are formed from fixed-length series of bytes
 concatenated as described in Section 3.1 and are also unsigned. The
 following numeric types are predefined.

 uint8 uint16[2];
 uint8 uint24[3];
 uint8 uint32[4];
 uint8 uint64[8];

 All values, here and elsewhere in the specification, are stored in
 network byte (big-endian) order; the uint32 represented by the hex
 bytes 01 02 03 04 is equivalent to the decimal value 16909060.

3.5 . Enumerateds

 An additional sparse data type is available called enum. Each
 definition is a different type. Only enumerateds of the same type
 may be assigned or compared. Every element of an enumerated must be
 assigned a value, as demonstrated in the following example. Since
 the elements of the enumerated are not ordered, they can be assigned
 any unique value, in any order.

 enum { e1(v1), e2(v2), ... , en(vn) [[, (n)]] } Te;

 Future extensions or additions to the protocol may define new values.
 Implementations need to be able to parse and ignore unknown values
 unless the definition of the field states otherwise.

 An enumerated occupies as much space in the byte stream as would its
 maximal defined ordinal value. The following definition would cause
 one byte to be used to carry fields of type Color.

 enum { red(3), blue(5), white(7) } Color;

 One may optionally specify a value without its associated tag to
 force the width definition without defining a superfluous element.

 In the following example, Taste will consume two bytes in the data
 stream but can only assume the values 1, 2, or 4 in the current
 version of the protocol.

 enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

 The names of the elements of an enumeration are scoped within the
 defined type. In the first example, a fully qualified reference to

Rescorla Expires August 19, 2018 [Page 27]

Internet-Draft TLS February 2018

 the second element of the enumeration would be Color.blue. Such
 qualification is not required if the target of the assignment is well
 specified.

 Color color = Color.blue; /* overspecified, legal */
 Color color = blue; /* correct, type implicit */

 The names assigned to enumerateds do not need to be unique. The
 numerical value can describe a range over which the same name
 applies. The value includes the minimum and maximum inclusive values
 in that range, separated by two period characters. This is
 principally useful for reserving regions of the space.

 enum { sad(0), meh(1..254), happy(255) } Mood;

3.6 . Constructed Types

 Structure types may be constructed from primitive types for
 convenience. Each specification declares a new, unique type. The
 syntax for definition is much like that of C.

 struct {
 T1 f1;
 T2 f2;
 ...
 Tn fn;
 } T;

 Fixed- and variable-length vector fields are allowed using the
 standard vector syntax. Structures V1 and V2 in the variants example
 below demonstrate this.

 The fields within a structure may be qualified using the type’s name,
 with a syntax much like that available for enumerateds. For example,
 T.f2 refers to the second field of the previous declaration.

3.7 . Constants

 Fields and variables may be assigned a fixed value using "=", as in:

 struct {
 T1 f1 = 8; /* T.f1 must always be 8 */
 T2 f2;
 } T;

Rescorla Expires August 19, 2018 [Page 28]

Internet-Draft TLS February 2018

3.8 . Variants

 Defined structures may have variants based on some knowledge that is
 available within the environment. The selector must be an enumerated
 type that defines the possible variants the structure defines. Each
 arm of the select specifies the type of that variant’s field and an
 optional field label. The mechanism by which the variant is selected
 at runtime is not prescribed by the presentation language.

 struct {
 T1 f1;
 T2 f2;

 Tn fn;
 select (E) {
 case e1: Te1 [[fe1]];
 case e2: Te2 [[fe2]];

 case en: Ten [[fen]];
 };
 } Tv;

 For example:

 enum { apple(0), orange(1) } VariantTag;

 struct {
 uint16 number;
 opaque string<0..10>; /* variable length */
 } V1;

 struct {
 uint32 number;
 opaque string[10]; /* fixed length */
 } V2;

 struct {
 VariantTag type;
 select (VariantRecord.type) {
 case apple: V1;
 case orange: V2;
 };
 } VariantRecord;

Rescorla Expires August 19, 2018 [Page 29]

Internet-Draft TLS February 2018

4. Handshake Protocol

 The handshake protocol is used to negotiate the security parameters
 of a connection. Handshake messages are supplied to the TLS record
 layer, where they are encapsulated within one or more TLSPlaintext or
 TLSCiphertext structures, which are processed and transmitted as
 specified by the current active connection state.

 enum {
 client_hello(1),
 server_hello(2),
 new_session_ticket(4),
 end_of_early_data(5),
 encrypted_extensions(8),
 certificate(11),
 certificate_request(13),
 certificate_verify(15),
 finished(20),
 key_update(24),
 message_hash(254),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (Handshake.msg_type) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case end_of_early_data: EndOfEarlyData;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 };
 } Handshake;

 Protocol messages MUST be sent in the order defined in Section 4.4.1
 and shown in the diagrams in Section 2 . A peer which receives a
 handshake message in an unexpected order MUST abort the handshake
 with an "unexpected_message" alert.

 New handshake message types are assigned by IANA as described in
 Section 11 .

Rescorla Expires August 19, 2018 [Page 30]

Internet-Draft TLS February 2018

4.1 . Key Exchange Messages

 The key exchange messages are used to determine the security
 capabilities of the client and the server and to establish shared
 secrets including the traffic keys used to protect the rest of the
 handshake and the data.

4.1.1 . Cryptographic Negotiation

 In TLS, the cryptographic negotiation proceeds by the client offering
 the following four sets of options in its ClientHello:

 - A list of cipher suites which indicates the AEAD algorithm/HKDF
 hash pairs which the client supports.

 - A "supported_groups" (Section 4.2.7) extension which indicates the
 (EC)DHE groups which the client supports and a "key_share"
 (Section 4.2.8) extension which contains (EC)DHE shares for some
 or all of these groups.

 - A "signature_algorithms" (Section 4.2.3) extension which indicates
 the signature algorithms which the client can accept.

 - A "pre_shared_key" (Section 4.2.11) extension which contains a
 list of symmetric key identities known to the client and a
 "psk_key_exchange_modes" (Section 4.2.9) extension which indicates
 the key exchange modes that may be used with PSKs.

 If the server does not select a PSK, then the first three of these
 options are entirely orthogonal: the server independently selects a
 cipher suite, an (EC)DHE group and key share for key establishment,
 and a signature algorithm/certificate pair to authenticate itself to
 the client. If there is no overlap between the received
 "supported_groups" and the groups supported by the server then the
 server MUST abort the handshake with a "handshake_failure" or an
 "insufficient_security" alert.

 If the server selects a PSK, then it MUST also select a key
 establishment mode from the set indicated by client’s
 "psk_key_exchange_modes" extension (at present, PSK alone or with
 (EC)DHE). Note that if the PSK can be used without (EC)DHE then non-
 overlap in the "supported_groups" parameters need not be fatal, as it
 is in the non-PSK case discussed in the previous paragraph.

 If the server selects an (EC)DHE group and the client did not offer a
 compatible "key_share" extension in the initial ClientHello, the
 server MUST respond with a HelloRetryRequest (Section 4.1.4) message.

Rescorla Expires August 19, 2018 [Page 31]

Internet-Draft TLS February 2018

 If the server successfully selects parameters and does not require a
 HelloRetryRequest, it indicates the selected parameters in the
 ServerHello as follows:

 - If PSK is being used, then the server will send a "pre_shared_key"
 extension indicating the selected key.

 - If PSK is not being used, then (EC)DHE and certificate-based
 authentication are always used.

 - When (EC)DHE is in use, the server will also provide a "key_share"
 extension.

 - When authenticating via a certificate, the server will send the
 Certificate (Section 4.4.2) and CertificateVerify (Section 4.4.3)
 messages. In TLS 1.3 as defined by this document, either a PSK or
 a certificate is always used, but not both. Future documents may
 define how to use them together.

 If the server is unable to negotiate a supported set of parameters
 (i.e., there is no overlap between the client and server parameters),
 it MUST abort the handshake with either a "handshake_failure" or
 "insufficient_security" fatal alert (see Section 6).

4.1.2 . Client Hello

 When a client first connects to a server, it is REQUIRED to send the
 ClientHello as its first message. The client will also send a
 ClientHello when the server has responded to its ClientHello with a
 HelloRetryRequest. In that case, the client MUST send the same
 ClientHello (without modification) except:

 - If a "key_share" extension was supplied in the HelloRetryRequest,
 replacing the list of shares with a list containing a single
 KeyShareEntry from the indicated group.

 - Removing the "early_data" extension (Section 4.2.10) if one was
 present. Early data is not permitted after HelloRetryRequest.

 - Including a "cookie" extension if one was provided in the
 HelloRetryRequest.

 - Updating the "pre_shared_key" extension if present by recomputing
 the "obfuscated_ticket_age" and binder values and (optionally)
 removing any PSKs which are incompatible with the server’s
 indicated cipher suite.

Rescorla Expires August 19, 2018 [Page 32]

Internet-Draft TLS February 2018

 - Optionally adding, removing, or changing the length of the
 "padding" extension [RFC7685].

 Because TLS 1.3 forbids renegotiation, if a server has negotiated TLS
 1.3 and receives a ClientHello at any other time, it MUST terminate
 the connection with an "unexpected_message" alert.

 If a server established a TLS connection with a previous version of
 TLS and receives a TLS 1.3 ClientHello in a renegotiation, it MUST
 retain the previous protocol version. In particular, it MUST NOT
 negotiate TLS 1.3.

 Structure of this message:

 uint16 ProtocolVersion;
 opaque Random[32];

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 struct {
 ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */
 Random random;
 opaque legacy_session_id<0..32>;
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<8..2^16-1>;
 } ClientHello;

 legacy_version In previous versions of TLS, this field was used for
 version negotiation and represented the highest version number
 supported by the client. Experience has shown that many servers
 do not properly implement version negotiation, leading to "version
 intolerance" in which the server rejects an otherwise acceptable
 ClientHello with a version number higher than it supports. In TLS
 1.3, the client indicates its version preferences in the
 "supported_versions" extension (Section 4.2.1) and the
 legacy_version field MUST be set to 0x0303, which is the version
 number for TLS 1.2. (See Appendix D for details about backward
 compatibility.)

 random 32 bytes generated by a secure random number generator. See
 Appendix C for additional information.

 legacy_session_id Versions of TLS before TLS 1.3 supported a
 "session resumption" feature which has been merged with Pre-Shared
 Keys in this version (see Section 2.2). A client which has a
 cached session ID set by a pre-TLS 1.3 server SHOULD set this
 field to that value. In compatibility mode (see Appendix D.4)

Rescorla Expires August 19, 2018 [Page 33]

https://tools.ietf.org/pdf/rfc7685

Internet-Draft TLS February 2018

 this field MUST be non-empty, so a client not offering a pre-TLS
 1.3 session MUST generate a new 32-byte value. This value need
 not be random but SHOULD be unpredictable to avoid implementations
 fixating on a specific value (also known as ossification).
 Otherwise, it MUST be set as a zero length vector (i.e., a single
 zero byte length field).

 cipher_suites This is a list of the symmetric cipher options
 supported by the client, specifically the record protection
 algorithm (including secret key length) and a hash to be used with
 HKDF, in descending order of client preference. If the list
 contains cipher suites that the server does not recognize, support
 or wish to use, the server MUST ignore those cipher suites and
 process the remaining ones as usual. Values are defined in
 Appendix B.4 . If the client is attempting a PSK key
 establishment, it SHOULD advertise at least one cipher suite
 indicating a Hash associated with the PSK.

 legacy_compression_methods Versions of TLS before 1.3 supported
 compression with the list of supported compression methods being
 sent in this field. For every TLS 1.3 ClientHello, this vector
 MUST contain exactly one byte set to zero, which corresponds to
 the "null" compression method in prior versions of TLS. If a TLS
 1.3 ClientHello is received with any other value in this field,
 the server MUST abort the handshake with an "illegal_parameter"
 alert. Note that TLS 1.3 servers might receive TLS 1.2 or prior
 ClientHellos which contain other compression methods and MUST
 follow the procedures for the appropriate prior version of TLS.
 TLS 1.3 ClientHellos are identified as having a legacy_version of
 0x0303 and a supported_versions extension present with 0x0304 as
 the highest version indicated therein.

 extensions Clients request extended functionality from servers by
 sending data in the extensions field. The actual "Extension"
 format is defined in Section 4.2 . In TLS 1.3, use of certain
 extensions is mandatory, as functionality is moved into extensions
 to preserve ClientHello compatibility with previous versions of
 TLS. Servers MUST ignore unrecognized extensions.

 All versions of TLS allow an extensions field to optionally follow
 the compression_methods field. TLS 1.3 ClientHello messages always
 contain extensions (minimally "supported_versions", otherwise they
 will be interpreted as TLS 1.2 ClientHello messages). However, TLS
 1.3 servers might receive ClientHello messages without an extensions
 field from prior versions of TLS. The presence of extensions can be
 detected by determining whether there are bytes following the
 compression_methods field at the end of the ClientHello. Note that
 this method of detecting optional data differs from the normal TLS

Rescorla Expires August 19, 2018 [Page 34]

Internet-Draft TLS February 2018

 method of having a variable-length field, but it is used for
 compatibility with TLS before extensions were defined. TLS 1.3
 servers will need to perform this check first and only attempt to
 negotiate TLS 1.3 if the "supported_versions" extension is present.
 If negotiating a version of TLS prior to 1.3, a server MUST check
 that the message either contains no data after
 legacy_compression_methods or that it contains a valid extensions
 block with no data following. If not, then it MUST abort the
 handshake with a "decode_error" alert.

 In the event that a client requests additional functionality using
 extensions, and this functionality is not supplied by the server, the
 client MAY abort the handshake.

 After sending the ClientHello message, the client waits for a
 ServerHello or HelloRetryRequest message. If early data is in use,
 the client may transmit early application data (Section 2.3) while
 waiting for the next handshake message.

4.1.3 . Server Hello

 The server will send this message in response to a ClientHello
 message to proceed with the handshake if it is able to negotiate an
 acceptable set of handshake parameters based on the ClientHello.

 Structure of this message:

 struct {
 ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */
 Random random;
 opaque legacy_session_id_echo<0..32>;
 CipherSuite cipher_suite;
 uint8 legacy_compression_method = 0;
 Extension extensions<6..2^16-1>;
 } ServerHello;

 legacy_version In previous versions of TLS, this field was used for
 version negotiation and represented the selected version number
 for the connection. Unfortunately, some middleboxes fail when
 presented with new values. In TLS 1.3, the TLS server indicates
 its version using the "supported_versions" extension
 (Section 4.2.1), and the legacy_version field MUST be set to
 0x0303, which is the version number for TLS 1.2. (See Appendix D
 for details about backward compatibility.)

 random 32 bytes generated by a secure random number generator. See
 Appendix C for additional information. The last eight bytes MUST
 be overwritten as described below if negotiating TLS 1.2 or TLS

Rescorla Expires August 19, 2018 [Page 35]

Internet-Draft TLS February 2018

 1.1, but the remaining bytes MUST be random. This structure is
 generated by the server and MUST be generated independently of the
 ClientHello.random.

 legacy_session_id_echo The contents of the client’s
 legacy_session_id field. Note that this field is echoed even if
 the client’s value corresponded to a cached pre-TLS 1.3 session
 which the server has chosen not to resume. A client which
 receives a legacy_session_id field that does not match what it
 sent in the ClientHello MUST abort the handshake with an
 "illegal_parameter" alert.

 cipher_suite The single cipher suite selected by the server from the
 list in ClientHello.cipher_suites. A client which receives a
 cipher suite that was not offered MUST abort the handshake with an
 "illegal_parameter" alert.

 legacy_compression_method A single byte which MUST have the value 0.

 extensions A list of extensions. The ServerHello MUST only include
 extensions which are required to establish the cryptographic
 context and negotiate the protocol version. All TLS 1.3
 ServerHello messages MUST contain the "supported_versions"
 extension. Current ServerHello messages contain either the
 "pre_shared_key" or "key_share" extensions, or both when using a
 PSK with (EC)DHE key establishment. The remaining extensions are
 sent separately in the EncryptedExtensions message.

 For backward compatibility reasons with middleboxes (see
 Appendix D.4) the HelloRetryRequest message uses the same structure
 as the ServerHello, but with Random set to the special value of the
 SHA-256 of "HelloRetryRequest":

 CF 21 AD 74 E5 9A 61 11 BE 1D 8C 02 1E 65 B8 91
 C2 A2 11 16 7A BB 8C 5E 07 9E 09 E2 C8 A8 33 9C

 Upon receiving a message with type server_hello, implementations MUST
 first examine the Random value and if it matches this value, process
 it as described in Section 4.1.4).

 TLS 1.3 has a downgrade protection mechanism embedded in the server’s
 random value. TLS 1.3 servers which negotiate TLS 1.2 or below in
 response to a ClientHello MUST set the last eight bytes of their
 Random value specially.

 If negotiating TLS 1.2, TLS 1.3 servers MUST set the last eight bytes
 of their Random value to the bytes:

Rescorla Expires August 19, 2018 [Page 36]

Internet-Draft TLS February 2018

 44 4F 57 4E 47 52 44 01

 If negotiating TLS 1.1 or below, TLS 1.3 servers MUST and TLS 1.2
 servers SHOULD set the last eight bytes of their Random value to the
 bytes:

 44 4F 57 4E 47 52 44 00

 TLS 1.3 clients receiving a ServerHello indicating TLS 1.2 or below
 MUST check that the last eight bytes are not equal to either of these
 values. TLS 1.2 clients SHOULD also check that the last eight bytes
 are not equal to the second value if the ServerHello indicates TLS
 1.1 or below. If a match is found, the client MUST abort the
 handshake with an "illegal_parameter" alert. This mechanism provides
 limited protection against downgrade attacks over and above what is
 provided by the Finished exchange: because the ServerKeyExchange, a
 message present in TLS 1.2 and below, includes a signature over both
 random values, it is not possible for an active attacker to modify
 the random values without detection as long as ephemeral ciphers are
 used. It does not provide downgrade protection when static RSA is
 used.

 Note: This is a change from [RFC5246], so in practice many TLS 1.2
 clients and servers will not behave as specified above.

 A legacy TLS client performing renegotiation with TLS 1.2 or prior
 and which receives a TLS 1.3 ServerHello during renegotiation MUST
 abort the handshake with a "protocol_version" alert. Note that
 renegotiation is not possible when TLS 1.3 has been negotiated.

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH Implementations of
 draft versions (see Section 4.2.1.1) of this specification SHOULD NOT
 implement this mechanism on either client and server. A pre-RFC
 client connecting to RFC servers, or vice versa, will appear to
 downgrade to TLS 1.2. With the mechanism enabled, this will cause an
 interoperability failure.

4.1.4 . Hello Retry Request

 The server will send this message in response to a ClientHello
 message if it is able to find an acceptable set of parameters but the
 ClientHello does not contain sufficient information to proceed with
 the handshake. As discussed in Section 4.1.3 , the HelloRetryRequest
 has the same format as a ServerHello message, and the legacy_version,
 legacy_session_id_echo, cipher_suite, and legacy_compression methods
 fields have the same meaning. However, for convenience we discuss
 HelloRetryRequest throughout this document as if it were a distinct
 message.

Rescorla Expires August 19, 2018 [Page 37]

https://tools.ietf.org/pdf/rfc5246

Internet-Draft TLS February 2018

 The server’s extensions MUST contain "supported_versions" and
 otherwise the server SHOULD send only the extensions necessary for
 the client to generate a correct ClientHello pair. As with
 ServerHello, a HelloRetryRequest MUST NOT contain any extensions that
 were not first offered by the client in its ClientHello, with the
 exception of optionally the "cookie" (see Section 4.2.2) extension.

 Upon receipt of a HelloRetryRequest, the client MUST perform the
 checks specified in Section 4.1.3 and then process the extensions,
 starting with determining the version using "supported_versions".
 Clients MUST abort the handshake with an "illegal_parameter" alert if
 the HelloRetryRequest would not result in any change in the
 ClientHello. If a client receives a second HelloRetryRequest in the
 same connection (i.e., where the ClientHello was itself in response
 to a HelloRetryRequest), it MUST abort the handshake with an
 "unexpected_message" alert.

 Otherwise, the client MUST process all extensions in the
 HelloRetryRequest and send a second updated ClientHello. The
 HelloRetryRequest extensions defined in this specification are:

 - supported_versions (see Section 4.2.1)

 - cookie (see Section 4.2.2)

 - key_share (see Section 4.2.8)

 In addition, in its updated ClientHello, the client SHOULD NOT offer
 any pre-shared keys associated with a hash other than that of the
 selected cipher suite. This allows the client to avoid having to
 compute partial hash transcripts for multiple hashes in the second
 ClientHello. A client which receives a cipher suite that was not
 offered MUST abort the handshake. Servers MUST ensure that they
 negotiate the same cipher suite when receiving a conformant updated
 ClientHello (if the server selects the cipher suite as the first step
 in the negotiation, then this will happen automatically). Upon
 receiving the ServerHello, clients MUST check that the cipher suite
 supplied in the ServerHello is the same as that in the
 HelloRetryRequest and otherwise abort the handshake with an
 "illegal_parameter" alert.

 The value of selected_version in the HelloRetryRequest
 "supported_versions" extension MUST be retained in the ServerHello,
 and a client MUST abort the handshake with an "illegal_parameter"
 alert if the value changes.

Rescorla Expires August 19, 2018 [Page 38]

Internet-Draft TLS February 2018

4.2 . Extensions

 A number of TLS messages contain tag-length-value encoded extensions
 structures.

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 server_name(0), /* RFC 6066 */
 max_fragment_length(1), /* RFC 6066 */
 status_request(5), /* RFC 6066 */
 supported_groups(10), /* RFC 4492 , 7919 */
 signature_algorithms(13), /* [[this document]] */
 use_srtp(14), /* RFC 5764 */
 heartbeat(15), /* RFC 6520 */
 application_layer_protocol_negotiation(16), /* RFC 7301 */
 signed_certificate_timestamp(18), /* RFC 6962 */
 client_certificate_type(19), /* RFC 7250 */
 server_certificate_type(20), /* RFC 7250 */
 padding(21), /* RFC 7685 */
 pre_shared_key(41), /* [[this document]] */
 early_data(42), /* [[this document]] */
 supported_versions(43), /* [[this document]] */
 cookie(44), /* [[this document]] */
 psk_key_exchange_modes(45), /* [[this document]] */
 certificate_authorities(47), /* [[this document]] */
 oid_filters(48), /* [[this document]] */
 post_handshake_auth(49), /* [[this document]] */
 signature_algorithms_cert(50), /* [[this document]] */
 key_share(51), /* [[this document]] */
 (65535)
 } ExtensionType;

 Here:

 - "extension_type" identifies the particular extension type.

 - "extension_data" contains information specific to the particular
 extension type.

 The list of extension types is maintained by IANA as described in
 Section 11 .

 Extensions are generally structured in a request/response fashion,
 though some extensions are just indications with no corresponding

Rescorla Expires August 19, 2018 [Page 39]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc5764
https://tools.ietf.org/pdf/rfc6520
https://tools.ietf.org/pdf/rfc7301
https://tools.ietf.org/pdf/rfc6962
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7685

Internet-Draft TLS February 2018

 response. The client sends its extension requests in the ClientHello
 message and the server sends its extension responses in the
 ServerHello, EncryptedExtensions, HelloRetryRequest and Certificate
 messages. The server sends extension requests in the
 CertificateRequest message which a client MAY respond to with a
 Certificate message. The server MAY also send unsolicited extensions
 in the NewSessionTicket, though the client does not respond directly
 to these.

 Implementations MUST NOT send extension responses if the remote
 endpoint did not send the corresponding extension requests, with the
 exception of the "cookie" extension in HelloRetryRequest. Upon
 receiving such an extension, an endpoint MUST abort the handshake
 with an "unsupported_extension" alert.

 The table below indicates the messages where a given extension may
 appear, using the following notation: CH (ClientHello), SH
 (ServerHello), EE (EncryptedExtensions), CT (Certificate), CR
 (CertificateRequest), NST (NewSessionTicket) and HRR
 (HelloRetryRequest). If an implementation receives an extension
 which it recognizes and which is not specified for the message in
 which it appears it MUST abort the handshake with an
 "illegal_parameter" alert.

Rescorla Expires August 19, 2018 [Page 40]

Internet-Draft TLS February 2018

 +--+-------------+
 | Extension | TLS 1.3 |
 +--+-------------+
 | server_name [RFC6066] | CH, EE |
 | | |
 | max_fragment_length [RFC6066] | CH, EE |
 | | |
 | status_request [RFC6066] | CH, CR, CT |
 | | |
 | supported_groups [RFC7919] | CH, EE |
 | | |
 | signature_algorithms [RFC5246] | CH, CR |
 | | |
 | use_srtp [RFC5764] | CH, EE |
 | | |
 | heartbeat [RFC6520] | CH, EE |
 | | |
 | application_layer_protocol_negotiation [RFC7301] | CH, EE |
 | | |
 | signed_certificate_timestamp [RFC6962] | CH, CR, CT |
 | | |
 | client_certificate_type [RFC7250] | CH, EE |
 | | |
 | server_certificate_type [RFC7250] | CH, EE |
 | | |
 | padding [RFC7685] | CH |
 | | |
 | key_share [[this document]] | CH, SH, HRR |
 | | |
 | pre_shared_key [[this document]] | CH, SH |
 | | |
 | psk_key_exchange_modes [[this document]] | CH |
 | | |
 | early_data [[this document]] | CH, EE, NST |
 | | |
 | cookie [[this document]] | CH, HRR |
 | | |
 | supported_versions [[this document]] | CH, SH, HRR |
 | | |
 | certificate_authorities [[this document]] | CH, CR |
 | | |
 | oid_filters [[this document]] | CR |
 | | |
 | post_handshake_auth [[this document]] | CH |
 | | |
 | signature_algorithms_cert [[this document]] | CH, CR |
 +--+-------------+

Rescorla Expires August 19, 2018 [Page 41]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc7919
https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/rfc5764
https://tools.ietf.org/pdf/rfc6520
https://tools.ietf.org/pdf/rfc7301
https://tools.ietf.org/pdf/rfc6962
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7685

Internet-Draft TLS February 2018

 When multiple extensions of different types are present, the
 extensions MAY appear in any order, with the exception of
 "pre_shared_key" Section 4.2.11 which MUST be the last extension in
 the ClientHello. There MUST NOT be more than one extension of the
 same type in a given extension block.

 In TLS 1.3, unlike TLS 1.2, extensions are negotiated for each
 handshake even when in resumption-PSK mode. However, 0-RTT
 parameters are those negotiated in the previous handshake; mismatches
 may require rejecting 0-RTT (see Section 4.2.10).

 There are subtle (and not so subtle) interactions that may occur in
 this protocol between new features and existing features which may
 result in a significant reduction in overall security. The following
 considerations should be taken into account when designing new
 extensions:

 - Some cases where a server does not agree to an extension are error
 conditions, and some are simply refusals to support particular
 features. In general, error alerts should be used for the former
 and a field in the server extension response for the latter.

 - Extensions should, as far as possible, be designed to prevent any
 attack that forces use (or non-use) of a particular feature by
 manipulation of handshake messages. This principle should be
 followed regardless of whether the feature is believed to cause a
 security problem. Often the fact that the extension fields are
 included in the inputs to the Finished message hashes will be
 sufficient, but extreme care is needed when the extension changes
 the meaning of messages sent in the handshake phase. Designers
 and implementors should be aware of the fact that until the
 handshake has been authenticated, active attackers can modify
 messages and insert, remove, or replace extensions.

4.2.1 . Supported Versions

 struct {
 select (Handshake.msg_type) {
 case client_hello:
 ProtocolVersion versions<2..254>;

 case server_hello: /* and HelloRetryRequest */
 ProtocolVersion selected_version;
 };
 } SupportedVersions;

 The "supported_versions" extension is used by the client to indicate
 which versions of TLS it supports and by the server to indicate which

Rescorla Expires August 19, 2018 [Page 42]

Internet-Draft TLS February 2018

 version it is using. The extension contains a list of supported
 versions in preference order, with the most preferred version first.
 Implementations of this specification MUST send this extension
 containing all versions of TLS which they are prepared to negotiate
 (for this specification, that means minimally 0x0304, but if previous
 versions of TLS are allowed to be negotiated, they MUST be present as
 well).

 If this extension is not present, servers which are compliant with
 this specification MUST negotiate TLS 1.2 or prior as specified in
 [RFC5246], even if ClientHello.legacy_version is 0x0304 or later.
 Servers MAY abort the handshake upon receiving a ClientHello with
 legacy_version 0x0304 or later.

 If this extension is present, servers MUST ignore the
 ClientHello.legacy_version value and MUST use only the
 "supported_versions" extension to determine client preferences.
 Servers MUST only select a version of TLS present in that extension
 and MUST ignore any unknown versions that are present in that
 extension. Note that this mechanism makes it possible to negotiate a
 version prior to TLS 1.2 if one side supports a sparse range.
 Implementations of TLS 1.3 which choose to support prior versions of
 TLS SHOULD support TLS 1.2. Servers should be prepared to receive
 ClientHellos that include this extension but do not include 0x0304 in
 the list of versions.

 A server which negotiates TLS 1.3 MUST respond by sending a
 "supported_versions" extension containing the selected version value
 (0x0304). It MUST set the ServerHello.legacy_version field to 0x0303
 (TLS 1.2). Clients MUST check for this extension prior to processing
 the rest of the ServerHello (although they will have to parse the
 ServerHello in order to read the extension). If this extension is
 present, clients MUST ignore the ServerHello.legacy_version value and
 MUST use only the "supported_versions" extension to determine client
 preferences. If the "supported_versions" extension contains a
 version not offered by the client, the client MUST abort the
 handshake with an "illegal_parameter" alert.

4.2.1.1 . Draft Version Indicator

 RFC EDITOR: PLEASE REMOVE THIS SECTION

 While the eventual version indicator for the RFC version of TLS 1.3
 will be 0x0304, implementations of draft versions of this
 specification SHOULD instead advertise 0x7f00 | draft_version in the
 ServerHello and HelloRetryRequest "supported_versions" extension.
 For instance, draft-17 would be encoded as the 0x7f11. This allows

Rescorla Expires August 19, 2018 [Page 43]

https://tools.ietf.org/pdf/rfc5246
https://tools.ietf.org/pdf/draft-17

Internet-Draft TLS February 2018

 pre-RFC implementations to safely negotiate with each other, even if
 they would otherwise be incompatible.

4.2.2 . Cookie

 struct {
 opaque cookie<1..2^16-1>;
 } Cookie;

 Cookies serve two primary purposes:

 - Allowing the server to force the client to demonstrate
 reachability at their apparent network address (thus providing a
 measure of DoS protection). This is primarily useful for non-
 connection-oriented transports (see [RFC6347] for an example of
 this).

 - Allowing the server to offload state to the client, thus allowing
 it to send a HelloRetryRequest without storing any state. The
 server can do this by storing the hash of the ClientHello in the
 HelloRetryRequest cookie (protected with some suitable integrity
 algorithm).

 When sending a HelloRetryRequest, the server MAY provide a "cookie"
 extension to the client (this is an exception to the usual rule that
 the only extensions that may be sent are those that appear in the
 ClientHello). When sending the new ClientHello, the client MUST copy
 the contents of the extension received in the HelloRetryRequest into
 a "cookie" extension in the new ClientHello. Clients MUST NOT use
 cookies in their initial ClientHello in subsequent connections.

 When a server is operating statelessly it may receive an unprotected
 record of type change_cipher_spec between the first and second
 ClientHello (see Section 5). Since the server is not storing any
 state this will appear as if it were the first message to be
 received. Servers operating statelessly MUST ignore these records.

4.2.3 . Signature Algorithms

 TLS 1.3 provides two extensions for indicating which signature
 algorithms may be used in digital signatures. The
 "signature_algorithms_cert" extension applies to signatures in
 certificates and the "signature_algorithms" extension, which
 originally appeared in TLS 1.2, applies to signatures in
 CertificateVerify messages. The keys found in certificates MUST also
 be of appropriate type for the signature algorithms they are used
 with. This is a particular issue for RSA keys and PSS signatures, as
 described below. If no "signature_algorithms_cert" extension is

Rescorla Expires August 19, 2018 [Page 44]

https://tools.ietf.org/pdf/rfc6347

Internet-Draft TLS February 2018

 present, then the "signature_algorithms" extension also applies to
 signatures appearing in certificates. Clients which desire the
 server to authenticate itself via a certificate MUST send
 "signature_algorithms". If a server is authenticating via a
 certificate and the client has not sent a "signature_algorithms"
 extension, then the server MUST abort the handshake with a
 "missing_extension" alert (see Section 9.2).

 The "signature_algorithms_cert" extension was added to allow
 implementations which supported different sets of algorithms for
 certificates and in TLS itself to clearly signal their capabilities.
 TLS 1.2 implementations SHOULD also process this extension.
 Implementations which have the same policy in both cases MAY omit the
 "signature_algorithms_cert" extension.

 The "extension_data" field of these extension contains a
 SignatureSchemeList value:

Rescorla Expires August 19, 2018 [Page 45]

Internet-Draft TLS February 2018

 enum {
 /* RSASSA-PKCS1-v1_5 algorithms */
 rsa_pkcs1_sha256(0x0401),
 rsa_pkcs1_sha384(0x0501),
 rsa_pkcs1_sha512(0x0601),

 /* ECDSA algorithms */
 ecdsa_secp256r1_sha256(0x0403),
 ecdsa_secp384r1_sha384(0x0503),
 ecdsa_secp521r1_sha512(0x0603),

 /* RSASSA-PSS algorithms with public key OID rsaEncryption */
 rsa_pss_rsae_sha256(0x0804),
 rsa_pss_rsae_sha384(0x0805),
 rsa_pss_rsae_sha512(0x0806),

 /* EdDSA algorithms */
 ed25519(0x0807),
 ed448(0x0808),

 /* RSASSA-PSS algorithms with public key OID RSASSA-PSS */
 rsa_pss_pss_sha256(0x0809),
 rsa_pss_pss_sha384(0x080a),
 rsa_pss_pss_sha512(0x080b),

 /* Legacy algorithms */
 rsa_pkcs1_sha1(0x0201),
 ecdsa_sha1(0x0203),

 /* Reserved Code Points */
 private_use(0xFE00..0xFFFF),
 (0xFFFF)
 } SignatureScheme;

 struct {
 SignatureScheme supported_signature_algorithms<2..2^16-2>;
 } SignatureSchemeList;

 Note: This enum is named "SignatureScheme" because there is already a
 "SignatureAlgorithm" type in TLS 1.2, which this replaces. We use
 the term "signature algorithm" throughout the text.

 Each SignatureScheme value lists a single signature algorithm that
 the client is willing to verify. The values are indicated in
 descending order of preference. Note that a signature algorithm
 takes as input an arbitrary-length message, rather than a digest.
 Algorithms which traditionally act on a digest should be defined in
 TLS to first hash the input with a specified hash algorithm and then

Rescorla Expires August 19, 2018 [Page 46]

Internet-Draft TLS February 2018

 proceed as usual. The code point groups listed above have the
 following meanings:

 RSASSA-PKCS1-v1_5 algorithms Indicates a signature algorithm using
 RSASSA-PKCS1-v1_5 [RFC8017] with the corresponding hash algorithm
 as defined in [SHS]. These values refer solely to signatures
 which appear in certificates (see Section 4.4.2.2) and are not
 defined for use in signed TLS handshake messages, although they
 MAY appear in "signature_algorithms" and
 "signature_algorithms_cert" for backward compatibility with TLS
 1.2,

 ECDSA algorithms Indicates a signature algorithm using ECDSA
 [ECDSA], the corresponding curve as defined in ANSI X9.62 [X962]
 and FIPS 186-4 [DSS], and the corresponding hash algorithm as
 defined in [SHS]. The signature is represented as a DER-encoded
 [X690] ECDSA-Sig-Value structure.

 RSASSA-PSS RSAE algorithms Indicates a signature algorithm using
 RSASSA-PSS [RFC8017] with mask generation function 1. The digest
 used in the mask generation function and the digest being signed
 are both the corresponding hash algorithm as defined in [SHS].
 The length of the salt MUST be equal to the length of the digest
 algorithm. If the public key is carried in an X.509 certificate,
 it MUST use the rsaEncryption OID [RFC5280].

 EdDSA algorithms Indicates a signature algorithm using EdDSA as
 defined in [RFC8032] or its successors. Note that these
 correspond to the "PureEdDSA" algorithms and not the "prehash"
 variants.

 RSASSA-PSS PSS algorithms Indicates a signature algorithm using
 RSASSA-PSS [RFC8017] with mask generation function 1. The digest
 used in the mask generation function and the digest being signed
 are both the corresponding hash algorithm as defined in [SHS].
 The length of the salt MUST be equal to the length of the digest
 algorithm. If the public key is carried in an X.509 certificate,
 it MUST use the RSASSA-PSS OID [RFC5756]. When used in
 certificate signatures, the algorithm parameters MUST be DER
 encoded. If the corresponding public key’s parameters present,
 then the parameters in the signature MUST be identical to those in
 the public key.

 Legacy algorithms Indicates algorithms which are being deprecated
 because they use algorithms with known weaknesses, specifically
 SHA-1 which is used in this context with either with RSA using
 RSASSA-PKCS1-v1_5 or ECDSA. These values refer solely to
 signatures which appear in certificates (see Section 4.4.2.2) and

Rescorla Expires August 19, 2018 [Page 47]

https://tools.ietf.org/pdf/rfc8017
https://tools.ietf.org/pdf/rfc8017
https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc8032
https://tools.ietf.org/pdf/rfc8017
https://tools.ietf.org/pdf/rfc5756

Internet-Draft TLS February 2018

 are not defined for use in signed TLS handshake messages, even if
 they appear in the "signature_algorithms" list (this is necessary
 for backward compatibility with TLS 1.2). Endpoints SHOULD NOT
 negotiate these algorithms but are permitted to do so solely for
 backward compatibility. Clients offering these values MUST list
 them as the lowest priority (listed after all other algorithms in
 SignatureSchemeList). TLS 1.3 servers MUST NOT offer a SHA-1
 signed certificate unless no valid certificate chain can be
 produced without it (see Section 4.4.2.2).

 The signatures on certificates that are self-signed or certificates
 that are trust anchors are not validated since they begin a
 certification path (see [RFC5280], Section 3.2). A certificate that
 begins a certification path MAY use a signature algorithm that is not
 advertised as being supported in the "signature_algorithms"
 extension.

 Note that TLS 1.2 defines this extension differently. TLS 1.3
 implementations willing to negotiate TLS 1.2 MUST behave in
 accordance with the requirements of [RFC5246] when negotiating that
 version. In particular:

 - TLS 1.2 ClientHellos MAY omit this extension.

 - In TLS 1.2, the extension contained hash/signature pairs. The
 pairs are encoded in two octets, so SignatureScheme values have
 been allocated to align with TLS 1.2’s encoding. Some legacy
 pairs are left unallocated. These algorithms are deprecated as of
 TLS 1.3. They MUST NOT be offered or negotiated by any
 implementation. In particular, MD5 [SLOTH], SHA-224, and DSA MUST
 NOT be used.

 - ECDSA signature schemes align with TLS 1.2’s ECDSA hash/signature
 pairs. However, the old semantics did not constrain the signing
 curve. If TLS 1.2 is negotiated, implementations MUST be prepared
 to accept a signature that uses any curve that they advertised in
 the "supported_groups" extension.

 - Implementations that advertise support for RSASSA-PSS (which is
 mandatory in TLS 1.3), MUST be prepared to accept a signature
 using that scheme even when TLS 1.2 is negotiated. In TLS 1.2,
 RSASSA-PSS is used with RSA cipher suites.

4.2.4 . Certificate Authorities

 The "certificate_authorities" extension is used to indicate the
 certificate authorities which an endpoint supports and which SHOULD
 be used by the receiving endpoint to guide certificate selection.

Rescorla Expires August 19, 2018 [Page 48]

https://tools.ietf.org/pdf/rfc5280#section-3.2
https://tools.ietf.org/pdf/rfc5246

Internet-Draft TLS February 2018

 The body of the "certificate_authorities" extension consists of a
 CertificateAuthoritiesExtension structure.

 opaque DistinguishedName<1..2^16-1>;

 struct {
 DistinguishedName authorities<3..2^16-1>;
 } CertificateAuthoritiesExtension;

 authorities A list of the distinguished names [X501] of acceptable
 certificate authorities, represented in DER-encoded [X690] format.
 These distinguished names specify a desired distinguished name for
 trust anchor or subordinate CA; thus, this message can be used to
 describe known trust anchors as well as a desired authorization
 space.

 The client MAY send the "certificate_authorities" extension in the
 ClientHello message. The server MAY send it in the
 CertificateRequest message.

 The "trusted_ca_keys" extension, which serves a similar purpose
 [RFC6066], but is more complicated, is not used in TLS 1.3 (although
 it may appear in ClientHello messages from clients which are offering
 prior versions of TLS).

4.2.5 . OID Filters

 The "oid_filters" extension allows servers to provide a set of OID/
 value pairs which it would like the client’s certificate to match.
 This extension, if provided by the server, MUST only be sent in the
 CertificateRequest message.

 struct {
 opaque certificate_extension_oid<1..2^8-1>;
 opaque certificate_extension_values<0..2^16-1>;
 } OIDFilter;

 struct {
 OIDFilter filters<0..2^16-1>;
 } OIDFilterExtension;

 filters A list of certificate extension OIDs [RFC5280] with their
 allowed values and represented in DER-encoded [X690] format. Some
 certificate extension OIDs allow multiple values (e.g., Extended
 Key Usage). If the server has included a non-empty filters list,
 the client certificate included in the response MUST contain all
 of the specified extension OIDs that the client recognizes. For
 each extension OID recognized by the client, all of the specified

Rescorla Expires August 19, 2018 [Page 49]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS February 2018

 values MUST be present in the client certificate (but the
 certificate MAY have other values as well). However, the client
 MUST ignore and skip any unrecognized certificate extension OIDs.
 If the client ignored some of the required certificate extension
 OIDs and supplied a certificate that does not satisfy the request,
 the server MAY at its discretion either continue the connection
 without client authentication, or abort the handshake with an
 "unsupported_certificate" alert.

 PKIX RFCs define a variety of certificate extension OIDs and their
 corresponding value types. Depending on the type, matching
 certificate extension values are not necessarily bitwise-equal. It
 is expected that TLS implementations will rely on their PKI libraries
 to perform certificate selection using certificate extension OIDs.

 This document defines matching rules for two standard certificate
 extensions defined in [RFC5280]:

 - The Key Usage extension in a certificate matches the request when
 all key usage bits asserted in the request are also asserted in
 the Key Usage certificate extension.

 - The Extended Key Usage extension in a certificate matches the
 request when all key purpose OIDs present in the request are also
 found in the Extended Key Usage certificate extension. The
 special anyExtendedKeyUsage OID MUST NOT be used in the request.

 Separate specifications may define matching rules for other
 certificate extensions.

4.2.6 . Post-Handshake Client Authentication

 The "post_handshake_auth" extension is used to indicate that a client
 is willing to perform post-handshake authentication Section 4.6.2 .
 Servers MUST NOT send a post-handshake CertificateRequest to clients
 which do not offer this extension. Servers MUST NOT send this
 extension.

 struct {} PostHandshakeAuth;

 The "extension_data" field of the "post_handshake_auth" extension is
 zero length.

4.2.7 . Negotiated Groups

 When sent by the client, the "supported_groups" extension indicates
 the named groups which the client supports for key exchange, ordered
 from most preferred to least preferred.

Rescorla Expires August 19, 2018 [Page 50]

https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS February 2018

 Note: In versions of TLS prior to TLS 1.3, this extension was named
 "elliptic_curves" and only contained elliptic curve groups. See
 [RFC4492] and [RFC7919]. This extension was also used to negotiate
 ECDSA curves. Signature algorithms are now negotiated independently
 (see Section 4.2.3).

 The "extension_data" field of this extension contains a
 "NamedGroupList" value:

 enum {

 /* Elliptic Curve Groups (ECDHE) */
 secp256r1(0x0017), secp384r1(0x0018), secp521r1(0x0019),
 x25519(0x001D), x448(0x001E),

 /* Finite Field Groups (DHE) */
 ffdhe2048(0x0100), ffdhe3072(0x0101), ffdhe4096(0x0102),
 ffdhe6144(0x0103), ffdhe8192(0x0104),

 /* Reserved Code Points */
 ffdhe_private_use(0x01FC..0x01FF),
 ecdhe_private_use(0xFE00..0xFEFF),
 (0xFFFF)
 } NamedGroup;

 struct {
 NamedGroup named_group_list<2..2^16-1>;
 } NamedGroupList;

 Elliptic Curve Groups (ECDHE) Indicates support for the
 corresponding named curve, defined either in FIPS 186-4 [DSS] or
 in [RFC7748]. Values 0xFE00 through 0xFEFF are reserved for
 private use.

 Finite Field Groups (DHE) Indicates support of the corresponding
 finite field group, defined in [RFC7919]. Values 0x01FC through
 0x01FF are reserved for private use.

 Items in named_group_list are ordered according to the client’s
 preferences (most preferred choice first).

 As of TLS 1.3, servers are permitted to send the "supported_groups"
 extension to the client. Clients MUST NOT act upon any information
 found in "supported_groups" prior to successful completion of the
 handshake but MAY use the information learned from a successfully
 completed handshake to change what groups they use in their
 "key_share" extension in subsequent connections. If the server has a
 group it prefers to the ones in the "key_share" extension but is

Rescorla Expires August 19, 2018 [Page 51]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc7919
https://tools.ietf.org/pdf/rfc7748
https://tools.ietf.org/pdf/rfc7919

Internet-Draft TLS February 2018

 still willing to accept the ClientHello, it SHOULD send
 "supported_groups" to update the client’s view of its preferences;
 this extension SHOULD contain all groups the server supports,
 regardless of whether they are currently supported by the client.

4.2.8 . Key Share

 The "key_share" extension contains the endpoint’s cryptographic
 parameters.

 Clients MAY send an empty client_shares vector in order to request
 group selection from the server at the cost of an additional round
 trip. (see Section 4.1.4)

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } KeyShareEntry;

 group The named group for the key being exchanged. Finite Field
 Diffie-Hellman [DH] parameters are described in Section 4.2.8.1 ;
 Elliptic Curve Diffie-Hellman parameters are described in
 Section 4.2.8.2 .

 key_exchange Key exchange information. The contents of this field
 are determined by the specified group and its corresponding
 definition.

 In the ClientHello message, the "extension_data" field of this
 extension contains a "KeyShareClientHello" value:

 struct {
 KeyShareEntry client_shares<0..2^16-1>;
 } KeyShareClientHello;

 client_shares A list of offered KeyShareEntry values in descending
 order of client preference.

 This vector MAY be empty if the client is requesting a
 HelloRetryRequest. Each KeyShareEntry value MUST correspond to a
 group offered in the "supported_groups" extension and MUST appear in
 the same order. However, the values MAY be a non-contiguous subset
 of the "supported_groups" extension and MAY omit the most preferred
 groups. Such a situation could arise if the most preferred groups
 are new and unlikely to be supported in enough places to make
 pregenerating key shares for them efficient.

Rescorla Expires August 19, 2018 [Page 52]

Internet-Draft TLS February 2018

 Clients can offer an arbitrary number of KeyShareEntry values, each
 representing a single set of key exchange parameters. For instance,
 a client might offer shares for several elliptic curves or multiple
 FFDHE groups. The key_exchange values for each KeyShareEntry MUST be
 generated independently. Clients MUST NOT offer multiple
 KeyShareEntry values for the same group. Clients MUST NOT offer any
 KeyShareEntry values for groups not listed in the client’s
 "supported_groups" extension. Servers MAY check for violations of
 these rules and abort the handshake with an "illegal_parameter" alert
 if one is violated.

 In a HelloRetryRequest message, the "extension_data" field of this
 extension contains a KeyShareHelloRetryRequest value:

 struct {
 NamedGroup selected_group;
 } KeyShareHelloRetryRequest;

 selected_group The mutually supported group the server intends to
 negotiate and is requesting a retried ClientHello/KeyShare for.

 Upon receipt of this extension in a HelloRetryRequest, the client
 MUST verify that (1) the selected_group field corresponds to a group
 which was provided in the "supported_groups" extension in the
 original ClientHello; and (2) the selected_group field does not
 correspond to a group which was provided in the "key_share" extension
 in the original ClientHello. If either of these checks fails, then
 the client MUST abort the handshake with an "illegal_parameter"
 alert. Otherwise, when sending the new ClientHello, the client MUST
 replace the original "key_share" extension with one containing only a
 new KeyShareEntry for the group indicated in the selected_group field
 of the triggering HelloRetryRequest.

 In a ServerHello message, the "extension_data" field of this
 extension contains a KeyShareServerHello value:

 struct {
 KeyShareEntry server_share;
 } KeyShareServerHello;

 server_share A single KeyShareEntry value that is in the same group
 as one of the client’s shares.

 If using (EC)DHE key establishment, servers offer exactly one
 KeyShareEntry in the ServerHello. This value MUST be in the same
 group as the KeyShareEntry value offered by the client that the
 server has selected for the negotiated key exchange. Servers MUST
 NOT send a KeyShareEntry for any group not indicated in the

Rescorla Expires August 19, 2018 [Page 53]

Internet-Draft TLS February 2018

 "supported_groups" extension and MUST NOT send a KeyShareEntry when
 using the "psk_ke" PskKeyExchangeMode. If a HelloRetryRequest was
 received by the client, the client MUST verify that the selected
 NamedGroup in the ServerHello is the same as that in the
 HelloRetryRequest. If this check fails, the client MUST abort the
 handshake with an "illegal_parameter" alert.

4.2.8.1 . Diffie-Hellman Parameters

 Diffie-Hellman [DH] parameters for both clients and servers are
 encoded in the opaque key_exchange field of a KeyShareEntry in a
 KeyShare structure. The opaque value contains the Diffie-Hellman
 public value (Y = g^X mod p) for the specified group (see [RFC7919]
 for group definitions) encoded as a big-endian integer and padded to
 the left with zeros to the size of p in bytes.

 Note: For a given Diffie-Hellman group, the padding results in all
 public keys having the same length.

 Peers MUST validate each other’s public key Y by ensuring that 1 < Y
 < p-1. This check ensures that the remote peer is properly behaved
 and isn’t forcing the local system into a small subgroup.

4.2.8.2 . ECDHE Parameters

 ECDHE parameters for both clients and servers are encoded in the the
 opaque key_exchange field of a KeyShareEntry in a KeyShare structure.

 For secp256r1, secp384r1 and secp521r1, the contents are the
 serialized value of the following struct:

 struct {
 uint8 legacy_form = 4;
 opaque X[coordinate_length];
 opaque Y[coordinate_length];
 } UncompressedPointRepresentation;

 X and Y respectively are the binary representations of the X and Y
 values in network byte order. There are no internal length markers,
 so each number representation occupies as many octets as implied by
 the curve parameters. For P-256 this means that each of X and Y use
 32 octets, padded on the left by zeros if necessary. For P-384 they
 take 48 octets each, and for P-521 they take 66 octets each.

 For the curves secp256r1, secp384r1 and secp521r1, peers MUST
 validate each other’s public value Y by ensuring that the point is a
 valid point on the elliptic curve. The appropriate validation
 procedures are defined in Section 4.3.7 of [X962] and alternatively

Rescorla Expires August 19, 2018 [Page 54]

https://tools.ietf.org/pdf/rfc7919

Internet-Draft TLS February 2018

 in Section 5.6.2.3 of [KEYAGREEMENT]. This process consists of three
 steps: (1) verify that Y is not the point at infinity (O), (2) verify
 that for Y = (x, y) both integers are in the correct interval, (3)
 ensure that (x, y) is a correct solution to the elliptic curve
 equation. For these curves, implementers do not need to verify
 membership in the correct subgroup.

 For X25519 and X448, the contents of the public value are the byte
 string inputs and outputs of the corresponding functions defined in
 [RFC7748], 32 bytes for X25519 and 56 bytes for X448.

 Note: Versions of TLS prior to 1.3 permitted point format
 negotiation; TLS 1.3 removes this feature in favor of a single point
 format for each curve.

4.2.9 . Pre-Shared Key Exchange Modes

 In order to use PSKs, clients MUST also send a
 "psk_key_exchange_modes" extension. The semantics of this extension
 are that the client only supports the use of PSKs with these modes,
 which restricts both the use of PSKs offered in this ClientHello and
 those which the server might supply via NewSessionTicket.

 A client MUST provide a "psk_key_exchange_modes" extension if it
 offers a "pre_shared_key" extension. If clients offer
 "pre_shared_key" without a "psk_key_exchange_modes" extension,
 servers MUST abort the handshake. Servers MUST NOT select a key
 exchange mode that is not listed by the client. This extension also
 restricts the modes for use with PSK resumption; servers SHOULD NOT
 send NewSessionTicket with tickets that are not compatible with the
 advertised modes; however, if a server does so, the impact will just
 be that the client’s attempts at resumption fail.

 The server MUST NOT send a "psk_key_exchange_modes" extension.

 enum { psk_ke(0), psk_dhe_ke(1), (255) } PskKeyExchangeMode;

 struct {
 PskKeyExchangeMode ke_modes<1..255>;
 } PskKeyExchangeModes;

 psk_ke PSK-only key establishment. In this mode, the server MUST
 NOT supply a "key_share" value.

 psk_dhe_ke PSK with (EC)DHE key establishment. In this mode, the
 client and servers MUST supply "key_share" values as described in
 Section 4.2.8 .

Rescorla Expires August 19, 2018 [Page 55]

https://tools.ietf.org/pdf/rfc7748

Internet-Draft TLS February 2018

4.2.10 . Early Data Indication

 When a PSK is used, the client can send application data in its first
 flight of messages. If the client opts to do so, it MUST supply both
 the "early_data" extension as well as the "pre_shared_key" extension.

 The "extension_data" field of this extension contains an
 "EarlyDataIndication" value.

 struct {} Empty;

 struct {
 select (Handshake.msg_type) {
 case new_session_ticket: uint32 max_early_data_size;
 case client_hello: Empty;
 case encrypted_extensions: Empty;
 };
 } EarlyDataIndication;

 See Section 4.6.1 for the use of the max_early_data_size field.

 The parameters for the 0-RTT data (version, symmetric cipher suite,
 ALPN protocol, etc.) are those associated with the PSK in use. For
 externally established PSKs, the associated values are those
 provisioned along with the key. For PSKs established via a
 NewSessionTicket message, the associated values are those which were
 negotiated in the connection which established the PSK. The PSK used
 to encrypt the early data MUST be the first PSK listed in the
 client’s "pre_shared_key" extension.

 For PSKs provisioned via NewSessionTicket, a server MUST validate
 that the ticket age for the selected PSK identity (computed by
 subtracting ticket_age_add from PskIdentity.obfuscated_ticket_age
 modulo 2^32) is within a small tolerance of the time since the ticket
 was issued (see Section 8). If it is not, the server SHOULD proceed
 with the handshake but reject 0-RTT, and SHOULD NOT take any other
 action that assumes that this ClientHello is fresh.

 0-RTT messages sent in the first flight have the same (encrypted)
 content types as their corresponding messages sent in other flights
 (handshake and application_data) but are protected under different
 keys. After receiving the server’s Finished message, if the server
 has accepted early data, an EndOfEarlyData message will be sent to
 indicate the key change. This message will be encrypted with the
 0-RTT traffic keys.

 A server which receives an "early_data" extension MUST behave in one
 of three ways:

Rescorla Expires August 19, 2018 [Page 56]

Internet-Draft TLS February 2018

 - Ignore the extension and return a regular 1-RTT response. The
 server then ignores early data by attempting to decrypt received
 records in the handshake traffic keys until it is able to receive
 the client’s second flight and complete an ordinary 1-RTT
 handshake, skipping records that fail to decrypt, up to the
 configured max_early_data_size.

 - Request that the client send another ClientHello by responding
 with a HelloRetryRequest. A client MUST NOT include the
 "early_data" extension in its followup ClientHello. The server
 then ignores early data by skipping all records with external
 content type of "application_data" (indicating that they are
 encrypted).

 - Return its own extension in EncryptedExtensions, indicating that
 it intends to process the early data. It is not possible for the
 server to accept only a subset of the early data messages. Even
 though the server sends a message accepting early data, the actual
 early data itself may already be in flight by the time the server
 generates this message.

 In order to accept early data, the server MUST have accepted a PSK
 cipher suite and selected the first key offered in the client’s
 "pre_shared_key" extension. In addition, it MUST verify that the
 following values are consistent with those associated with the
 selected PSK:

 - The TLS version number

 - The selected cipher suite

 - The selected ALPN [RFC7301] protocol, if any

 These requirements are a superset of those needed to perform a 1-RTT
 handshake using the PSK in question. For externally established
 PSKs, the associated values are those provisioned along with the key.
 For PSKs established via a NewSessionTicket message, the associated
 values are those negotiated in the connection during which the ticket
 was established.

 Future extensions MUST define their interaction with 0-RTT.

 If any of these checks fail, the server MUST NOT respond with the
 extension and must discard all the first flight data using one of the
 first two mechanisms listed above (thus falling back to 1-RTT or
 2-RTT). If the client attempts a 0-RTT handshake but the server
 rejects it, the server will generally not have the 0-RTT record
 protection keys and must instead use trial decryption (either with

Rescorla Expires August 19, 2018 [Page 57]

https://tools.ietf.org/pdf/rfc7301

Internet-Draft TLS February 2018

 the 1-RTT handshake keys or by looking for a cleartext ClientHello in
 the case of HelloRetryRequest) to find the first non-0-RTT message.

 If the server chooses to accept the "early_data" extension, then it
 MUST comply with the same error handling requirements specified for
 all records when processing early data records. Specifically, if the
 server fails to decrypt any 0-RTT record following an accepted
 "early_data" extension it MUST terminate the connection with a
 "bad_record_mac" alert as per Section 5.2 .

 If the server rejects the "early_data" extension, the client
 application MAY opt to retransmit early data once the handshake has
 been completed. Note that automatic re-transmission of early data
 could result in assumptions about the status of the connection being
 incorrect. For instance, when the negotiated connection selects a
 different ALPN protocol from what was used for the early data, an
 application might need to construct different messages. Similarly,
 if early data assumes anything about the connection state, it might
 be sent in error after the handshake completes.

 A TLS implementation SHOULD NOT automatically re-send early data;
 applications are in a better position to decide when re-transmission
 is appropriate. A TLS implementation MUST NOT automatically re-send
 early data unless the negotiated connection selects the same ALPN
 protocol.

4.2.11 . Pre-Shared Key Extension

 The "pre_shared_key" extension is used to indicate the identity of
 the pre-shared key to be used with a given handshake in association
 with PSK key establishment.

 The "extension_data" field of this extension contains a
 "PreSharedKeyExtension" value:

Rescorla Expires August 19, 2018 [Page 58]

Internet-Draft TLS February 2018

 struct {
 opaque identity<1..2^16-1>;
 uint32 obfuscated_ticket_age;
 } PskIdentity;

 opaque PskBinderEntry<32..255>;

 struct {
 PskIdentity identities<7..2^16-1>;
 PskBinderEntry binders<33..2^16-1>;
 } OfferedPsks;

 struct {
 select (Handshake.msg_type) {
 case client_hello: OfferedPsks;
 case server_hello: uint16 selected_identity;
 };
 } PreSharedKeyExtension;

 identity A label for a key. For instance, a ticket defined in
 Appendix B.3.4 or a label for a pre-shared key established
 externally.

 obfuscated_ticket_age An obfuscated version of the age of the key.
 Section 4.2.11.1 describes how to form this value for identities
 established via the NewSessionTicket message. For identities
 established externally an obfuscated_ticket_age of 0 SHOULD be
 used, and servers MUST ignore the value.

 identities A list of the identities that the client is willing to
 negotiate with the server. If sent alongside the "early_data"
 extension (see Section 4.2.10), the first identity is the one used
 for 0-RTT data.

 binders A series of HMAC values, one for each PSK offered in the
 "pre_shared_keys" extension and in the same order, computed as
 described below.

 selected_identity The server’s chosen identity expressed as a
 (0-based) index into the identities in the client’s list.

 Each PSK is associated with a single Hash algorithm. For PSKs
 established via the ticket mechanism (Section 4.6.1), this is the KDF
 Hash algorithm on the connection where the ticket was established.
 For externally established PSKs, the Hash algorithm MUST be set when
 the PSK is established, or default to SHA-256 if no such algorithm is
 defined. The server MUST ensure that it selects a compatible PSK (if
 any) and cipher suite.

Rescorla Expires August 19, 2018 [Page 59]

Internet-Draft TLS February 2018

 In TLS versions prior to TLS 1.3, the Server Name Identification
 (SNI) value was intended to be associated with the session (Section 3
 of [RFC6066]), with the server being required to enforce that the SNI
 value associated with the session matches the one specified in the
 resumption handshake. However, in reality the implementations were
 not consistent on which of two supplied SNI values they would use,
 leading to the consistency requirement being de-facto enforced by the
 clients. In TLS 1.3, the SNI value is always explicitly specified in
 the resumption handshake, and there is no need for the server to
 associate an SNI value with the ticket. Clients, however, SHOULD
 store the SNI with the PSK to fulfill the requirements of
 Section 4.6.1 .

 Implementor’s note: the most straightforward way to implement the
 PSK/cipher suite matching requirements is to negotiate the cipher
 suite first and then exclude any incompatible PSKs. Any unknown PSKs
 (e.g., they are not in the PSK database or are encrypted with an
 unknown key) SHOULD simply be ignored. If no acceptable PSKs are
 found, the server SHOULD perform a non-PSK handshake if possible.

 Prior to accepting PSK key establishment, the server MUST validate
 the corresponding binder value (see Section 4.2.11.2 below). If this
 value is not present or does not validate, the server MUST abort the
 handshake. Servers SHOULD NOT attempt to validate multiple binders;
 rather they SHOULD select a single PSK and validate solely the binder
 that corresponds to that PSK. In order to accept PSK key
 establishment, the server sends a "pre_shared_key" extension
 indicating the selected identity.

 Clients MUST verify that the server’s selected_identity is within the
 range supplied by the client, that the server selected a cipher suite
 indicating a Hash associated with the PSK and that a server
 "key_share" extension is present if required by the ClientHello
 "psk_key_exchange_modes". If these values are not consistent the
 client MUST abort the handshake with an "illegal_parameter" alert.

 If the server supplies an "early_data" extension, the client MUST
 verify that the server’s selected_identity is 0. If any other value
 is returned, the client MUST abort the handshake with an
 "illegal_parameter" alert.

 This extension MUST be the last extension in the ClientHello (this
 facilitates implementation as described below). Servers MUST check
 that it is the last extension and otherwise fail the handshake with
 an "illegal_parameter" alert.

Rescorla Expires August 19, 2018 [Page 60]

https://tools.ietf.org/pdf/rfc6066#section-3
https://tools.ietf.org/pdf/rfc6066#section-3

Internet-Draft TLS February 2018

4.2.11.1 . Ticket Age

 The client’s view of the age of a ticket is the time since the
 receipt of the NewSessionTicket message. Clients MUST NOT attempt to
 use tickets which have ages greater than the "ticket_lifetime" value
 which was provided with the ticket. The "obfuscated_ticket_age"
 field of each PskIdentity contains an obfuscated version of the
 ticket age formed by taking the age in milliseconds and adding the
 "ticket_age_add" value that was included with the ticket, see
 Section 4.6.1 modulo 2^32. This addition prevents passive observers
 from correlating connections unless tickets are reused. Note that
 the "ticket_lifetime" field in the NewSessionTicket message is in
 seconds but the "obfuscated_ticket_age" is in milliseconds. Because
 ticket lifetimes are restricted to a week, 32 bits is enough to
 represent any plausible age, even in milliseconds.

4.2.11.2 . PSK Binder

 The PSK binder value forms a binding between a PSK and the current
 handshake, as well as between the handshake in which the PSK was
 generated (if via a NewSessionTicket message) and the handshake where
 it was used. Each entry in the binders list is computed as an HMAC
 over a transcript hash (see Section 4.4.1) containing a partial
 ClientHello up to and including the PreSharedKeyExtension.identities
 field. That is, it includes all of the ClientHello but not the
 binders list itself. The length fields for the message (including
 the overall length, the length of the extensions block, and the
 length of the "pre_shared_key" extension) are all set as if binders
 of the correct lengths were present.

 The PskBinderEntry is computed in the same way as the Finished
 message (Section 4.4.4) but with the BaseKey being the binder_key
 derived via the key schedule from the corresponding PSK which is
 being offered (see Section 7.1).

 If the handshake includes a HelloRetryRequest, the initial
 ClientHello and HelloRetryRequest are included in the transcript
 along with the new ClientHello. For instance, if the client sends
 ClientHello1, its binder will be computed over:

 Transcript-Hash(Truncate(ClientHello1))

 Where Truncate() removes the binders list from the ClientHello.

 If the server responds with HelloRetryRequest, and the client then
 sends ClientHello2, its binder will be computed over:

Rescorla Expires August 19, 2018 [Page 61]

Internet-Draft TLS February 2018

 Transcript-Hash(ClientHello1,
 HelloRetryRequest,
 Truncate(ClientHello2))

 The full ClientHello1/ClientHello2 is included in all other handshake
 hash computations. Note that in the first flight,
 Truncate(ClientHello1) is hashed directly, but in the second flight,
 ClientHello1 is hashed and then reinjected as a "message_hash"
 message, as described in Section 4.4.1 .

4.2.11.3 . Processing Order

 Clients are permitted to "stream" 0-RTT data until they receive the
 server’s Finished, only then sending the EndOfEarlyData message,
 followed by the rest of the handshake. In order to avoid deadlocks,
 when accepting "early_data", servers MUST process the client’s
 ClientHello and then immediately send the ServerHello, rather than
 waiting for the client’s EndOfEarlyData message.

4.3 . Server Parameters

 The next two messages from the server, EncryptedExtensions and
 CertificateRequest, contain information from the server that
 determines the rest of the handshake. These messages are encrypted
 with keys derived from the server_handshake_traffic_secret.

4.3.1 . Encrypted Extensions

 In all handshakes, the server MUST send the EncryptedExtensions
 message immediately after the ServerHello message. This is the first
 message that is encrypted under keys derived from the
 server_handshake_traffic_secret.

 The EncryptedExtensions message contains extensions that can be
 protected, i.e., any which are not needed to establish the
 cryptographic context, but which are not associated with individual
 certificates. The client MUST check EncryptedExtensions for the
 presence of any forbidden extensions and if any are found MUST abort
 the handshake with an "illegal_parameter" alert.

 Structure of this message:

 struct {
 Extension extensions<0..2^16-1>;
 } EncryptedExtensions;

 extensions A list of extensions. For more information, see the
 table in Section 4.2 .

Rescorla Expires August 19, 2018 [Page 62]

Internet-Draft TLS February 2018

4.3.2 . Certificate Request

 A server which is authenticating with a certificate MAY optionally
 request a certificate from the client. This message, if sent, MUST
 follow EncryptedExtensions.

 Structure of this message:

 struct {
 opaque certificate_request_context<0..2^8-1>;
 Extension extensions<2..2^16-1>;
 } CertificateRequest;

 certificate_request_context An opaque string which identifies the
 certificate request and which will be echoed in the client’s
 Certificate message. The certificate_request_context MUST be
 unique within the scope of this connection (thus preventing replay
 of client CertificateVerify messages). This field SHALL be zero
 length unless used for the post-handshake authentication exchanges
 described in Section 4.6.2 . When requesting post-handshake
 authentication, the server SHOULD make the context unpredictable
 to the client (e.g., by randomly generating it) in order to
 prevent an attacker who has temporary access to the client’s
 private key from pre-computing valid CertificateVerify messages.

 extensions A set of extensions describing the parameters of the
 certificate being requested. The "signature_algorithms" extension
 MUST be specified, and other extensions may optionally be included
 if defined for this message. Clients MUST ignore unrecognized
 extensions.

 In prior versions of TLS, the CertificateRequest message carried a
 list of signature algorithms and certificate authorities which the
 server would accept. In TLS 1.3 the former is expressed by sending
 the "signature_algorithms" and "signature_algorithms_cert"
 extensions. The latter is expressed by sending the
 "certificate_authorities" extension (see Section 4.2.4).

 Servers which are authenticating with a PSK MUST NOT send the
 CertificateRequest message in the main handshake, though they MAY
 send it in post-handshake authentication (see Section 4.6.2) provided
 that the client has sent the "post_handshake_auth" extension (see
 Section 4.2.6).

Rescorla Expires August 19, 2018 [Page 63]

Internet-Draft TLS February 2018

4.4 . Authentication Messages

 As discussed in Section 2 , TLS generally uses a common set of
 messages for authentication, key confirmation, and handshake
 integrity: Certificate, CertificateVerify, and Finished. (The
 PreSharedKey binders also perform key confirmation, in a similar
 fashion.) These three messages are always sent as the last messages
 in their handshake flight. The Certificate and CertificateVerify
 messages are only sent under certain circumstances, as defined below.
 The Finished message is always sent as part of the Authentication
 block. These messages are encrypted under keys derived from
 [sender]_handshake_traffic_secret.

 The computations for the Authentication messages all uniformly take
 the following inputs:

 - The certificate and signing key to be used.

 - A Handshake Context consisting of the set of messages to be
 included in the transcript hash.

 - A base key to be used to compute a MAC key.

 Based on these inputs, the messages then contain:

 Certificate The certificate to be used for authentication, and any
 supporting certificates in the chain. Note that certificate-based
 client authentication is not available in 0-RTT mode.

 CertificateVerify A signature over the value Transcript-
 Hash(Handshake Context, Certificate)

 Finished A MAC over the value Transcript-Hash(Handshake Context,
 Certificate, CertificateVerify) using a MAC key derived from the
 base key.

 The following table defines the Handshake Context and MAC Base Key
 for each scenario:

Rescorla Expires August 19, 2018 [Page 64]

Internet-Draft TLS February 2018

 +-----------+----------------------------+--------------------------+
 | Mode | Handshake Context | Base Key |
 +-----------+----------------------------+--------------------------+
Server	ClientHello ... later of E	server_handshake_traffic
	ncryptedExtensions/Certifi	_secret
	cateRequest	
Client	ClientHello ... later of	client_handshake_traffic
	server	_secret
	Finished/EndOfEarlyData	
Post-	ClientHello ... client	client_application_traff
Handshake	Finished +	ic_secret_N
	CertificateRequest	
 +-----------+----------------------------+--------------------------+

4.4.1 . The Transcript Hash

 Many of the cryptographic computations in TLS make use of a
 transcript hash. This value is computed by hashing the concatenation
 of each included handshake message, including the handshake message
 header carrying the handshake message type and length fields, but not
 including record layer headers. I.e.,

 Transcript-Hash(M1, M2, ... MN) = Hash(M1 || M2 ... MN)

 As an exception to this general rule, when the server responds to a
 ClientHello with a HelloRetryRequest, the value of ClientHello1 is
 replaced with a special synthetic handshake message of handshake type
 "message_hash" containing Hash(ClientHello1). I.e.,

 Transcript-Hash(ClientHello1, HelloRetryRequest, ... MN) =
 Hash(message_hash || /* Handshake type */
 00 00 Hash.length || /* Handshake message length (bytes) */
 Hash(ClientHello1) || /* Hash of ClientHello1 */
 HelloRetryRequest ... MN)

 The reason for this construction is to allow the server to do a
 stateless HelloRetryRequest by storing just the hash of ClientHello1
 in the cookie, rather than requiring it to export the entire
 intermediate hash state (see Section 4.2.2).

 For concreteness, the transcript hash is always taken from the
 following sequence of handshake messages, starting at the first
 ClientHello and including only those messages that were sent:
 ClientHello, HelloRetryRequest, ClientHello, ServerHello,
 EncryptedExtensions, server CertificateRequest, server Certificate,

Rescorla Expires August 19, 2018 [Page 65]

Internet-Draft TLS February 2018

 server CertificateVerify, server Finished, EndOfEarlyData, client
 Certificate, client CertificateVerify, client Finished.

 In general, implementations can implement the transcript by keeping a
 running transcript hash value based on the negotiated hash. Note,
 however, that subsequent post-handshake authentications do not
 include each other, just the messages through the end of the main
 handshake.

4.4.2 . Certificate

 This message conveys the endpoint’s certificate chain to the peer.

 The server MUST send a Certificate message whenever the agreed-upon
 key exchange method uses certificates for authentication (this
 includes all key exchange methods defined in this document except
 PSK).

 The client MUST send a Certificate message if and only if the server
 has requested client authentication via a CertificateRequest message
 (Section 4.3.2). If the server requests client authentication but no
 suitable certificate is available, the client MUST send a Certificate
 message containing no certificates (i.e., with the "certificate_list"
 field having length 0).

 Structure of this message:

Rescorla Expires August 19, 2018 [Page 66]

Internet-Draft TLS February 2018

 enum {
 X509(0),
 RawPublicKey(2),
 (255)
 } CertificateType;

 struct {
 select (certificate_type) {
 case RawPublicKey:
 /* From RFC 7250 ASN.1_subjectPublicKeyInfo */
 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;

 case X509:
 opaque cert_data<1..2^24-1>;
 };
 Extension extensions<0..2^16-1>;
 } CertificateEntry;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 CertificateEntry certificate_list<0..2^24-1>;
 } Certificate;

 certificate_request_context If this message is in response to a
 CertificateRequest, the value of certificate_request_context in
 that message. Otherwise (in the case of server authentication),
 this field SHALL be zero length.

 certificate_list This is a sequence (chain) of CertificateEntry
 structures, each containing a single certificate and set of
 extensions.

 extensions: A set of extension values for the CertificateEntry. The
 "Extension" format is defined in Section 4.2 . Valid extensions
 for server certificates include OCSP Status extension ([RFC6066])
 and SignedCertificateTimestamps ([RFC6962]). Extensions in the
 Certificate message from the server MUST correspond to one from
 the ClientHello message. Extensions in the Certificate from the
 client MUST correspond with an extension in the CertificateRequest
 message from the server. If an extension applies to the entire
 chain, it SHOULD be included in the first CertificateEntry.

 If the corresponding certificate type extension
 ("server_certificate_type" or "client_certificate_type") was not
 negotiated in Encrypted Extensions, or the X.509 certificate type was
 negotiated, then each CertificateEntry contains a DER-encoded X.509
 certificate. The sender’s certificate MUST come in the first
 CertificateEntry in the list. Each following certificate SHOULD

Rescorla Expires August 19, 2018 [Page 67]

https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6962

Internet-Draft TLS February 2018

 directly certify one preceding it. Because certificate validation
 requires that trust anchors be distributed independently, a
 certificate that specifies a trust anchor MAY be omitted from the
 chain, provided that supported peers are known to possess any omitted
 certificates.

 Note: Prior to TLS 1.3, "certificate_list" ordering required each
 certificate to certify the one immediately preceding it; however,
 some implementations allowed some flexibility. Servers sometimes
 send both a current and deprecated intermediate for transitional
 purposes, and others are simply configured incorrectly, but these
 cases can nonetheless be validated properly. For maximum
 compatibility, all implementations SHOULD be prepared to handle
 potentially extraneous certificates and arbitrary orderings from any
 TLS version, with the exception of the end-entity certificate which
 MUST be first.

 If the RawPublicKey certificate type was negotiated, then the
 certificate_list MUST contain no more than one CertificateEntry,
 which contains an ASN1_subjectPublicKeyInfo value as defined in
 [RFC7250], Section 3 .

 The OpenPGP certificate type [RFC6091] MUST NOT be used with TLS 1.3.

 The server’s certificate_list MUST always be non-empty. A client
 will send an empty certificate_list if it does not have an
 appropriate certificate to send in response to the server’s
 authentication request.

4.4.2.1 . OCSP Status and SCT Extensions

 [RFC6066] and [RFC6961] provide extensions to negotiate the server
 sending OCSP responses to the client. In TLS 1.2 and below, the
 server replies with an empty extension to indicate negotiation of
 this extension and the OCSP information is carried in a
 CertificateStatus message. In TLS 1.3, the server’s OCSP information
 is carried in an extension in the CertificateEntry containing the
 associated certificate. Specifically: The body of the
 "status_request" extension from the server MUST be a
 CertificateStatus structure as defined in [RFC6066], which is
 interpreted as defined in [RFC6960].

 Note: status_request_v2 extension ([RFC6961]) is deprecated. TLS 1.3
 servers MUST NOT act upon its presence or information in it when
 processing Client Hello, in particular they MUST NOT send the
 status_request_v2 extension in the Encrypted Extensions, Certificate
 Request or the Certificate messages. TLS 1.3 servers MUST be able to

Rescorla Expires August 19, 2018 [Page 68]

https://tools.ietf.org/pdf/rfc7250#section-3
https://tools.ietf.org/pdf/rfc6091
https://tools.ietf.org/pdf/rfc6961
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6960
https://tools.ietf.org/pdf/rfc6961

Internet-Draft TLS February 2018

 process Client Hello messages that include it, as it MAY be sent by
 clients that wish to use it in earlier protocol versions.

 A server MAY request that a client present an OCSP response with its
 certificate by sending an empty "status_request" extension in its
 CertificateRequest message. If the client opts to send an OCSP
 response, the body of its "status_request" extension MUST be a
 CertificateStatus structure as defined in [RFC6066].

 Similarly, [RFC6962] provides a mechanism for a server to send a
 Signed Certificate Timestamp (SCT) as an extension in the ServerHello
 in TLS 1.2 and below. In TLS 1.3, the server’s SCT information is
 carried in an extension in CertificateEntry.

4.4.2.2 . Server Certificate Selection

 The following rules apply to the certificates sent by the server:

 - The certificate type MUST be X.509v3 [RFC5280], unless explicitly
 negotiated otherwise (e.g., [RFC7250]).

 - The server’s end-entity certificate’s public key (and associated
 restrictions) MUST be compatible with the selected authentication
 algorithm (currently RSA, ECDSA, or EdDSA).

 - The certificate MUST allow the key to be used for signing (i.e.,
 the digitalSignature bit MUST be set if the Key Usage extension is
 present) with a signature scheme indicated in the client’s
 "signature_algorithms"/"signature_algorithms_cert" extensions (see
 Section 4.2.3).

 - The "server_name" [RFC6066] and "certificate_authorities"
 extensions are used to guide certificate selection. As servers
 MAY require the presence of the "server_name" extension, clients
 SHOULD send this extension, when applicable.

 All certificates provided by the server MUST be signed by a signature
 algorithm advertised by the client, if they are able to provide such
 a chain (see Section 4.2.3). Certificates that are self-signed or
 certificates that are expected to be trust anchors are not validated
 as part of the chain and therefore MAY be signed with any algorithm.

 If the server cannot produce a certificate chain that is signed only
 via the indicated supported algorithms, then it SHOULD continue the
 handshake by sending the client a certificate chain of its choice
 that may include algorithms that are not known to be supported by the
 client. This fallback chain SHOULD NOT use the deprecated SHA-1 hash

Rescorla Expires August 19, 2018 [Page 69]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6962
https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS February 2018

 algorithm in general, but MAY do so if the client’s advertisement
 permits it, and MUST NOT do so otherwise.

 If the client cannot construct an acceptable chain using the provided
 certificates and decides to abort the handshake, then it MUST abort
 the handshake with an appropriate certificate-related alert (by
 default, "unsupported_certificate"; see Section 6.2 for more).

 If the server has multiple certificates, it chooses one of them based
 on the above-mentioned criteria (in addition to other criteria, such
 as transport layer endpoint, local configuration and preferences).

4.4.2.3 . Client Certificate Selection

 The following rules apply to certificates sent by the client:

 - The certificate type MUST be X.509v3 [RFC5280], unless explicitly
 negotiated otherwise (e.g., [RFC7250]).

 - If the "certificate_authorities" extension in the
 CertificateRequest message was present, at least one of the
 certificates in the certificate chain SHOULD be issued by one of
 the listed CAs.

 - The certificates MUST be signed using an acceptable signature
 algorithm, as described in Section 4.3.2 . Note that this relaxes
 the constraints on certificate-signing algorithms found in prior
 versions of TLS.

 - If the CertificateRequest message contained a non-empty
 "oid_filters" extension, the end-entity certificate MUST match the
 extension OIDs recognized by the client, as described in
 Section 4.2.5 .

 Note that, as with the server certificate, there are certificates
 that use algorithm combinations that cannot be currently used with
 TLS.

4.4.2.4 . Receiving a Certificate Message

 In general, detailed certificate validation procedures are out of
 scope for TLS (see [RFC5280]). This section provides TLS-specific
 requirements.

 If the server supplies an empty Certificate message, the client MUST
 abort the handshake with a "decode_error" alert.

Rescorla Expires August 19, 2018 [Page 70]

https://tools.ietf.org/pdf/rfc5280
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc5280

Internet-Draft TLS February 2018

 If the client does not send any certificates, the server MAY at its
 discretion either continue the handshake without client
 authentication, or abort the handshake with a "certificate_required"
 alert. Also, if some aspect of the certificate chain was
 unacceptable (e.g., it was not signed by a known, trusted CA), the
 server MAY at its discretion either continue the handshake
 (considering the client unauthenticated) or abort the handshake.

 Any endpoint receiving any certificate which it would need to
 validate using any signature algorithm using an MD5 hash MUST abort
 the handshake with a "bad_certificate" alert. SHA-1 is deprecated
 and it is RECOMMENDED that any endpoint receiving any certificate
 which it would need to validate using any signature algorithm using a
 SHA-1 hash abort the handshake with a "bad_certificate" alert. For
 clarity, this means that endpoints MAY accept these algorithms for
 certificates that are self-signed or are trust anchors.

 All endpoints are RECOMMENDED to transition to SHA-256 or better as
 soon as possible to maintain interoperability with implementations
 currently in the process of phasing out SHA-1 support.

 Note that a certificate containing a key for one signature algorithm
 MAY be signed using a different signature algorithm (for instance, an
 RSA key signed with an ECDSA key).

4.4.3 . Certificate Verify

 This message is used to provide explicit proof that an endpoint
 possesses the private key corresponding to its certificate. The
 CertificateVerify message also provides integrity for the handshake
 up to this point. Servers MUST send this message when authenticating
 via a certificate. Clients MUST send this message whenever
 authenticating via a certificate (i.e., when the Certificate message
 is non-empty). When sent, this message MUST appear immediately after
 the Certificate message and immediately prior to the Finished
 message.

 Structure of this message:

 struct {
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } CertificateVerify;

 The algorithm field specifies the signature algorithm used (see
 Section 4.2.3 for the definition of this field). The signature is a
 digital signature using that algorithm. The content that is covered

Rescorla Expires August 19, 2018 [Page 71]

Internet-Draft TLS February 2018

 under the signature is the hash output as described in Section 4.4 ,
 namely:

 Transcript-Hash(Handshake Context, Certificate)

 The digital signature is then computed over the concatenation of:

 - A string that consists of octet 32 (0x20) repeated 64 times

 - The context string

 - A single 0 byte which serves as the separator

 - The content to be signed

 This structure is intended to prevent an attack on previous versions
 of TLS in which the ServerKeyExchange format meant that attackers
 could obtain a signature of a message with a chosen 32-byte prefix
 (ClientHello.random). The initial 64-byte pad clears that prefix
 along with the server-controlled ServerHello.random.

 The context string for a server signature is "TLS 1.3, server
 CertificateVerify" and for a client signature is "TLS 1.3, client
 CertificateVerify". It is used to provide separation between
 signatures made in different contexts, helping against potential
 cross-protocol attacks.

 For example, if the transcript hash was 32 bytes of 01 (this length
 would make sense for SHA-256), the content covered by the digital
 signature for a server CertificateVerify would be:

 20
 20
 544c5320312e332c207365727665722043657274696669636174655665726966
 79
 00
 01

 On the sender side the process for computing the signature field of
 the CertificateVerify message takes as input:

 - The content covered by the digital signature

 - The private signing key corresponding to the certificate sent in
 the previous message

 If the CertificateVerify message is sent by a server, the signature
 algorithm MUST be one offered in the client’s "signature_algorithms"

Rescorla Expires August 19, 2018 [Page 72]

Internet-Draft TLS February 2018

 extension unless no valid certificate chain can be produced without
 unsupported algorithms (see Section 4.2.3).

 If sent by a client, the signature algorithm used in the signature
 MUST be one of those present in the supported_signature_algorithms
 field of the "signature_algorithms" extension in the
 CertificateRequest message.

 In addition, the signature algorithm MUST be compatible with the key
 in the sender’s end-entity certificate. RSA signatures MUST use an
 RSASSA-PSS algorithm, regardless of whether RSASSA-PKCS1-v1_5
 algorithms appear in "signature_algorithms". The SHA-1 algorithm
 MUST NOT be used in any signatures of CertificateVerify messages.
 All SHA-1 signature algorithms in this specification are defined
 solely for use in legacy certificates and are not valid for
 CertificateVerify signatures.

 The receiver of a CertificateVerify message MUST verify the signature
 field. The verification process takes as input:

 - The content covered by the digital signature

 - The public key contained in the end-entity certificate found in
 the associated Certificate message.

 - The digital signature received in the signature field of the
 CertificateVerify message

 If the verification fails, the receiver MUST terminate the handshake
 with a "decrypt_error" alert.

4.4.4 . Finished

 The Finished message is the final message in the authentication
 block. It is essential for providing authentication of the handshake
 and of the computed keys.

 Recipients of Finished messages MUST verify that the contents are
 correct and if incorrect MUST terminate the connection with a
 "decrypt_error" alert.

 Once a side has sent its Finished message and received and validated
 the Finished message from its peer, it may begin to send and receive
 application data over the connection. There are two settings in
 which it is permitted to send data prior to receiving the peer’s
 Finished:

 1. Clients sending 0-RTT data as described in Section 4.2.10 .

Rescorla Expires August 19, 2018 [Page 73]

Internet-Draft TLS February 2018

 2. Servers MAY send data after sending their first flight, but
 because the handshake is not yet complete, they have no assurance
 of either the peer’s identity or of its liveness (i.e., the
 ClientHello might have been replayed).

 The key used to compute the finished message is computed from the
 Base key defined in Section 4.4 using HKDF (see Section 7.1).
 Specifically:

 finished_key =
 HKDF-Expand-Label(BaseKey, "finished", "", Hash.length)

 Structure of this message:

 struct {
 opaque verify_data[Hash.length];
 } Finished;

 The verify_data value is computed as follows:

 verify_data =
 HMAC(finished_key,
 Transcript-Hash(Handshake Context,
 Certificate*, CertificateVerify*))

 * Only included if present.

 HMAC [RFC2104] uses the Hash algorithm for the handshake. As noted
 above, the HMAC input can generally be implemented by a running hash,
 i.e., just the handshake hash at this point.

 In previous versions of TLS, the verify_data was always 12 octets
 long. In TLS 1.3, it is the size of the HMAC output for the Hash
 used for the handshake.

 Note: Alerts and any other record types are not handshake messages
 and are not included in the hash computations.

 Any records following a 1-RTT Finished message MUST be encrypted
 under the appropriate application traffic key as described in
 Section 7.2 . In particular, this includes any alerts sent by the
 server in response to client Certificate and CertificateVerify
 messages.

Rescorla Expires August 19, 2018 [Page 74]

https://tools.ietf.org/pdf/rfc2104

Internet-Draft TLS February 2018

4.5 . End of Early Data

 struct {} EndOfEarlyData;

 If the server sent an "early_data" extension, the client MUST send an
 EndOfEarlyData message after receiving the server Finished. If the
 server does not send an "early_data" extension, then the client MUST
 NOT send an EndOfEarlyData message. This message indicates that all
 0-RTT application_data messages, if any, have been transmitted and
 that the following records are protected under handshake traffic
 keys. Servers MUST NOT send this message and clients receiving it
 MUST terminate the connection with an "unexpected_message" alert.
 This message is encrypted under keys derived from the
 client_early_traffic_secret.

4.6 . Post-Handshake Messages

 TLS also allows other messages to be sent after the main handshake.
 These messages use a handshake content type and are encrypted under
 the appropriate application traffic key.

4.6.1 . New Session Ticket Message

 At any time after the server has received the client Finished
 message, it MAY send a NewSessionTicket message. This message
 creates a unique association between the ticket value and a secret
 PSK derived from the resumption master secret.

 The client MAY use this PSK for future handshakes by including the
 ticket value in the "pre_shared_key" extension in its ClientHello
 (Section 4.2.11). Servers MAY send multiple tickets on a single
 connection, either immediately after each other or after specific
 events (see Appendix C.4). For instance, the server might send a new
 ticket after post-handshake authentication in order to encapsulate
 the additional client authentication state. Multiple tickets are
 useful for clients for a variety of purposes, including:

 - Opening multiple parallel HTTP connections.

 - Performing connection racing across interfaces and address
 families via, e.g., Happy Eyeballs [RFC8305] or related
 techniques.

 Any ticket MUST only be resumed with a cipher suite that has the same
 KDF hash algorithm as that used to establish the original connection.

 Clients MUST only resume if the new SNI value is valid for the server
 certificate presented in the original session, and SHOULD only resume

Rescorla Expires August 19, 2018 [Page 75]

https://tools.ietf.org/pdf/rfc8305

Internet-Draft TLS February 2018

 if the SNI value matches the one used in the original session. The
 latter is a performance optimization: normally, there is no reason to
 expect that different servers covered by a single certificate would
 be able to accept each other’s tickets, hence attempting resumption
 in that case would waste a single-use ticket. If such an indication
 is provided (externally or by any other means), clients MAY resume
 with a different SNI value.

 On resumption, if reporting an SNI value to the calling application,
 implementations MUST use the value sent in the resumption ClientHello
 rather than the value sent in the previous session. Note that if a
 server implementation declines all PSK identities with different SNI
 values, these two values are always the same.

 Note: Although the resumption master secret depends on the client’s
 second flight, servers which do not request client authentication MAY
 compute the remainder of the transcript independently and then send a
 NewSessionTicket immediately upon sending its Finished rather than
 waiting for the client Finished. This might be appropriate in cases
 where the client is expected to open multiple TLS connections in
 parallel and would benefit from the reduced overhead of a resumption
 handshake, for example.

 struct {
 uint32 ticket_lifetime;
 uint32 ticket_age_add;
 opaque ticket_nonce<0..255>;
 opaque ticket<1..2^16-1>;
 Extension extensions<0..2^16-2>;
 } NewSessionTicket;

 ticket_lifetime Indicates the lifetime in seconds as a 32-bit
 unsigned integer in network byte order from the time of ticket
 issuance. Servers MUST NOT use any value greater than 604800
 seconds (7 days). The value of zero indicates that the ticket
 should be discarded immediately. Clients MUST NOT cache tickets
 for longer than 7 days, regardless of the ticket_lifetime, and MAY
 delete the ticket earlier based on local policy. A server MAY
 treat a ticket as valid for a shorter period of time than what is
 stated in the ticket_lifetime.

 ticket_age_add A securely generated, random 32-bit value that is
 used to obscure the age of the ticket that the client includes in
 the "pre_shared_key" extension. The client-side ticket age is
 added to this value modulo 2^32 to obtain the value that is
 transmitted by the client. The server MUST generate a fresh value
 for each ticket it sends.

Rescorla Expires August 19, 2018 [Page 76]

Internet-Draft TLS February 2018

 ticket_nonce A per-ticket value that is unique across all tickets
 issued on this connection.

 ticket The value of the ticket to be used as the PSK identity. The
 ticket itself is an opaque label. It MAY either be a database
 lookup key or a self-encrypted and self-authenticated value.
 Section 4 of [RFC5077] describes a recommended ticket construction
 mechanism.

 extensions A set of extension values for the ticket. The
 "Extension" format is defined in Section 4.2 . Clients MUST ignore
 unrecognized extensions.

 The sole extension currently defined for NewSessionTicket is
 "early_data", indicating that the ticket may be used to send 0-RTT
 data (Section 4.2.10)). It contains the following value:

 max_early_data_size The maximum amount of 0-RTT data that the client
 is allowed to send when using this ticket, in bytes. Only
 Application Data payload (i.e., plaintext but not padding or the
 inner content type byte) is counted. A server receiving more than
 max_early_data_size bytes of 0-RTT data SHOULD terminate the
 connection with an "unexpected_message" alert. Note that servers
 that reject early data due to lack of cryptographic material will
 be unable to differentiate padding from content, so clients SHOULD
 NOT depend on being able to send large quantities of padding in
 early data records.

 The PSK associated with the ticket is computed as:

 HKDF-Expand-Label(resumption_master_secret,
 "resumption", ticket_nonce, Hash.length)

 Because the ticket_nonce value is distinct for each NewSessionTicket
 message, a different PSK will be derived for each ticket.

 Note that in principle it is possible to continue issuing new tickets
 which indefinitely extend the lifetime of the keying material
 originally derived from an initial non-PSK handshake (which was most
 likely tied to the peer’s certificate). It is RECOMMENDED that
 implementations place limits on the total lifetime of such keying
 material; these limits should take into account the lifetime of the
 peer’s certificate, the likelihood of intervening revocation, and the
 time since the peer’s online CertificateVerify signature.

Rescorla Expires August 19, 2018 [Page 77]

https://tools.ietf.org/pdf/rfc5077#section-4

Internet-Draft TLS February 2018

4.6.2 . Post-Handshake Authentication

 When the client has sent the "post_handshake_auth" extension (see
 Section 4.2.6), a server MAY request client authentication at any
 time after the handshake has completed by sending a
 CertificateRequest message. The client MUST respond with the
 appropriate Authentication messages (see Section 4.4). If the client
 chooses to authenticate, it MUST send Certificate, CertificateVerify,
 and Finished. If it declines, it MUST send a Certificate message
 containing no certificates followed by Finished. All of the client’s
 messages for a given response MUST appear consecutively on the wire
 with no intervening messages of other types.

 A client that receives a CertificateRequest message without having
 sent the "post_handshake_auth" extension MUST send an
 "unexpected_message" fatal alert.

 Note: Because client authentication could involve prompting the user,
 servers MUST be prepared for some delay, including receiving an
 arbitrary number of other messages between sending the
 CertificateRequest and receiving a response. In addition, clients
 which receive multiple CertificateRequests in close succession MAY
 respond to them in a different order than they were received (the
 certificate_request_context value allows the server to disambiguate
 the responses).

4.6.3 . Key and IV Update

 enum {
 update_not_requested(0), update_requested(1), (255)
 } KeyUpdateRequest;

 struct {
 KeyUpdateRequest request_update;
 } KeyUpdate;

 request_update Indicates whether the recipient of the KeyUpdate
 should respond with its own KeyUpdate. If an implementation
 receives any other value, it MUST terminate the connection with an
 "illegal_parameter" alert.

 The KeyUpdate handshake message is used to indicate that the sender
 is updating its sending cryptographic keys. This message can be sent
 by either peer after it has sent a Finished message. Implementations
 that receive a KeyUpdate message prior to receiving a Finished
 message MUST terminate the connection with an "unexpected_message"
 alert. After sending a KeyUpdate message, the sender SHALL send all
 its traffic using the next generation of keys, computed as described

Rescorla Expires August 19, 2018 [Page 78]

Internet-Draft TLS February 2018

 in Section 7.2 . Upon receiving a KeyUpdate, the receiver MUST update
 its receiving keys.

 If the request_update field is set to "update_requested" then the
 receiver MUST send a KeyUpdate of its own with request_update set to
 "update_not_requested" prior to sending its next application data
 record. This mechanism allows either side to force an update to the
 entire connection, but causes an implementation which receives
 multiple KeyUpdates while it is silent to respond with a single
 update. Note that implementations may receive an arbitrary number of
 messages between sending a KeyUpdate with request_update set to
 update_requested and receiving the peer’s KeyUpdate, because those
 messages may already be in flight. However, because send and receive
 keys are derived from independent traffic secrets, retaining the
 receive traffic secret does not threaten the forward secrecy of data
 sent before the sender changed keys.

 If implementations independently send their own KeyUpdates with
 request_update set to "update_requested", and they cross in flight,
 then each side will also send a response, with the result that each
 side increments by two generations.

 Both sender and receiver MUST encrypt their KeyUpdate messages with
 the old keys. Additionally, both sides MUST enforce that a KeyUpdate
 with the old key is received before accepting any messages encrypted
 with the new key. Failure to do so may allow message truncation
 attacks.

5. Record Protocol

 The TLS record protocol takes messages to be transmitted, fragments
 the data into manageable blocks, protects the records, and transmits
 the result. Received data is verified, decrypted, reassembled, and
 then delivered to higher-level clients.

 TLS records are typed, which allows multiple higher-level protocols
 to be multiplexed over the same record layer. This document
 specifies four content types: handshake, application data, alert, and
 change_cipher_spec. The change_cipher_spec record is used only for
 compatibility purposes (see Appendix D.4).

 An implementation may receive an unencrypted record of type
 change_cipher_spec consisting of the single byte value 0x01 at any
 time after the first ClientHello message has been sent or received
 and before the peer’s Finished message has been received and MUST
 simply drop it without further processing. Note that this record may
 appear at a point at the handshake where the implementation is
 expecting protected records and so it is necessary to detect this

Rescorla Expires August 19, 2018 [Page 79]

Internet-Draft TLS February 2018

 condition prior to attempting to deprotect the record. An
 implementation which receives any other change_cipher_spec value or
 which receives a protected change_cipher_spec record MUST abort the
 handshake with an "unexpected_message" alert. A change_cipher_spec
 record received before the first ClientHello message or after the
 peer’s Finished message MUST be treated as an unexpected record type.

 Implementations MUST NOT send record types not defined in this
 document unless negotiated by some extension. If a TLS
 implementation receives an unexpected record type, it MUST terminate
 the connection with an "unexpected_message" alert. New record
 content type values are assigned by IANA in the TLS Content Type
 Registry as described in Section 11 .

5.1 . Record Layer

 The record layer fragments information blocks into TLSPlaintext
 records carrying data in chunks of 2^14 bytes or less. Message
 boundaries are handled differently depending on the underlying
 ContentType. Any future content types MUST specify appropriate
 rules. Note that these rules are stricter than what was enforced in
 TLS 1.2.

 Handshake messages MAY be coalesced into a single TLSPlaintext record
 or fragmented across several records, provided that:

 - Handshake messages MUST NOT be interleaved with other record
 types. That is, if a handshake message is split over two or more
 records, there MUST NOT be any other records between them.

 - Handshake messages MUST NOT span key changes. Implementations
 MUST verify that all messages immediately preceding a key change
 align with a record boundary; if not, then they MUST terminate the
 connection with an "unexpected_message" alert. Because the
 ClientHello, EndOfEarlyData, ServerHello, Finished, and KeyUpdate
 messages can immediately precede a key change, implementations
 MUST send these messages in alignment with a record boundary.

 Implementations MUST NOT send zero-length fragments of Handshake
 types, even if those fragments contain padding.

 Alert messages (Section 6) MUST NOT be fragmented across records and
 multiple Alert messages MUST NOT be coalesced into a single
 TLSPlaintext record. In other words, a record with an Alert type
 MUST contain exactly one message.

 Application Data messages contain data that is opaque to TLS.
 Application Data messages are always protected. Zero-length

Rescorla Expires August 19, 2018 [Page 80]

Internet-Draft TLS February 2018

 fragments of Application Data MAY be sent as they are potentially
 useful as a traffic analysis countermeasure. Application Data
 fragments MAY be split across multiple records or coalesced into a
 single record.

 enum {
 invalid(0),
 change_cipher_spec(20),
 alert(21),
 handshake(22),
 application_data(23),
 (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion legacy_record_version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 type The higher-level protocol used to process the enclosed
 fragment.

 legacy_record_version This value MUST be set to 0x0303 for all
 records generated by a TLS 1.3 implementation other than an
 initial ClientHello (i.e., one not generated after a
 HelloRetryRequest), where it MAY also be 0x0301 for compatibility
 purposes. This field is deprecated and MUST be ignored for all
 purposes. Previous versions of TLS would use other values in this
 field under some circumstances.

 length The length (in bytes) of the following TLSPlaintext.fragment.
 The length MUST NOT exceed 2^14 bytes. An endpoint that receives
 a record that exceeds this length MUST terminate the connection
 with a "record_overflow" alert.

 fragment The data being transmitted. This value is transparent and
 is treated as an independent block to be dealt with by the higher-
 level protocol specified by the type field.

 This document describes TLS 1.3, which uses the version 0x0304. This
 version value is historical, deriving from the use of 0x0301 for TLS
 1.0 and 0x0300 for SSL 3.0. In order to maximize backwards
 compatibility, records containing an initial ClientHello MUST have
 version 0x0301 and a record containing a second ClientHello or a
 ServerHello MUST have version 0x0303, reflecting TLS 1.0 and TLS 1.2

Rescorla Expires August 19, 2018 [Page 81]

Internet-Draft TLS February 2018

 respectively. When negotiating prior versions of TLS, endpoints
 follow the procedure and requirements in Appendix D .

 When record protection has not yet been engaged, TLSPlaintext
 structures are written directly onto the wire. Once record
 protection has started, TLSPlaintext records are protected and sent
 as described in the following section.

5.2 . Record Payload Protection

 The record protection functions translate a TLSPlaintext structure
 into a TLSCiphertext. The deprotection functions reverse the
 process. In TLS 1.3, as opposed to previous versions of TLS, all
 ciphers are modeled as "Authenticated Encryption with Additional
 Data" (AEAD) [RFC5116]. AEAD functions provide an unified encryption
 and authentication operation which turns plaintext into authenticated
 ciphertext and back again. Each encrypted record consists of a
 plaintext header followed by an encrypted body, which itself contains
 a type and optional padding.

 struct {
 opaque content[TLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } TLSInnerPlaintext;

 struct {
 ContentType opaque_type = application_data; /* 23 */
 ProtocolVersion legacy_record_version = 0x0303; /* TLS v1.2 */
 uint16 length;
 opaque encrypted_record[TLSCiphertext.length];
 } TLSCiphertext;

 content The byte encoding of a handshake or an alert message, or the
 raw bytes of the application’s data to send.

 type The content type of the record.

 zeros An arbitrary-length run of zero-valued bytes may appear in the
 cleartext after the type field. This provides an opportunity for
 senders to pad any TLS record by a chosen amount as long as the
 total stays within record size limits. See Section 5.4 for more
 details.

 opaque_type The outer opaque_type field of a TLSCiphertext record is
 always set to the value 23 (application_data) for outward
 compatibility with middleboxes accustomed to parsing previous

Rescorla Expires August 19, 2018 [Page 82]

https://tools.ietf.org/pdf/rfc5116

Internet-Draft TLS February 2018

 versions of TLS. The actual content type of the record is found
 in TLSInnerPlaintext.type after decryption.

 legacy_record_version The legacy_record_version field is always
 0x0303. TLS 1.3 TLSCiphertexts are not generated until after TLS
 1.3 has been negotiated, so there are no historical compatibility
 concerns where other values might be received. Implementations
 MAY verify that the legacy_record_version field is 0x0303 and
 abort the connection if it is not. Note that the handshake
 protocol including the ClientHello and ServerHello messages
 authenticates the protocol version, so this value is redundant.

 length The length (in bytes) of the following
 TLSCiphertext.encrypted_record, which is the sum of the lengths of
 the content and the padding, plus one for the inner content type,
 plus any expansion added by the AEAD algorithm. The length MUST
 NOT exceed 2^14 + 256 bytes. An endpoint that receives a record
 that exceeds this length MUST terminate the connection with a
 "record_overflow" alert.

 encrypted_record The AEAD-encrypted form of the serialized
 TLSInnerPlaintext structure.

 AEAD algorithms take as input a single key, a nonce, a plaintext, and
 "additional data" to be included in the authentication check, as
 described in Section 2.1 of [RFC5116] . The key is either the
 client_write_key or the server_write_key, the nonce is derived from
 the sequence number (see Section 5.3) and the client_write_iv or
 server_write_iv, and the additional data input is empty (zero
 length). Derivation of traffic keys is defined in Section 7.3 .

 The plaintext input to the AEAD algorithm is the encoded
 TLSInnerPlaintext structure.

 The AEAD output consists of the ciphertext output from the AEAD
 encryption operation. The length of the plaintext is greater than
 the corresponding TLSPlaintext.length due to the inclusion of
 TLSInnerPlaintext.type and any padding supplied by the sender. The
 length of the AEAD output will generally be larger than the
 plaintext, but by an amount that varies with the AEAD algorithm.
 Since the ciphers might incorporate padding, the amount of overhead
 could vary with different lengths of plaintext. Symbolically,

 AEADEncrypted =
 AEAD-Encrypt(write_key, nonce, plaintext)

 In order to decrypt and verify, the cipher takes as input the key,
 nonce, and the AEADEncrypted value. The output is either the

Rescorla Expires August 19, 2018 [Page 83]

https://tools.ietf.org/pdf/rfc5116#section-2.1

Internet-Draft TLS February 2018

 plaintext or an error indicating that the decryption failed. There
 is no separate integrity check. That is:

 plaintext of encrypted_record =
 AEAD-Decrypt(peer_write_key, nonce, AEADEncrypted)

 If the decryption fails, the receiver MUST terminate the connection
 with a "bad_record_mac" alert.

 An AEAD algorithm used in TLS 1.3 MUST NOT produce an expansion
 greater than 255 octets. An endpoint that receives a record from its
 peer with TLSCiphertext.length larger than 2^14 + 256 octets MUST
 terminate the connection with a "record_overflow" alert. This limit
 is derived from the maximum TLSPlaintext length of 2^14 octets + 1
 octet for ContentType + the maximum AEAD expansion of 255 octets.

5.3 . Per-Record Nonce

 A 64-bit sequence number is maintained separately for reading and
 writing records. Each sequence number is set to zero at the
 beginning of a connection and whenever the key is changed.

 The appropriate sequence number is incremented by one after reading
 or writing each record. The first record transmitted under a
 particular traffic key MUST use sequence number 0.

 Because the size of sequence numbers is 64-bit, they should not wrap.
 If a TLS implementation would need to wrap a sequence number, it MUST
 either re-key (Section 4.6.3) or terminate the connection.

 Each AEAD algorithm will specify a range of possible lengths for the
 per-record nonce, from N_MIN bytes to N_MAX bytes of input
 ([RFC5116]). The length of the TLS per-record nonce (iv_length) is
 set to the larger of 8 bytes and N_MIN for the AEAD algorithm (see
 [RFC5116] Section 4). An AEAD algorithm where N_MAX is less than 8
 bytes MUST NOT be used with TLS. The per-record nonce for the AEAD
 construction is formed as follows:

 1. The 64-bit record sequence number is encoded in network byte
 order and padded to the left with zeros to iv_length.

 2. The padded sequence number is XORed with the static
 client_write_iv or server_write_iv, depending on the role.

 The resulting quantity (of length iv_length) is used as the per-
 record nonce.

Rescorla Expires August 19, 2018 [Page 84]

https://tools.ietf.org/pdf/rfc5116
https://tools.ietf.org/pdf/rfc5116#section-4

Internet-Draft TLS February 2018

 Note: This is a different construction from that in TLS 1.2, which
 specified a partially explicit nonce.

5.4 . Record Padding

 All encrypted TLS records can be padded to inflate the size of the
 TLSCiphertext. This allows the sender to hide the size of the
 traffic from an observer.

 When generating a TLSCiphertext record, implementations MAY choose to
 pad. An unpadded record is just a record with a padding length of
 zero. Padding is a string of zero-valued bytes appended to the
 ContentType field before encryption. Implementations MUST set the
 padding octets to all zeros before encrypting.

 Application Data records may contain a zero-length
 TLSInnerPlaintext.content if the sender desires. This permits
 generation of plausibly-sized cover traffic in contexts where the
 presence or absence of activity may be sensitive. Implementations
 MUST NOT send Handshake or Alert records that have a zero-length
 TLSInnerPlaintext.content; if such a message is received, the
 receiving implementation MUST terminate the connection with an
 "unexpected_message" alert.

 The padding sent is automatically verified by the record protection
 mechanism; upon successful decryption of a
 TLSCiphertext.encrypted_record, the receiving implementation scans
 the field from the end toward the beginning until it finds a non-zero
 octet. This non-zero octet is the content type of the message. This
 padding scheme was selected because it allows padding of any
 encrypted TLS record by an arbitrary size (from zero up to TLS record
 size limits) without introducing new content types. The design also
 enforces all-zero padding octets, which allows for quick detection of
 padding errors.

 Implementations MUST limit their scanning to the cleartext returned
 from the AEAD decryption. If a receiving implementation does not
 find a non-zero octet in the cleartext, it MUST terminate the
 connection with an "unexpected_message" alert.

 The presence of padding does not change the overall record size
 limitations - the full encoded TLSInnerPlaintext MUST NOT exceed 2^14
 + 1 octets. If the maximum fragment length is reduced, as for
 example by the max_fragment_length extension from [RFC6066], then the
 reduced limit applies to the full plaintext, including the content
 type and padding.

Rescorla Expires August 19, 2018 [Page 85]

https://tools.ietf.org/pdf/rfc6066

Internet-Draft TLS February 2018

 Selecting a padding policy that suggests when and how much to pad is
 a complex topic and is beyond the scope of this specification. If
 the application layer protocol on top of TLS has its own padding, it
 may be preferable to pad application_data TLS records within the
 application layer. Padding for encrypted handshake and alert TLS
 records must still be handled at the TLS layer, though. Later
 documents may define padding selection algorithms or define a padding
 policy request mechanism through TLS extensions or some other means.

5.5 . Limits on Key Usage

 There are cryptographic limits on the amount of plaintext which can
 be safely encrypted under a given set of keys. [AEAD-LIMITS]
 provides an analysis of these limits under the assumption that the
 underlying primitive (AES or ChaCha20) has no weaknesses.
 Implementations SHOULD do a key update as described in Section 4.6.3
 prior to reaching these limits.

 For AES-GCM, up to 2^24.5 full-size records (about 24 million) may be
 encrypted on a given connection while keeping a safety margin of
 approximately 2^-57 for Authenticated Encryption (AE) security. For
 ChaCha20/Poly1305, the record sequence number would wrap before the
 safety limit is reached.

6. Alert Protocol

 One of the content types supported by the TLS record layer is the
 alert type. Like other messages, alert messages are encrypted as
 specified by the current connection state.

 Alert messages convey a description of the alert and a legacy field
 that conveyed the severity of the message in previous versions of
 TLS. In TLS 1.3, the severity is implicit in the type of alert being
 sent, and the ’level’ field can safely be ignored. The
 "close_notify" alert is used to indicate orderly closure of one
 direction of the connection. Upon receiving such an alert, the TLS
 implementation SHOULD indicate end-of-data to the application.

 Error alerts indicate abortive closure of the connection (see
 Section 6.2). Upon receiving an error alert, the TLS implementation
 SHOULD indicate an error to the application and MUST NOT allow any
 further data to be sent or received on the connection. Servers and
 clients MUST forget keys and secrets associated with a failed
 connection. Stateful implementations of tickets (as in many clients)
 SHOULD discard tickets associated with failed connections.

Rescorla Expires August 19, 2018 [Page 86]

Internet-Draft TLS February 2018

 All the alerts listed in Section 6.2 MUST be sent as fatal and MUST
 be treated as fatal regardless of the AlertLevel in the message.
 Unknown alert types MUST be treated as fatal.

 Note: TLS defines two generic alerts (see Section 6) to use upon
 failure to parse a message. Peers which receive a message which
 cannot be parsed according to the syntax (e.g., have a length
 extending beyond the message boundary or contain an out-of-range
 length) MUST terminate the connection with a "decode_error" alert.
 Peers which receive a message which is syntactically correct but
 semantically invalid (e.g., a DHE share of p - 1, or an invalid enum)
 MUST terminate the connection with an "illegal_parameter" alert.

Rescorla Expires August 19, 2018 [Page 87]

Internet-Draft TLS February 2018

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 record_overflow(22),
 handshake_failure(40),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 inappropriate_fallback(86),
 user_canceled(90),
 missing_extension(109),
 unsupported_extension(110),
 certificate_unobtainable(111),
 unrecognized_name(112),
 bad_certificate_status_response(113),
 bad_certificate_hash_value(114),
 unknown_psk_identity(115),
 certificate_required(116),
 no_application_protocol(120),
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

6.1 . Closure Alerts

 The client and the server must share knowledge that the connection is
 ending in order to avoid a truncation attack.

 close_notify This alert notifies the recipient that the sender will
 not send any more messages on this connection. Any data received
 after a closure alert has been received MUST be ignored.

Rescorla Expires August 19, 2018 [Page 88]

Internet-Draft TLS February 2018

 user_canceled This alert notifies the recipient that the sender is
 canceling the handshake for some reason unrelated to a protocol
 failure. If a user cancels an operation after the handshake is
 complete, just closing the connection by sending a "close_notify"
 is more appropriate. This alert SHOULD be followed by a
 "close_notify". This alert is generally a warning.

 Either party MAY initiate a close of its write side of the connection
 by sending a "close_notify" alert. Any data received after a closure
 alert has been received MUST be ignored. If a transport-level close
 is received prior to a "close_notify", the receiver cannot know that
 all the data that was sent has been received.

 Each party MUST send a "close_notify" alert before closing its write
 side of the connection, unless it has already sent some other fatal
 alert. This does not have any effect on its read side of the
 connection. Note that this is a change from versions of TLS prior to
 TLS 1.3 in which implementations were required to react to a
 "close_notify" by discarding pending writes and sending an immediate
 "close_notify" alert of their own. That previous requirement could
 cause truncation in the read side. Both parties need not wait to
 receive a "close_notify" alert before closing their read side of the
 connection.

 If the application protocol using TLS provides that any data may be
 carried over the underlying transport after the TLS connection is
 closed, the TLS implementation MUST receive a "close_notify" alert
 before indicating end-of-data to the application-layer. No part of
 this standard should be taken to dictate the manner in which a usage
 profile for TLS manages its data transport, including when
 connections are opened or closed.

 Note: It is assumed that closing the write side of a connection
 reliably delivers pending data before destroying the transport.

6.2 . Error Alerts

 Error handling in the TLS Handshake Protocol is very simple. When an
 error is detected, the detecting party sends a message to its peer.
 Upon transmission or receipt of a fatal alert message, both parties
 MUST immediately close the connection.

 Whenever an implementation encounters a fatal error condition, it
 SHOULD send an appropriate fatal alert and MUST close the connection
 without sending or receiving any additional data. In the rest of
 this specification, when the phrases "terminate the connection" and
 "abort the handshake" are used without a specific alert it means that
 the implementation SHOULD send the alert indicated by the

Rescorla Expires August 19, 2018 [Page 89]

Internet-Draft TLS February 2018

 descriptions below. The phrases "terminate the connection with a X
 alert" and "abort the handshake with a X alert" mean that the
 implementation MUST send alert X if it sends any alert. All alerts
 defined in this section below, as well as all unknown alerts, are
 universally considered fatal as of TLS 1.3 (see Section 6). The
 implementation SHOULD provide a way to facilitate logging the sending
 and receiving of alerts.

 The following error alerts are defined:

 unexpected_message An inappropriate message (e.g., the wrong
 handshake message, premature application data, etc.) was received.
 This alert should never be observed in communication between
 proper implementations.

 bad_record_mac This alert is returned if a record is received which
 cannot be deprotected. Because AEAD algorithms combine decryption
 and verification, and also to avoid side channel attacks, this
 alert is used for all deprotection failures. This alert should
 never be observed in communication between proper implementations,
 except when messages were corrupted in the network.

 record_overflow A TLSCiphertext record was received that had a
 length more than 2^14 + 256 bytes, or a record decrypted to a
 TLSPlaintext record with more than 2^14 bytes. This alert should
 never be observed in communication between proper implementations,
 except when messages were corrupted in the network.

 handshake_failure Receipt of a "handshake_failure" alert message
 indicates that the sender was unable to negotiate an acceptable
 set of security parameters given the options available.

 bad_certificate A certificate was corrupt, contained signatures that
 did not verify correctly, etc.

 unsupported_certificate A certificate was of an unsupported type.

 certificate_revoked A certificate was revoked by its signer.

 certificate_expired A certificate has expired or is not currently
 valid.

 certificate_unknown Some other (unspecified) issue arose in
 processing the certificate, rendering it unacceptable.

 illegal_parameter A field in the handshake was incorrect or
 inconsistent with other fields. This alert is used for errors

Rescorla Expires August 19, 2018 [Page 90]

Internet-Draft TLS February 2018

 which conform to the formal protocol syntax but are otherwise
 incorrect.

 unknown_ca A valid certificate chain or partial chain was received,
 but the certificate was not accepted because the CA certificate
 could not be located or could not be matched with a known trust
 anchor.

 access_denied A valid certificate or PSK was received, but when
 access control was applied, the sender decided not to proceed with
 negotiation.

 decode_error A message could not be decoded because some field was
 out of the specified range or the length of the message was
 incorrect. This alert is used for errors where the message does
 not conform to the formal protocol syntax. This alert should
 never be observed in communication between proper implementations,
 except when messages were corrupted in the network.

 decrypt_error A handshake (not record-layer) cryptographic operation
 failed, including being unable to correctly verify a signature or
 validate a Finished message or a PSK binder.

 protocol_version The protocol version the peer has attempted to
 negotiate is recognized but not supported. (see Appendix D)

 insufficient_security Returned instead of "handshake_failure" when a
 negotiation has failed specifically because the server requires
 parameters more secure than those supported by the client.

 internal_error An internal error unrelated to the peer or the
 correctness of the protocol (such as a memory allocation failure)
 makes it impossible to continue.

 inappropriate_fallback Sent by a server in response to an invalid
 connection retry attempt from a client (see [RFC7507]).

 missing_extension Sent by endpoints that receive a hello message not
 containing an extension that is mandatory to send for the offered
 TLS version or other negotiated parameters.

 unsupported_extension Sent by endpoints receiving any hello message
 containing an extension known to be prohibited for inclusion in
 the given hello message, or including any extensions in a
 ServerHello or Certificate not first offered in the corresponding
 ClientHello.

Rescorla Expires August 19, 2018 [Page 91]

https://tools.ietf.org/pdf/rfc7507

Internet-Draft TLS February 2018

 certificate_unobtainable Sent by servers when unable to obtain a
 certificate from a URL provided by the client via the
 "client_certificate_url" extension (see [RFC6066]).

 unrecognized_name Sent by servers when no server exists identified
 by the name provided by the client via the "server_name" extension
 (see [RFC6066]).

 bad_certificate_status_response Sent by clients when an invalid or
 unacceptable OCSP response is provided by the server via the
 "status_request" extension (see [RFC6066]).

 bad_certificate_hash_value Sent by servers when a retrieved object
 does not have the correct hash provided by the client via the
 "client_certificate_url" extension (see [RFC6066]).

 unknown_psk_identity Sent by servers when PSK key establishment is
 desired but no acceptable PSK identity is provided by the client.
 Sending this alert is OPTIONAL; servers MAY instead choose to send
 a "decrypt_error" alert to merely indicate an invalid PSK
 identity.

 certificate_required Sent by servers when a client certificate is
 desired but none was provided by the client.

 no_application_protocol Sent by servers when a client
 "application_layer_protocol_negotiation" extension advertises only
 protocols that the server does not support (see [RFC7301]).

 New Alert values are assigned by IANA as described in Section 11 .

7. Cryptographic Computations

 The TLS handshake establishes one or more input secrets which are
 combined to create the actual working keying material, as detailed
 below. The key derivation process incorporates both the input
 secrets and the handshake transcript. Note that because the
 handshake transcript includes the random values from the Hello
 messages, any given handshake will have different traffic secrets,
 even if the same input secrets are used, as is the case when the same
 PSK is used for multiple connections.

7.1 . Key Schedule

 The key derivation process makes use of the HKDF-Extract and HKDF-
 Expand functions as defined for HKDF [RFC5869], as well as the
 functions defined below:

Rescorla Expires August 19, 2018 [Page 92]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc7301
https://tools.ietf.org/pdf/rfc5869

Internet-Draft TLS February 2018

 HKDF-Expand-Label(Secret, Label, Context, Length) =
 HKDF-Expand(Secret, HkdfLabel, Length)

 Where HkdfLabel is specified as:

 struct {
 uint16 length = Length;
 opaque label<7..255> = "tls13 " + Label;
 opaque context<0..255> = Context;
 } HkdfLabel;

 Derive-Secret(Secret, Label, Messages) =
 HKDF-Expand-Label(Secret, Label,
 Transcript-Hash(Messages), Hash.length)

 The Hash function used by Transcript-Hash and HKDF is the cipher
 suite hash algorithm. Hash.length is its output length in bytes.
 Messages are the concatenation of the indicated handshake messages,
 including the handshake message type and length fields, but not
 including record layer headers. Note that in some cases a zero-
 length Context (indicated by "") is passed to HKDF-Expand-Label. The
 Labels specified in this document are all ASCII strings, and do not
 include a trailing NUL byte.

 Note: with common hash functions, any label longer than 12 characters
 requires an additional iteration of the hash function to compute.
 The labels in this specification have all been chosen to fit within
 this limit.

 Given a set of n InputSecrets, the final "master secret" is computed
 by iteratively invoking HKDF-Extract with InputSecret_1,
 InputSecret_2, etc. The initial secret is simply a string of
 Hash.length bytes set to zeros. Concretely, for the present version
 of TLS 1.3, secrets are added in the following order:

 - PSK (a pre-shared key established externally or derived from the
 resumption_master_secret value from a previous connection)

 - (EC)DHE shared secret (Section 7.4)

 This produces a full key derivation schedule shown in the diagram
 below. In this diagram, the following formatting conventions apply:

 - HKDF-Extract is drawn as taking the Salt argument from the top and
 the IKM argument from the left.

Rescorla Expires August 19, 2018 [Page 93]

Internet-Draft TLS February 2018

 - Derive-Secret’s Secret argument is indicated by the incoming
 arrow. For instance, the Early Secret is the Secret for
 generating the client_early_traffic_secret.

 0
 |
 v
 PSK -> HKDF-Extract = Early Secret
 |
 +-----> Derive-Secret(.,
 | "ext binder" |
 | "res binder",
 | "")
 | = binder_key
 |
 +-----> Derive-Secret(., "c e traffic",
 | ClientHello)
 | = client_early_traffic_secret
 |
 +-----> Derive-Secret(., "e exp master",
 | ClientHello)
 | = early_exporter_master_secret
 v
 Derive-Secret(., "derived", "")
 |
 v
(EC)DHE -> HKDF-Extract = Handshake Secret
 |
 +-----> Derive-Secret(., "c hs traffic",
 | ClientHello...ServerHello)
 | = client_handshake_traffic_secret
 |
 +-----> Derive-Secret(., "s hs traffic",
 | ClientHello...ServerHello)
 | = server_handshake_traffic_secret
 v
 Derive-Secret(., "derived", "")
 |
 v
 0 -> HKDF-Extract = Master Secret
 |
 +-----> Derive-Secret(., "c ap traffic",
 | ClientHello...server Finished)
 | = client_application_traffic_secret_0
 |
 +-----> Derive-Secret(., "s ap traffic",
 | ClientHello...server Finished)
 | = server_application_traffic_secret_0

Rescorla Expires August 19, 2018 [Page 94]

Internet-Draft TLS February 2018

 |
 +-----> Derive-Secret(., "exp master",
 | ClientHello...server Finished)
 | = exporter_master_secret
 |
 +-----> Derive-Secret(., "res master",
 ClientHello...client Finished)
 = resumption_master_secret

 The general pattern here is that the secrets shown down the left side
 of the diagram are just raw entropy without context, whereas the
 secrets down the right side include handshake context and therefore
 can be used to derive working keys without additional context. Note
 that the different calls to Derive-Secret may take different Messages
 arguments, even with the same secret. In a 0-RTT exchange, Derive-
 Secret is called with four distinct transcripts; in a 1-RTT-only
 exchange with three distinct transcripts.

 If a given secret is not available, then the 0-value consisting of a
 string of Hash.length bytes set to zeros is used. Note that this
 does not mean skipping rounds, so if PSK is not in use Early Secret
 will still be HKDF-Extract(0, 0). For the computation of the
 binder_secret, the label is "ext binder" for external PSKs (those
 provisioned outside of TLS) and "res binder" for resumption PSKs
 (those provisioned as the resumption master secret of a previous
 handshake). The different labels prevent the substitution of one
 type of PSK for the other.

 There are multiple potential Early Secret values depending on which
 PSK the server ultimately selects. The client will need to compute
 one for each potential PSK; if no PSK is selected, it will then need
 to compute the early secret corresponding to the zero PSK.

 Once all the values which are to be derived from a given secret have
 been computed, that secret SHOULD be erased.

7.2 . Updating Traffic Keys and IVs

 Once the handshake is complete, it is possible for either side to
 update its sending traffic keys using the KeyUpdate handshake message
 defined in Section 4.6.3 . The next generation of traffic keys is
 computed by generating client_/server_application_traffic_secret_N+1
 from client_/server_application_traffic_secret_N as described in this
 section then re-deriving the traffic keys as described in
 Section 7.3 .

 The next-generation application_traffic_secret is computed as:

Rescorla Expires August 19, 2018 [Page 95]

Internet-Draft TLS February 2018

 application_traffic_secret_N+1 =
 HKDF-Expand-Label(application_traffic_secret_N,
 "traffic upd", "", Hash.length)

 Once client/server_application_traffic_secret_N+1 and its associated
 traffic keys have been computed, implementations SHOULD delete
 client_/server_application_traffic_secret_N and its associated
 traffic keys.

7.3 . Traffic Key Calculation

 The traffic keying material is generated from the following input
 values:

 - A secret value

 - A purpose value indicating the specific value being generated

 - The length of the key

 The traffic keying material is generated from an input traffic secret
 value using:

 [sender]_write_key = HKDF-Expand-Label(Secret, "key", "", key_length)
 [sender]_write_iv = HKDF-Expand-Label(Secret, "iv" , "", iv_length)

 [sender] denotes the sending side. The Secret value for each record
 type is shown in the table below.

 +-------------------+---------------------------------------+
 | Record Type | Secret |
 +-------------------+---------------------------------------+
 | 0-RTT Application | client_early_traffic_secret |
 | | |
 | Handshake | [sender]_handshake_traffic_secret |
 | | |
 | Application Data | [sender]_application_traffic_secret_N |
 +-------------------+---------------------------------------+

 All the traffic keying material is recomputed whenever the underlying
 Secret changes (e.g., when changing from the handshake to application
 data keys or upon a key update).

7.4 . (EC)DHE Shared Secret Calculation

Rescorla Expires August 19, 2018 [Page 96]

Internet-Draft TLS February 2018

7.4.1 . Finite Field Diffie-Hellman

 For finite field groups, a conventional Diffie-Hellman computation is
 performed. The negotiated key (Z) is converted to a byte string by
 encoding in big-endian and padded with zeros up to the size of the
 prime. This byte string is used as the shared secret in the key
 schedule as specified above.

 Note that this construction differs from previous versions of TLS
 which remove leading zeros.

7.4.2 . Elliptic Curve Diffie-Hellman

 For secp256r1, secp384r1 and secp521r1, ECDH calculations (including
 parameter and key generation as well as the shared secret
 calculation) are performed according to [IEEE1363] using the ECKAS-
 DH1 scheme with the identity map as key derivation function (KDF), so
 that the shared secret is the x-coordinate of the ECDH shared secret
 elliptic curve point represented as an octet string. Note that this
 octet string (Z in IEEE 1363 terminology) as output by FE2OSP, the
 Field Element to Octet String Conversion Primitive, has constant
 length for any given field; leading zeros found in this octet string
 MUST NOT be truncated.

 (Note that this use of the identity KDF is a technicality. The
 complete picture is that ECDH is employed with a non-trivial KDF
 because TLS does not directly use this secret for anything other than
 for computing other secrets.)

 ECDH functions are used as follows:

 - The public key to put into the KeyShareEntry.key_exchange
 structure is the result of applying the ECDH scalar multiplication
 function to the secret key of appropriate length (into scalar
 input) and the standard public basepoint (into u-coordinate point
 input).

 - The ECDH shared secret is the result of applying the ECDH scalar
 multiplication function to the secret key (into scalar input) and
 the peer’s public key (into u-coordinate point input). The output
 is used raw, with no processing.

 For X25519 and X448, implementations SHOULD use the approach
 specified in [RFC7748] to calculate the Diffie-Hellman shared secret.
 Implementations MUST check whether the computed Diffie-Hellman shared
 secret is the all-zero value and abort if so, as described in
 Section 6 of [RFC7748] . If implementers use an alternative

Rescorla Expires August 19, 2018 [Page 97]

https://tools.ietf.org/pdf/rfc7748
https://tools.ietf.org/pdf/rfc7748#section-6

Internet-Draft TLS February 2018

 implementation of these elliptic curves, they SHOULD perform the
 additional checks specified in Section 7 of [RFC7748] .

7.5 . Exporters

 [RFC5705] defines keying material exporters for TLS in terms of the
 TLS pseudorandom function (PRF). This document replaces the PRF with
 HKDF, thus requiring a new construction. The exporter interface
 remains the same.

 The exporter value is computed as:

 TLS-Exporter(label, context_value, key_length) =
 HKDF-Expand-Label(Derive-Secret(Secret, label, ""),
 "exporter", Hash(context_value), key_length)

 Where Secret is either the early_exporter_master_secret or the
 exporter_master_secret. Implementations MUST use the
 exporter_master_secret unless explicitly specified by the
 application. The early_exporter_master_secret is defined for use in
 settings where an exporter is needed for 0-RTT data. A separate
 interface for the early exporter is RECOMMENDED, especially on a
 server where a single interface can make the early exporter
 inaccessible.

 If no context is provided, the context_value is zero-length.
 Consequently, providing no context computes the same value as
 providing an empty context. This is a change from previous versions
 of TLS where an empty context produced a different output to an
 absent context. As of this document’s publication, no allocated
 exporter label is used both with and without a context. Future
 specifications MUST NOT define a use of exporters that permit both an
 empty context and no context with the same label. New uses of
 exporters SHOULD provide a context in all exporter computations,
 though the value could be empty.

 Requirements for the format of exporter labels are defined in section
 4 of [RFC5705] .

8. 0-RTT and Anti-Replay

 As noted in Section 2.3 and Appendix E.5 , TLS does not provide
 inherent replay protections for 0-RTT data. There are two potential
 threats to be concerned with:

 - Network attackers who mount a replay attack by simply duplicating
 a flight of 0-RTT data.

Rescorla Expires August 19, 2018 [Page 98]

https://tools.ietf.org/pdf/rfc7748#section-7
https://tools.ietf.org/pdf/rfc5705#section-4
https://tools.ietf.org/pdf/rfc5705#section-4

Internet-Draft TLS February 2018

 - Network attackers who take advantage of client retry behavior to
 arrange for the server to receive multiple copies of an
 application message. This threat already exists to some extent
 because clients that value robustness respond to network errors by
 attempting to retry requests. However, 0-RTT adds an additional
 dimension for any server system which does not maintain globally
 consistent server state. Specifically, if a server system has
 multiple zones where tickets from zone A will not be accepted in
 zone B, then an attacker can duplicate a ClientHello and early
 data intended for A to both A and B. At A, the data will be
 accepted in 0-RTT, but at B the server will reject 0-RTT data and
 instead force a full handshake. If the attacker blocks the
 ServerHello from A, then the client will complete the handshake
 with B and probably retry the request, leading to duplication on
 the server system as a whole.

 The first class of attack can be prevented by sharing state to
 guarantee that the 0-RTT data is accepted at most once. Servers
 SHOULD provide that level of replay safety, by implementing one of
 the methods described in this section or by equivalent means. It is
 understood, however, that due to operational concerns not all
 deployments will maintain state at that level. Therefore, in normal
 operation, clients will not know which, if any, of these mechanisms
 servers actually implement and hence MUST only send early data which
 they deem safe to be replayed.

 In addition to the direct effects of replays, there is a class of
 attacks where even operations normally considered idempotent could be
 exploited by a large number of replays (timing attacks, resource
 limit exhaustion and others described in Appendix E.5). Those can be
 mitigated by ensuring that every 0-RTT payload can be replayed only a
 limited number of times. The server MUST ensure that any instance of
 it (be it a machine, a thread or any other entity within the relevant
 serving infrastructure) would accept 0-RTT for the same 0-RTT
 handshake at most once; this limits the number of replays to the
 number of server instances in the deployment. Such a guarantee can
 be accomplished by locally recording data from recently-received
 ClientHellos and rejecting repeats, or by any other method that
 provides the same or a stronger guarantee. The "at most once per
 server instance" guarantee is a minimum requirement; servers SHOULD
 limit 0-RTT replays further when feasible.

 The second class of attack cannot be prevented at the TLS layer and
 MUST be dealt with by any application. Note that any application
 whose clients implement any kind of retry behavior already needs to
 implement some sort of anti-replay defense.

Rescorla Expires August 19, 2018 [Page 99]

Internet-Draft TLS February 2018

8.1 . Single-Use Tickets

 The simplest form of anti-replay defense is for the server to only
 allow each session ticket to be used once. For instance, the server
 can maintain a database of all outstanding valid tickets; deleting
 each ticket from the database as it is used. If an unknown ticket is
 provided, the server would then fall back to a full handshake.

 If the tickets are not self-contained but rather are database keys,
 and the corresponding PSKs are deleted upon use, then connections
 established using one PSK enjoy forward secrecy. This improves
 security for all 0-RTT data and PSK usage when PSK is used without
 (EC)DHE.

 Because this mechanism requires sharing the session database between
 server nodes in environments with multiple distributed servers, it
 may be hard to achieve high rates of successful PSK 0-RTT connections
 when compared to self-encrypted tickets. Unlike session databases,
 session tickets can successfully do PSK-based session establishment
 even without consistent storage, though when 0-RTT is allowed they
 still require consistent storage for anti-replay of 0-RTT data, as
 detailed in the following section.

8.2 . Client Hello Recording

 An alternative form of anti-replay is to record a unique value
 derived from the ClientHello (generally either the random value or
 the PSK binder) and reject duplicates. Recording all ClientHellos
 causes state to grow without bound, but a server can instead record
 ClientHellos within a given time window and use the
 "obfuscated_ticket_age" to ensure that tickets aren’t reused outside
 that window.

 In order to implement this, when a ClientHello is received, the
 server first verifies the PSK binder as described Section 4.2.11 . It
 then computes the expected_arrival_time as described in the next
 section and rejects 0-RTT if it is outside the recording window,
 falling back to the 1-RTT handshake.

 If the expected arrival time is in the window, then the server checks
 to see if it has recorded a matching ClientHello. If one is found,
 it either aborts the handshake with an "illegal_parameter" alert or
 accepts the PSK but reject 0-RTT. If no matching ClientHello is
 found, then it accepts 0-RTT and then stores the ClientHello for as
 long as the expected_arrival_time is inside the window. Servers MAY
 also implement data stores with false positives, such as Bloom
 filters, in which case they MUST respond to apparent replay by
 rejecting 0-RTT but MUST NOT abort the handshake.

Rescorla Expires August 19, 2018 [Page 100]

Internet-Draft TLS February 2018

 The server MUST derive the storage key only from validated sections
 of the ClientHello. If the ClientHello contains multiple PSK
 identities, then an attacker can create multiple ClientHellos with
 different binder values for the less-preferred identity on the
 assumption that the server will not verify it, as recommended by
 Section 4.2.11 . I.e., if the client sends PSKs A and B but the
 server prefers A, then the attacker can change the binder for B
 without affecting the binder for A. This will cause the ClientHello
 to be accepted, and may cause side effects such as replay cache
 pollution, although any 0-RTT data will not be decryptable because it
 will use different keys. If the validated binder or the
 ClientHello.random are used as the storage key, then this attack is
 not possible.

 Because this mechanism does not require storing all outstanding
 tickets, it may be easier to implement in distributed systems with
 high rates of resumption and 0-RTT, at the cost of potentially weaker
 anti-replay defense because of the difficulty of reliably storing and
 retrieving the received ClientHello messages. In many such systems,
 it is impractical to have globally consistent storage of all the
 received ClientHellos. In this case, the best anti-replay protection
 is provided by having a single storage zone be authoritative for a
 given ticket and refusing 0-RTT for that ticket in any other zone.
 This approach prevents simple replay by the attacker because only one
 zone will accept 0-RTT data. A weaker design is to implement
 separate storage for each zone but allow 0-RTT in any zone. This
 approach limits the number of replays to once per zone. Application
 message duplication of course remains possible with either design.

 When implementations are freshly started, they SHOULD reject 0-RTT as
 long as any portion of their recording window overlaps the startup
 time. Otherwise, they run the risk of accepting replays which were
 originally sent during that period.

 Note: If the client’s clock is running much faster than the server’s
 then a ClientHello may be received that is outside the window in the
 future, in which case it might be accepted for 1-RTT, causing a
 client retry, and then acceptable later for 0-RTT. This is another
 variant of the second form of attack described above.

8.3 . Freshness Checks

 Because the ClientHello indicates the time at which the client sent
 it, it is possible to efficiently determine whether a ClientHello was
 likely sent reasonably recently and only accept 0-RTT for such a
 ClientHello, otherwise falling back to a 1-RTT handshake. This is
 necessary for the ClientHello storage mechanism described in
 Section 8.2 because otherwise the server needs to store an unlimited

Rescorla Expires August 19, 2018 [Page 101]

Internet-Draft TLS February 2018

 number of ClientHellos and is a useful optimization for single-use
 tickets because it allows efficient rejection of ClientHellos which
 cannot be used for 0-RTT.

 In order to implement this mechanism, a server needs to store the
 time that the server generated the session ticket, offset by an
 estimate of the round trip time between client and server. I.e.,

 adjusted_creation_time = creation_time + estimated_RTT

 This value can be encoded in the ticket, thus avoiding the need to
 keep state for each outstanding ticket. The server can determine the
 client’s view of the age of the ticket by subtracting the ticket’s
 "ticket_age_add value" from the "obfuscated_ticket_age" parameter in
 the client’s "pre_shared_key" extension. The server can determine
 the "expected arrival time" of the ClientHello as:

 expected_arrival_time = adjusted_creation_time + clients_ticket_age

 When a new ClientHello is received, the expected_arrival_time is then
 compared against the current server wall clock time and if they
 differ by more than a certain amount, 0-RTT is rejected, though the
 1-RTT handshake can be allowed to complete.

 There are several potential sources of error that might cause
 mismatches between the expected arrival time and the measured time.
 Variations in client and server clock rates are likely to be minimal,
 though potentially with gross time corrections. Network propagation
 delays are the most likely causes of a mismatch in legitimate values
 for elapsed time. Both the NewSessionTicket and ClientHello messages
 might be retransmitted and therefore delayed, which might be hidden
 by TCP. For clients on the Internet, this implies windows on the
 order of ten seconds to account for errors in clocks and variations
 in measurements; other deployment scenarios may have different needs.
 Clock skew distributions are not symmetric, so the optimal tradeoff
 may involve an asymmetric range of permissible mismatch values.

 Note that freshness checking alone is not sufficient to prevent
 replays because it does not detect them during the error window,
 which, depending on bandwidth and system capacity could include
 billions of replays in real-world settings. In addition, this
 freshness checking is only done at the time the ClientHello is
 received, and not when later early application data records are
 received. After early data is accepted, records may continue to be
 streamed to the server over a longer time period.

Rescorla Expires August 19, 2018 [Page 102]

Internet-Draft TLS February 2018

9. Compliance Requirements

9.1 . Mandatory-to-Implement Cipher Suites

 In the absence of an application profile standard specifying
 otherwise, a TLS-compliant application MUST implement the
 TLS_AES_128_GCM_SHA256 [GCM] cipher suite and SHOULD implement the
 TLS_AES_256_GCM_SHA384 [GCM] and TLS_CHACHA20_POLY1305_SHA256
 [RFC7539] cipher suites. (see Appendix B.4)

 A TLS-compliant application MUST support digital signatures with
 rsa_pkcs1_sha256 (for certificates), rsa_pss_rsae_sha256 (for
 CertificateVerify and certificates), and ecdsa_secp256r1_sha256. A
 TLS-compliant application MUST support key exchange with secp256r1
 (NIST P-256) and SHOULD support key exchange with X25519 [RFC7748].

9.2 . Mandatory-to-Implement Extensions

 In the absence of an application profile standard specifying
 otherwise, a TLS-compliant application MUST implement the following
 TLS extensions:

 - Supported Versions ("supported_versions"; Section 4.2.1)

 - Cookie ("cookie"; Section 4.2.2)

 - Signature Algorithms ("signature_algorithms"; Section 4.2.3)

 - Signature Algorithms Certificate ("signature_algorithms_cert";
 Section 4.2.3)

 - Negotiated Groups ("supported_groups"; Section 4.2.7)

 - Key Share ("key_share"; Section 4.2.8)

 - Server Name Indication ("server_name"; Section 3 of [RFC6066])

 All implementations MUST send and use these extensions when offering
 applicable features:

 - "supported_versions" is REQUIRED for all ClientHello, ServerHello
 and HelloRetryRequest messages.

 - "signature_algorithms" is REQUIRED for certificate authentication.

 - "supported_groups" is REQUIRED for ClientHello messages using DHE
 or ECDHE key exchange.

Rescorla Expires August 19, 2018 [Page 103]

https://tools.ietf.org/pdf/rfc7539
https://tools.ietf.org/pdf/rfc7748
https://tools.ietf.org/pdf/rfc6066#section-3

Internet-Draft TLS February 2018

 - "key_share" is REQUIRED for DHE or ECDHE key exchange.

 - "pre_shared_key" is REQUIRED for PSK key agreement.

 - "psk_key_exchange_modes" is REQUIRED for PSK key agreement.

 A client is considered to be attempting to negotiate using this
 specification if the ClientHello contains a "supported_versions"
 extension with 0x0304 as the highest version number contained in its
 body. Such a ClientHello message MUST meet the following
 requirements:

 - If not containing a "pre_shared_key" extension, it MUST contain
 both a "signature_algorithms" extension and a "supported_groups"
 extension.

 - If containing a "supported_groups" extension, it MUST also contain
 a "key_share" extension, and vice versa. An empty
 KeyShare.client_shares vector is permitted.

 Servers receiving a ClientHello which does not conform to these
 requirements MUST abort the handshake with a "missing_extension"
 alert.

 Additionally, all implementations MUST support use of the
 "server_name" extension with applications capable of using it.
 Servers MAY require clients to send a valid "server_name" extension.
 Servers requiring this extension SHOULD respond to a ClientHello
 lacking a "server_name" extension by terminating the connection with
 a "missing_extension" alert.

9.3 . Protocol Invariants

 This section describes invariants that TLS endpoints and middleboxes
 MUST follow. It also applies to earlier versions, which assumed
 these rules but did not document them.

 TLS is designed to be securely and compatibly extensible. Newer
 clients or servers, when communicating with newer peers, SHOULD
 negotiate the most preferred common parameters. The TLS handshake
 provides downgrade protection: Middleboxes passing traffic between a
 newer client and newer server without terminating TLS should be
 unable to influence the handshake (see Appendix E.1). At the same
 time, deployments update at different rates, so a newer client or
 server MAY continue to support older parameters, which would allow it
 to interoperate with older endpoints.

Rescorla Expires August 19, 2018 [Page 104]

Internet-Draft TLS February 2018

 For this to work, implementations MUST correctly handle extensible
 fields:

 - A client sending a ClientHello MUST support all parameters
 advertised in it. Otherwise, the server may fail to interoperate
 by selecting one of those parameters.

 - A server receiving a ClientHello MUST correctly ignore all
 unrecognized cipher suites, extensions, and other parameters.
 Otherwise, it may fail to interoperate with newer clients. In TLS
 1.3, a client receiving a CertificateRequest or NewSessionTicket
 MUST also ignore all unrecognized extensions.

 - A middlebox which terminates a TLS connection MUST behave as a
 compliant TLS server (to the original client), including having a
 certificate which the client is willing to accept, and as a
 compliant TLS client (to the original server), including verifying
 the original server’s certificate. In particular, it MUST
 generate its own ClientHello containing only parameters it
 understands, and it MUST generate a fresh ServerHello random
 value, rather than forwarding the endpoint’s value.

 Note that TLS’s protocol requirements and security analysis only
 apply to the two connections separately. Safely deploying a TLS
 terminator requires additional security considerations which are
 beyond the scope of this document.

 - An middlebox which forwards ClientHello parameters it does not
 understand MUST NOT process any messages beyond that ClientHello.
 It MUST forward all subsequent traffic unmodified. Otherwise, it
 may fail to interoperate with newer clients and servers.

 Forwarded ClientHellos may contain advertisements for features not
 supported by the middlebox, so the response may include future TLS
 additions the middlebox does not recognize. These additions MAY
 change any message beyond the ClientHello arbitrarily. In
 particular, the values sent in the ServerHello might change, the
 ServerHello format might change, and the TLSCiphertext format
 might change.

 The design of TLS 1.3 was constrained by widely-deployed non-
 compliant TLS middleboxes (see Appendix D.4), however it does not
 relax the invariants. Those middleboxes continue to be non-
 compliant.

Rescorla Expires August 19, 2018 [Page 105]

Internet-Draft TLS February 2018

10. Security Considerations

 Security issues are discussed throughout this memo, especially in
 Appendix C , Appendix D , and Appendix E .

11. IANA Considerations

 This document uses several registries that were originally created in
 [RFC4346]. IANA has updated these to reference this document. The
 registries and their allocation policies are below:

 - TLS Cipher Suite Registry: values with the first byte in the range
 0-254 (decimal) are assigned via Specification Required [RFC8126].
 Values with the first byte 255 (decimal) are reserved for Private
 Use [RFC8126].

 IANA [SHALL add/has added] the cipher suites listed in
 Appendix B.4 to the registry. The "Value" and "Description"
 columns are taken from the table. The "DTLS-OK" and "Recommended"
 columns are both marked as "Yes" for each new cipher suite.
 [[This assumes [I-D.ietf-tls-iana-registry-updates] has been
 applied.]]

 - TLS ContentType Registry: Future values are allocated via
 Standards Action [RFC8126].

 - TLS Alert Registry: Future values are allocated via Standards
 Action [RFC8126]. IANA [SHALL update/has updated] this registry
 to include values for "missing_extension" and
 "certificate_required".

 - TLS HandshakeType Registry: Future values are allocated via
 Standards Action [RFC8126]. IANA [SHALL update/has updated] this
 registry to rename item 4 from "NewSessionTicket" to
 "new_session_ticket" and to add the
 "hello_retry_request_RESERVED", "encrypted_extensions",
 "end_of_early_data", "key_update", and "message_hash" values.

 This document also uses the TLS ExtensionType Registry originally
 created in [RFC4366]. IANA has updated it to reference this
 document. The registry and its allocation policy is listed below:

 - IANA [SHALL update/has updated] this registry to include the
 "key_share", "pre_shared_key", "psk_key_exchange_modes",
 "early_data", "cookie", "supported_versions",
 "certificate_authorities", "oid_filters", "post_handshake_auth",
 and "signature_algorithms_cert", extensions with the values
 defined in this document and the Recommended value of "Yes".

Rescorla Expires August 19, 2018 [Page 106]

https://tools.ietf.org/pdf/rfc4346
https://tools.ietf.org/pdf/rfc8126
https://tools.ietf.org/pdf/rfc8126
https://tools.ietf.org/pdf/rfc8126
https://tools.ietf.org/pdf/rfc8126
https://tools.ietf.org/pdf/rfc8126
https://tools.ietf.org/pdf/rfc4366

Internet-Draft TLS February 2018

 - IANA [SHALL update/has updated] this registry to include a "TLS
 1.3" column which lists the messages in which the extension may
 appear. This column [SHALL be/has been] initially populated from
 the table in Section 4.2 with any extension not listed there
 marked as "-" to indicate that it is not used by TLS 1.3.

 In addition, this document defines a new registry to be maintained by
 IANA:

 - TLS SignatureScheme Registry: Values with the first byte in the
 range 0-253 (decimal) are assigned via Specification Required
 [RFC8126]. Values with the first byte 254 or 255 (decimal) are
 reserved for Private Use [RFC8126]. Values with the first byte in
 the range 0-6 or with the second byte in the range 0-3 that are
 not currently allocated are reserved for backwards compatibility.
 This registry SHALL have a "Recommended" column. The registry
 [shall be/ has been] initially populated with the values described
 in Section 4.2.3 . The following values SHALL be marked as
 "Recommended": ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384,
 rsa_pss_sha256, rsa_pss_sha384, rsa_pss_sha512, ed25519.

12. References

12.1 . Normative References

 [DH] Diffie, W. and M. Hellman, "New Directions in
 Cryptography", IEEE Transactions on Information Theory,
 V.IT-22 n.6 , June 1977.

 [GCM] Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC",
 NIST Special Publication 800-38D, November 2007.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104 ,
 DOI 10.17487/RFC2104, February 1997, < https://www.rfc-
 editor.org/info/rfc2104 >.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 ,
 DOI 10.17487/RFC2119, March 1997, < https://www.rfc-
 editor.org/info/rfc2119 >.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280 , DOI 10.17487/RFC5280, May 2008,
 < https://www.rfc-editor.org/info/rfc5280 >.

Rescorla Expires August 19, 2018 [Page 107]

https://tools.ietf.org/pdf/rfc8126
https://tools.ietf.org/pdf/rfc8126
https://tools.ietf.org/pdf/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/pdf/rfc5280
https://www.rfc-editor.org/info/rfc5280

Internet-Draft TLS February 2018

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705 , DOI 10.17487/RFC5705,
 March 2010, < https://www.rfc-editor.org/info/rfc5705 >.

 [RFC5756] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Updates for RSAES-OAEP and RSASSA-PSS Algorithm
 Parameters", RFC 5756 , DOI 10.17487/RFC5756, January 2010,
 < https://www.rfc-editor.org/info/rfc5756 >.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869 ,
 DOI 10.17487/RFC5869, May 2010, < https://www.rfc-
 editor.org/info/rfc5869 >.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066 ,
 DOI 10.17487/RFC6066, January 2011, < https://www.rfc-
 editor.org/info/rfc6066 >.

 [RFC6655] McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for
 Transport Layer Security (TLS)", RFC 6655 ,
 DOI 10.17487/RFC6655, July 2012, < https://www.rfc-
 editor.org/info/rfc6655 >.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960 , DOI 10.17487/RFC6960, June 2013,
 < https://www.rfc-editor.org/info/rfc6960 >.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961 ,
 DOI 10.17487/RFC6961, June 2013, < https://www.rfc-
 editor.org/info/rfc6961 >.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962 , DOI 10.17487/RFC6962, June 2013,
 < https://www.rfc-editor.org/info/rfc6962 >.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979 , DOI 10.17487/RFC6979, August
 2013, < https://www.rfc-editor.org/info/rfc6979 >.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301 , DOI 10.17487/RFC7301,
 July 2014, < https://www.rfc-editor.org/info/rfc7301 >.

Rescorla Expires August 19, 2018 [Page 108]

https://tools.ietf.org/pdf/rfc5705
https://www.rfc-editor.org/info/rfc5705
https://tools.ietf.org/pdf/rfc5756
https://www.rfc-editor.org/info/rfc5756
https://tools.ietf.org/pdf/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://tools.ietf.org/pdf/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://tools.ietf.org/pdf/rfc6655
https://www.rfc-editor.org/info/rfc6655
https://www.rfc-editor.org/info/rfc6655
https://tools.ietf.org/pdf/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://tools.ietf.org/pdf/rfc6961
https://www.rfc-editor.org/info/rfc6961
https://www.rfc-editor.org/info/rfc6961
https://tools.ietf.org/pdf/rfc6962
https://www.rfc-editor.org/info/rfc6962
https://tools.ietf.org/pdf/rfc6979
https://www.rfc-editor.org/info/rfc6979
https://tools.ietf.org/pdf/rfc7301
https://www.rfc-editor.org/info/rfc7301

Internet-Draft TLS February 2018

 [RFC7507] Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", RFC 7507 , DOI 10.17487/RFC7507, April 2015,
 < https://www.rfc-editor.org/info/rfc7507 >.

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539 , DOI 10.17487/RFC7539, May 2015,
 < https://www.rfc-editor.org/info/rfc7539 >.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748 , DOI 10.17487/RFC7748, January
 2016, < https://www.rfc-editor.org/info/rfc7748 >.

 [RFC7919] Gillmor, D., "Negotiated Finite Field Diffie-Hellman
 Ephemeral Parameters for Transport Layer Security (TLS)",
 RFC 7919 , DOI 10.17487/RFC7919, August 2016,
 < https://www.rfc-editor.org/info/rfc7919 >.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",
 RFC 8017 , DOI 10.17487/RFC8017, November 2016,
 < https://www.rfc-editor.org/info/rfc8017 >.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032 ,
 DOI 10.17487/RFC8032, January 2017, < https://www.rfc-
 editor.org/info/rfc8032 >.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26 ,
 RFC 8126 , DOI 10.17487/RFC8126, June 2017,
 < https://www.rfc-editor.org/info/rfc8126 >.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14 , RFC 8174 , DOI 10.17487/RFC8174,
 May 2017, < https://www.rfc-editor.org/info/rfc8174 >.

 [SHS] Dang, Q., "Secure Hash Standard", National Institute of
 Standards and Technology report,
 DOI 10.6028/nist.fips.180-4, July 2015.

 [X690] ITU-T, "Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO/IEC 8825-1:2002, 2002.

Rescorla Expires August 19, 2018 [Page 109]

https://tools.ietf.org/pdf/rfc7507
https://www.rfc-editor.org/info/rfc7507
https://tools.ietf.org/pdf/rfc7539
https://www.rfc-editor.org/info/rfc7539
https://tools.ietf.org/pdf/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://tools.ietf.org/pdf/rfc7919
https://www.rfc-editor.org/info/rfc7919
https://tools.ietf.org/pdf/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://tools.ietf.org/pdf/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://tools.ietf.org/pdf/bcp26
https://tools.ietf.org/pdf/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc8174
https://www.rfc-editor.org/info/rfc8174

Internet-Draft TLS February 2018

 [X962] ANSI, "Public Key Cryptography For The Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62, 1998.

12.2 . Informative References

 [AEAD-LIMITS]
 Luykx, A. and K. Paterson, "Limits on Authenticated
 Encryption Use in TLS", 2016,
 < http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf >.

 [BBFKZG16]
 Bhargavan, K., Brzuska, C., Fournet, C., Kohlweiss, M.,
 Zanella-Beguelin, S., and M. Green, "Downgrade Resilience
 in Key-Exchange Protocols", Proceedings of IEEE Symposium
 on Security and Privacy (Oakland) 2016 , 2016.

 [BBK17] Bhargavan, K., Blanchet, B., and N. Kobeissi, "Verified
 Models and Reference Implementations for the TLS 1.3
 Standard Candidate", Proceedings of IEEE Symposium on
 Security and Privacy (Oakland) 2017 , 2017.

 [BDFKPPRSZZ16]
 Bhargavan, K., Delignat-Lavaud, A., Fournet, C.,
 Kohlweiss, M., Pan, J., Protzenko, J., Rastogi, A., Swamy,
 N., Zanella-Beguelin, S., and J. Zinzindohoue,
 "Implementing and Proving the TLS 1.3 Record Layer",
 Proceedings of IEEE Symposium on Security and Privacy
 (Oakland) 2017 , December 2016,
 < https://eprint.iacr.org/2016/1178 >.

 [Ben17a] Benjamin, D., "Presentation before the TLS WG at IETF
 100", 2017,
 < https://datatracker.ietf.org/meeting/100/materials/
 slides-100-tls-sessa-tls13/ >.

 [Ben17b] Benjamin, D., "Additional TLS 1.3 results from Chrome",
 2017, < https://www.ietf.org/mail-archive/web/tls/current/
 msg25168.html >.

 [BMMT15] Badertscher, C., Matt, C., Maurer, U., and B. Tackmann,
 "Augmented Secure Channels and the Goal of the TLS 1.3
 Record Layer", ProvSec 2015 , September 2015,
 < https://eprint.iacr.org/2015/394 >.

 [BT16] Bellare, M. and B. Tackmann, "The Multi-User Security of
 Authenticated Encryption: AES-GCM in TLS 1.3", Proceedings
 of CRYPTO 2016 , 2016, < https://eprint.iacr.org/2016/564 >.

Rescorla Expires August 19, 2018 [Page 110]

http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://eprint.iacr.org/2016/1178
https://datatracker.ietf.org/meeting/100/materials/slides-100-tls-sessa-tls13/
https://datatracker.ietf.org/meeting/100/materials/slides-100-tls-sessa-tls13/
https://www.ietf.org/mail-archive/web/tls/current/msg25168.html
https://www.ietf.org/mail-archive/web/tls/current/msg25168.html
https://eprint.iacr.org/2015/394
https://eprint.iacr.org/2016/564

Internet-Draft TLS February 2018

 [CCG16] Cohn-Gordon, K., Cremers, C., and L. Garratt, "On Post-
 Compromise Security", IEEE Computer Security Foundations
 Symposium , 2015.

 [CHECKOWAY]
 Checkoway, S., Shacham, H., Maskiewicz, J., Garman, C.,
 Fried, J., Cohney, S., Green, M., Heninger, N., Weinmann,
 R., and E. Rescorla, "A Systematic Analysis of the Juniper
 Dual EC Incident", Proceedings of the 2016 ACM SIGSAC
 Conference on Computer and Communications Security
 - CCS’16, DOI 10.1145/2976749.2978395, 2016.

 [CHHSV17] Cremers, C., Horvat, M., Hoyland, J., van der Merwe, T.,
 and S. Scott, "Awkward Handshake: Possible mismatch of
 client/server view on client authentication in post-
 handshake mode in Revision 18", 2017,
 < https://www.ietf.org/mail-archive/web/tls/current/
 msg22382.html >.

 [CHSV16] Cremers, C., Horvat, M., Scott, S., and T. van der Merwe,
 "Automated Analysis and Verification of TLS 1.3: 0-RTT,
 Resumption and Delayed Authentication", Proceedings of
 IEEE Symposium on Security and Privacy (Oakland) 2016 ,
 2016, < http://ieeexplore.ieee.org/document/7546518/ >.

 [CK01] Canetti, R. and H. Krawczyk, "Analysis of Key-Exchange
 Protocols and Their Use for Building Secure Channels",
 Proceedings of Eurocrypt 2001 , 2001.

 [CLINIC] Miller, B., Huang, L., Joseph, A., and J. Tygar, "I Know
 Why You Went to the Clinic: Risks and Realization of HTTPS
 Traffic Analysis", Privacy Enhancing Technologies pp.
 143-163, DOI 10.1007/978-3-319-08506-7_8, 2014.

 [DFGS15] Dowling, B., Fischlin, M., Guenther, F., and D. Stebila,
 "A Cryptographic Analysis of the TLS 1.3 draft-10 Full and
 Pre-shared Key Handshake Protocol", Proceedings of ACM CCS
 2015 , 2015, < https://eprint.iacr.org/2015/914 >.

 [DFGS16] Dowling, B., Fischlin, M., Guenther, F., and D. Stebila,
 "A Cryptographic Analysis of the TLS 1.3 draft-10 Full and
 Pre-shared Key Handshake Protocol", TRON 2016 , 2016,
 < https://eprint.iacr.org/2016/081 >.

 [DOW92] Diffie, W., van Oorschot, P., and M. Wiener,
 ""Authentication and authenticated key exchanges"",
 Designs, Codes and Cryptography , 1992.

Rescorla Expires August 19, 2018 [Page 111]

https://www.ietf.org/mail-archive/web/tls/current/msg22382.html
https://www.ietf.org/mail-archive/web/tls/current/msg22382.html
http://ieeexplore.ieee.org/document/7546518/
https://tools.ietf.org/pdf/draft-10
https://eprint.iacr.org/2015/914
https://tools.ietf.org/pdf/draft-10
https://eprint.iacr.org/2016/081

Internet-Draft TLS February 2018

 [DSS] National Institute of Standards and Technology, U.S.
 Department of Commerce, "Digital Signature Standard,
 version 4", NIST FIPS PUB 186-4, 2013.

 [ECDSA] American National Standards Institute, "Public Key
 Cryptography for the Financial Services Industry: The
 Elliptic Curve Digital Signature Algorithm (ECDSA)",
 ANSI ANS X9.62-2005, November 2005.

 [FG17] Fischlin, M. and F. Guenther, "Replay Attacks on Zero
 Round-Trip Time: The Case of the TLS 1.3 Handshake
 Candidates", Proceedings of Euro S"P 2017 , 2017,
 < https://eprint.iacr.org/2017/082 >.

 [FGSW16] Fischlin, M., Guenther, F., Schmidt, B., and B. Warinschi,
 "Key Confirmation in Key Exchange: A Formal Treatment and
 Implications for TLS 1.3", Proceedings of IEEE Symposium
 on Security and Privacy (Oakland) 2016 , 2016,
 < http://ieeexplore.ieee.org/document/7546517/ >.

 [FW15] Florian Weimer, ., "Factoring RSA Keys With TLS Perfect
 Forward Secrecy", September 2015.

 [HCJ16] Husak, M., Čermak, M., Jirsik, T., and P.
 Čeleda, "HTTPS traffic analysis and client
 identification using passive SSL/TLS fingerprinting",
 EURASIP Journal on Information Security Vol. 2016,
 DOI 10.1186/s13635-016-0030-7, February 2016.

 [HGFS15] Hlauschek, C., Gruber, M., Fankhauser, F., and C. Schanes,
 "Prying Open Pandora’s Box: KCI Attacks against TLS",
 Proceedings of USENIX Workshop on Offensive Technologies ,
 2015.

 [I-D.ietf-tls-iana-registry-updates]
 Salowey, J. and S. Turner, "IANA Registry Updates for TLS
 and DTLS", draft-ietf-tls-iana-registry-updates-03 (work
 in progress), January 2018.

 [I-D.ietf-tls-tls13-vectors]
 Thomson, M., "Example Handshake Traces for TLS 1.3",
 draft-ietf-tls-tls13-vectors-03 (work in progress),
 December 2017.

 [IEEE1363]
 IEEE, "Standard Specifications for Public Key
 Cryptography", IEEE 1363 , 2000.

Rescorla Expires August 19, 2018 [Page 112]

https://eprint.iacr.org/2017/082
http://ieeexplore.ieee.org/document/7546517/
https://tools.ietf.org/pdf/draft-ietf-tls-iana-registry-updates-03
https://tools.ietf.org/pdf/draft-ietf-tls-tls13-vectors-03

Internet-Draft TLS February 2018

 [JSS15] Jager, T., Schwenk, J., and J. Somorovsky, "On the
 Security of TLS 1.3 and QUIC Against Weaknesses in PKCS#1
 v1.5 Encryption", Proceedings of ACM CCS 2015 , 2015,
 < https://www.nds.rub.de/media/nds/
 veroeffentlichungen/2015/08/21/Tls13QuicAttacks.pdf >.

 [KEYAGREEMENT]
 Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", National Institute
 of Standards and Technology report,
 DOI 10.6028/nist.sp.800-56ar2, May 2013.

 [Kraw10] Krawczyk, H., "Cryptographic Extraction and Key
 Derivation: The HKDF Scheme", Proceedings of CRYPTO 2010 ,
 2010, < https://eprint.iacr.org/2010/264 >.

 [Kraw16] Krawczyk, H., "A Unilateral-to-Mutual Authentication
 Compiler for Key Exchange (with Applications to Client
 Authentication in TLS 1.3", Proceedings of ACM CCS 2016 ,
 2016, < https://eprint.iacr.org/2016/711 >.

 [KW16] Krawczyk, H. and H. Wee, "The OPTLS Protocol and TLS 1.3",
 Proceedings of Euro S"P 2016 , 2016,
 < https://eprint.iacr.org/2015/978 >.

 [LXZFH16] Li, X., Xu, J., Feng, D., Zhang, Z., and H. Hu, "Multiple
 Handshakes Security of TLS 1.3 Candidates", Proceedings of
 IEEE Symposium on Security and Privacy (Oakland) 2016 ,
 2016, < http://ieeexplore.ieee.org/document/7546519/ >.

 [Mac17] MacCarthaigh, C., "Security Review of TLS1.3 0-RTT", 2017,
 < https://github.com/tlswg/tls13-spec/issues/1001 >.

 [PSK-FINISHED]
 Cremers, C., Horvat, M., van der Merwe, T., and S. Scott,
 "Revision 10: possible attack if client authentication is
 allowed during PSK", 2015, < https://www.ietf.org/mail-
 archive/web/tls/current/msg18215.html >.

 [REKEY] Abdalla, M. and M. Bellare, "Increasing the Lifetime of a
 Key: A Comparative Analysis of the Security of Re-keying
 Techniques", ASIACRYPT2000 , October 2000.

 [Res17a] Rescorla, E., "Preliminary data on Firefox TLS 1.3
 Middlebox experiment", 2017, < https://www.ietf.org/mail-
 archive/web/tls/current/msg25091.html >.

Rescorla Expires August 19, 2018 [Page 113]

https://www.nds.rub.de/media/nds/veroeffentlichungen/2015/08/21/Tls13QuicAttacks.pdf
https://www.nds.rub.de/media/nds/veroeffentlichungen/2015/08/21/Tls13QuicAttacks.pdf
https://eprint.iacr.org/2010/264
https://eprint.iacr.org/2016/711
https://eprint.iacr.org/2015/978
http://ieeexplore.ieee.org/document/7546519/
https://github.com/tlswg/tls13-spec/issues/1001
https://www.ietf.org/mail-archive/web/tls/current/msg18215.html
https://www.ietf.org/mail-archive/web/tls/current/msg18215.html
https://www.ietf.org/mail-archive/web/tls/current/msg25091.html
https://www.ietf.org/mail-archive/web/tls/current/msg25091.html

Internet-Draft TLS February 2018

 [Res17b] Rescorla, E., "More compatibility measurement results",
 2017, < https://www.ietf.org/mail-archive/web/tls/current/
 msg25179.html >.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72 , RFC 3552 ,
 DOI 10.17487/RFC3552, July 2003, < https://www.rfc-
 editor.org/info/rfc3552 >.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106 , RFC 4086 ,
 DOI 10.17487/RFC4086, June 2005, < https://www.rfc-
 editor.org/info/rfc4086 >.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346 ,
 DOI 10.17487/RFC4346, April 2006, < https://www.rfc-
 editor.org/info/rfc4346 >.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366 , DOI 10.17487/RFC4366, April 2006,
 < https://www.rfc-editor.org/info/rfc4366 >.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492 ,
 DOI 10.17487/RFC4492, May 2006, < https://www.rfc-
 editor.org/info/rfc4492 >.

 [RFC4681] Santesson, S., Medvinsky, A., and J. Ball, "TLS User
 Mapping Extension", RFC 4681 , DOI 10.17487/RFC4681,
 October 2006, < https://www.rfc-editor.org/info/rfc4681 >.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077 , DOI 10.17487/RFC5077,
 January 2008, < https://www.rfc-editor.org/info/rfc5077 >.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116 , DOI 10.17487/RFC5116, January 2008,
 < https://www.rfc-editor.org/info/rfc5116 >.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246 ,
 DOI 10.17487/RFC5246, August 2008, < https://www.rfc-
 editor.org/info/rfc5246 >.

Rescorla Expires August 19, 2018 [Page 114]

https://www.ietf.org/mail-archive/web/tls/current/msg25179.html
https://www.ietf.org/mail-archive/web/tls/current/msg25179.html
https://tools.ietf.org/pdf/bcp72
https://tools.ietf.org/pdf/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://tools.ietf.org/pdf/bcp106
https://tools.ietf.org/pdf/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://tools.ietf.org/pdf/rfc4346
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc4346
https://tools.ietf.org/pdf/rfc4366
https://www.rfc-editor.org/info/rfc4366
https://tools.ietf.org/pdf/rfc4492
https://www.rfc-editor.org/info/rfc4492
https://www.rfc-editor.org/info/rfc4492
https://tools.ietf.org/pdf/rfc4681
https://www.rfc-editor.org/info/rfc4681
https://tools.ietf.org/pdf/rfc5077
https://www.rfc-editor.org/info/rfc5077
https://tools.ietf.org/pdf/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://tools.ietf.org/pdf/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246

Internet-Draft TLS February 2018

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764 ,
 DOI 10.17487/RFC5764, May 2010, < https://www.rfc-
 editor.org/info/rfc5764 >.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929 , DOI 10.17487/RFC5929, July 2010,
 < https://www.rfc-editor.org/info/rfc5929 >.

 [RFC6091] Mavrogiannopoulos, N. and D. Gillmor, "Using OpenPGP Keys
 for Transport Layer Security (TLS) Authentication",
 RFC 6091 , DOI 10.17487/RFC6091, February 2011,
 < https://www.rfc-editor.org/info/rfc6091 >.

 [RFC6176] Turner, S. and T. Polk, "Prohibiting Secure Sockets Layer
 (SSL) Version 2.0", RFC 6176 , DOI 10.17487/RFC6176, March
 2011, < https://www.rfc-editor.org/info/rfc6176 >.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347 , DOI 10.17487/RFC6347,
 January 2012, < https://www.rfc-editor.org/info/rfc6347 >.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520 ,
 DOI 10.17487/RFC6520, February 2012, < https://www.rfc-
 editor.org/info/rfc6520 >.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230 , DOI 10.17487/RFC7230, June 2014,
 < https://www.rfc-editor.org/info/rfc7230 >.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250 , DOI 10.17487/RFC7250,
 June 2014, < https://www.rfc-editor.org/info/rfc7250 >.

 [RFC7465] Popov, A., "Prohibiting RC4 Cipher Suites", RFC 7465 ,
 DOI 10.17487/RFC7465, February 2015, < https://www.rfc-
 editor.org/info/rfc7465 >.

 [RFC7568] Barnes, R., Thomson, M., Pironti, A., and A. Langley,
 "Deprecating Secure Sockets Layer Version 3.0", RFC 7568 ,
 DOI 10.17487/RFC7568, June 2015, < https://www.rfc-
 editor.org/info/rfc7568 >.

Rescorla Expires August 19, 2018 [Page 115]

https://tools.ietf.org/pdf/rfc5764
https://www.rfc-editor.org/info/rfc5764
https://www.rfc-editor.org/info/rfc5764
https://tools.ietf.org/pdf/rfc5929
https://www.rfc-editor.org/info/rfc5929
https://tools.ietf.org/pdf/rfc6091
https://www.rfc-editor.org/info/rfc6091
https://tools.ietf.org/pdf/rfc6176
https://www.rfc-editor.org/info/rfc6176
https://tools.ietf.org/pdf/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://tools.ietf.org/pdf/rfc6520
https://www.rfc-editor.org/info/rfc6520
https://www.rfc-editor.org/info/rfc6520
https://tools.ietf.org/pdf/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://tools.ietf.org/pdf/rfc7250
https://www.rfc-editor.org/info/rfc7250
https://tools.ietf.org/pdf/rfc7465
https://www.rfc-editor.org/info/rfc7465
https://www.rfc-editor.org/info/rfc7465
https://tools.ietf.org/pdf/rfc7568
https://www.rfc-editor.org/info/rfc7568
https://www.rfc-editor.org/info/rfc7568

Internet-Draft TLS February 2018

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",
 RFC 7627 , DOI 10.17487/RFC7627, September 2015,
 < https://www.rfc-editor.org/info/rfc7627 >.

 [RFC7685] Langley, A., "A Transport Layer Security (TLS) ClientHello
 Padding Extension", RFC 7685 , DOI 10.17487/RFC7685,
 October 2015, < https://www.rfc-editor.org/info/rfc7685 >.

 [RFC7924] Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", RFC 7924 ,
 DOI 10.17487/RFC7924, July 2016, < https://www.rfc-
 editor.org/info/rfc7924 >.

 [RFC8305] Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
 Better Connectivity Using Concurrency", RFC 8305 ,
 DOI 10.17487/RFC8305, December 2017, < https://www.rfc-
 editor.org/info/rfc8305 >.

 [RSA] Rivest, R., Shamir, A., and L. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key
 Cryptosystems", Communications of the ACM v. 21, n. 2, pp.
 120-126., February 1978.

 [SIGMA] Krawczyk, H., "SIGMA: the ’SIGn-and-MAc’ approach to
 authenticated Diffie-Hellman and its use in the IKE
 protocols", Proceedings of CRYPTO 2003 , 2003.

 [SLOTH] Bhargavan, K. and G. Leurent, "Transcript Collision
 Attacks: Breaking Authentication in TLS, IKE, and SSH",
 Network and Distributed System Security Symposium (NDSS
 2016) , 2016.

 [SSL2] Hickman, K., "The SSL Protocol", February 1995.

 [SSL3] Freier, A., Karlton, P., and P. Kocher, "The SSL 3.0
 Protocol", November 1996.

 [TIMING] Boneh, D. and D. Brumley, "Remote timing attacks are
 practical", USENIX Security Symposium, 2003.

 [X501] "Information Technology - Open Systems Interconnection -
 The Directory: Models", ITU-T X.501, 1993.

Rescorla Expires August 19, 2018 [Page 116]

https://tools.ietf.org/pdf/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://tools.ietf.org/pdf/rfc7685
https://www.rfc-editor.org/info/rfc7685
https://tools.ietf.org/pdf/rfc7924
https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc7924
https://tools.ietf.org/pdf/rfc8305
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8305

Internet-Draft TLS February 2018

12.3 . URIs

 [1] mailto:tls@ietf.org

Rescorla Expires August 19, 2018 [Page 117]

Internet-Draft TLS February 2018

Appendix A . State Machine

 This section provides a summary of the legal state transitions for
 the client and server handshakes. State names (in all capitals,
 e.g., START) have no formal meaning but are provided for ease of
 comprehension. Actions which are taken only in certain circumstances
 are indicated in []. The notation "K_{send,recv} = foo" means "set
 the send/recv key to the given key".

A.1 . Client

 START <----+
 Send ClientHello | | Recv HelloRetryRequest
 [K_send = early data] | |
 v |
 / WAIT_SH ----+
 | | Recv ServerHello
 | | K_recv = handshake
 Can | V
 send | WAIT_EE
 early | | Recv EncryptedExtensions
 data | +--------+--------+
 | Using | | Using certificate
 | PSK | v
 | | WAIT_CERT_CR
 | | Recv | | Recv CertificateRequest
 | | Certificate | v
 | | | WAIT_CERT
 | | | | Recv Certificate
 | | v v
 | | WAIT_CV
 | | | Recv CertificateVerify
 | +> WAIT_FINISHED <+
 | | Recv Finished
 \ | [Send EndOfEarlyData]
 | K_send = handshake
 | [Send Certificate [+ CertificateVerify]]
 Can send | Send Finished
 app data --> | K_send = K_recv = application
 after here v
 CONNECTED

 Note that with the transitions as shown above, clients may send
 alerts that derive from post-ServerHello messages in the clear or
 with the early data keys. If clients need to send such alerts, they
 SHOULD first rekey to the handshake keys if possible.

Rescorla Expires August 19, 2018 [Page 118]

Internet-Draft TLS February 2018

A.2 . Server

 START <-----+
 Recv ClientHello | | Send HelloRetryRequest
 v |
 RECVD_CH ----+
 | Select parameters
 v
 NEGOTIATED
 | Send ServerHello
 | K_send = handshake
 | Send EncryptedExtensions
 | [Send CertificateRequest]
 Can send | [Send Certificate + CertificateVerify]
 app data | Send Finished
 after --> | K_send = application
 here +--------+--------+
 No 0-RTT | | 0-RTT
 | |
 K_recv = handshake | | K_recv = early data
 [Skip decrypt errors] | +------> WAIT_EOED -+
 | | Recv | | Recv EndOfEarlyData
 | | early data | | K_recv = handshake
 | +------------+ |
 | |
 +> WAIT_FLIGHT2 <--------+
 |
 +--------+--------+
 No auth | | Client auth
 | |
 | v
 | WAIT_CERT
 | Recv | | Recv Certificate
 | empty | v
 | Certificate | WAIT_CV
 | | | Recv
 | v | CertificateVerify
 +-> WAIT_FINISHED <---+
 | Recv Finished
 | K_recv = application
 v
 CONNECTED

Appendix B . Protocol Data Structures and Constant Values

 This section describes protocol types and constants. Values listed
 as _RESERVED were used in previous versions of TLS and are listed

Rescorla Expires August 19, 2018 [Page 119]

Internet-Draft TLS February 2018

 here for completeness. TLS 1.3 implementations MUST NOT send them
 but might receive them from older TLS implementations.

B.1 . Record Layer

 enum {
 invalid(0),
 change_cipher_spec(20),
 alert(21),
 handshake(22),
 application_data(23),
 (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion legacy_record_version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 struct {
 opaque content[TLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } TLSInnerPlaintext;

 struct {
 ContentType opaque_type = application_data; /* 23 */
 ProtocolVersion legacy_record_version = 0x0303; /* TLS v1.2 */
 uint16 length;
 opaque encrypted_record[TLSCiphertext.length];
 } TLSCiphertext;

B.2 . Alert Messages

Rescorla Expires August 19, 2018 [Page 120]

Internet-Draft TLS February 2018

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 decryption_failed_RESERVED(21),
 record_overflow(22),
 decompression_failure_RESERVED(30),
 handshake_failure(40),
 no_certificate_RESERVED(41),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 export_restriction_RESERVED(60),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 inappropriate_fallback(86),
 user_canceled(90),
 no_renegotiation_RESERVED(100),
 missing_extension(109),
 unsupported_extension(110),
 certificate_unobtainable(111),
 unrecognized_name(112),
 bad_certificate_status_response(113),
 bad_certificate_hash_value(114),
 unknown_psk_identity(115),
 certificate_required(116),
 no_application_protocol(120),
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

Rescorla Expires August 19, 2018 [Page 121]

Internet-Draft TLS February 2018

B.3 . Handshake Protocol

 enum {
 hello_request_RESERVED(0),
 client_hello(1),
 server_hello(2),
 hello_verify_request_RESERVED(3),
 new_session_ticket(4),
 end_of_early_data(5),
 hello_retry_request_RESERVED(6),
 encrypted_extensions(8),
 certificate(11),
 server_key_exchange_RESERVED(12),
 certificate_request(13),
 server_hello_done_RESERVED(14),
 certificate_verify(15),
 client_key_exchange_RESERVED(16),
 finished(20),
 key_update(24),
 message_hash(254),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 select (Handshake.msg_type) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case end_of_early_data: EndOfEarlyData;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 };
 } Handshake;

B.3.1 . Key Exchange Messages

 uint16 ProtocolVersion;
 opaque Random[32];

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 struct {

Rescorla Expires August 19, 2018 [Page 122]

Internet-Draft TLS February 2018

 ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */
 Random random;
 opaque legacy_session_id<0..32>;
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<8..2^16-1>;
 } ClientHello;

 struct {
 ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */
 Random random;
 opaque legacy_session_id_echo<0..32>;
 CipherSuite cipher_suite;
 uint8 legacy_compression_method = 0;
 Extension extensions<6..2^16-1>;
 } ServerHello;

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 server_name(0), /* RFC 6066 */
 max_fragment_length(1), /* RFC 6066 */
 status_request(5), /* RFC 6066 */
 supported_groups(10), /* RFC 4492 , 7919 */
 signature_algorithms(13), /* [[this document]] */
 use_srtp(14), /* RFC 5764 */
 heartbeat(15), /* RFC 6520 */
 application_layer_protocol_negotiation(16), /* RFC 7301 */
 signed_certificate_timestamp(18), /* RFC 6962 */
 client_certificate_type(19), /* RFC 7250 */
 server_certificate_type(20), /* RFC 7250 */
 padding(21), /* RFC 7685 */
 RESERVED(40), /* Used but never assigned */
 pre_shared_key(41), /* [[this document]] */
 early_data(42), /* [[this document]] */
 supported_versions(43), /* [[this document]] */
 cookie(44), /* [[this document]] */
 psk_key_exchange_modes(45), /* [[this document]] */
 RESERVED(46), /* Used but never assigned */
 certificate_authorities(47), /* [[this document]] */
 oid_filters(48), /* [[this document]] */
 post_handshake_auth(49), /* [[this document]] */
 signature_algorithms_cert(50), /* [[this document]] */
 key_share(51), /* [[this document]] */
 (65535)

Rescorla Expires August 19, 2018 [Page 123]

https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc6066
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc5764
https://tools.ietf.org/pdf/rfc6520
https://tools.ietf.org/pdf/rfc7301
https://tools.ietf.org/pdf/rfc6962
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc7685

Internet-Draft TLS February 2018

 } ExtensionType;

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } KeyShareEntry;

 struct {
 KeyShareEntry client_shares<0..2^16-1>;
 } KeyShareClientHello;

 struct {
 NamedGroup selected_group;
 } KeyShareHelloRetryRequest;

 struct {
 KeyShareEntry server_share;
 } KeyShareServerHello;

 struct {
 uint8 legacy_form = 4;
 opaque X[coordinate_length];
 opaque Y[coordinate_length];
 } UncompressedPointRepresentation;

 enum { psk_ke(0), psk_dhe_ke(1), (255) } PskKeyExchangeMode;

 struct {
 PskKeyExchangeMode ke_modes<1..255>;
 } PskKeyExchangeModes;

 struct {} Empty;

 struct {
 select (Handshake.msg_type) {
 case new_session_ticket: uint32 max_early_data_size;
 case client_hello: Empty;
 case encrypted_extensions: Empty;
 };
 } EarlyDataIndication;

 struct {
 opaque identity<1..2^16-1>;
 uint32 obfuscated_ticket_age;
 } PskIdentity;

 opaque PskBinderEntry<32..255>;

Rescorla Expires August 19, 2018 [Page 124]

Internet-Draft TLS February 2018

 struct {
 PskIdentity identities<7..2^16-1>;
 PskBinderEntry binders<33..2^16-1>;
 } OfferedPsks;

 struct {
 select (Handshake.msg_type) {
 case client_hello: OfferedPsks;
 case server_hello: uint16 selected_identity;
 };
 } PreSharedKeyExtension;

B.3.1.1 . Version Extension

 struct {
 select (Handshake.msg_type) {
 case client_hello:
 ProtocolVersion versions<2..254>;

 case server_hello: /* and HelloRetryRequest */
 ProtocolVersion selected_version;
 };
 } SupportedVersions;

B.3.1.2 . Cookie Extension

 struct {
 opaque cookie<1..2^16-1>;
 } Cookie;

B.3.1.3 . Signature Algorithm Extension

Rescorla Expires August 19, 2018 [Page 125]

Internet-Draft TLS February 2018

 enum {
 /* RSASSA-PKCS1-v1_5 algorithms */
 rsa_pkcs1_sha256(0x0401),
 rsa_pkcs1_sha384(0x0501),
 rsa_pkcs1_sha512(0x0601),

 /* ECDSA algorithms */
 ecdsa_secp256r1_sha256(0x0403),
 ecdsa_secp384r1_sha384(0x0503),
 ecdsa_secp521r1_sha512(0x0603),

 /* RSASSA-PSS algorithms with public key OID rsaEncryption */
 rsa_pss_rsae_sha256(0x0804),
 rsa_pss_rsae_sha384(0x0805),
 rsa_pss_rsae_sha512(0x0806),

 /* EdDSA algorithms */
 ed25519(0x0807),
 ed448(0x0808),

 /* RSASSA-PSS algorithms with public key OID RSASSA-PSS */
 rsa_pss_pss_sha256(0x0809),
 rsa_pss_pss_sha384(0x080a),
 rsa_pss_pss_sha512(0x080b),

 /* Legacy algorithms */
 rsa_pkcs1_sha1(0x0201),
 ecdsa_sha1(0x0203),

 /* Reserved Code Points */
 obsolete_RESERVED(0x0000..0x0200),
 dsa_sha1_RESERVED(0x0202),
 obsolete_RESERVED(0x0204..0x0400),
 dsa_sha256_RESERVED(0x0402),
 obsolete_RESERVED(0x0404..0x0500),
 dsa_sha384_RESERVED(0x0502),
 obsolete_RESERVED(0x0504..0x0600),
 dsa_sha512_RESERVED(0x0602),
 obsolete_RESERVED(0x0604..0x06FF),
 private_use(0xFE00..0xFFFF),
 (0xFFFF)
 } SignatureScheme;

 struct {
 SignatureScheme supported_signature_algorithms<2..2^16-2>;
 } SignatureSchemeList;

Rescorla Expires August 19, 2018 [Page 126]

Internet-Draft TLS February 2018

B.3.1.4 . Supported Groups Extension

 enum {
 unallocated_RESERVED(0x0000),

 /* Elliptic Curve Groups (ECDHE) */
 obsolete_RESERVED(0x0001..0x0016),
 secp256r1(0x0017), secp384r1(0x0018), secp521r1(0x0019),
 obsolete_RESERVED(0x001A..0x001C),
 x25519(0x001D), x448(0x001E),

 /* Finite Field Groups (DHE) */
 ffdhe2048(0x0100), ffdhe3072(0x0101), ffdhe4096(0x0102),
 ffdhe6144(0x0103), ffdhe8192(0x0104),

 /* Reserved Code Points */
 ffdhe_private_use(0x01FC..0x01FF),
 ecdhe_private_use(0xFE00..0xFEFF),
 obsolete_RESERVED(0xFF01..0xFF02),
 (0xFFFF)
 } NamedGroup;

 struct {
 NamedGroup named_group_list<2..2^16-1>;
 } NamedGroupList;

 Values within "obsolete_RESERVED" ranges are used in previous
 versions of TLS and MUST NOT be offered or negotiated by TLS 1.3
 implementations. The obsolete curves have various known/theoretical
 weaknesses or have had very little usage, in some cases only due to
 unintentional server configuration issues. They are no longer
 considered appropriate for general use and should be assumed to be
 potentially unsafe. The set of curves specified here is sufficient
 for interoperability with all currently deployed and properly
 configured TLS implementations.

B.3.2 . Server Parameters Messages

Rescorla Expires August 19, 2018 [Page 127]

Internet-Draft TLS February 2018

 opaque DistinguishedName<1..2^16-1>;

 struct {
 DistinguishedName authorities<3..2^16-1>;
 } CertificateAuthoritiesExtension;

 struct {
 opaque certificate_extension_oid<1..2^8-1>;
 opaque certificate_extension_values<0..2^16-1>;
 } OIDFilter;

 struct {
 OIDFilter filters<0..2^16-1>;
 } OIDFilterExtension;

 struct {} PostHandshakeAuth;

 struct {
 Extension extensions<0..2^16-1>;
 } EncryptedExtensions;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 Extension extensions<2..2^16-1>;
 } CertificateRequest;

B.3.3 . Authentication Messages

Rescorla Expires August 19, 2018 [Page 128]

Internet-Draft TLS February 2018

 enum {
 X509(0),
 OpenPGP_RESERVED(1),
 RawPublicKey(2),
 (255)
 } CertificateType;

 struct {
 select (certificate_type) {
 case RawPublicKey:
 /* From RFC 7250 ASN.1_subjectPublicKeyInfo */
 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;

 case X509:
 opaque cert_data<1..2^24-1>;
 };
 Extension extensions<0..2^16-1>;
 } CertificateEntry;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 CertificateEntry certificate_list<0..2^24-1>;
 } Certificate;

 struct {
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } CertificateVerify;

 struct {
 opaque verify_data[Hash.length];
 } Finished;

B.3.4 . Ticket Establishment

 struct {
 uint32 ticket_lifetime;
 uint32 ticket_age_add;
 opaque ticket_nonce<0..255>;
 opaque ticket<1..2^16-1>;
 Extension extensions<0..2^16-2>;
 } NewSessionTicket;

B.3.5 . Updating Keys

Rescorla Expires August 19, 2018 [Page 129]

https://tools.ietf.org/pdf/rfc7250

Internet-Draft TLS February 2018

 struct {} EndOfEarlyData;

 enum {
 update_not_requested(0), update_requested(1), (255)
 } KeyUpdateRequest;

 struct {
 KeyUpdateRequest request_update;
 } KeyUpdate;

B.4 . Cipher Suites

 A symmetric cipher suite defines the pair of the AEAD algorithm and
 hash algorithm to be used with HKDF. Cipher suite names follow the
 naming convention:

 CipherSuite TLS_AEAD_HASH = VALUE;

 +-----------+--+
 | Component | Contents |
 +-----------+--+
 | TLS | The string "TLS" |
 | | |
 | AEAD | The AEAD algorithm used for record protection |
 | | |
 | HASH | The hash algorithm used with HKDF |
 | | |
 | VALUE | The two byte ID assigned for this cipher suite |
 +-----------+--+

 This specification defines the following cipher suites for use with
 TLS 1.3.

 +------------------------------+-------------+
 | Description | Value |
 +------------------------------+-------------+
 | TLS_AES_128_GCM_SHA256 | {0x13,0x01} |
 | | |
 | TLS_AES_256_GCM_SHA384 | {0x13,0x02} |
 | | |
 | TLS_CHACHA20_POLY1305_SHA256 | {0x13,0x03} |
 | | |
 | TLS_AES_128_CCM_SHA256 | {0x13,0x04} |
 | | |
 | TLS_AES_128_CCM_8_SHA256 | {0x13,0x05} |
 +------------------------------+-------------+

Rescorla Expires August 19, 2018 [Page 130]

Internet-Draft TLS February 2018

 The corresponding AEAD algorithms AEAD_AES_128_GCM, AEAD_AES_256_GCM,
 and AEAD_AES_128_CCM are defined in [RFC5116].
 AEAD_CHACHA20_POLY1305 is defined in [RFC7539]. AEAD_AES_128_CCM_8
 is defined in [RFC6655]. The corresponding hash algorithms are
 defined in [SHS].

 Although TLS 1.3 uses the same cipher suite space as previous
 versions of TLS, TLS 1.3 cipher suites are defined differently, only
 specifying the symmetric ciphers, and cannot be used for TLS 1.2.
 Similarly, TLS 1.2 and lower cipher suites cannot be used with TLS
 1.3.

 New cipher suite values are assigned by IANA as described in
 Section 11 .

Appendix C . Implementation Notes

 The TLS protocol cannot prevent many common security mistakes. This
 section provides several recommendations to assist implementors.
 [I-D.ietf-tls-tls13-vectors] provides test vectors for TLS 1.3
 handshakes.

C.1 . Random Number Generation and Seeding

 TLS requires a cryptographically secure pseudorandom number generator
 (CSPRNG). In most cases, the operating system provides an
 appropriate facility such as /dev/urandom, which should be used
 absent other (performance) concerns. It is RECOMMENDED to use an
 existing CSPRNG implementation in preference to crafting a new one.
 Many adequate cryptographic libraries are already available under
 favorable license terms. Should those prove unsatisfactory,
 [RFC4086] provides guidance on the generation of random values.

 TLS uses random values both in public protocol fields such as the
 public Random values in the ClientHello and ServerHello and to
 generate keying material. With a properly functioning CSPRNG, this
 does not present a security problem as it is not feasible to
 determine the CSPRNG state from its output. However, with a broken
 CSPRNG, it may be possible for an attacker to use the public output
 to determine the CSPRNG internal state and thereby predict the keying
 material, as documented in [CHECKOWAY]. Implementations can provide
 extra security against this form of attack by using separate CSPRNGs
 to generate public and private values.

Rescorla Expires August 19, 2018 [Page 131]

https://tools.ietf.org/pdf/rfc5116
https://tools.ietf.org/pdf/rfc7539
https://tools.ietf.org/pdf/rfc6655
https://tools.ietf.org/pdf/rfc4086

Internet-Draft TLS February 2018

C.2 . Certificates and Authentication

 Implementations are responsible for verifying the integrity of
 certificates and should generally support certificate revocation
 messages. Absent a specific indication from an application profile,
 Certificates should always be verified to ensure proper signing by a
 trusted Certificate Authority (CA). The selection and addition of
 trust anchors should be done very carefully. Users should be able to
 view information about the certificate and trust anchor.
 Applications SHOULD also enforce minimum and maximum key sizes. For
 example, certification paths containing keys or signatures weaker
 than 2048-bit RSA or 224-bit ECDSA are not appropriate for secure
 applications.

C.3 . Implementation Pitfalls

 Implementation experience has shown that certain parts of earlier TLS
 specifications are not easy to understand and have been a source of
 interoperability and security problems. Many of these areas have
 been clarified in this document but this appendix contains a short
 list of the most important things that require special attention from
 implementors.

 TLS protocol issues:

 - Do you correctly handle handshake messages that are fragmented to
 multiple TLS records (see Section 5.1)? Including corner cases
 like a ClientHello that is split to several small fragments? Do
 you fragment handshake messages that exceed the maximum fragment
 size? In particular, the Certificate and CertificateRequest
 handshake messages can be large enough to require fragmentation.

 - Do you ignore the TLS record layer version number in all
 unencrypted TLS records? (see Appendix D)

 - Have you ensured that all support for SSL, RC4, EXPORT ciphers,
 and MD5 (via the "signature_algorithms" extension) is completely
 removed from all possible configurations that support TLS 1.3 or
 later, and that attempts to use these obsolete capabilities fail
 correctly? (see Appendix D)

 - Do you handle TLS extensions in ClientHello correctly, including
 unknown extensions?

 - When the server has requested a client certificate, but no
 suitable certificate is available, do you correctly send an empty
 Certificate message, instead of omitting the whole message (see
 Section 4.4.2.3)?

Rescorla Expires August 19, 2018 [Page 132]

Internet-Draft TLS February 2018

 - When processing the plaintext fragment produced by AEAD-Decrypt
 and scanning from the end for the ContentType, do you avoid
 scanning past the start of the cleartext in the event that the
 peer has sent a malformed plaintext of all-zeros?

 - Do you properly ignore unrecognized cipher suites (Section 4.1.2),
 hello extensions (Section 4.2), named groups (Section 4.2.7), key
 shares (Section 4.2.8), supported versions (Section 4.2.1), and
 signature algorithms (Section 4.2.3) in the ClientHello?

 - As a server, do you send a HelloRetryRequest to clients which
 support a compatible (EC)DHE group but do not predict it in the
 "key_share" extension? As a client, do you correctly handle a
 HelloRetryRequest from the server?

 Cryptographic details:

 - What countermeasures do you use to prevent timing attacks
 [TIMING]?

 - When using Diffie-Hellman key exchange, do you correctly preserve
 leading zero bytes in the negotiated key (see Section 7.4.1)?

 - Does your TLS client check that the Diffie-Hellman parameters sent
 by the server are acceptable, (see Section 4.2.8.1)?

 - Do you use a strong and, most importantly, properly seeded random
 number generator (see Appendix C.1) when generating Diffie-Hellman
 private values, the ECDSA "k" parameter, and other security-
 critical values? It is RECOMMENDED that implementations implement
 "deterministic ECDSA" as specified in [RFC6979].

 - Do you zero-pad Diffie-Hellman public key values to the group size
 (see Section 4.2.8.1)?

 - Do you verify signatures after making them to protect against RSA-
 CRT key leaks? [FW15]

C.4 . Client Tracking Prevention

 Clients SHOULD NOT reuse a ticket for multiple connections. Reuse of
 a ticket allows passive observers to correlate different connections.
 Servers that issue tickets SHOULD offer at least as many tickets as
 the number of connections that a client might use; for example, a web
 browser using HTTP/1.1 [RFC7230] might open six connections to a
 server. Servers SHOULD issue new tickets with every connection.
 This ensures that clients are always able to use a new ticket when
 creating a new connection.

Rescorla Expires August 19, 2018 [Page 133]

https://tools.ietf.org/pdf/rfc6979
https://tools.ietf.org/pdf/rfc7230

Internet-Draft TLS February 2018

C.5 . Unauthenticated Operation

 Previous versions of TLS offered explicitly unauthenticated cipher
 suites based on anonymous Diffie-Hellman. These modes have been
 deprecated in TLS 1.3. However, it is still possible to negotiate
 parameters that do not provide verifiable server authentication by
 several methods, including:

 - Raw public keys [RFC7250].

 - Using a public key contained in a certificate but without
 validation of the certificate chain or any of its contents.

 Either technique used alone is vulnerable to man-in-the-middle
 attacks and therefore unsafe for general use. However, it is also
 possible to bind such connections to an external authentication
 mechanism via out-of-band validation of the server’s public key,
 trust on first use, or a mechanism such as channel bindings (though
 the channel bindings described in [RFC5929] are not defined for TLS
 1.3). If no such mechanism is used, then the connection has no
 protection against active man-in-the-middle attack; applications MUST
 NOT use TLS in such a way absent explicit configuration or a specific
 application profile.

Appendix D . Backward Compatibility

 The TLS protocol provides a built-in mechanism for version
 negotiation between endpoints potentially supporting different
 versions of TLS.

 TLS 1.x and SSL 3.0 use compatible ClientHello messages. Servers can
 also handle clients trying to use future versions of TLS as long as
 the ClientHello format remains compatible and and there is at least
 one protocol version supported by both the client and the server.

 Prior versions of TLS used the record layer version number for
 various purposes. (TLSPlaintext.legacy_record_version and
 TLSCiphertext.legacy_record_version) As of TLS 1.3, this field is
 deprecated. The value of TLSPlaintext.legacy_record_version MUST be
 ignored by all implementations. The value of
 TLSCiphertext.legacy_record_version MAY be ignored, or MAY be
 validated to match the fixed constant value. Version negotiation is
 performed using only the handshake versions
 (ClientHello.legacy_version, ServerHello.legacy_version, as well as
 the ClientHello, HelloRetryRequest and ServerHello
 "supported_versions" extensions). In order to maximize
 interoperability with older endpoints, implementations that negotiate
 the use of TLS 1.0-1.2 SHOULD set the record layer version number to

Rescorla Expires August 19, 2018 [Page 134]

https://tools.ietf.org/pdf/rfc7250
https://tools.ietf.org/pdf/rfc5929

Internet-Draft TLS February 2018

 the negotiated version for the ServerHello and all records
 thereafter.

 For maximum compatibility with previously non-standard behavior and
 misconfigured deployments, all implementations SHOULD support
 validation of certification paths based on the expectations in this
 document, even when handling prior TLS versions’ handshakes. (see
 Section 4.4.2.2)

 TLS 1.2 and prior supported an "Extended Master Secret" [RFC7627]
 extension which digested large parts of the handshake transcript into
 the master secret. Because TLS 1.3 always hashes in the transcript
 up to the server CertificateVerify, implementations which support
 both TLS 1.3 and earlier versions SHOULD indicate the use of the
 Extended Master Secret extension in their APIs whenever TLS 1.3 is
 used.

D.1 . Negotiating with an older server

 A TLS 1.3 client who wishes to negotiate with servers that do not
 support TLS 1.3 will send a normal TLS 1.3 ClientHello containing
 0x0303 (TLS 1.2) in ClientHello.legacy_version but with the correct
 version(s) in the "supported_versions" extension. If the server does
 not support TLS 1.3 it will respond with a ServerHello containing an
 older version number. If the client agrees to use this version, the
 negotiation will proceed as appropriate for the negotiated protocol.
 A client using a ticket for resumption SHOULD initiate the connection
 using the version that was previously negotiated.

 Note that 0-RTT data is not compatible with older servers and SHOULD
 NOT be sent absent knowledge that the server supports TLS 1.3. See
 Appendix D.3 .

 If the version chosen by the server is not supported by the client
 (or not acceptable), the client MUST abort the handshake with a
 "protocol_version" alert.

 Some legacy server implementations are known to not implement the TLS
 specification properly and might abort connections upon encountering
 TLS extensions or versions which they are not aware of.
 Interoperability with buggy servers is a complex topic beyond the
 scope of this document. Multiple connection attempts may be required
 in order to negotiate a backwards compatible connection; however,
 this practice is vulnerable to downgrade attacks and is NOT
 RECOMMENDED.

Rescorla Expires August 19, 2018 [Page 135]

https://tools.ietf.org/pdf/rfc7627

Internet-Draft TLS February 2018

D.2 . Negotiating with an older client

 A TLS server can also receive a ClientHello indicating a version
 number smaller than its highest supported version. If the
 "supported_versions" extension is present, the server MUST negotiate
 using that extension as described in Section 4.2.1 . If the
 "supported_versions" extension is not present, the server MUST
 negotiate the minimum of ClientHello.legacy_version and TLS 1.2. For
 example, if the server supports TLS 1.0, 1.1, and 1.2, and
 legacy_version is TLS 1.0, the server will proceed with a TLS 1.0
 ServerHello. If the "supported_versions" extension is absent and the
 server only supports versions greater than
 ClientHello.legacy_version, the server MUST abort the handshake with
 a "protocol_version" alert.

 Note that earlier versions of TLS did not clearly specify the record
 layer version number value in all cases
 (TLSPlaintext.legacy_record_version). Servers will receive various
 TLS 1.x versions in this field, but its value MUST always be ignored.

D.3 . 0-RTT backwards compatibility

 0-RTT data is not compatible with older servers. An older server
 will respond to the ClientHello with an older ServerHello, but it
 will not correctly skip the 0-RTT data and will fail to complete the
 handshake. This can cause issues when a client attempts to use
 0-RTT, particularly against multi-server deployments. For example, a
 deployment could deploy TLS 1.3 gradually with some servers
 implementing TLS 1.3 and some implementing TLS 1.2, or a TLS 1.3
 deployment could be downgraded to TLS 1.2.

 A client that attempts to send 0-RTT data MUST fail a connection if
 it receives a ServerHello with TLS 1.2 or older. A client that
 attempts to repair this error SHOULD NOT send a TLS 1.2 ClientHello,
 but instead send a TLS 1.3 ClientHello without 0-RTT data.

 To avoid this error condition, multi-server deployments SHOULD ensure
 a uniform and stable deployment of TLS 1.3 without 0-RTT prior to
 enabling 0-RTT.

D.4 . Middlebox Compatibility Mode

 Field measurements [Ben17a], [Ben17b], [Res17a], [Res17b] have found
 that a significant number of middleboxes misbehave when a TLS client/
 server pair negotiates TLS 1.3. Implementations can increase the
 chance of making connections through those middleboxes by making the
 TLS 1.3 handshake look more like a TLS 1.2 handshake:

Rescorla Expires August 19, 2018 [Page 136]

Internet-Draft TLS February 2018

 - The client always provides a non-empty session ID in the
 ClientHello, as described in the legacy_session_id section of
 Section 4.1.2 .

 - If not offering early data, the client sends a dummy
 change_cipher_spec record (see the third paragraph of Section 5.1)
 immediately before its second flight. This may either be before
 its second ClientHello or before its encrypted handshake flight.
 If offering early data, the record is placed immediately after the
 first ClientHello.

 - The server sends a dummy change_cipher_spec record immediately
 after its first handshake message. This may either be after a
 ServerHello or a HelloRetryRequest.

 When put together, these changes make the TLS 1.3 handshake resemble
 TLS 1.2 session resumption, which improves the chance of successfully
 connecting through middleboxes. This "compatibility mode" is
 partially negotiated: The client can opt to provide a session ID or
 not and the server has to echo it. Either side can send
 change_cipher_spec at any time during the handshake, as they must be
 ignored by the peer, but if the client sends a non-empty session ID,
 the server MUST send the change_cipher_spec as described in this
 section.

D.5 . Backwards Compatibility Security Restrictions

 Implementations negotiating use of older versions of TLS SHOULD
 prefer forward secret and AEAD cipher suites, when available.

 The security of RC4 cipher suites is considered insufficient for the
 reasons cited in [RFC7465]. Implementations MUST NOT offer or
 negotiate RC4 cipher suites for any version of TLS for any reason.

 Old versions of TLS permitted the use of very low strength ciphers.
 Ciphers with a strength less than 112 bits MUST NOT be offered or
 negotiated for any version of TLS for any reason.

 The security of SSL 3.0 [SSL3] is considered insufficient for the
 reasons enumerated in [RFC7568], and MUST NOT be negotiated for any
 reason.

 The security of SSL 2.0 [SSL2] is considered insufficient for the
 reasons enumerated in [RFC6176], and MUST NOT be negotiated for any
 reason.

 Implementations MUST NOT send an SSL version 2.0 compatible CLIENT-
 HELLO. Implementations MUST NOT negotiate TLS 1.3 or later using an

Rescorla Expires August 19, 2018 [Page 137]

https://tools.ietf.org/pdf/rfc7465
https://tools.ietf.org/pdf/rfc7568
https://tools.ietf.org/pdf/rfc6176

Internet-Draft TLS February 2018

 SSL version 2.0 compatible CLIENT-HELLO. Implementations are NOT
 RECOMMENDED to accept an SSL version 2.0 compatible CLIENT-HELLO in
 order to negotiate older versions of TLS.

 Implementations MUST NOT send a ClientHello.legacy_version or
 ServerHello.legacy_version set to 0x0300 or less. Any endpoint
 receiving a Hello message with ClientHello.legacy_version or
 ServerHello.legacy_version set to 0x0300 MUST abort the handshake
 with a "protocol_version" alert.

 Implementations MUST NOT send any records with a version less than
 0x0300. Implementations SHOULD NOT accept any records with a version
 less than 0x0300 (but may inadvertently do so if the record version
 number is ignored completely).

 Implementations MUST NOT use the Truncated HMAC extension, defined in
 Section 7 of [RFC6066] , as it is not applicable to AEAD algorithms
 and has been shown to be insecure in some scenarios.

Appendix E . Overview of Security Properties

 A complete security analysis of TLS is outside the scope of this
 document. In this section, we provide an informal description the
 desired properties as well as references to more detailed work in the
 research literature which provides more formal definitions.

 We cover properties of the handshake separately from those of the
 record layer.

E.1 . Handshake

 The TLS handshake is an Authenticated Key Exchange (AKE) protocol
 which is intended to provide both one-way authenticated (server-only)
 and mutually authenticated (client and server) functionality. At the
 completion of the handshake, each side outputs its view of the
 following values:

 - A set of "session keys" (the various secrets derived from the
 master secret) from which can be derived a set of working keys.

 - A set of cryptographic parameters (algorithms, etc.)

 - The identities of the communicating parties.

 We assume the attacker to be an active network attacker, which means
 it has complete control over the network used to communicate between
 the parties [RFC3552]. Even under these conditions, the handshake
 should provide the properties listed below. Note that these

Rescorla Expires August 19, 2018 [Page 138]

https://tools.ietf.org/pdf/rfc6066#section-7
https://tools.ietf.org/pdf/rfc3552

Internet-Draft TLS February 2018

 properties are not necessarily independent, but reflect the protocol
 consumers’ needs.

 Establishing the same session keys. The handshake needs to output
 the same set of session keys on both sides of the handshake,
 provided that it completes successfully on each endpoint (See
 [CK01]; defn 1, part 1).

 Secrecy of the session keys. The shared session keys should be known
 only to the communicating parties and not to the attacker (See
 [CK01]; defn 1, part 2). Note that in a unilaterally
 authenticated connection, the attacker can establish its own
 session keys with the server, but those session keys are distinct
 from those established by the client.

 Peer Authentication. The client’s view of the peer identity should
 reflect the server’s identity. If the client is authenticated,
 the server’s view of the peer identity should match the client’s
 identity.

 Uniqueness of the session keys: Any two distinct handshakes should
 produce distinct, unrelated session keys. Individual session keys
 produced by a handshake should also be distinct and unrelated.

 Downgrade protection. The cryptographic parameters should be the
 same on both sides and should be the same as if the peers had been
 communicating in the absence of an attack (See [BBFKZG16]; defns 8
 and 9}).

 Forward secret with respect to long-term keys If the long-term
 keying material (in this case the signature keys in certificate-
 based authentication modes or the external/resumption PSK in PSK
 with (EC)DHE modes) is compromised after the handshake is
 complete, this does not compromise the security of the session key
 (See [DOW92]), as long as the session key itself has been erased.
 The forward secrecy property is not satisfied when PSK is used in
 the "psk_ke" PskKeyExchangeMode.

 Key Compromise Impersonation (KCI) resistance In a mutually-
 authenticated connection with certificates, peer authentication
 should hold even if the local long-term secret was compromised
 before the connection was established (see [HGFS15]). For
 example, if a client’s signature key is compromised, it should not
 be possible to impersonate arbitrary servers to that client in
 subsequent handshakes.

 Protection of endpoint identities. The server’s identity
 (certificate) should be protected against passive attackers. The

Rescorla Expires August 19, 2018 [Page 139]

Internet-Draft TLS February 2018

 client’s identity should be protected against both passive and
 active attackers.

 Informally, the signature-based modes of TLS 1.3 provide for the
 establishment of a unique, secret, shared key established by an
 (EC)DHE key exchange and authenticated by the server’s signature over
 the handshake transcript, as well as tied to the server’s identity by
 a MAC. If the client is authenticated by a certificate, it also
 signs over the handshake transcript and provides a MAC tied to both
 identities. [SIGMA] describes the design and analysis of this type
 of key exchange protocol. If fresh (EC)DHE keys are used for each
 connection, then the output keys are forward secret.

 The external PSK and resumption PSK bootstrap from a long-term shared
 secret into a unique per-connection set of short-term session keys.
 This secret may have been established in a previous handshake. If
 PSK with (EC)DHE key establishment is used, these session keys will
 also be forward secret. The resumption PSK has been designed so that
 the resumption master secret computed by connection N and needed to
 form connection N+1 is separate from the traffic keys used by
 connection N, thus providing forward secrecy between the connections.
 In addition, if multiple tickets are established on the same
 connection, they are associated with different keys, so compromise of
 the PSK associated with one ticket does not lead to the compromise of
 connections established with PSKs associated with other tickets.
 This property is most interesting if tickets are stored in a database
 (and so can be deleted) rather than if they are self-encrypted.

 The PSK binder value forms a binding between a PSK and the current
 handshake, as well as between the session where the PSK was
 established and the session where it was used. This binding
 transitively includes the original handshake transcript, because that
 transcript is digested into the values which produce the Resumption
 Master Secret. This requires that both the KDF used to produce the
 resumption master secret and the MAC used to compute the binder be
 collision resistant. See Appendix E.1.1 for more on this. Note: The
 binder does not cover the binder values from other PSKs, though they
 are included in the Finished MAC.

 Note: TLS does not currently permit the server to send a
 certificate_request message in non-certificate-based handshakes
 (e.g., PSK). If this restriction were to be relaxed in future, the
 client’s signature would not cover the server’s certificate directly.
 However, if the PSK was established through a NewSessionTicket, the
 client’s signature would transitively cover the server’s certificate
 through the PSK binder. [PSK-FINISHED] describes a concrete attack
 on constructions that do not bind to the server’s certificate (see
 also [Kraw16]). It is unsafe to use certificate-based client

Rescorla Expires August 19, 2018 [Page 140]

Internet-Draft TLS February 2018

 authentication when the client might potentially share the same PSK/
 key-id pair with two different endpoints. Implementations MUST NOT
 combine external PSKs with certificate-based authentication of either
 the client or the server unless negotiated by some extension.

 If an exporter is used, then it produces values which are unique and
 secret (because they are generated from a unique session key).
 Exporters computed with different labels and contexts are
 computationally independent, so it is not feasible to compute one
 from another or the session secret from the exported value. Note:
 exporters can produce arbitrary-length values. If exporters are to
 be used as channel bindings, the exported value MUST be large enough
 to provide collision resistance. The exporters provided in TLS 1.3
 are derived from the same handshake contexts as the early traffic
 keys and the application traffic keys respectively, and thus have
 similar security properties. Note that they do not include the
 client’s certificate; future applications which wish to bind to the
 client’s certificate may need to define a new exporter that includes
 the full handshake transcript.

 For all handshake modes, the Finished MAC (and where present, the
 signature), prevents downgrade attacks. In addition, the use of
 certain bytes in the random nonces as described in Section 4.1.3
 allows the detection of downgrade to previous TLS versions. See
 [BBFKZG16] for more detail on TLS 1.3 and downgrade.

 As soon as the client and the server have exchanged enough
 information to establish shared keys, the remainder of the handshake
 is encrypted, thus providing protection against passive attackers,
 even if the computed shared key is not authenticated. Because the
 server authenticates before the client, the client can ensure that if
 it authenticates to the server, it only reveals its identity to an
 authenticated server. Note that implementations must use the
 provided record padding mechanism during the handshake to avoid
 leaking information about the identities due to length. The client’s
 proposed PSK identities are not encrypted, nor is the one that the
 server selects.

E.1.1 . Key Derivation and HKDF

 Key derivation in TLS 1.3 uses the HKDF function defined in [RFC5869]
 and its two components, HKDF-Extract and HKDF-Expand. The full
 rationale for the HKDF construction can be found in [Kraw10] and the
 rationale for the way it is used in TLS 1.3 in [KW16]. Throughout
 this document, each application of HKDF-Extract is followed by one or
 more invocations of HKDF-Expand. This ordering should always be
 followed (including in future revisions of this document), in
 particular, one SHOULD NOT use an output of HKDF-Extract as an input

Rescorla Expires August 19, 2018 [Page 141]

https://tools.ietf.org/pdf/rfc5869

Internet-Draft TLS February 2018

 to another application of HKDF-Extract without an HKDF-Expand in
 between. Consecutive applications of HKDF-Expand are allowed as long
 as these are differentiated via the key and/or the labels.

 Note that HKDF-Expand implements a pseudorandom function (PRF) with
 both inputs and outputs of variable length. In some of the uses of
 HKDF in this document (e.g., for generating exporters and the
 resumption_master_secret), it is necessary that the application of
 HKDF-Expand be collision-resistant, namely, it should be infeasible
 to find two different inputs to HKDF-Expand that output the same
 value. This requires the underlying hash function to be collision
 resistant and the output length from HKDF-Expand to be of size at
 least 256 bits (or as much as needed for the hash function to prevent
 finding collisions).

E.1.2 . Client Authentication

 A client that has sent authentication data to a server, either during
 the handshake or in post-handshake authentication, cannot be sure if
 the server afterwards considers the client to be authenticated or
 not. If the client needs to determine if the server considers the
 connection to be unilaterally or mutually authenticated, this has to
 be provisioned by the application layer. See [CHHSV17] for details.
 In addition, the analysis of post-handshake authentication from
 [Kraw16] shows that the client identified by the certificate sent in
 the post-handshake phase possesses the traffic key. This party is
 therefore the client that participated in the original handshake or
 one to whom the original client delegated the traffic key (assuming
 that the traffic key has not been compromised).

E.1.3 . 0-RTT

 The 0-RTT mode of operation generally provides similar security
 properties as 1-RTT data, with the two exceptions that the 0-RTT
 encryption keys do not provide full forward secrecy and that the
 server is not able to guarantee uniqueness of the handshake (non-
 replayability) without keeping potentially undue amounts of state.
 See Section 4.2.10 for one mechanism to limit the exposure to replay.

E.1.4 . Exporter Independence

 The exporter_master_secret and early_exporter_master_secret are
 derived to be independent of the traffic keys and therefore do not
 represent a threat to the security of traffic encrypted with those
 keys. However, because these secrets can be used to compute any
 exporter value, they SHOULD be erased as soon as possible. If the
 total set of exporter labels is known, then implementations SHOULD
 pre-compute the inner Derive-Secret stage of the exporter computation

Rescorla Expires August 19, 2018 [Page 142]

Internet-Draft TLS February 2018

 for all those labels, then erase the [early_]exporter_master_secret,
 followed by each inner values as soon as it is known that it will not
 be needed again.

E.1.5 . Post-Compromise Security

 TLS does not provide security for handshakes which take place after
 the peer’s long-term secret (signature key or external PSK) is
 compromised. It therefore does not provide post-compromise security
 [CCG16], sometimes also referred to as backwards or future secrecy.
 This is in contrast to KCI resistance, which describes the security
 guarantees that a party has after its own long-term secret has been
 compromised.

E.1.6 . External References

 The reader should refer to the following references for analysis of
 the TLS handshake: [DFGS15] [CHSV16] [DFGS16] [KW16] [Kraw16]
 [FGSW16] [LXZFH16] [FG17] [BBK17].

E.2 . Record Layer

 The record layer depends on the handshake producing strong traffic
 secrets which can be used to derive bidirectional encryption keys and
 nonces. Assuming that is true, and the keys are used for no more
 data than indicated in Section 5.5 then the record layer should
 provide the following guarantees:

 Confidentiality. An attacker should not be able to determine the
 plaintext contents of a given record.

 Integrity. An attacker should not be able to craft a new record
 which is different from an existing record which will be accepted
 by the receiver.

 Order protection/non-replayability An attacker should not be able to
 cause the receiver to accept a record which it has already
 accepted or cause the receiver to accept record N+1 without having
 first processed record N.

 Length concealment. Given a record with a given external length, the
 attacker should not be able to determine the amount of the record
 that is content versus padding.

 Forward secrecy after key change. If the traffic key update
 mechanism described in Section 4.6.3 has been used and the
 previous generation key is deleted, an attacker who compromises

Rescorla Expires August 19, 2018 [Page 143]

Internet-Draft TLS February 2018

 the endpoint should not be able to decrypt traffic encrypted with
 the old key.

 Informally, TLS 1.3 provides these properties by AEAD-protecting the
 plaintext with a strong key. AEAD encryption [RFC5116] provides
 confidentiality and integrity for the data. Non-replayability is
 provided by using a separate nonce for each record, with the nonce
 being derived from the record sequence number (Section 5.3), with the
 sequence number being maintained independently at both sides thus
 records which are delivered out of order result in AEAD deprotection
 failures. In order to prevent mass cryptanalysis when the same
 plaintext is repeatedly encrypted by different users under the same
 key (as is commonly the case for HTTP), the nonce is formed by mixing
 the sequence number with a secret per-connection initialization
 vector derived along with the traffic keys. See [BT16] for analysis
 of this construction.

 The re-keying technique in TLS 1.3 (see Section 7.2) follows the
 construction of the serial generator in [REKEY], which shows that re-
 keying can allow keys to be used for a larger number of encryptions
 than without re-keying. This relies on the security of the HKDF-
 Expand-Label function as a pseudorandom function (PRF). In addition,
 as long as this function is truly one way, it is not possible to
 compute traffic keys from prior to a key change (forward secrecy).

 TLS does not provide security for data which is communicated on a
 connection after a traffic secret of that connection is compromised.
 That is, TLS does not provide post-compromise security/future
 secrecy/backward secrecy with respect to the traffic secret. Indeed,
 an attacker who learns a traffic secret can compute all future
 traffic secrets on that connection. Systems which want such
 guarantees need to do a fresh handshake and establish a new
 connection with an (EC)DHE exchange.

E.2.1 . External References

 The reader should refer to the following references for analysis of
 the TLS record layer: [BMMT15] [BT16] [BDFKPPRSZZ16] [BBK17].

E.3 . Traffic Analysis

 TLS is susceptible to a variety of traffic analysis attacks based on
 observing the length and timing of encrypted packets [CLINIC]
 [HCJ16]. This is particularly easy when there is a small set of
 possible messages to be distinguished, such as for a video server
 hosting a fixed corpus of content, but still provides usable
 information even in more complicated scenarios.

Rescorla Expires August 19, 2018 [Page 144]

https://tools.ietf.org/pdf/rfc5116

Internet-Draft TLS February 2018

 TLS does not provide any specific defenses against this form of
 attack but does include a padding mechanism for use by applications:
 The plaintext protected by the AEAD function consists of content plus
 variable-length padding, which allows the application to produce
 arbitrary length encrypted records as well as padding-only cover
 traffic to conceal the difference between periods of transmission and
 periods of silence. Because the padding is encrypted alongside the
 actual content, an attacker cannot directly determine the length of
 the padding, but may be able to measure it indirectly by the use of
 timing channels exposed during record processing (i.e., seeing how
 long it takes to process a record or trickling in records to see
 which ones elicit a response from the server). In general, it is not
 known how to remove all of these channels because even a constant
 time padding removal function will likely feed the content into data-
 dependent functions. At minimum, a fully constant time server or
 client would require close cooperation with the application layer
 protocol implementation, including making that higher level protocol
 constant time.

 Note: Robust traffic analysis defences will likely lead to inferior
 performance due to delay in transmitting packets and increased
 traffic volume.

E.4 . Side Channel Attacks

 In general, TLS does not have specific defenses against side-channel
 attacks (i.e., those which attack the communications via secondary
 channels such as timing) leaving those to the implementation of the
 relevant cryptographic primitives. However, certain features of TLS
 are designed to make it easier to write side-channel resistant code:

 - Unlike previous versions of TLS which used a composite MAC-then-
 encrypt structure, TLS 1.3 only uses AEAD algorithms, allowing
 implementations to use self-contained constant-time
 implementations of those primitives.

 - TLS uses a uniform "bad_record_mac" alert for all decryption
 errors, which is intended to prevent an attacker from gaining
 piecewise insight into portions of the message. Additional
 resistance is provided by terminating the connection on such
 errors; a new connection will have different cryptographic
 material, preventing attacks against the cryptographic primitives
 that require multiple trials.

 Information leakage through side channels can occur at layers above
 TLS, in application protocols and the applications that use them.
 Resistance to side-channel attacks depends on applications and

Rescorla Expires August 19, 2018 [Page 145]

Internet-Draft TLS February 2018

 application protocols separately ensuring that confidential
 information is not inadvertently leaked.

E.5 . Replay Attacks on 0-RTT

 Replayable 0-RTT data presents a number of security threats to TLS-
 using applications, unless those applications are specifically
 engineered to be safe under replay (minimally, this means idempotent,
 but in many cases may also require other stronger conditions, such as
 constant-time response). Potential attacks include:

 - Duplication of actions which cause side effects (e.g., purchasing
 an item or transferring money) to be duplicated, thus harming the
 site or the user.

 - Attackers can store and replay 0-RTT messages in order to re-order
 them with respect to other messages (e.g., moving a delete to
 after a create).

 - Exploiting cache timing behavior to discover the content of 0-RTT
 messages by replaying a 0-RTT message to a different cache node
 and then using a separate connection to measure request latency,
 to see if the two requests address the same resource.

 If data can be replayed a large number of times, additional attacks
 become possible, such as making repeated measurements of the the
 speed of cryptographic operations. In addition, they may be able to
 overload rate-limiting systems. For further description of these
 attacks, see [Mac17].

 Ultimately, servers have the responsibility to protect themselves
 against attacks employing 0-RTT data replication. The mechanisms
 described in Section 8 are intended to prevent replay at the TLS
 layer but do not provide complete protection against receiving
 multiple copies of client data. TLS 1.3 falls back to the 1-RTT
 handshake when the server does not have any information about the
 client, e.g., because it is in a different cluster which does not
 share state or because the ticket has been deleted as described in
 Section 8.1 . If the application layer protocol retransmits data in
 this setting, then it is possible for an attacker to induce message
 duplication by sending the ClientHello to both the original cluster
 (which processes the data immediately) and another cluster which will
 fall back to 1-RTT and process the data upon application layer
 replay. The scale of this attack is limited by the client’s
 willingness to retry transactions and therefore only allows a limited
 amount of duplication, with each copy appearing as a new connection
 at the server.

Rescorla Expires August 19, 2018 [Page 146]

Internet-Draft TLS February 2018

 If implemented correctly, the mechanisms described in Section 8.1 and
 Section 8.2 prevent a replayed ClientHello and its associated 0-RTT
 data from being accepted multiple times by any cluster with
 consistent state; for servers which limit the use of 0-RTT to one
 cluster for a single ticket, then a given ClientHello and its
 associated 0-RTT data will only be accepted once. However, if state
 is not completely consistent, then an attacker might be able to have
 multiple copies of the data be accepted during the replication
 window. Because clients do not know the exact details of server
 behavior, they MUST NOT send messages in early data which are not
 safe to have replayed and which they would not be willing to retry
 across multiple 1-RTT connections.

 Application protocols MUST NOT use 0-RTT data without a profile that
 defines its use. That profile needs to identify which messages or
 interactions are safe to use with 0-RTT and how to handle the
 situation when the server rejects 0-RTT and falls back to 1-RTT.

 In addition, to avoid accidental misuse, TLS implementations MUST NOT
 enable 0-RTT (either sending or accepting) unless specifically
 requested by the application and MUST NOT automatically resend 0-RTT
 data if it is rejected by the server unless instructed by the
 application. Server-side applications may wish to implement special
 processing for 0-RTT data for some kinds of application traffic
 (e.g., abort the connection, request that data be resent at the
 application layer, or delay processing until the handshake
 completes). In order to allow applications to implement this kind of
 processing, TLS implementations MUST provide a way for the
 application to determine if the handshake has completed.

E.5.1 . Replay and Exporters

 Replays of the ClientHello produce the same early exporter, thus
 requiring additional care by applications which use these exporters.
 In particular, if these exporters are used as an authentication
 channel binding (e.g., by signing the output of the exporter) an
 attacker who compromises the PSK can transplant authenticators
 between connections without compromising the authentication key.

 In addition, the early exporter SHOULD NOT be used to generate
 server-to-client encryption keys because that would entail the reuse
 of those keys. This parallels the use of the early application
 traffic keys only in the client-to-server direction.

Rescorla Expires August 19, 2018 [Page 147]

Internet-Draft TLS February 2018

E.6 . Attacks on Static RSA

 Although TLS 1.3 does not use RSA key transport and so is not
 directly susceptible to Bleichenbacher-type attacks, if TLS 1.3
 servers also support static RSA in the context of previous versions
 of TLS, then it may be possible to impersonate the server for TLS 1.3
 connections [JSS15]. TLS 1.3 implementations can prevent this attack
 by disabling support for static RSA across all versions of TLS. In
 principle, implementations might also be able to separate
 certificates with different keyUsage bits for static RSA decryption
 and RSA signature, but this technique relies on clients refusing to
 accept signatures using keys in certificates that do not have the
 digitalSignature bit set, and many clients do not enforce this
 restriction.

Appendix F . Working Group Information

 The discussion list for the IETF TLS working group is located at the
 e-mail address tls@ietf.org [1]. Information on the group and
 information on how to subscribe to the list is at
 https://www.ietf.org/mailman/listinfo/tls

 Archives of the list can be found at: https://www.ietf.org/mail-
 archive/web/tls/current/index.html

Appendix G . Contributors

 - Martin Abadi
 University of California, Santa Cruz
 abadi@cs.ucsc.edu

 - Christopher Allen (co-editor of TLS 1.0)
 Alacrity Ventures
 ChristopherA@AlacrityManagement.com

 - Richard Barnes
 Cisco
 rlb@ipv.sx

 - Steven M. Bellovin
 Columbia University
 smb@cs.columbia.edu

 - David Benjamin
 Google
 davidben@google.com

 - Benjamin Beurdouche

Rescorla Expires August 19, 2018 [Page 148]

https://www.ietf.org/mailman/listinfo/tls
https://www.ietf.org/mail-archive/web/tls/current/index.html
https://www.ietf.org/mail-archive/web/tls/current/index.html

Internet-Draft TLS February 2018

 INRIA & Microsoft Research
 benjamin.beurdouche@ens.fr

 - Karthikeyan Bhargavan (co-author of [RFC7627])
 INRIA
 karthikeyan.bhargavan@inria.fr

 - Simon Blake-Wilson (co-author of [RFC4492])
 BCI
 sblakewilson@bcisse.com

 - Nelson Bolyard (co-author of [RFC4492])
 Sun Microsystems, Inc.
 nelson@bolyard.com

 - Ran Canetti
 IBM
 canetti@watson.ibm.com

 - Matt Caswell
 OpenSSL
 matt@openssl.org

 - Stephen Checkoway
 University of Illinois at Chicago
 sfc@uic.edu

 - Pete Chown
 Skygate Technology Ltd
 pc@skygate.co.uk

 - Katriel Cohn-Gordon
 University of Oxford
 me@katriel.co.uk

 - Cas Cremers
 University of Oxford
 cas.cremers@cs.ox.ac.uk

 - Antoine Delignat-Lavaud (co-author of [RFC7627])
 INRIA
 antoine.delignat-lavaud@inria.fr

 - Tim Dierks (co-editor of TLS 1.0, 1.1, and 1.2)
 Independent
 tim@dierks.org

 - Taher Elgamal

Rescorla Expires August 19, 2018 [Page 149]

https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc7627

Internet-Draft TLS February 2018

 Securify
 taher@securify.com

 - Pasi Eronen
 Nokia
 pasi.eronen@nokia.com

 - Cedric Fournet
 Microsoft
 fournet@microsoft.com

 - Anil Gangolli
 anil@busybuddha.org

 - David M. Garrett
 dave@nulldereference.com

 - Illya Gerasymchuk
 Independent
 illya@iluxonchik.me

 - Alessandro Ghedini
 Cloudflare Inc.
 alessandro@cloudflare.com

 - Daniel Kahn Gillmor
 ACLU
 dkg@fifthhorseman.net

 - Matthew Green
 Johns Hopkins University
 mgreen@cs.jhu.edu

 - Jens Guballa
 ETAS
 jens.guballa@etas.com

 - Felix Guenther
 TU Darmstadt
 mail@felixguenther.info

 - Vipul Gupta (co-author of [RFC4492])
 Sun Microsystems Laboratories
 vipul.gupta@sun.com

 - Chris Hawk (co-author of [RFC4492])
 Corriente Networks LLC
 chris@corriente.net

Rescorla Expires August 19, 2018 [Page 150]

https://tools.ietf.org/pdf/rfc4492
https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS February 2018

 - Kipp Hickman

 - Alfred Hoenes

 - David Hopwood
 Independent Consultant
 david.hopwood@blueyonder.co.uk

 - Marko Horvat
 MPI-SWS
 mhorvat@mpi-sws.org

 - Jonathan Hoyland
 Royal Holloway, University of London

 - Subodh Iyengar
 Facebook
 subodh@fb.com

 - Benjamin Kaduk
 Akamai
 kaduk@mit.edu

 - Hubert Kario
 Red Hat Inc.
 hkario@redhat.com

 - Phil Karlton (co-author of SSL 3.0)

 - Leon Klingele
 Independent
 mail@leonklingele.de

 - Paul Kocher (co-author of SSL 3.0)
 Cryptography Research
 paul@cryptography.com

 - Hugo Krawczyk
 IBM
 hugokraw@us.ibm.com

 - Adam Langley (co-author of [RFC7627])
 Google
 agl@google.com

 - Olivier Levillain
 ANSSI
 olivier.levillain@ssi.gouv.fr

Rescorla Expires August 19, 2018 [Page 151]

https://tools.ietf.org/pdf/rfc7627

Internet-Draft TLS February 2018

 - Xiaoyin Liu
 University of North Carolina at Chapel Hill
 xiaoyin.l@outlook.com

 - Ilari Liusvaara
 Independent
 ilariliusvaara@welho.com

 - Atul Luykx
 K.U. Leuven
 atul.luykx@kuleuven.be

 - Colm MacCarthaigh
 Amazon Web Services
 colm@allcosts.net

 - Carl Mehner
 USAA
 carl.mehner@usaa.com

 - Jan Mikkelsen
 Transactionware
 janm@transactionware.com

 - Bodo Moeller (co-author of [RFC4492])
 Google
 bodo@openssl.org

 - Kyle Nekritz
 Facebook
 knekritz@fb.com

 - Erik Nygren
 Akamai Technologies
 erik+ietf@nygren.org

 - Magnus Nystrom
 Microsoft
 mnystrom@microsoft.com

 - Kazuho Oku
 DeNA Co., Ltd.
 kazuhooku@gmail.com

 - Kenny Paterson
 Royal Holloway, University of London
 kenny.paterson@rhul.ac.uk

Rescorla Expires August 19, 2018 [Page 152]

https://tools.ietf.org/pdf/rfc4492

Internet-Draft TLS February 2018

 - Alfredo Pironti (co-author of [RFC7627])
 INRIA
 alfredo.pironti@inria.fr

 - Andrei Popov
 Microsoft
 andrei.popov@microsoft.com

 - Marsh Ray (co-author of [RFC7627])
 Microsoft
 maray@microsoft.com

 - Robert Relyea
 Netscape Communications
 relyea@netscape.com

 - Kyle Rose
 Akamai Technologies
 krose@krose.org

 - Jim Roskind
 Amazon
 jroskind@amazon.com

 - Michael Sabin

 - Joe Salowey
 Tableau Software
 joe@salowey.net

 - Rich Salz
 Akamai
 rsalz@akamai.com

 - David Schinazi
 Apple Inc.
 dschinazi@apple.com

 - Sam Scott
 Royal Holloway, University of London
 me@samjs.co.uk

 - Dan Simon
 Microsoft, Inc.
 dansimon@microsoft.com

 - Brian Smith
 Independent

Rescorla Expires August 19, 2018 [Page 153]

https://tools.ietf.org/pdf/rfc7627
https://tools.ietf.org/pdf/rfc7627

Internet-Draft TLS February 2018

 brian@briansmith.org

 - Brian Sniffen
 Akamai Technologies
 ietf@bts.evenmere.org

 - Nick Sullivan
 Cloudflare Inc.
 nick@cloudflare.com

 - Bjoern Tackmann
 University of California, San Diego
 btackmann@eng.ucsd.edu

 - Tim Taubert
 Mozilla
 ttaubert@mozilla.com

 - Martin Thomson
 Mozilla
 mt@mozilla.com

 - Sean Turner
 sn3rd
 sean@sn3rd.com

 - Steven Valdez
 Google
 svaldez@google.com

 - Filippo Valsorda
 Cloudflare Inc.
 filippo@cloudflare.com

 - Thyla van der Merwe
 Royal Holloway, University of London
 tjvdmerwe@gmail.com

 - Victor Vasiliev
 Google
 vasilvv@google.com

 - Tom Weinstein

 - Hoeteck Wee
 Ecole Normale Superieure, Paris
 hoeteck@alum.mit.edu

Rescorla Expires August 19, 2018 [Page 154]

Internet-Draft TLS February 2018

 - David Wong
 NCC Group
 david.wong@nccgroup.trust

 - Christopher A. Wood
 Apple Inc.
 cawood@apple.com

 - Tim Wright
 Vodafone
 timothy.wright@vodafone.com

 - Peter Wu
 Independent
 peter@lekensteyn.nl

 - Kazu Yamamoto
 Internet Initiative Japan Inc.
 kazu@iij.ad.jp

Author’s Address

 Eric Rescorla
 RTFM, Inc.

 EMail: ekr@rtfm.com

Rescorla Expires August 19, 2018 [Page 155]

