
IS
S

N
 0

24
9-

63
99

IS
R

N
 IN

R
IA

/R
R

--
29

86
--

F
R

+
E

N
G

ap por t

de r ech er ch e

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Specification and Verification of various
Distributed Leader Election Algorithms

for Unidirectional Ring Networks

Hubert Garavel, Laurent Mounier

N° 2986

Septembre 1996

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38330 Montbonnot-St-Martin (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Specification and Verification of various

Distributed Leader Election Algorithms
for Unidirectional Ring Networks

Hubert Garavel∗, Laurent Mounier†

Thème 1 — Réseaux et systèmes

Projet Spectre

Rapport de recherche n
�

2986 — Septembre 1996 — 32 pages

Abstract: This report deals with the formal specification and verification of distributed leader
election algorithms for a set of machines connected by a unidirectional ring network.

Starting from an algorithm proposed by Le Lann in 1977, and its variant proposed by Chang and
Roberts in 1979, we study the robustness of this class of algorithms in presence of unreliable commu-
nication medium and/or unreliable machines. We suggest various improvements of these algorithms
in order to obtain a fully fault-tolerant protocol.

These algorithms are formally described using the Iso specification language Lotos and verified
(for a fixed number of machines) using the Cadp (Cæsar/Aldébaran) toolbox. Model-checking
and bisimulation techniques allow the verification of these non-trivial algorithms to be carried out
automatically.

Key-words: Bisimulations, Distributed Algorithms, Formal Description Techniques, Formal
Methods, Labelled Transition Systems, Leader Election, Lotos, Model-checking, Process Algebras,
Protocol Engineering, Specification, Token Ring, Validation, Verification.

Short version of this report in Science of Computer Programming, special issue on Industrially Relevant Applica-
tions of Formal Analysis Techniques, Jan-Friso Groote and Martin Rem, editors, 1996.

∗ E-mail: Hubert.Garavel@imag.fr
† Inria Rhône-Alpes / Verimag, Miniparc-Zirst, rue Lavoisier, F-38330 Montbonnot Saint-Martin, France. E-mail:

Laurent.Mounier@imag.fr

Spécification et vérification de plusieurs algorithmes
distribués d’élection sur un réseau en anneau unidirectionnel
Résumé : Ce rapport présente la spécification et la vérification formelle d’algorithmes distribués
d’élection sur un réseau en anneau unidirectionnel.

A partir d’un algorithme proposé par Le Lann en 1977 et de sa variante proposée par Chang et Roberts
en 1979, on étudie la robustesse de cette classe d’algorithmes en présence de canaux de communication
et/ou de machines non fiables. Nous suggérons différentes améliorations de ces algorithmes afin
d’obtenir un protocole résistant à ces pannes.

Ces algorithmes ont été formellement décrits à l’aide du langage de spécification Lotos nor-
malisé par l’Iso et vérifiés (pour un nombre fixé de machines) grâce à la bôıte à outils Cadp
(Cæsar/Aldébaran). En utilisant des techniques fondées sur la génération exhaustive et les rela-
tions de bisimulation, la vérification de ces algorithmes non-triviaux peut être effectuée automatique-
ment.

Mots-clés : Algèbres de processus, Algorithmes distribués, Bisimulations, Election, Ingénierie des
protocoles, Lotos, Méthodes formelles, Réseau à jeton, Réseau en anneau, Spécification, Systèmes
de transitions étiquetées, Techniques de description formelle, Validation, Vérification.

Specification and Verification of various Distributed Leader Election Algorithms... 3

1 Introduction

Since the early attempts of automatic protocol validation carried out by C. West [Wes78], formal
verification in general, and the so-called model checking approach in particular, is sometimes contro-
versial:

� From a theoretical point of view, this problem can be considered as solved for finite state systems
since verification algorithms are now well-known;

� From a naive point of view, formal verification is useless, since no realistic application can be
fully verified, and this problem is untractable anyway because of the size of realistic systems.

Fortunately, reality is more shaded: practical experiments already showed that these methods are
now applicable in an industrial context, and that they can provide an important gain in the design
of a large class of applications, such as distributed systems or communication protocols.

This report illustrates the application of state-of-the-art verification methods to a non-trivial case-
study, hardly tractable simply by human reasoning. Starting from the original description of two
famous algorithms, the one proposed by G. Le Lann [Lan77] and its variant proposed by E. Chang
and R. Roberts [CR79], our objective was to design a fully fault-tolerant leader election algorithm,
to specify it using the Lotos language, and to formally verify it using the Cadp toolbox.

This report is organized as follows. Section 2 presents the Lotos language and Section 3 gives
an overview of the Cadp toolbox. We then study several versions of the leader election algorithm
under increasingly severe failure assumptions: reliable links and reliable machines (Section 4), unre-
liable links and reliable machines (Section 5) and, finally, unreliable links and unreliable machines
(Section 6).

2 The Formal Description Technique LOTOS

Many formalisms have been proposed for describing parallel systems, among which, the standard-
ized Formal Description Technique Lotos1 has received a considerable attention from the research
community.

Lotos is a formal language intended for the specification of communication protocols and distributed
systems. It was developed during the years 1981–88 in the framework of the SEDOS2 project and
standardized by Iso3 in 1988 [ISO88b]. Several tutorials for Lotos are available, e.g. [BB88, Tur93].

The design of Lotos was motivated by the need for a language with a high abstraction level and a
strong mathematical basis, which could be used for the description and analysis of complex systems.
Lotos features two clearly separated parts:

The data part of Lotos is dedicated to the description of data structures. It is based on the well-
known theory of algebraic abstract data types, more specifically on the ActOne specification
language [EM85, dMRV92].

In this approach, data structures are described by sorts, which represent value domains, and
operations, which are mathematical functions defined on these domains. The meaning of opera-
tions is defined by algebraic equations. Sorts, operations, and equations are grouped in modules

1Language Of Temporal Ordering Specification
2Software Environment for the Design of Open Distributed Systems, ESPRIT project 410
3International Organization for Standardization

RR n
�

2986

4 H. Garavel, L. Mounier

called types, which can be combined together using importation, renaming, parametrization,
and actualization. The underlying semantics is that of initial algebras [EM85].

The control part of Lotos is based on the process algebra approach for concurrency, and appears
to combine the best features of Ccs [Mil80, Mil89] and Csp [Hoa85].

Lotos relies on a small set of basic operators, which represent primitive concepts of concurrent
systems (sequential composition, non-deterministic choice, guard, parallel composition, rendez-
vous, etc.) These operators are used to build algebraic terms that describe the behaviour of
concurrent systems; the approach is compositional, since complex behaviours can be obtained
by combining elementary ones.

As for most process algebras, the semantics of Lotos is formally defined in terms of Labelled
Transition Systems (hereafter called graphs) [Par81, Mil89, ISO88b], i.e. directed graphs whose
vertices denote the global states of the system and whose edges correspond to the evolutions
(transitions) of the system.

Lotos has been applied to describe complex systems formally, among which: the service and protocols
for the Osi transport and session layers [ISO89b, ISO89a, ISO92c, ISO92d], the Ccr4 service and
protocol [ISO95d, ISO95c], Osi Tp5 [ISO92b, Annex H], Maa6 [ISO92a, Mun91], Ftam7 basic file
protocol [ISO88a, LL95], etc. It has been mostly used to describe software systems, although it can
also be used for asynchronous hardware description [CGM+96].

A number of tools have been developed for Lotos, which cover most user needs in the areas of
simulation, compilation, test generation and formal verification. For this case-study, we used the
Cadp toolbox, which provides state-of-the-art verification features.

Since 1993, a revision of the Lotos standard has been undertaken within Iso. This on-going activity
should give birth to a new version of Lotos, named E-Lotos (for Extended LOTOS), which is ex-
pected to introduce simpler features (especially for data types) and increased expressiveness (notably
by adding quantitative time to the language). However, this new language being not available at the
time of this case-study, we based our work on the existing standard Lotos.

3 Description of the verification tools used

The Cadp8 toolbox [FGM+92, FGK+96, Gar96] is dedicated to the design and verification of com-
munication protocols and distributed systems. Initiated in 1986, several motivations have contributed
to its development since this date:

� This toolbox aims to offer an integrated set of functionalities ranging from interactive simulation
to exhaustive model-based verification methods. In particular, both logical and behavioural
specifications can be verified.

� One of the major objectives of the toolbox is to deal with large case studies. Therefore, as well
as classical enumerative verification methods, it also includes more sophisticated approaches,
such as symbolic and on-the-fly verification, and compositional model generation.

4Commitment, Concurrency, and Recovery
5Distributed Transaction Processing
6Message Authentication Algorithm
7File Transfer, Access and Management
8Cæsar/Aldébaran Development Package

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 5

� Finally, this toolbox can be viewed as an open software platform: in addition to Lotos, it
also supports low-level formalisms such as finite state machines and networks of communicating
automata.

In the sequel we only present the components used throughout this case-study:

� Cæsar [GS90] and Cæsar.adt [Gar89, GT93] are compilers able to translate a Lotos program
into a finite state graph describing its exhaustive behaviour. This graph can be either explicitly
represented as a set of states and transitions, or implicitly, namely as a C library providing a
set of functions allowing to execute the program behaviour in a controlled way.

� Aldébaran [Fer90, FKM93] is a verification tool able either to compare or to minimize graphs
with respect to (bi)simulation relations [Par81, Mil80]. Initially designed to deal with explicit
graphs produced by Cæsar, it has been extended to also handle networks of communicating
automata (for on-the-fly and symbolic verification).

� Terminator, Exhibitor, Xsimulator, and Evaluator respectively provide partial dead-
lock detection, incorrect execution sequences exhibition, interactive simulation, and evaluation
of temporal logic formulas. These tools operate on-the-fly and do not require to construct an
explicit graph first; they can therefore be applied to large programs.

4 Token-passing with reliable links / reliable stations

4.1 Problem statement and expected properties

We consider the well-known problem of a system with n machines (hereafter called stations and noted
S1, ..., Sn respectively) sharing a common resource R. Each station Si is given a unique identifier, its
address Ai. For each station, we define two events “OPEN !Ai” and “CLOSE !Ai”, which respectively
take place when Si starts to access R (resource acquisition) and when Si stops to access R (resource
liberation). We assume here that all stations are reliable and we will not consider the possibility of
station crashing until Section 6.1.

We want to design the behaviour of each station in a such a way that the global system satisfies
several “good” properties. According to Osi9 terminology, we call protocol the behaviour of the
stations and service the conjunction of the “good” properties. For these properties, we decide to
abstract all details of the system except the “OPEN !Ai” and “CLOSE !Ai” events, as we are only
interested in observing accesses to the shared resource. We want to ensure two “good” properties:

� The first one is mutual exclusion between stations accessing the resource: each interval be-
tween “OPEN !Ai” and “CLOSE !Ai” should be a critical section. Mutual exclusion is a safety
property10 [Lam77, AL91]. It does not imply deadlock freedom (a blocked process satisfies all
possible safety properties, including mutual exclusion).

� The second one is equal opportunity: at any time, there exists an execution sequence allowing
each station to access the resource before any other stations. Equal opportunity is a liveness
property11 [Lam77, AL91]. In particular, under the usual fairness assumption given in [QS83],

9Iso standards for Open System Interconnection
10Safety properties assert that “something bad never happens”. They can be characterized by the class of prefix-

closed properties: P is a safety property iff for each finite execution sequence Σ satisfying P , all the prefixes of Σ also
satisfy P .

11Liveness properties assert that “something good eventually happens”.

RR n
�

2986

6 H. Garavel, L. Mounier

simulation preorder [Par81]

strong bisimulation [Par81]

branching bisimulation [vGW89]

safety equivalence [BFG+91]

safety preorder [BFG+91]

τ∗a-bisimulation [Mou92] observational equivalence [Mil80]

Figure 1: Lattice of the relations currently implemented in Aldébaran

equal opportunity implies that no station can be indefinitely denied access to the resource. It
also implies deadlock freedom, as each station always remains active to access the resource.
However, it does not imply livelock freedom, as the fairness assumption abstracts away infinite
loops of invisible actions (due to indefinite losses of messages, for instance). Notice that a
protocol that would serialize the resource accesses granted to the stations (by establishing
priorities between stations or by implementing a round-robin policy, for instance) would not
satisfy the equal opportunity property.

The approach we used to verify that the protocol satisfies the service properties consists in expressing
the service as a (set of) graph(s), generating a graph corresponding to the behaviour of the protocol,
and comparing the protocol graph against the service graph(s) modulo appropriate equivalence or
preorder relations. In this approach, it is first necessary to determine which comparison relation(s)
to use and to express service graph(s) according to this(ese) relation(s).

Many relations, especially bisimulations, have been defined in the literature. A tentative classification
of bisimulation can be found in [Mou92]; Figure 1 shows the lattice of the bisimulation relations which
are currently implemented in the Aldébaran tool: the edges of the diagram go from the strongest
to weakest relations. These relations present subtle differences: consequently, the determination of
the appropriate(s) relation(s) for a given problem often requires some expertise in bisimulations.

The service we consider here consists in both mutual exclusion and equal opportunity:

� As mutual exclusion is a safety property, a natural candidate to verify it is safety equivalence
[BFG+91] which preserves all safety properties. The graph on the left of Figure 2 is the minimal
graph (in number of states) expressing mutual exclusion for three stations with respect to safety
equivalence12.

� Equal opportunity is a stronger property, which is preserved neither by safety equivalence nor by
τ∗a-bisimulation (for instance, deadlocks are not preserved in general by these two relations).
Both remaining candidates, observational equivalence and branching bisimulation13 preserve
deadlocks. A first way to express this property consists in hiding, in the protocol graph, all

12More precisely, any graph smaller than this graph with respect to the safety preorder satisfies mutual exclusion
13Strong equivalence is not useful for verifying graphs which contain invisible (i.e., τ) actions

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 7

OPEN !A1 CLOSE !A1

OPEN !A3 CLOSE !A2

CLOSE !A3 OPEN !A2

OPEN !A1

OPEN !A3 OPEN !A2

Figure 2: Graphs expressing mutual exclusion and equal opportunity

events but “OPEN !Ai” and to compare the resulting graph to the graph given on the right of
Figure 2 modulo either branching or observational equivalence.

Although mutual exclusion and equal opportunity can be verified separately, it would be nice to
check them all at once, using a single equivalence relation and a single service graph. Noticing that
both graphs on Figure 2 are branching equivalent when “CLOSE !Ai” are hidden, it is clear that
any protocol graph branching equivalent to the graph on the left of Figure 2 satisfies both mutual
exclusion and equal opportunity14.

The graph on the left of Figure 2 (called the service graph in the sequel) can also be described by
a Lotos process, which behaves as follows: it chooses an address Ai non-deterministically, then
performs an “OPEN !Ai” event followed by a “CLOSE !Ai” event; finally the process goes back into
its initial state (in Lotos this is expressed using a recursive process call). The “noexit” keyword
indicates that process “SERVICE” never terminates (since it loops forever).

1 process SERVICE [OPEN, CLOSE] : noexit :=

2 choice Ai:ADDR []

3 (

4 OPEN !Ai;

5 CLOSE !Ai;

6 SERVICE [OPEN, CLOSE]

7)

8 endproc

4.2 Token-based protocols

The definition of the service given above is very abstract and only provides a requirement for a proper
functioning of the protocol (it specifies “what” to do, but not “how”). It is still necessary to define
the protocol allowing stations to access the shared resource according to service constraints.

This problem occurs for Local Area Networks, in which several stations compete for the “right to
speak” on a common medium. Various protocols belonging to the Medium Access Control part of

14This is also true for observation equivalence, but we adopt here branching equivalence for two reasons: when
the service graph contains no τ -transitions, both relations coincide [Mou92]; moreover, the algorithms for branching
bisimulation [GV90, FKM93] are more efficient.

RR n
�

2986

8 H. Garavel, L. Mounier

the physical layer of the Osi model (see, e.g., [Tan89]) have been designed for this purpose. Two
of them assume a circular organization of stations on a ring, either a physical ring (as in the token
ring protocol [ISO95b]) or a logical ring, build upon a tree-like physical network (as in the token
bus protocol [ISO90]). Some other protocols, such as Fddi15 [ISO95a], also rely on a more complex,
double-ring topology.

Roughly speaking, in token-based protocols, a particular message (called the token) circulates per-
manently on the ring. At a given instant, only the station that owns the token is allowed to access
the shared resource.

We will consider a network of n stations circularly placed on a (simple) ring. Although it could seem
natural, at first sight, to interconnect neighbour stations directly using Lotos rendez-vous, we need
to insert one auxiliary process between each pair of neighbour stations. There are n such auxiliary
processes in the ring; they are called links and noted Li. As discussed in Sections 4.3 and 5.1, they
are needed to model accurately the properties of the communication channels connecting the stations.

Due to the finite state verification methods we use, the verification is necessarily partial, in the
sense that it can only be performed for a fixed number of stations and links. In the sequel, we will
consider the case of a ring with three stations and three links. Choosing the value n = 3 is convenient
for us to present all the different verification methods used in the Cadp toolbox, starting from the
simplest ones (brute-force graph generation, used before Section 5.4) up to the more sophisticated ones
(compositional, on-the-fly, and symbolic techniques, used since Section 5.4). The issue of generalizing
our results for n > 3, or even for all values of n, will be discussed in Section 7.

We also assume that all stations and all links behave (almost) identically. Their respective behaviours
will be defined as particular instances of two generic Lotos processes, “STATION” and “LINK”, having
the following profiles:

1 process STATION [OPEN, CLOSE, PRED, SUCC] (A:ADDR, INIT:BOOL) : noexit :=

2 ...

3 endproc

4 process LINK [INPUT, OUTPUT] : noexit :=

5 ...

6 endproc

The “STATION” process has four gate parameters (enclosed in brackets) and two value parameters
(enclosed in parentheses): the gates “OPEN” and “CLOSE” connect the station to the shared resource;
the gates “PRED” and “SUCC” connect the station to its input and output links; the parameter “A”
denotes the address of the station ; the parameter “INIT” is true iff the station owns the token initially
(a single station should have this parameter set to true; we assume that it is S1). The “LINK” process
has two gate parameters, “INPUT” and “OUTPUT”, which connect the link to its neighbour stations.

The overall architecture of this ring is depicted on Figure 3. To specify the connections between
processes, we use six actual gates noted “PREDi” and “SUCCi”, which instanciate the formal gate
parameters “PRED” and “SUCC” of the stations and the formal gate parameters “INPUT” and “OUTPUT”
of the links. Station Si receives messages from its input link using gate “PREDi” and sends messages to
its output link using gate “SUCCi”. We instantiate all formal gate parameters “OPEN” (resp. “CLOSE”)
with a single actual gate also noted “OPEN” (resp. “CLOSE”), in order to express that all the stations
share the same access to the resource.

There are several possible ways to describe the ring architecture in Lotos. The simplest one, listed
below, is based upon the following observations: the stations execute concurrently and do not syn-
chronize directly with each other (therefore, they can be composed with the parallel composition
operator “|||”); the same observation holds for links; the group of stations and the group of links

15Fibre Distributed Data Interface

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 9

S1

L2

S3

SUCC1

L3

S2

PRED1

PRED2

PRED3 SUCC2

SUCC3

L1

R

OPEN

OPEN CLOSE

CLOSE

OPENCLOSE

Figure 3: Ring with three stations Si and three links Li

synchronize together on all gates “PREDi” and “SUCCi” (this is expressed using the parallel operator
“|[...]|”); to verify service properties, we only want to observe “OPEN” and “CLOSE” gates and we
therefore abstract all gates “PREDi” and “SUCCi” using the “hide” operator:

1 hide PRED1, SUCC1, PRED2, SUCC2, PRED3, SUCC3 in

2 (

3 (

4 STATION [OPEN, CLOSE, PRED1, SUCC1] (A1, true)

5 |||

6 STATION [OPEN, CLOSE, PRED2, SUCC2] (A2, false)

7 |||

8 STATION [OPEN, CLOSE, PRED3, SUCC3] (A3, false)

9)

10 |[PRED1, SUCC1, PRED2, SUCC2, PRED3, SUCC3]|

11 (

12 LINK [SUCC1, PRED2]

13 |||

14 LINK [SUCC2, PRED3]

15 |||

16 LINK [SUCC3, PRED1]

17)

18)

RR n
�

2986

10 H. Garavel, L. Mounier

4.3 Reliable links

As the Lotos rendez-vous mechanism is fully symmetric, the ring architecture defined above could
very well support bidirectional communication, allowing messages to circulate in both ways on the
ring. To model a uni-directional communication channel, symmetry must be broken. This is a reason
for introducing link processes in our formal description.

We assume that all links preserve message ordering (FIFO property), i.e., messages are received in the
same order as they are emitted. We model each link as a one-slot buffer, with a cyclical behaviour:
it receives a message on its input gate, then transmits this message on its output gate, and returns
to its initial state.

We first assume that links carry a simple type of message, noted “!TOKEN”, where “TOKEN” is a value
of some enumerated type. We obtain the following Lotos description for the reliable link:

1 process LINK [INPUT, OUTPUT] : noexit :=

2 INPUT !TOKEN;

3 OUTPUT !TOKEN;

4 LINK [INPUT, OUTPUT]

5 endproc

In Section 5, we will consider another kind of messages: candidatures, which have the form
“!CLAIM !Ai”, where “CLAIM” is a constant of the same enumerated type as “TOKEN”, and where Ai

is the address of a station. With two kinds of messages (tokens and candidatures), the behaviour of
the reliable link is described by the following Lotos process (where the “?” notation means receipt
of a value and is used to specify that the address transmitted is equal to the one received, and where
the “[]” operator denotes non-deterministic choice):

1 process LINK [INPUT, OUTPUT] : noexit :=

2 INPUT !TOKEN;

3 OUTPUT !TOKEN;

4 LINK [INPUT, OUTPUT]

5 []

6 INPUT !CLAIM ?Ai:ADDR;

7 OUTPUT !CLAIM !Ai;

8 LINK [INPUT, OUTPUT]

9 endproc

4.4 Basic stations

We now consider a station (called the basic station) that implements a very simple token-passing
protocol. The behaviour of this station is depicted on Figure 4 and can be explained as follows.
From its initial state, the station can immediately go to a privileged state, noted π, if its “INIT”
variable is equal to true; if not, the station must wait until the token is received before going to
state π. In state π, the station can access the shared resource and then pass the token to the next
station; it can also pass the token directly, without accessing the resource. In both cases, when
passing the token, the station looses its privilege, sets variable “INIT” to false, and returns to its
initial state. Resource accesses by station Si are modelled by two consecutive events “OPEN !Ai”
and “CLOSE !Ai”: as we are only interested in mutual exclusion and equal opportunity, we do not
otherwise model the actions performed by the station when accessing the resource.

The basic station can be described in Lotos by two mutually recursive processes shown below. We
introduce a “PRIVILEGE” process that expresses the behaviour of the station in state π: this process
is useful for factorization purposes and will also be present in more sophisticated versions of the

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 11

π

INIT:=falseINIT=true?INIT=false?

SUCC !TOKEN

OPEN !AiPRED !TOKEN

SUCC !TOKEN

INIT:=false

CLOSE !Ai

Figure 4: Behaviour graph of the basic station

protocol. The Lotos operator “->” is used to test the value of variable “INIT”. As Lotos does not
allow direct variable assignment, the value of variable “INIT” has to be modified indirectly, using
parameter passing.

1 process STATION [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR, INIT:BOOL) : noexit :=

2 [INIT = true] ->

3 PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai)

4 []

5 [INIT= false] ->

6 PRED !TOKEN;

7 PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai)

8 endproc

9

10 process PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR) : noexit :=

11 SUCC !TOKEN;

12 STATION [OPEN, CLOSE, PRED, SUCC] (Ai, false)

13 []

14 OPEN !Ai;

15 CLOSE !Ai;

16 SUCC !TOKEN;

17 STATION [OPEN, CLOSE, PRED, SUCC] (Ai, false)

18 endproc

Using the Cadp toolbox, the ring consisting of three basic stations connected by three reliable links
was proven to be branching equivalent to the service graph. This was done by generating the graph
of the ring using Cæsar and Cæsar.adt, and by comparing this graph to the one shown on the left
of Figure 2 using Aldébaran. Quantitative details about this verification can be found in Annex A
under reference #1.

The Cadp toolbox was also used to study two “pathological” situations in which all stations are
initialized with INIT = false, or several stations are initialized with INIT = true. The results obtained
confirm the intuition: in the former case, a deadlock is observed; in the latter case, mutual exclusion
property is violated.

5 Token-passing with unreliable links / reliable stations

We now consider a first kind of network failure: the possibility of having unreliable links, i.e., links
that can randomly loose messages. This assumption is realistic if we try to apply the token-passing

RR n
�

2986

12 H. Garavel, L. Mounier

mechanism in the context of Metropolitan Area Networks with possibly unreliable communications.
For instance, the token ring standard [ISO95b] allows any kind of point-to-point physical medium to
connect the stations.

5.1 Unreliable links

Informally, an unreliable link should behave as follows: it accepts a message on its “INPUT” gate and
decides internally to deliver this message on its “OUTPUT” gate, or to loose this message silently. There
are several possible modelings of unreliable links, which differ by their branching structure, especially
with respect to non-determinism and invisible actions τ . We chose the following one, whose behaviour
includes the behaviour of the reliable link when synchronized with an arbitrary environment:

1 process LINK [INPUT, OUTPUT] : noexit :=

2 INPUT !TOKEN;

3 OUTPUT !TOKEN;

4 LINK [INPUT, OUTPUT]

5 []

6 INPUT !TOKEN;

7 LINK [INPUT, OUTPUT]

8 endproc

If we replace reliable links with unreliable ones in a ring consisting of three basic stations, deadlock
states can be observed (see Annex A under reference #2).

In Section 5, we will consider semi-reliable links, i.e., links that may loose tokens but not candidatures:

1 process LINK [INPUT, OUTPUT] : noexit :=

2 INPUT !TOKEN;

3 OUTPUT !TOKEN;

4 LINK [INPUT, OUTPUT]

5 []

6 INPUT !TOKEN;

7 LINK [INPUT, OUTPUT]

8 []

9 INPUT !CLAIM ?Ai:ADDR;

10 OUTPUT !CLAIM !Ai;

11 LINK [INPUT, OUTPUT]

12 endproc

We will also consider fully unreliable links, i.e., links that may loose tokens as well as candidatures:

1 process LINK [INPUT, OUTPUT] : noexit :=

2 INPUT !TOKEN;

3 OUTPUT !TOKEN;

4 LINK [INPUT, OUTPUT]

5 []

6 INPUT !TOKEN;

7 LINK [INPUT, OUTPUT]

8 []

9 INPUT !CLAIM ?Ai:ADDR;

10 OUTPUT !CLAIM !Ai;

11 LINK [INPUT, OUTPUT]

12 []

13 INPUT !CLAIM ?Ai:ADDR;

14 LINK [INPUT, OUTPUT]

15 endproc

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 13

5.2 Le Lann’s and Chang-Roberts’ leader election algorithms

We now consider the problem of designing stations that can recover from token losses, i.e., finding a
fault-tolerant algorithm that works reliably even in presence of unreliable links. The basic idea for
recovery is quite simple: “every time a token is lost, a new token must be generated”, but it raises
several issues:

� The algorithm should be able to detect token losses, which is not obvious because links can
loose tokens silently; neither the station that sent the token nor the station that expects to
receive it are informed of a loss. The standard solution for this problem is based on timeout :
a station that did not receive the token for a while might assume that the token was lost; this
is usually triggered by the expiration of a timer. However, occurrence of timeout does not
guarantee that the token was actually lost, since we make no assumption on the relative speeds
of stations and links, nor on the time each station can spend in the critical section. We only
consider time-independent algorithms, i.e., algorithms that work correctly for any value of the
timers, rather than algorithms whose correctness rely on a particular tuning of timers.

� There should be at least one token in the ring (otherwise, deadlock ensues) and at most one
token (otherwise mutual exclusion is violated). Therefore, the algorithm should ensure that a
new token — and a single one — is generated each time a loss is detected.

The simplest solution to this problem assumes the existence of a distinguished station (called the
monitor) that is responsible for generating a single new token when the current one gets lost. This
solution forms the basis of the token ring protocol [ISO95b]. However, if we assume that all stations,
including the monitor, can be unreliable (a problem that will be considered in Section 6), this simple
solution is not sufficient. For this reason, the token ring protocol uses a more sophisticated algorithm
(often refered to as leader election) to recover from failures of the monitor.

In general, leader election algorithms aim at identifying a single object in a group of objects. We
consider here a particular case, in which these algorithms are applied to a group of stations connected
by a circular ring. Because of the mutual exclusion constraint, the problem is more complex than a
simple leader election: several elections can take place sequentially (or even simultaneously), and a
leader may already exists at the time an election is started.

The first leader election algorithm for a unidirectional ring network was proposed in 1977 by Gérard
Le Lann [Lan77]. Its principles can be summarized as follows:

� When the token is lost, all stations have to elect unanimously one station that will generate a
new token.

� A total order relation “<” is defined over the station addresses Ai. The election rule is such
that the functioning station with the smallest address will be elected.

� When a station believes that the token was lost (this is triggered by the expiration of a timer),
it starts an election (or participates to an already started election) by sending a candidature
message16. Candidatures circulate around the ring and have the form “!CLAIM !Ai”, where
“CLAIM” is some value of an enumerated type and Ai is the address of the station that issued
the candidature. A station becomes eligible after sending its candidature.

� When a station receives a candidature stamped with a smaller address than its own address, it
transmits this candidature and ceases to be eligible if it was.

16Our terminology slightly differs from Le Lann’s one since we use “token” instead of “control token”, and “claim”
or “candidature” instead of “(candidate) token”.

RR n
�

2986

14 H. Garavel, L. Mounier

� When a station receives a candidature stamped with a greater address than its own address, it
transmits this candidature and remains eligible if it was.

� When a station receives a candidature stamped with its own address, if it is eligible, it becomes
privileged and generates a new token; otherwise, it simply discards the candidature.

� Initially, there is no token in the ring and no station is privileged: the stations will spontaneously
start an election to determine which station will generate the first token.

In [Lan77], the behaviour of each station is defined by a state machine with four states (noted α, β,
γ, and α∗) and a list of transitions triggered by message (token or claim) receipts:

� in state α, the station is idle, and its timer is set;

� in state β, the station is involved in an election and eligible;

� in state γ, the station is involved in an election but not eligible;

� in state α∗, the station is supposed to “generate a new token and switch immediately to state
α”.

However, when trying to formalize in Lotos this behaviour, several ambiguities appeared, for which
we had to bring solutions:

� Only message receipts are specified, nothing is said about messages that stations can (or must)
send in a given state. We therefore added two message emissions: the token is sent when the
privileged station leaves the critical section, and claims emitted by other stations are transmitted
to the next station.

� Le Lann’s algorithm does not model the accesses to the shared resource. Moreover, the state
α∗ is really unclear and raises many questions (What is the meaning of “immediate switching”?
What happens to messages received in this state, especially timer awakening?) We replaced α∗

with a privileged state π, which is reached when the station receives the token from its neighbour
or becomes elected. In state π the station behaves as the process “PRIVILEGE” described in
section 4.4.

� As the value of timers is not important, we modelled timer awakening followed by claim emission
by a simple claim emission (which is equivalent from the environment point of view).

The Lotos description corresponding to Le Lann’s algorithm is the following:

1 process STATION [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR, INIT:BOOL) : noexit :=

2 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, ALPHA)

3 endproc

4

5 process ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR, S:STATE) : noexit :=

6 SUCC !CLAIM !Ai; (* timeout *)

7 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, BETA)

8 []

9 PRED !TOKEN;

10 PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai)

11 []

12 PRED !CLAIM ?Aj:ADDR;

13 (

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 15

14 [Ai < Aj] ->

15 SUCC !CLAIM !Aj;

16 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, S)

17 []

18 [Ai > Aj] ->

19 SUCC !CLAIM !Aj;

20 (

21 [S == BETA] ->

22 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, GAMMA)

23 []

24 [S <> BETA] ->

25 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, S)

26)

27 []

28 [Ai == Aj] ->

29 (

30 [S == BETA] ->

31 PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai)

32 []

33 [S <> BETA] ->

34 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, ALPHA)

35)

36)

37 endproc

38

39 process PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR) : noexit :=

40 OPEN !Ai;

41 CLOSE !Ai;

42 SUCC !TOKEN;

43 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, ALPHA)

44 []

45 SUCC !TOKEN;

46 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, ALPHA)

47 endproc

In 1979, Ernest Chang and Rosemary Roberts proposed an improvement [CR79] to Le Lann’s algo-
rithm, based on the following observation: when a station Si receives a “weak” candidature (i.e., a
candidature stamped with an address Aj such that Ai < Aj), station Si knows for sure that station
Sj may not win the election17. The “weak” candidature is therefore useless and can be “filtered” by
station Si, meaning that Si does not transmit this candidature to the next station. As each station
only transmits “strong” candidatures to the next station, it is clear that the number of messages
exchanged during an election is reduced18. If there are n stations, Le Lann’s algorithm requires
O(n2) messages in the average case, whereas Chang-Roberts’ algorithm requires O(n log n) messages
in the average case19. Practically, Chang-Roberts’ algorithm can be directly derived from Le Lann’s
algorithm by removing line 15 of the above Lotos text.

17In fact, Chang and Roberts used a different convention than Le Lann, i.e., the station that is elected is the one
with the greatest address; however, we keep Le Lann’s convention here to maintain consistency in this report.

18In this report, we focus on Chang-Roberts’ core algorithm, and we do not consider the possible variants suggested
in the “Startup conditions” and “Concluding comments” sections of [CR79].

19Chang-Roberts’ algorithm requires (2n − 1) messages in the best case and n(n + 1)/2 messages in the worst case.
There exist other leader election algorithms [Pet82, DKR82] with a worst case message bound of O(n log n).

RR n
�

2986

16 H. Garavel, L. Mounier

We first tried to verify automatically a ring consisting of three Le Lann’s stations connected with
three reliable links20. We generated the corresponding graph using Cæsar and compared it using
Aldébaran against the service graph (see Annex A under reference #3). Aldébaran revealed
that both graphs were not branching equivalent and produced a counter-example, a long execution
sequence (178 transitions) accepted by the ring protocol. This sequence clearly violates mutual
exclusion, since it ends with:

...τ∗ . (OPEN !A3) . τ∗ . (OPEN !A2)

Using Chang-Roberts’ stations instead, we performed the same experience (see Annex A under ref-
erence #4). The generated graph was smaller than previously, which is not surprising since Chang-
Roberts’ algorithm generates less messages than Le Lann’s one. Aldébaran reported that branching
bisimulation was not satisfied either and, again, exhibited a long sequence (132 transitions) violating
mutual exclusion:

...τ∗ . (OPEN !A1) . τ∗ . (OPEN !A2)

As the diagnostic sequences provided by Aldébaran were much too long to be exploited, we used the
Exhibitor tool for searching (on-the-fly) the shortest execution sequences starting from the initial
state and having the following form:

τ∗ . (OPEN !Ai) . τ∗ . (OPEN !Aj)

where i 6= j (see Annex A under references #16 and #17).

By looking at the minimal scenarios generated by Exhibitor, we were able to understand the reason
of the error: let S be the station with the smallest address; (1) S emits a first candidature while the
token is still circulating; (2) S receives the token and passes it to the next station; (3) S emits a
second candidature; (4) S receives the first candidature that completed its circular trip; (5) S believes
that it is elected and generates a new token, whereas another token is already circulating.

It is worth noticing that this problem must also occur with unreliable links, since all execution
sequences observed with reliable links are also possible with unreliable ones (this was also verified
automatically).

In order to understand why the algorithms did not work as we expected initially, we read Le Lann’s
article again and realized that the state machine expressing the behaviour of the station had to
be completed with an additional constraint, the so-called precedence rule. [Lan77] formulates this
constraint as follows: “a station which has generated a candidature and receives the token before its
own candidature has completed a period must remove this candidature from the ring”.

Obviously, this precedence rule is not simple to implement, since the ring topology does not allow
a given station to remove directly messages which are detained by remote stations. [Lan77] does
not explain how to combine the precedence rule and the state machines. [CR79] takes Le Lann’s
algorithm as it is and does not evoke this problem. In the next sections, we investigate how the
election algorithms could be modified to take into account the precedence rule.

5.3 A first implementation of the precedence rule

A simple solution for enforcing the precedence rule is to make sure that the ring never contains two
different candidatures issued by the same station at the same time. In this approach, each station
should avoid emitting several candidatures during the same election.

20In this experiment and the next ones, we assume (presumably without loss of generality) that stations are ordered
on the ring by increasing addresses.

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 17

This can be implemented by adding a boolean variable “N” to each station. This variable is true
when a candidature of this station circulates on the ring; initialized to false, it is set to true when a
candidature is emitted, and to false when a new election is started. For similar reasons, candidatures
should only be emitted in state α. These modifications to Le Lann’s algorithm lead to the following
Lotos description:

1 process STATION [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR, INIT:BOOL) : noexit :=

2 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, ALPHA, false)

3 endproc

4

5 process ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR, S:STATE, N:BOOL) : noexit :=

6 [(S == ALPHA) and not (N)] ->

7 SUCC !CLAIM !Ai; (* timeout *)

8 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, BETA, true)

9 []

10 PRED !TOKEN;

11 PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai, N)

12 []

13 PRED !CLAIM ?Aj:ADDR;

14 (

15 [Ai < Aj] ->

16 SUCC !CLAIM !Aj;

17 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, S, N)

18 []

19 [Ai > Aj] ->

20 SUCC !CLAIM !Aj;

21 (

22 [S == BETA] ->

23 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, GAMMA, N)

24 []

25 [S <> BETA] ->

26 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, S, N)

27)

28 []

29 [Ai == Aj] ->

30 (

31 [S == BETA] ->

32 PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai, false)

33 []

34 [S <> BETA] ->

35 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, ALPHA, false)

36)

37)

38 endproc

39

40 process PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR, N:BOOL) : noexit :=

41 OPEN !Ai;

42 CLOSE !Ai;

43 SUCC !TOKEN;

44 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, ALPHA, N)

45 []

46 SUCC !TOKEN;

47 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, ALPHA, N)

48 endproc

RR n
�

2986

18 H. Garavel, L. Mounier

Similarly, a modified version of Chang-Roberts’ algorithm can be obtained by removing line 16 of the
above Lotos text.

Using Cæsar and Aldébaran, we verified that a ring containing three modified versions of Le Lann’s
(resp. Chang-Roberts’) stations and three reliable links is branching equivalent to the service graph
(see Annex A under references #5 and #6).

When replacing the reliable links with semi-reliable links (see Section 5.1), we also verified that
branching equivalence was preserved (see Annex A under references #7 and #8).

However, when replacing the semi-reliable links with fully unreliable links (see Section 5.1), we
observed that branching equivalence was not satisfied (see Annex A under references #9 and #10).
In both cases, Aldébaran provided execution sequences (having 15 transitions and 38 transitions
respectively) leading to deadlock states. As these execution sequences were certainly not minimal,
we used the Terminator tool to search for the shortest execution sequences leading to deadlock,
which produced the following result (see Annex A under references #18 and #19):

(SUCC3 !CLAIM !A3) . (SUCC2 !CLAIM !A2) . (SUCC1 !CLAIM !A1) . deadlock

The deadlock scenario is the following: initially, each station issues a candidature that is immediately
lost by the corresponding link; then, each station is waiting for a receipt and cannot issue a new
candidature, because one has already been emitted.

However, we verified using Aldébaran that the ring is safety equivalent to the service graph, which
means that, even if the whole system can get into deadlock, mutual exclusion is never violated.

We therefore conclude that the modified algorithms described in this section are correct with respect
to token losses. However, in presence of candidature losses, they preserve mutual exclusion, but not
equal opportunity. In the next section, we will take into account both token and candidature losses.

5.4 A second implementation of the precedence rule

Quite logically, we now seek for an algorithm that would be “fully tolerant”, i.e., would be robust
enough to recover from all kind of losses from the links. Such an algorithm was suggested to us by
Laurent Gauthier, a former student of the first author, and we will hereafter consider an adaptation
of Gauthier’s algorithm [Gau92].

The key idea of this algorithm is to stamp all candidatures with an additional field indicating in
which election these candidatures have been issued. This allows each station to distinguish between
candidatures belonging to different elections (thus avoiding the mutual exclusion problem mentioned
in Section 5.2) and to issue several candidatures during the same election (thus avoiding the deadlock
problem mentioned in Section 5.3).

Instead of using an integer counter to number each election round, a simple bit is used, as only two
different values are sufficient. The resulting algorithms can be thought as a combination of a leader
election protocol and an alternating bit protocol.

Each station has a boolean variable “B”, the value of which denotes the current election round. The
value of “B” can be either true or false initially; it is complemented every time the station leaves the
privileged state and transmits the token to the next station. Therefore, a new election round starts
after each token receipt or token generation.

When a station receives one of its own candidatures, it determines whether this candidature was
generated during the current election round, by checking whether the control bit attached to the

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 19

candidature is equal to the current value of “B”. If so, the station enters in privileged state and
generates a new token. If not, the candidature is silently discarded.

Another boolean variable “C” is added to each station. This variable is set to true initially, and every
time the token is received. Its value remains true as long as the station believes it can win the current
election round, i.e., as long as it does not receive a candidature emitted by a station having a smaller
address. A station can only candidate when “C” is true.

1 process STATION [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR, INIT:BOOL) : noexit :=

2 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, true, true)

3 endproc

4

5 process ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR, C:BOOL, B:BOOL) : noexit :=

6 [C] ->

7 SUCC !CLAIM !Ai !B;

8 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, true, B)

9 []

10 PRED !TOKEN;

11 PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai, B)

12 []

13 PRED !CLAIM ?Aj:ADDR ?B0:BOOL;

14 (

15 [Ai < Aj] ->

16 SUCC !CLAIM !Aj !B0;

17 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, C, B)

18 []

19 [Ai > Aj] ->

20 SUCC !CLAIM !Aj !B0;

21 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, false, B)

22 []

23 [Ai == Aj] ->

24 (

25 [(B0 <> B) or not (C)] ->

26 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, C, B)

27 []

28 [(B0 == B) and C] ->

29 PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai, B)

30)

31)

32 endproc

33

34 process PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR, B:BOOL): noexit :=

35 OPEN !Ai;

36 CLOSE !Ai;

37 SUCC !TOKEN;

38 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, true, not (B))

39 []

40 SUCC !TOKEN;

41 ELECTION [OPEN, CLOSE, PRED, SUCC] (Ai, true, not (B))

42 endproc

The above algorithm can be modified according to Chang-Roberts’ suggestion, in order to reduce the
number of circulating messages. This can be done by removing line 16. Under this modification, the
following invariant holds: when a station receives one of its own candidatures (i.e., when Ai = Aj),
the value of its variable C must be true because only candidatures with the smallest address can do a

RR n
�

2986

20 H. Garavel, L. Mounier

complete round without being filtered by other stations; thus, the station receiving such a candidature
has necessarily the smallest address and was never able to receive a candidature with a smaller
address. Therefore, lines 25 and 28 of the above algorithm can be replaced with “[B0 <> B] ->”
and “[B0 == B] ->” respectively.

We used Cæsar and Aldébaran to verify a ring containing three modified versions of Le Lann’s
(resp. Chang-Roberts’) stations and three fully unreliable links. We first tried to use Cæsar to
generate directly the corresponding graph, but it happened to be very large, so we switched to a
compositional approach, splitting the ring into six communicating processes: three stations and three
links. We used Cæsar and Aldébaran to generate and minimize (modulo strong21 equivalence) the
graph of each station and each link separately. Then we used Aldébaran Bdd-based algorithms
[FKM93] to prove that the ring was branching equivalent to the service graph (see Annex A under
references #11 and #12).

We also studied variants of both algorithms in which line 6 was removed. Using Cæsar and
Aldébaran, we found that removing the guard “[C] ->” affects the correctness of the Le Lann
variant: the mutual exclusion property is violated (see Annex A under reference #13). However, the
same modification preserves the correctness of the Chang-Roberts’ variant, although it leads to larger
graphs because more candidatures can be emitted (see Annex A under reference #14). Variable “C”
could even be completely removed from the Chang-Roberts’ variant: this variable is not required for
the correctness of the algorithm, it is only useful for performance reasons (it reduces the number of
exchanged messages).

6 Token-passing with unreliable links / unreliable stations

It is easy to check that, in all above algorithms, new tokens are always generated by the same station,
the one with the smallest address. This is a consequence of our assumption about station reliability.
We now consider a more elaborate failure model, which cumulates both failures from the links and
crashes from the stations.

6.1 Station crashes

The crash model we consider here is the fail-silent behaviour mentioned in [Lan77] and [CR79]:
whenever a station crashes, it stops forever any message emission. This simple assumption needs to
be somehow adapted to our context:

� When a station crashes, the ring topology should not be broken. In [Lan77] this problem is
solved by assuming the existence of a ring reconfiguration algorithm. In the token ring protocol
[ISO95b], each station is connected to the ring using a coupler, which remains functioning even
if the station itself crashes.

We will therefore assume that a crashed station only stops spontaneous message emission, but
continues to accept messages from its previous station and to deliver these messages to the next
station. Thus, crashed stations become “transparent” to other stations on the network, without
altering the communication network.

Note that the case in which a crashed station can randomly loose messages is already covered
if we consider the combination of a potentially crashing station with its unreliable output link.

21Although branching equivalence would seem natural in this context, we preferred strong equivalence because these
equivalences coincide when the graph to minimize has no τ -transitions, which is the case for our stations and links,
and because the Paige-Tarjan algorithm for strong equivalence [PT87] implemented in Aldébaran is more efficient.

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 21

This leads to a failure model much more severe than the one of [Lan77] and [CR79], in which
links are supposed to be reliable.

� If a station crashes during an election, its candidature might continue to circulate for a while
on the ring. With the Chang-Roberts’ algorithm in particular, if the station with the smallest
address crashes, its candidature might remain forever, without being filtered, preventing other
stations from being elected.

This problem is acknowledged in [CR79], but no solution is proposed. For the same purpose,
[Lan77] suggests that other stations (e.g., the last elected station) could remove from the ring
the candidatures emitted by crashed stations (using, for instance, mutual help and mutual
suspicion algorithms). We adopt here a simpler approach, assuming that (the coupler of) a
crashed station has to filter all candidatures generated by the station before crashing.

� When a station crashes, the other stations are not directly informed about the incident: this
would be an unrealistic failure model in a distributed system framework. However, for verifica-
tion purpose, we must be able to observe crashes (this will be justified in Section 6.2) and we
introduce a new “CRASH !Ai” event indicating that station Si has just crashed.

Under these assumptions, the description in Lotos of a potentially crashing station can be the
following:

1 process STATION [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai:ADDR, INIT:BOOL) : noexit :=

2 ELECTION [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai, true)

3 [>

4 CRASH !Ai;

5 FAIL [PRED, SUCC] (Ai)

6 endproc

7

where:
� the call to process “ELECTION” expresses the normal functioning mode of the station (this

process will be detailed in Section 6.3);

� the Lotos operator “[>” (called the disabling operator) expresses that in any state of its normal
behaviour, the station can be disrupted by a “CRASH !Ai” action, then entering into a fail-silent
behaviour mode;

� the fail-silent behaviour mode is defined by the process “FAIL” which accepts both tokens
and candidatures, filters candidatures stamped with address Ai, and transmits tokens and
candidatures stamped with an address Aj different from Ai.

Formally, the “FAIL” process is defined as follows:

1 process FAIL [PRED, SUCC] (Ai:ADDR) : noexit :=

2 PRED !TOKEN;

3 SUCC !TOKEN;

4 FAIL [PRED, SUCC] (Ai)

5 []

6 PRED !CLAIM ?Aj:ADDR ?B:BOOL [Ai <> Aj];

7 SUCC !CLAIM !Aj !B;

8 FAIL [PRED, SUCC] (Ai)

9 []

10 PRED !CLAIM !Ai ?B:BOOL;

11 FAIL [PRED, SUCC] (Ai)

12 endproc

RR n
�

2986

22 H. Garavel, L. Mounier

6.2 Service with station crashes

The simple definition of the service given in Section 4.1 must be modified to take into account the
possibility of station crashes. There are some fundamental changes:

� A station Si might crash while it is accessing the shared resource. This modifies the mutual
exclusion property, since it becomes possible to have an execution sequence of the form:

τ∗ . (OPEN !Ai) . τ∗ . (CRASH !Ai) . τ∗ . (OPEN !Aj)...

in which there is no “CLOSE !Ai” occurring between events “OPEN !Ai” and “OPEN !Aj”. This
is the reason why we chose to model crashes as visible events, not as τ actions, in order to be
able to distinguish such situations from “actual” violations of mutual exclusion.

� A station Sj may crash while a station Si is accessing the shared resource. This allows execution
sequences of the form:

τ∗ . (OPEN !Ai) . τ∗ . (CRASH !Aj) . τ∗ . (CLOSE !Ai)...

However, such sequences are only allowed if i 6= j.

The corresponding service graph is too complex to be modelled by hand, even for a limited number
of three stations. We found more convenient to express this service more abstractly, as two mutually
recursive Lotos processes. Both processes are parameterized by a variable “E”, which denotes the
set of addresses of functioning stations; only those stations Si whose addresses Ai belong to “E”
can perform “OPEN !Ai”, “CLOSE !Ai” or “CRASH !Ai” actions; initially, “E” contains all addresses;
when a station crashes, its address is removed from “E”.

1 SERVICE [OPEN, CLOSE, CRASH] ({} + A1 + A2 + A3)

2

3 where

4

5 process SERVICE [OPEN, CLOSE, CRASH] (E:ADDR_SET) : noexit :=

6 choice Ai:ADDR []

7 (

8 [Ai isin E] ->

9 (

10 OPEN !Ai;

11 SERVICE_BIS [OPEN, CLOSE, CRASH] (E, Ai)

12 []

13 CRASH !Ai;

14 SERVICE [OPEN, CLOSE, CRASH] (E - Ai)

15)

16)

17 endproc

18

19 process SERVICE_BIS [OPEN, CLOSE, CRASH] (E:ADDR_SET, Ai:ADDR) : noexit :=

20 CLOSE !Ai;

21 SERVICE [OPEN, CLOSE, CRASH] (E)

22 []

23 CRASH !Ai;

24 SERVICE [OPEN, CLOSE, CRASH] (E - Ai)

25 []

26 (

27 choice Aj:ADDR []

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 23

CRASH !Ai CRASH !Ai

OPEN !Ai

CLOSE !Ai

Figure 5: Graph expressing projection of service with crashes on station Si

28 (

29 [(Aj isin E) and (Aj <> Ai)] ->

30 CRASH !Aj;

31 SERVICE_BIS [OPEN, CLOSE, CRASH] (E - Aj, Ai)

32)

33)

34 endproc

The graph of this service (generated using Cæsar and minimized using Aldébaran modulo branch-
ing bisimulation) has 20 states and 60 transitions. It is deterministic and has a single deadlock state,
reached after successive crashing of all the stations. Also, if we only consider the actions performed
by a single station Si (by hiding the actions of the other stations and reducing the resulting graph
using branching bisimulation), we obtain the “projection” graph represented on Figure 5.

6.3 Protocol with station crashes

We now seek for an algorithm that would be tolerant to both medium losses and station crashes. We
consider the algorithm given in Section 5.4 to which we have applied all the aforementioned changes
related to the Chang-Roberts’ optimization.

It is clear that, in order to avoid deadlocks, the guard “[C] ->” on line 6 of this algorithm must be
suppressed. Otherwise, if the station with the smallest address crashes after having sent candidatures,
other stations might be prevented from sending their own candidatures because they previously
received a “stronger” candidature from a station which is no longer functioning.

As we already mentioned in Section 5.4, removing the guard “[C] ->” does not affect the correctness
of the algorithm in presence of link losses and that variable “C” could be suppressed in such case.
Our algorithm is therefore derived from the one listed in Section 5.4 by removing lines 6 and 16, by
replacing lines 25 and 28 with “[B0 <> B] ->” and “[B0 == B] ->” respectively, and by removing
all occurences of variable “C”:

1 process STATION [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai:ADDR, INIT:BOOL) : noexit :=

2 ELECTION [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai, true)

3 [>

4 CRASH !Ai;

5 FAIL [PRED, SUCC] (Ai)

6 endproc

7

8 process ELECTION [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai:ADDR, B:BOOL) : noexit :=

9 SUCC !CLAIM !Ai !B;

RR n
�

2986

24 H. Garavel, L. Mounier

10 ELECTION [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai, B)

11 []

12 PRED !TOKEN;

13 PRIVILEGE [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai, B)

14 []

15 PRED !CLAIM ?Aj:ADDR ?B0:BOOL;

16 (

17 [Ai < Aj] ->

18 ELECTION [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai, B)

19 []

20 [Ai > Aj] ->

21 SUCC !CLAIM !Aj !B0;

22 ELECTION [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai, B)

23 []

24 [Ai == Aj] ->

25 (

26 [B0 <> B] ->

27 ELECTION [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai, B)

28 []

29 [B0 == B] ->

30 PRIVILEGE [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai, B)

31)

32)

33 endproc

34

35 process PRIVILEGE [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai:ADDR, B:BOOL): noexit :=

36 OPEN !Ai;

37 CLOSE !Ai;

38 SUCC !TOKEN;

39 ELECTION [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai, not (B))

40 []

41 SUCC !TOKEN;

42 ELECTION [OPEN, CLOSE, CRASH, PRED, SUCC] (Ai, not (B))

43 endproc

44

45 process FAIL [PRED, SUCC] (Ai:ADDR) : noexit :=

46 PRED !TOKEN;

47 SUCC !TOKEN;

48 FAIL [PRED, SUCC] (Ai)

49 []

50 PRED !CLAIM ?Aj:ADDR ?B:BOOL [Ai <> Aj];

51 SUCC !CLAIM !Aj !B;

52 FAIL [PRED, SUCC] (Ai)

53 []

54 PRED !CLAIM !Ai ?B:BOOL;

55 FAIL [PRED, SUCC] (Ai)

56 endproc

57

Using Cæsar and Aldébaran, we found that a ring with three of these (potentially crashing) stations
and three fully unreliable links was branching equivalent to the service presented in Section 6.2. This
verification was carried out using the compositional approach described in Section 5.4 (see Annex A
under reference #15).

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 25

One could wonder if modeling station crashes with the “disable” operator of Lotos has not the
undesirable effect of masking potential deadlocks, i.e., a station which is in a deadlock state being
able to escape from this situation by crashing, then executing the “FAIL” process. This answer to
this difficult question is negative in this particular case: branching equivalence guaranties that the
ring behaviour will have the same “branching structure” as the service graph defined in Section 6.2;
by looking at the projections of this graph given on Figure 5, one observes that, when a station Si

can crash, it can always do another action (“OPEN !Ai” or “CLOSE !Ai”) at the same time; therefore,
crashing is never an artefact to escape from deadlock.

7 Conclusion

To our knowledge, although the algorithms for distributed leader election last from the seventies
and early eighties, they have been lacking a formal treatment until very recently. In this report, we
have studied several variants of two existing leader election algorithms [Lan77, CR79] for stations
connected by a unidirectional ring network consisting of reliable or unreliable one-slot buffers. Two
related experiments can be found in the recent literature: [FGK95] gives a formal specification and
proves the correctness of Dolev-Klawe-Rodesh’s leader election algorithm for stations connected by a
reliable, unidirectional ring; [BKKM95] and [BKKM96] give a formal specification and proves the cor-
rectness of several distributed leader election algorithms for stations communicating via asynchronous
broadcasting facilities. Also, an older article [CP88] discusses the partial validation of Chang-Roberts’
algorithm using random simulation.

We can draw several conclusions from our case-study. First, we have pointed out that the algorithms
proposed in [Lan77, CR79] were not complete (the precedence rule was not implemented) and did
not guarantee the uniqueness of the elected leader in a token-passing context where several elections
can take place in sequence. We have also pointed out that these algorithms did not resist to losses
of messages by communication channels. We studied variants of these algorithms and proposed an
improved, simpler algorithm that tolerates both link failures and station crashes.

We believe that describing distributed algorithms formally is a fruitful task, since the use of a formal
method is likely to reveal ambiguities that would otherwise remain hidden. Such an approach is a
considerable improvement over the current practice, often based upon informal (natural language) or
semi-formal (state diagrams) notations. We consider that the international standard Lotos is very
appropriate for a concise description of complex distributed systems, as it combines clean theoretical
concepts borrowed from process algebras with high-level features suitable for software-engineering.
We found some Lotos operators very useful, for instance the disabling operator, which is necessary
for a compositional description of station crashes.

We have shown that automated verification techniques can be successfully applied to non-trivial
problems. In spite of the conciseness of their Lotos descriptions, leader election algorithms are very
complex, if not beyond the limits of human reasoning capabilities. Although this report presents our
experiments in a rather ordered way, this was not the case actually: when designing the algorithms,
we followed many trial-error-correction cycles and the right solution was never found at the first time.

We based our verification upon the use of bisimulations, by comparing (modulo branching or safety
equivalence) the graph of a protocol against the graph of its expected service. We believe that
bisimulation technology offers a practical alternative to other verification approaches based upon
temporal logics, for instance [FGK95, BKKM95, BKKM96]. This is specially true in the present case-
study, where the use of branching bisimulation guarantees mutual exclusion and equal opportunity
at the same time, while many temporal logic formulas would otherwise be required to express the
same properties. In general, however, it is not easy to determine which properties are to be verified,

RR n
�

2986

26 H. Garavel, L. Mounier

and how. This report provides a sketch of methodology, which, we believe, could be reused for the
specification and verification of other classes of distributed algorithms.

As regards efficiency, Annex A indicates that the correctness of the algorithms can be checked in
a few seconds (less than one minute, in most cases). This demonstrates the ability of the Cadp
toolbox to deal with complex systems. This was not true in 1988, when we started to study these
leader election algorithms. We had to wait until 1992 to perform complete verification, because
the tools were not able to tackle the whole complexity of the system, and did not provide us with
enough diagnostic information to understand why verification failed. The former problem was solved
by enhancing Aldébaran with on-the-fly, compositional and Bdd-based verification techniques, the
latter by introducing the Open/Cæsar environment and its on-the-fly analysis tools Exhibitor and
Terminator.

We should underline the fact that our verifications have been carried out for three stations only.
Given the figures of Annex A, it is likely that our experiments could be extended to a greater number
of stations. However, our approach does not allow to prove the correctness for any number n of
stations: a token-passing algorithm might very well be correct for some values of n (e.g., when n is
a prime number), but not all. The correctness for all n could be established either by hand-written
proofs, as in [Lan77, FGK95, BKKM95, BKKM96], or by a combination of manual and computer-
aided techniques, in which automatic demonstrators are used to verify induction hypotheses provided
by human experts. However, finding induction hypotheses for leader election algorithms is not easy,
due to the circular topology of the ring, and because all stations are not exactly alike (the behaviour
of a station depends of its address). This remains a challenging problem for further research.

It is therefore clear that model-based verification techniques cannot replace traditional proofs of
correctness. Yet, they can be used as “intelligent debuggers”, which help to detect design errors
earlier, thus increasing the level of confidence in a design and providing useful knowledge about the
behaviour of the system. This is more or less the usual approach followed by designers of distributed
systems, who often develop prototypes in C or C++ to simulate their designs. We are convinced
that a Lotos-based approach is more effective that the current practice: Lotos descriptions are
significantly shorter than their counterpart in C and several compilers exist that generate C code
from Lotos descriptions. Besides its formal verification capabilities, the Cadp toolbox provides
interactive simulation facilities (with advanced features such as unlimited backtracking), as well
as partial verification techniques that outperform simulation techniques by allowing a much larger
coverage of the possible execution sequences.

Acknowledgements

The authors are grateful to Jean-Claude Fernandez, Alain Kerbrat, and Radu Mateescu (In-
ria/Verimag, Grenoble, France) and to Roland Groz (Cnet Lannion, France) who have experi-
mented other variants of the leader election algorithms, and would like to thank Guy Leduc (Univer-
sity of Liège, Belgium) for his insightful comments about this report.

A Collected statistics

This Annex contains measures related to the verification of a network of three stations and three
links. We assume that the addresses of the stations are ordered as follows: A1 < A2 < A3. All the
execution times have been obtained on a SparcStation 20 running Solaris 2.4 with 128 megabytes of
main memory.

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 27

The following conventions are used. There are ten different kinds of stations, five different kinds of
links, and four possible verification results:

abbreviation kind of station see Section ...

B basic station 4.4

LL Le Lann’s original algorithm 5.2

CR Chang-Roberts’ original algorithm 5.2

LL1 Le Lann’s algorithm with first precedence rule 5.3

CR1 Chang-Roberts’ algorithm with first precedence rule 5.3

LL2 Le Lann’s algorithm with second precedence rule 5.4

CR2 Chang-Roberts’ algorithm with second precedence rule 5.4

LL3 Same as LL2 without the “[C] ->” guard 5.4

CR3 Same as CR2 without the “C” variable 5.4

F Same as CR3 with station crashes 6.3

abbreviation kind of link see Section(s) ...

T Link carrying tokens reliably 4.3

T Link carrying tokens unreliably 5.1

T.C Link carrying tokens and claims reliably 4.3

T .C Links carrying tokens unreliably and claims reliably 5.1 and 5.4

T .C Fully unreliable link 5.1 and 5.4

abbreviation verification result

≈B branching equivalence is satisfied

≈S safety equivalence is satisfied

6≈B [e] branching equiv. is not satisfied, with violation of mutual exclusion

6≈B [d] branching equiv. is not satisfied, with presence of deadlocks

The following table summarizes the measures obtained for enumerative verification: first, the graph
corresponding to the network is generated using Cæsar, then it is compared, modulo branching
equivalence, to the service graph of Section 4.1. For each experiment, the table gives: the kind
of stations and links involved; the number of states and transitions of the generated graph; the
verification result; and the total time needed for the complete verification process (in seconds).

reference station link states trans result time

#1 B T 42 52 ≈B 5

#2 B T 50 72 6≈B [d] 5

#3 LL T.C 126,577 319,010 6≈B [e] 59

#4 CR T.C 43,296 115,108 6≈B [e] 28

#5 LL1 T.C 16,985 42,423 ≈B 14

#6 CR1 T.C 6,572 14,516 ≈B 9

#7 LL1 T .C 30,085 77,680 ≈B 24

#8 CR1 T .C 9,308 21,078 ≈B 13

The following table summarizes the measures obtained for compositional, on-the-fly verification: first,
the graphs of the stations and links are generated separately using Cæsar and minimized, modulo
strong equivalence, using Aldébaran; then Aldébaran is used to compare on-the-fly, modulo
branching equivalence, the ring behaviour with respect to the service graph of Section 4.1 (except for
experiment #15, where the service graph of Section 6.2 is used instead). For each experiment, the
table gives: the kind of stations and links involved; the sizes of all reduced graphs under the form
“(s1, t1) × (s2, t2) × (s3, t3) × (sL, tL)3” where si and ti denote the number of states and transitions

RR n
�

2986

28 H. Garavel, L. Mounier

of the reduced graph for station Si, and where sL and tL denote the number of states and transitions
of the reduced graph for the links (all the links are the same); the number of states and transitions
of the product graph (obtained using Bdd computations); the verification result; and the total time
necessary for the complete verification process (in seconds).

ref. station link size of communicating processes states trans. result time

#9 LL1 T .C (15, 27) × (14, 26) × (13, 25) × (5, 12)3 3,759 10,883 6≈B [d] ≈S 48

#10 CR1 T .C (9, 21) × (11, 23) × (13, 25) × (5, 12)3 1,373 3,908 6≈B [d] ≈S 29

#11 LL2 T .C (16, 32) × (22, 50) × (18, 46) × (8, 21)3 81,888 250,944 ≈B 45

#12 CR2 T .C (8, 24) × (14, 42) × (18, 46) × (8, 21)3 9,568 32,808 ≈B 31

#13 LL3 T .C (16, 32) × (22, 52) × (18, 48) × (8, 21)3 625,440 1,795,200 6≈B [e] 270

#14 CR3 T .C (8, 24) × (12, 28) × (16, 32) × (8, 21)3 10,512 33,896 ≈B 38

#15 F T .C (14, 44) × (18, 52) × (22, 60) × (18, 96)3 162,995 609,297 ≈B 69

The following table summarizes the measures obtained for on-the-fly verification using the
Open/Cæsar verification tools. For each experiment, the table gives: the kind of stations and
links involved; the tool used; and the total time necessary for the complete verification process (in
seconds).

reference station link on-the-fly tool time

#16 LL T.C Exhibitor 14

#17 CR T.C Exhibitor 13

#18 LL1 T .C Terminator 14

#19 CR1 T .C Terminator 11

References

[AL91] M. Abadi and L. Lamport. The Existence of Refinement Mappings. Theoretical Computer
Science, 82(2):253–284, 1991.

[BB88] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14(1):25–59, January 1988.

[BFG+91] Ahmed Bouajjani, Jean-Claude Fernandez, Susanne Graf, Carlos Rodŕıguez, and Joseph
Sifakis. Safety for Branching Time Semantics. In Proceedings of 18th ICALP. Springer
Verlag, July 1991.

[BKKM95] J. J. Brunekreef, J.-P. Katoen, R. L. C. Koymans, and S. Mauw. Algebraic Specification of
Dynamic Leader Election Protocols in Broadcast Networks. In A. Ponse, C. Verhoef, and
S.F.M. van Vlijmen, editors, Proceedings of the Workshop on Algebra of Communicating
Processes ACP’94, Workshops in Computing, pages 338–357. Springer Verlag, 1995. Also
available as Technical Report P9324, University of Amsterdam.

[BKKM96] J. J. Brunekreef, J.-P. Katoen, R. L. C. Koymans, and S. Mauw. Algebraic Specification
of Dynamic Leader Election Protocols in Broadcast Networks. Distributed Computing,
9(4):157–171, January 1996.

[CGM+96] Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and Ferruccio Zu-
lian. Specification and Verification of the PowerScale Bus Arbitration Protocol: An
Industrial Experiment with LOTOS. In Reinhard Gotzhein and Jan Bredereke, edi-
tors, Proceedings of the Joint International Conference on Formal Description Techniques

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 29

for Distributed Systems and Communication Protocols, and Protocol Specification, Test-
ing, and Verification FORTE/PSTV’96 (Kaiserslautern, Germany), pages 435–450. IFIP,
Chapman & Hall, October 1996. Full version available as INRIA Research Report RR-
2958.

[CP88] Ana Cavalli and Etienne Paul. Exhaustive Analysis and Simulation for Distributed Sys-
tems, Both Sides of the Same Coin. Distributed Computing, 2, 1988.

[CR79] Ernest Chang and Rosemary Roberts. An Improved Algorithm for Decentralized
Extrema-Finding in Circular Configurations of Processes. Communications of the ACM,
22(5):281–283, may 1979.

[DKR82] D. Dolev, M. Klawe, and M. Rodeh. An O(n log n) Unidirectional Distributed Algorithm
for Extrema Finding in a Circle. Journal of Algorithms, 3:245–260, 1982.

[dMRV92] Jan de Meer, Rudolf Roth, and Son Vuong. Introduction to Algebraic Specifications
Based on the Language ACT ONE. Computer Networks and ISDN Systems, 23(5):363–
392, 1992.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1 — Equations and Initial
Semantics, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer
Verlag, 1985.

[Fer90] Jean-Claude Fernandez. An Implementation of an Efficient Algorithm for Bisimulation
Equivalence. Science of Computer Programming, 13(2–3):219–236, May 1990.

[FGK95] L. A. Fredlund, J. F. Groote, and H. P. Korver. Formal Verification of a Leader Election
Protocol in Process Algebra. In Proceedings of the Workshop on Algebra of Communicat-
ing Processes ACP’95, pages 285–308, 1995. Computing Science Reports, Report 95-14,
Eindhoven University of Technology. Also Technical Report R95-01, Swedish Institute of
Computer Science.

[FGK+96] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Laurent
Mounier, and Mihaela Sighireanu. CADP (CÆSAR/ALDEBARAN Development Pack-
age): A Protocol Validation and Verification Toolbox. In Rajeev Alur and Thomas A.
Henzinger, editors, Proceedings of the 8th Conference on Computer-Aided Verification
(New Brunswick, New Jersey, USA), volume 1102 of Lecture Notes in Computer Science,
pages 437–440. Springer Verlag, August 1996.

[FGM+92] Jean-Claude Fernandez, Hubert Garavel, Laurent Mounier, Anne Rasse, Carlos
Rodŕıguez, and Joseph Sifakis. A Toolbox for the Verification of LOTOS Programs.
In Lori A. Clarke, editor, Proceedings of the 14th International Conference on Software
Engineering ICSE’14 (Melbourne, Australia), pages 246–259. ACM, May 1992.

[FKM93] Jean-Claude Fernandez, Alain Kerbrat, and Laurent Mounier. Symbolic Equivalence
Checking. In C. Courcoubetis, editor, Proceedings of the 5th Workshop on Computer-
Aided Verification (Heraklion, Greece), volume 697 of Lecture Notes in Computer Science.
Springer Verlag, June 1993.

[Gar89] Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong, edi-
tor, Proceedings of the 2nd International Conference on Formal Description Techniques
FORTE’89 (Vancouver B.C., Canada), pages 147–162. North-Holland, December 1989.

RR n
�

2986

30 H. Garavel, L. Mounier

[Gar96] Hubert Garavel. An Overview of the Eucalyptus Toolbox. In Z. Brezočnik and T. Kapus,
editors, Proceedings of the COST 247 International Workshop on Applied Formal Methods
in System Design (Maribor, Slovenia), pages 76–88. University of Maribor, Slovenia, June
1996.

[Gau92] Laurent Gauthier. Private communication. June 1992.

[GS90] Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS Specifica-
tions. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the 10th Interna-
tional Symposium on Protocol Specification, Testing and Verification (Ottawa, Canada),
pages 379–394. IFIP, North-Holland, June 1990.

[GT93] Hubert Garavel and Philippe Turlier. CÆSAR.ADT : un compilateur pour les types ab-
straits algébriques du langage LOTOS. In Rachida Dssouli and Gregor v. Bochmann, edi-
tors, Actes du Colloque Francophone pour l’Ingénierie des Protocoles CFIP’93 (Montréal,
Canada), 1993.

[GV90] Jan Friso Groote and Frits Vaandrager. An Efficient Algorithm for Branching Bisimu-
lation and Stuttering Equivalence. In M. S. Patterson, editor, Proceedings of the 17th
ICALP (Warwick), volume 443 of Lecture Notes in Computer Science, pages 626–638.
Springer Verlag, 1990.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[ISO88a] ISO/IEC. File Transfer, Access and Management. International Standards 8571-*, Inter-
national Organization for Standardization — Information Processing Systems — Open
Systems Interconnection, Genève, 1988.

[ISO88b] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. International Standard 8807, International Organization for
Standardization — Information Processing Systems — Open Systems Interconnection,
Genève, September 1988.

[ISO89a] ISO/IEC. LOTOS Description of the Session Protocol. Technical Report 9572, Interna-
tional Organization for Standardization — Open Systems Interconnection, Genève, 1989.

[ISO89b] ISO/IEC. LOTOS Description of the Session Service. Technical Report 9571, Interna-
tional Organization for Standardization — Open Systems Interconnection, Genève, 1989.

[ISO90] ISO/IEC. Local Area Networks — Part 4: Token-Passing Bus Access Method and Phys-
ical Layer Specifications. International Standard 8802-4, International Organization for
Standardization — Information Processing Systems, Genève, 1990.

[ISO92a] ISO/IEC. Approved Algorithms for Message Authentication — Part 2: Message Au-
thenticator Algorithm. International Standard 8731-2, International Organization for
Standardization — Banking, Genève, 1992.

[ISO92b] ISO/IEC. Distributed Transaction Processing — Part 3: Protocol Specification. Interna-
tional Standard 10026-3, International Organization for Standardization — Information
Technology — Open Systems Interconnection, Genève, 1992.

[ISO92c] ISO/IEC. Formal Description of ISO 8072 in LOTOS. Technical Report 10023, In-
ternational Organization for Standardization — Telecommunications and Information
Exchange between Systems, Genève, 1992.

INRIA

Specification and Verification of various Distributed Leader Election Algorithms... 31

[ISO92d] ISO/IEC. Formal Description of ISO 8073 (Classes 0, 1, 2, 3) in LOTOS. Technical
Report 10024, International Organization for Standardization — Telecommunications
and Information Exchange between Systems, Genève, 1992.

[ISO95a] ISO/IEC. Fibre Distributed Data Interface (FDDI). International Standards 9314-*, In-
ternational Organization for Standardization — Information Processing Systems, Genève,
1989–1995.

[ISO95b] ISO/IEC. Local and Metropolitan Area Networks — Part 5: Token Ring Access Method
and Physical Layer Specifications. International Standard 8802-5, International Organi-
zation for Standardization — Information Processing Systems, Genève, 1995.

[ISO95c] ISO/IEC. LOTOS Description of the CCR Protocol. Technical Report 11590, Interna-
tional Organization for Standardization — Open Systems Interconnection, Genève, 1995.

[ISO95d] ISO/IEC. LOTOS Description of the CCR Service. Technical Report 11589, International
Organization for Standardization — Open Systems Interconnection, Genève, 1995.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering, 3(2):125–143, 1977.

[Lan77] Gérard Le Lann. Distributed Systems — Towards a Formal Approach. In B. Gilchrist,
editor, Information Processing 77, pages 155–160. IFIP, North-Holland, 1977.

[LL95] R. Lai and A. Lo. An Analysis of the ISO FTAM Basic File Protocol Specified in LOTOS.
Australian Computer Journal, 27(1):1–7, February 1995.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer Verlag, 1980.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mou92] Laurent Mounier. Méthodes de vérification de spécifications comportementales : étude et
mise en œuvre. Thèse de Doctorat, Université Joseph Fourier (Grenoble), January 1992.

[Mun91] Harold B. Munster. LOTOS Specification of the MAA Standard, with an Evaluation of
LOTOS. NPL Report DITC 191/91, National Physical Laboratory, Teddington, Middle-
sex, UK, September 1991.

[Par81] David Park. Concurrency and Automata on Infinite Sequences. In Peter Deussen, editor,
Theoretical Computer Science, volume 104 of Lecture Notes in Computer Science, pages
167–183. Springer Verlag, March 1981.

[Pet82] G. L. Peterson. An O(n log n) Unidirectional Algorithm for the Circular Extrema Prob-
lem. ACM Transactions on Programming Languages and Systems, 4(4):758–762, October
1982.

[PT87] Robert Paige and Robert E. Tarjan. Three Partition Refinement Algorithms. SIAM
Journal of Computing, 16(6):973–989, December 1987.

[QS83] Jean-Pierre Queille and Joseph Sifakis. Fairness and Related Properties in Transition
Systems — A Temporal Logic to Deal with Fairness. Acta Informatica, 19:195–220, 1983.

[Tan89] Andrew Tannenbaum. Computer Networks. Prentice-Hall, 1989.

RR n
�

2986

32 H. Garavel, L. Mounier

[Tur93] Kenneth J. Turner, editor. Using Formal Description Techniques – An Introduction to
ESTELLE, LOTOS, and SDL. John Wiley, 1993.

[vGW89] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in Bisimula-
tion Semantics (extended abstract). CS R8911, Centrum voor Wiskunde en Informatica,
Amsterdam, 1989. Also in proc. IFIP 11th World Computer Congress, San Francisco,
1989.

[Wes78] C.H. West. A General Technique for Communication Protocol Validation. IBM Journal
of Research and Development, pages 393–404, July 1978.

INRIA

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route desLucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

