A LoTos Specification of a “Transit-Node” *

Laurent Mounier
INRIA projet SPECTRE —~ VERIMAG!
Miniparc-ZIRST
rue Lavoisier
38330 MONTBONNOT ST MARTIN
FRANCE

e-mail: Laurent.MounierQimag.fr

Abstract

This report describes the formal specification and verification of a “Transit-Node”, an
abstraction of a routing component of a communication network. First, an informal definition
of the Transit-Node, initially proposed within the RACE project SPECS, is formally described
using the LoTos language. Then, it is verified following a model-based approach: the LoTos
specification is translated into a finite LTS, and its correctness is checked on this model.
Practically, all the verifications has been performed using CESAR-ALDEBARAN, a toolbox for
the verification of LoT0S programs.

This work was carried out in the framework of the French project VI'T (Verification, Types
and Time), those goal was to compare and evaluate different verification methods on a same
case study.

Introduction

Formal verification is a part of system design those purpose is to prove statically, on a system
description, some of the properties expected on its run-time behaviour. Therefore, it offers an
attractive way to increase the confidence often required on many system implementations which
are both hard to design, and impossible to test exhaustively. Thus, a considerable need for formal
verification methods appeared in many areas of computer science, such as asynchronous circuit,
communication protocols and distributed software design.

Formal verification has been largely studied on a theoretical point of view, and several approaches
have been proposed, with their associated description formalisms, and sometimes leading to
automatic verification methods. However, each approach is specific, and therefore is usually well
suited for the specification and verification of particular aspects of the system description.

*This work was supported by the French VI'T Project (Verification, Types and Time)

'VERIMAG is a joint laboratory of CNRS (Centre National de la Recherche Scientifique), INPG (Institut
National Polytechnique de Grenoble), UJF (Université Joseph Fourier, Grenoble-I) and VERILOG SA. VERIMAG
is associated with IMAG (Institut d’Informatique et de Mathématiques Appliquées de Grenoble). SPECTRE is a
project of INRIA (Institut National de Recherche en Informatique et Automatique).

This work was carried out within a French project called VI'T (for Verification, Types and Time),
which was intended to compare and evaluate several formal verification methods. More precisely,
the goal of this project was to specify and verify a same case study through different approaches,
in order to better identify choices and difficulties which are proper to a given approach, from the
ones common to each of them.

The case study chosen for this purpose is a description of a routing component of a communication
network, called a “Transit-Node”. This example was initially defined in the RACE project 2039
SPECS (Specification Environment for Communication Software). It consists of a simple transit
node where messages arrive, are routed, and leave the node.

This informal specification describes a Transit-Node at a rather high abstraction level. In fact,
it can be viewed as a list of requirements indicating what a correct Transit-Node should be, but
it does not provide any informations on how to design it. Therefore, design choices have to be
made during the formal specification phase, which are influenced by the description formalism
used.

One can object that this case study is very simple on a complexity point of view (number of
parallel components, size of each components, ... etc.). In fact, it is true that it does not reflects
all the difficulties and problems arising when trying to verify a real-world system. Nevertheless,
it remains interesting for two main reasons:

e most of the properties to verify are representative of the ones usually required on more
realistic examples ;

e the Transit-Node is supposed to function within a given environment, not explicited in the
informal description, but which must however be taken into account during the verification
phase.

This report is organised as follows: first, we recalled in section 1 the principles of the verification
method we choose to formally verify this case study, and we briefly present the toolset used in
practice. In section 2 we give the informal description of the Transit-Node, as initially defined
in the SPECS project, and in section 3 we propose a formal specification in LoTos. The verifi-
cation phase is then described in the subsequent sections: section 4 discusses the Transit-Node
environment, and section 5 to 8 are devoted to the correctness proof of the LoTos specification,
with respect to each requirements appearing in the informal description.

1 The verification framework

We present in this section the framework we used to specify and verify the Transit-Node.
More precisely, we first briefly recall the principles of the so-called “model-based” verification
method, and then we describe the software environment chosen in practice, namely the CESAR-
ALDEBARAN toolbox.

1.1 The model-based approach

A possible approach for parallel program verification consists in translating a program description
into a suitable abstract model, which represents its exhaustive behaviour. Then, the verification

phase can be carried out on this abstract model, deciding whether it satisfies or not the program
specification (a set of properties defining its expected behaviour). Several formalisms can be
used to express the program to be verified, provided that they have a well-defined operational
semantics. Thus, a possible abstract model is the labeled transition system (LTS, in the sequel)
associated to each program by this semantics. Finally, note that whenever this LTS is finite,
automatic verification can be considered.

Two classes of model-based verification methods are usually distinguished in practice, depending
on the formalism used to express the specification:

logical specifications:
They are expressed in terms of formulas of a temporal logic. Such logics allow to characterise
overall properties on the program behaviour, such as mutual exclusion, liveness, deadlock
freeness, ..., etc. In this case a satisfaction relation is defined between the program model
and the logical formulas, and any decision procedure for this relation offers a verification
method.

behavioural specifications:

They describe the expected behaviour of the program observed from a certain abstraction
level, for instance when considering as wisible only a subset of its actions. Thus, such
properties can be straightly expressed by a LTS, or in any description language which
can be compiled into a LTS (for instance the one used to describe the program itself).
As both the program and its specifications can be represented by LTS, the verification
phase consists in comparing these two LTS using suitable equivalence or preorder relations:
the program satisfies its specification whenever the two LTS are related. Therefore, any
decision procedure for such relations offers a verification method.

Usually these two approaches are considered as complementaries: some properties are easier to
express within a logical formalism, whereas some others can be straightly represented by a LTS.
However, for practical reasons (mainly tool availability), this verification of the Transit-Node
was performed only in terms of behavioural specifications.

Within this last approach, several relations have been proposed to compare the LTS representing
the program with the more abstract one representing its specification. Among these relations, an
important class relies on the bisimulation relation family [Par81], which offers a notion of equality
between two program behaviours defined on the same set of visible actions. More precisely, from a
general definition of bisimulation, several relations can be built, differing on how internal actions
(i.e., non visible ones) are dealt with during the LTS comparison. Two of them will be used
throughout this report, and this choice rely on the distinction usually made between safely and
liveness properties [Lam77]:

safety equivalence [BFGT91]:
This relation (noted =) exactly characterises the safety properties of systems: two LTS are
related if and only if they verify the same set of safety properties. Note that a specification
can be considered as a safety property when it defines a superset of the expected behaviour
of the program: in other words, the program can be considered as correct whenever its
behaviour remains included in the one defined by its specification.

branching bisimulation [GW&89]:
This relation (noted ~;) is stronger than safety equivalence (i.e., it distinguishes more LTS).

Moreover, whenever the two LTS under comparison are livelock-free (i.e., they do not con-
tain any circuit of internal actions), then this relation preserves liveness properties [NV90]:
if these two LTS are related, then they satisfy the same set of liveness properties. Note
that a specification should be considered as a liveness property whenever the behaviour it
defines must be eventually executed by the program to ensure its correction.

Finally, note that (several) efficient decision procedures exist for both relations.

1.2 The CAESAR-ALDEBARAN toolbox

To carry out the verification from a practical point of view, the software environment we used
is the CESAR-ALDEBARAN toolbox [FGM™92], which implements a model-based verification
method for the LoTos language®.

The toolbox is organised around two main components, a LoTos compiler, CaEsAR and a LTS
equivalence checker, ALDEBARAN.

CESAR:

The CasAR tool allows to compile a LoT0S description into a finite LTS. As the LoTos
language is build upon process algebra such as CCS [Mil80] and CSP [Hoa78], its opera-
tional semantics can be defined in terms of LTS. Therefore, a straightforward compilation
technic could be considered. However, an original feature of CESAR is to use an extended
petri net as an intermediate form during the compilation process. This leads to a more effi-
cient tool, even for large LoTos programs [GS90]. Finally, data parts of LoTOs programs,
expressed within an abstract data type formalism (the AcT-ONE language), is handled by
an independent tool, CaESAR.ADT, which produced a C code library used by C&sAR.

ALDEBARAN:

The ALDEBARAN tool allows to reduce or compare LTS with respect to various equiv-
alence or preorder relations such as strong bisimulation, safety equivalence or preorder,
and branching bisimulation. Furthermore, whenever the LTS under comparison are not re-
lated, a diagnostic is computed in terms of erroneous execution sequences. Finally, deadlock
and livelock detection can also be performed. Note that two algorithms are implemented
within the tool to deal with LoTos programs for those the underlying LTS is too large
to be straightly generated [FM91, FKM93]. Such algorithms are usually required when
considering realistic examples.

The architecture of the toolbox is summarised on the figure below:

'Lotos is a standard formal description technique for protocol and distributed systems [ISO8T].

- -

LOTOS program
to be verified

~~a -

CAESAR
|

CAESAR.ADT

CAE_Si_AR
CAESAR.ADT

LTS

ALDEBARAN ALDEBARAN

minimization comparison

reduced LTS Tl"l_le / Fals.e
+ diagnostic

Architecture of the CE£SAR-ALDEBARAN toolbox

2 The “Transit-Node” case study

We give here the informal specification of the Transit-Node, as it appeared in the SPECS
project 2. We also indicate each modifications and corrections brought to this initial description
during the VI'T project.

clause 1 The system to be specified consists of a transit node with:

e one Control Port-In

%its structuring in clauses and their numbering is due to A. Arnold, and it facilitates further references.

e one Control Port-Out

N Data Ports-In

N Data Ports-Out

o M Routes Through

(The limits of N and M are not specified.)

clause 2 (a) Each port is serialized.

(b) All ports are concurrent to all others. The ports should be specified as separate, concurrent
entities.

(¢) Messages arrive from the environment only when a Port-In is able to treat them.

clause 3 The node is “fair”. All messages are equally likely to be treated, when a selection
must be made,

clause 4 and all messages will eventually transit the node, or be placed in the collection of
faulty messages.

% Modification July 93 * and all data messages will eventually transit the node, or become
faulty. ***

clause 5 [Initial State : one Control Port-In, one Control Port-Qul.

clause 6 The Control Port-In accepts and treats the following three messages:

(a) Add-Data-Port-In-&-Out(n)

gives the node knowledge of a new Port-In(n) and a new Port-Out(n). The nodes
commences to accept and treat messages sent to the Pori-In, as indicated below on
Data Port-In.

(b) Add-Route(m),(n(i),n(j)...))
gives the node knowledge of a route associating route m with Data-Porl-
Out(n(i),n(j),...).

(c) Send-Faults

routes all saved faulty messages, if any, to Control Port-Out. The order in which the
faulty messages are transmitted is not specified.
*¥¥% Modification July 93 *** routes some messages in the faulty collection, if

any, ... *¥**

clause 7 A Data Porl-In accepts and treats only messages of the type :

o Route(m).Data

(a) The Port-In routes the message, unchanged, to any one (non determinate) of the
Data Ports-Out associated with route m.

*¥% Modification march 93 *** .. to any one (non determinate) of the open Data
Ports-Out associated with route m. If no such port exists, the message is put in the
faulty collection. ®**

(b) (Note that a Data Port-Out is serialized — the message has to be buffered until
the Data Port-Out can process it).

(c¢) The message becomes a faulty message if its transit time through the node (from
initial receipt by a Data Port-In to transmision by a Data Port-Out) is greater than
a constant time 7.

clause 8 Data Ports-Out and Control Port-Out accept messages of any type and will transmit
the message out of the node. Messages may leave the node in any order.

clause 9 All faulty messages are saved until a Send-Faults command message causes them to
be routed to Control Port-QOul.

*¥%% Modification July 93 *** All faulty messages are eventually placed in the faulty collection
where they stay until ... ***

clause 10 Faulty messages are (a) messages on the Control Port-In that are not one of the
three commands listed, (b) messages on a Data Port-In that indicate an unknown route, or (c)
messages whose transit time through the node is greater than 7.

clause 11 2 (a) Messages that exceed the transit time of 7 become faulty as soon as the time
T is exceeded.

(b) It is permissible for a faulty message not to be routed to Control Port-Out

*%% Modification July 93 *** _ not to be routed to Conirol Port-Outl by a Send-Faults com-
mand***

(because, for example, it has just become faulty, but has not yet been placed in a faulty message
collection),

(c) but all faulty messages must eventually be sent to Control Port-Out with a succession of
Send-Faults commands.

clause 12 It may be assumed that a source of time (time-of-day or a signal each time interval)
is available in the environment and need not be modeled within the specification.

®The stucturation in three parts of this clause dates back to july 93

3 A Lotos specification of the “Transit-Node”

This section is devoted to the formal specification of the Transit-Node using the LoTos language.
We first present the general architecture of the specification, and then we specify each of its
components, following the informal description recalled in section 2.

3.1 Architecture of the specification

At the higher level (i.e., from an external point of view), the Transit-Node can be viewed as a
“black box”, interacting with its environment either by its control ports, or by its data ports.
Thus, if we call CI (resp. CO) the interacting point associated to the Control Port-In (resp. to
the Control Port-Out) and DI (resp. DO) the one associated to the Data Port-In set (resp. to the
Data Port-Out. set), we obtain the following representation:

CI DI

Transit-Node

CO DO

External representation of the Transit-Node

According to the informal description, all ports are concurrent to all others, and they should be
specified as separate entities (clause 2 (a)). Consequently, in the LoTos specification, the ports
will be modeled by four distinct processes:

e process Controller, for Control Port-In
e process ErrHandler, for Control Port-Out
e process DataInPorts, for the set Data Port-In

e process DataOutPorts, for the set Data Port-Oul.

CI DI

Controlet DatalnPorts

Errhandle DataOutPorts

]

CO DO

Process decomposition of the LoTos specification

Before discussing how these processes communicate together, we first specify each of them in
turn. Then, we come back to the whole specification in section 3.3.

3.2 Modeling the ports

As usual in LoTos, data and control parts of processes are specified separately.

3.2.1 Data types

Associated to the ports, several data sets have to be specified (e.g., the set of existing routes,
the collection of faulty messages, ..., etc.). We give here an overview of the abstract data types
used in the specification to represent these sets.

Data messages, port and route identifiers:

Since the data part of the messages is not relevant, data messages are represented by natural
numbers called “envelopes”, and belonging to a sort Env. Similarly, data ports and routes are
identified by natural numbers, belonging respectively to sorts called PortNo and RouteNo.

Message lists:

Lists of data messages are represented by a sort EnvList, build from two constructor operators,

e emptyl, representing the empty list,

e insert(l,e), representing the list 1 extended by the envelope e of sort Env,
and four non-constructor operators,

e head(1) and tail(1l), delivering respectively the head and the tail of list 1,

e e IsIn 1, indicating whether envelope e belongs or not to list 1,

e remove(e,1l), which returns a new list equal to 1 but without envelope e (which may or
not belong to 1).

Port sets:

Sets of data port identifiers are represented by a sort PortSet, build from two constructor
operators,

e emptyset, representing the empty port set,

e add(p,ps), representing the port set ps extended by the new port p of sort PortNo,
and two non-constructor operators,

e p IsIn ps, returning whether port p is or not present in port set ps,
e psl includes ps2, returning whether port set ps2 is included or not in port set psi.

4. Route sets:

Sets of route identifiers are represented by a sort RouteSet, build from two constructor operators,
e emptyrl, representing the empty route set,

e insert(r, ps, rs), representing the route set rs extended by the new route r (of sort
RouteNo) which defines the port set ps (of sort PortSet). In other words, ps is the port
set associated to the new route r,

and with three non-constructor operators,

e r IsIn rs,indicating whether route r is or not present in the route set rs,

e route(r,rs), returning the port set associated to route number r in the route set rs
(assuming route r belongs to rs),

e update(r,ps,rs), returning a new route set equal to rs, but where the port set associated
to route r is replaced by the port set ps (assuming route r belongs to rs).

The formal specification of these data types can be found in appendix.

3.2.2 The Control Port-In

This port accepts and treats the control messages received by the Transit-Node, but it also has
to manage two sets rl and ps, representing respectively the routes and data ports defined so far.
More precisely, the set ps ensures that no data port is created twice (clause 6 (a)), and the set
rl is intended to keep track of the current status of each route already defined (this set will be
consulted by other processes).

On reception of a control message, the behaviour of this process is the following:

10

Add-Data-Port-In-&-Oul(p):
if p does not already belong to ps then a notification is sent to processes DataInPorts and
DataOutPorts (by a Create-Port(p) internal message), and the new port p is added to the
port set ps. Otherwise, no action is performed.

Add-Route(r,s):
either the new route r is inserted to the set rl, or this set is simply updated if this route
was already defined.

Send-Faulls:
a notification is sent to the process ErrHandler (by an Error-Out internal message), which
manages the buffer of faulty messages

Other-Command: (representing any incorrect control message)
a notification is sent to the process ErrHandler (by a Control-Error-In internal message),
indicating that a new incorrect control message has been received.

As we shall see later, the process Controller may also receive requests from the other processes
regarding the status of a given route (Route-Query (r) internal message). If this route has been
correctly defined, then its associated port set s is returned (Route-Answer(r,s) internal message),
otherwise the Route-Answer(r, }) internal message is returned.

The LoTos specification of process Controller is then the following:

process Controller [CI, erri, erro, crep, rq, ral
(rl:RouteSet, ps:PortSet) : noexit :=

(* Valid commands from control-port-in *)
CI 'Add_Data_Port ?n:PortNo [not (n IsIn ps)] ;
crep !n ; (* port creation *)
Controller [CI, erri, erro, crep, rq, ral (rl, add(m,ps))
[]
CI 'Add_Route 7r:RouteNo ?s:PortSet ;
AdRoute [CI, erri, erro, crep, rq, ral (rl, ps, r, s)
[]
CI !Send_Faults ;
erro ; (* error out *)
Controller [CI, erri, erro, crep, rq, ral (rl, ps)

(* Other command from control-port-in *)
[]
CI 'Other_Command ;
erri ; (* error in *)
Controller [CI, erri, erro, crep, rq, ral (rl, ps)

(* Route query from other processes *)
[]
rq 7r:RouteNo (* route query *)
[(r IsIn rl) and not(route(r, rl) == emptyset)
and (ps includes route(r, rl))] ;
ra 'route(r, rl) !r 'e ; (* route answer *)
Controller [CI, erri, erro, crep, rq, ral (rl, ps)

11

(]
rq ?r:RouteNo (* route query *)
[not(r IsIn rl) or route(r, rl) == emptyset
or not(ps includes route(r, rl))] ;
ra !Unknown_Route !r 'e ; (* route answer *)
Controller [CI, erri, erro, crep, rq, ral (rl, ps)
endproc

where the subprocess AdRoute is defined by:

process AdRoute [CI, erri, erro, crep, rq, ra]
(rl:RouteSet, ps:PortSet, r:RouteNo, s:PortSet) : noexit :=

[r IsIn rl] -> (* update an existing route *)
Controller [CI, erri, erro, crep, rq, ral (update(r, s, rl), ps)

]
[not (xr IsIn rl)] -> (* add a new route *)
Controller [CI, erri, erro, crep, rq, ral (imsert(r, s, rl), ps)
endproc

3.2.3 The Data Port-In

The process DataInPorts manages the Data Port-In set. Here again, to satisfy clause 2 (a),
all data ports-in are modelised as independent processes, without any interaction between each
others.

After its activation (notified by the Controller process), each data port-in process (called Inport
in the sequel) becomes able to receive and treat data messages. More precisely, on reception of
a Route(r).Data message, the behaviour of an Inport process is the following:

1. an internal Route-Query(r) message is sent to the process Controller, to determine the
current status of route r,

2. e if the route exists and is well defined (reception of a Roule-Answer(r,s) internal mes-
sage from the Controller), then the data message is delivered to one (non deter-
ministically chosen) data port-out referenced by s. This is performed by sending an
Input-Output internal message to the DataPort0Out process.

o Otherwise, the message is considered faulty (clause 7 and 9), and it is transmitted to
the ErrHandler process (by sending a Data-Error-In(e) internal message)

In the LoTos specification, we left aside the dynamic creation of the Inport processes. In fact, if
such a solution would have been possible in theory, it is not allowed by the C&SAR compiler since
it may lead to an infinite state model. Furthermore, the maximal number of data ports which
could be created is supposed to be bounded by a value N (according to clause 1). Consequently,
all Inport processes are created statically (one per potential data port-in), and they are activated
on reception of a corresponding Create-Port internal message:

process DataInPorts [DI, crep, rq, ra, erri, io] : noexit :=

12

(crep !0 of PortlNo ; Import [DI, rq, ra, erri, io] (0 of PortNo))
[11

(crep !1 of PortlNo ; Import [DI, rq, ra, erri, io] (1 of PortNo))
[11

[11
(crep !N of PortlNo ; Import [DI, rq, ra, erri, io] (N of PortNo))
endproc

The specification of an Inport process is the following;:
process Inport [DI, rq, ra, erri, io] (n:PortNo) : noexit :=

DI !'n 7e:Env 7r:Routelo ;
rq 't ; (* route query for the Controller process *)

(
ra ?s:PortSet !r ; (* positive answer *)
choice outp:PortNo [] [outp IsIn s] -> io !outp l!e ;
Inport [DI, rq, ra, erri, io] (m)
(]
ra 7er:ErrorCode !r ; erri l'e ; (x* negative answer *)
InPort [DI, rq, ra, erri, io]l (m)
)
endproc

3.2.4 The Data Port-Out

The process DataOutPorts manages the Data Port-Out set. As for the data ports-in, each port is
modeled by an independent process, without any interaction with the other data ports-out. After
its activation, each of these processes (called OutPort in the sequel) must be able to perform the
following tasks:

e to store in an initially empty buffer 1 the data messages transmitted by the process
DataInPorts (i.e., on reception of an Input-Output internal message)

e to route these messages outside the Transit-Node (and then to remove them from buffer 1)

e to manage the time spent in the Transit-Node by each data message, and to declare faulty
the ones for which this value is greater than a constant time Tc. Each timed-out message
must then be sent to the ErrHandler process (using a Timeout internal message).

As for Inport process the set of OutPort processes are created statically:
P P p y
process DataOutPorts [DO, crep, io, timeout] : noexit :=
(crep !0 of PortNo ; OutPort [DO, io, timeout] (0 of PortNo, emptyl))
[11
(crep !1 of PortNo ; OutPort [DO, io, timeout] (1 of PortlNo, emptyl))
[11
(crep !N of PortNo ; OutPort [DO, io, timeout] (N of PortNo, emptyl))
endproc

13

In its current version, the LoTos language is not really suitable to specify time considerations on
a quantitative point of view. Consequently, we chose to model the “timeout” of a data message
by a simple non deterministic choice: any data message with a correct route number can either
be routed correctly outside the node or becoming faulty because its transit time within the node
exceeded constant T'c. Thus, we preserve the exhaustive behaviour of the Transit-Node, as it is
expected from its informal description.

The LoTos specification of an OutPort process is then straightforward:

process OutPort [DO, io, timeout] (n:PortNo, 1l:EnvList) : noexit :=

io !'n 7e:Env [not (e IsIn 1)]; (* reception of a data msg from DatalnPorts *)
OutPort [DO, io, timeout] (n, insert(e, 1))

a
[not (1 == emptyl)] ->
(
(DO !'n 'head(l) ; (* emission of a data msg outside the node *)
OutPort [DO, io, timeout] (n, tail(l)))
|
(timeout 'head(l) ; (* timed-out data msg ==> faulty *)
OutPort [DO, io, timeout] (n, tail(l)))
)
endproc

3.2.5 The Control Port-Out

The last port to be modelised is the Control Port-Out, represented by the ErrHandler process.

The goal of this process is to store the set of faulty messages (control messages or data messages)
transmitted by processes Controller, DataInPorts or DataOutPorts through Control-Error-In,
Data-Frror-In or Timeout internal messages. Moreover, on reception of an Frror-Out internal
message from the Controller, all faulty messages have to be sent outside the node on the control
port-out.

Here again, to ensure that the model obtained from our LOTOS specification remains finite, we
have to ensure that the buffer of faulty messages remains finite itself. Assuming the number of
distinct messages received by the Transit-Node is finite, a sufficient condition is then to decide
that each message (data or control) will be stored only once in this buffer. The solution chosen
to implement this buffer is the following:

o faulty data messages are stored in a message list 1, of sort EnvList

o faulty control messages, which are all designed by the unique notation Other-Command,
are represented by a boolean value b: b is true if at least one faulty control message is
present in the buffer, and is false otherwise.

We can now deduce a LoToSs specification for process ErrHandler:
process ErrHandler [cerri, derri, timeout, erro, CO]

(b:Bool, 1:EnvList) : noexit :=

14

cerri ;

ErrHandler [cerri, derri,

|

timeout, erro,

derri ?e:Env [not (e IsIn 1)] ;

ErrHandler [cerri, derri,

N

timeout, erro,

derri ?e:Env [e IsIn 1] ;

ErrHandler [cerri, derri,

N

timeout, erro,

timeout ?e:Env [not (e IsIn 1)] ;

ErrHandler [cerri, derri,

N

timeout, erro,

timeout ?e:Env [e IsIn 1] ;

ErrHandler [cerri, derri,

1
erro ;

Co 'b !1

ErrHandler [cerri, derri,

endproc

timeout, erro,

timeout, erro,

3.3 Communications inside the node

It remains to describe how these processes communicate inside the Transit-Node. The table below
summarises the internal communication messages which have been introduced so far, together

with their corresponding LoTOS notation.

co] (true, 1)

c0] (b, insert(e,l))

co] 1)
co]

insert(e,l))

co] 1)

C0] (false, emptyl)

‘ Designation ‘ LoTos representation (gate) ‘ Description
Route-Query(r) rq 'r requests for status of route r
Route-Answer(r,s) | ra !'s Ir delivers port set s associated to route r
Route-Answer(r,) | ra !'Unknown !'r indicates that route r is not correctly defined
Control-Error-In cerri puts a control message in the faulty message buffer
Data-Error-In(e) derri le puts data message e in the faulty message buffer
Error-Out erro requests for flushing out the faulty message buffer
Create-Port(p) crep !p creates a new data port p
Input-Output(p,e) io Ip le puts message e in the buffer associated to port p
Timeout(e) timeout !e puts timed-out message e in the faulty buffer

From the definition of the different processes, it results that communications inside the node are

organised as follows:

15

CI DI

Ta

T
Controler i DatalnPorts

crep

erro cerrl

derri

10

Errhandler . DataOutPorts
timeout

CO DO

Internal representation of the Transit-Node

Such an architecture can be straightly expressed in LoTos:

hide rq, ra, cerri, derri, erro, crep, io, timeout in

(
(
Controller [CI, cerri, erro, crep, rq, ra] (emptyrl, emptyset)
| [cerri, erroll
ErrHandler [cerri, derri, timeout, erro, CO] (false, emptyl)

16

| [crep, rq, ra, derri, timeout]|

(
Datainports [DI, crep, rq, ra, derri, io]
| [io] |
Dataoutports [DO, crep, io, timeout]
)

4 Model Generation

To ensure the correction of our LoTOs specification of the Transit-Node, it will be necessary to
translate it into a finite state model, i.e., a finite LTS. First we show how this initial specification
need to be extended to deal with the environment of the Transit-Node, and then we discuss the
model generation from a practical point of view.

4.1 Modeling the environment

As it appears in its informal description, the Transit-Node represents an open system, able to
receive any (potentially infinite) number of distinct control or data messages, and in any order.
Such a system cannot be represented by a finite LTS. Therefore, we have to limit this too general
context, and to turn back to a more restrictive environment.

However, one of the interests of process algebra formalisms (like LoTo0s) is to allow a composi-
tional description of such a system (i.e., in a so-called constraint-oriented specification style):

1. the Transit-Node is specified as an independent process, without any external constraints
(it may not be represented by a finite LTS),

2. the environment is specified as well as an independent process, including all the required
constraints,

3. the overall specification is then defined as the parallel composition of these two processes
(and therefore can be represented by a finite LTS).

Thus, the description remains modular, and the environment can be easily update without
modifying the central part of the specification.

In the remainder of this section we give a LoTos specification for the environment we chose to
consider.

4.1.1 Requirements

The environment has to feed the Transit-Node with control and data messages, which can be
considered as tuples. To ensure that the LTS representing the exhaustive behaviour of the system
will be finite state, it must satisfy the following requirements:

1. the size of the data domains associated to each message fields must be finite, which is a
necessary condition to obtain a finite LTS from a LoTos program,

17

2. the number of copies of each data messages (or erroneous control messages) present inside
the node must be finite, since these messages have to be stored.

To satisfy requirement 1, it is sufficient to add to the informal node description the extra con-
straint specifying that the number of distinct data message is finite. Other data domains (pre-
sented in section 3.2.1) are already supposed to be finite in the informal description: since the
number of ports is supposed to be bounded by N, the numbers of distinct routes and distinct
port and route sets are necessarily bounded too.

To show how to satisfy requirements 2, we give the LoToS specification of two independent
processes (the Data Msg Generator and the Control Msg Generator), whose respective goals
are to deliver data and control messages to the Transit-Node.

4.1.2 The data message generator

To satisfy requirement 2, we modelise the environment in such a way that a data message is sent
to the Transit-Node only if no copy of the same message is already present inside it (so the total
number of copies inside the node is bound to 1). Consequently, we have to manage a message list
1 to keep track of the data messages already sent to the node and which are still inside. Thus,
the process Data Msg_Generator interacts with the node not only through a gate DI, but also
through gates DO and CO. Finally, data messages are always sent to the node in any order.

The corresponding L.OTOS process is the following;:

process Data_Msg_Generator [DI, €O, DO] (1:EnvList) : noexit :=

(
DI ?n:PortNo ?e:Env ?r:RoutelNo [not (e IsIn 1)] ;
Data_Generator [DI, DO, CO] (insert(e, 1))
(* send a new data message to the node *)

(]
DO ?n:PortNo 7e:Env ;
Data_Generator [DI, DO, CO] (remove(e, 1))
(* message e is no longer in the node => remove it from 1 *)

(]
CO ?b:Bool 711 ;
Data_Generator [DI, DO, CO] (intersect(l, 11))
(* messages of list 11 are no longer in the node => remove them from 1 *)

)

endproc

4.1.3 The control message generator

The main difficulty when specifying the control message generator is to ensure that the resulting
environment will be general enough to obtain the exhaustive behaviour of the Transit-Node. In-
deed, control messages largely influence this behaviour, and the environment should provide most
of the “unexpected” scenarios which may alter the correction of the specification. For instance,
a scenario in which a given data port cannot be created must be provided. Unfortunately, it is
not possible in practice to modelise a large set of distinct sequences, since it would lead to a too
large model.

18

The solution we adopted is to select for each control message a set of sequences which seems to be
relevant, and which leads to a reasonable size model. For a sake of clarity, the LoTos specification
of the Control Msg _Generator process is split into four independent subprocesses, dealing with
each control message type. Note that since they are not synchronised, each subprocess can always
progress according to its definition.

process Control_Msg_Generator [CI] : noexit :=

Add_Port_Generator [CI] (* data port creation *)
11

Add_Route_Generator [CI] (* route definition *)

11
Send_Faults_Generator [CI] (* Send-Faults requests *)

11
Other_Command_Generator [CI] (* incorrect control messages *)
endproc

1. Data port creation:

Regarding the data port creation, we chose to modelise three kinds of sequences, which are non
deterministically selected:

e the empty sequence, corresponding to no data port creation,
o for each data port p, the infinite sequence creating forever only data-port p,

o the set of infinite sequences creating forever all the data ports, in any order.

With two data ports, this behaviour corresponds to the following LTS, where CP 0 and CP 1
denotes creation of port 0 and 1, and i denotes an internal action:

o

CPO
CP1 CP O

For N data ports, this LTS can be described by the following LoTOS process:

process Add_Port_Generator [CI] : noexit :=

19

i ; stop

1

i ; Add_One_Port_Generator [CI] (0)
1

i ; Add_One_Port_Generator [CI] (1)
1
1

i ; Add_One_Port_Generator [CI] (N-1)
1

i ; Add_All_Port_Generator [CI]

endproc

where processes Add_One Port_Generator and Add_All Port_Generator are defined by:

process Add_One_Port_Generator [CI] (p:PortNo) : noexit :=
CI !'Add_Data_Port !p ;
Add_One_Port_Generator [CI] (p)
endproc

process Add_All_Port_Generator [CI] : noexit :=

CI !'Add_Data_Port ?p:Portlo ;
Add_Al11_Port_Generator [CI]
endproc

Other solutions exist to modelise this behaviour, but note that the following (straightforward)
LTS is not suitable since it does not provide the scenario in which a given data port creation
cannol occur:

CP1 CP O

2. Route definition:

Only one set of infinite sequence is modelised, defining forever all the routes in any order. Note
that the scenario for which a given route will never be defined is not specified. On the other
hand, any route can be redefined.

process Add_Route_Generator [CI] : noexit :=
CI !'Add_Route ?r:RouteNo ?ps:PortSet ;

Add_Route_Generator [CI]
endproc

20

3. Send-Faults requests:

We modelise both the empty sequence (when no Send-Faults message is received by the node)
and the infinite sequence for which a Send-Faults message is sent forever. These two behaviour
are non deterministically chosen:

process Send_Faults_Generator [CI] : noexit :=
i ; stop
(N
CI !'Send_Faults ;
Send_Faults_Generator [CI]
endproc

4. Incorrect control messages:

Any incorrect control message is represented by the Other-Command message (hence require-
ment 2 is satisfied). This message is sent forever to the Transit-Node, which is modelised by the
following infinite sequence:

process Other_Command_Generator [CI] : noexit :=
CI !'Other_Command

Other_Command_Generator [CI]
endproc

4.1.4 Specification of the whole system

The complete specification of the environment is obtained by interleaving the processes
Control Msg _Generator and Data_ Msg_Generator:

process Environment [CI, DI, CO, DO] : noexit :=
Control_Msg_Generator [CI]
[11

Data_Msg_Generator [DI, CO, DOJ]
endproc

And finally, the specification of the whole system is the full synchronisation of the environment
and the Transit-Node specification described in section 3:

process Transit_Node_System [CI, DI, CO, DO] : noexit :=
Transit_Node [CI, DI, CO, DO]
[

Data_Msg_Generator [CI, DI, €O, DO]
endproc

4.2 Practical issues

From this LoTos specification, a finite LTS can now be generated by the CESAR-ALDEBARAN
toolbox. However, it remains to determine the bounds to use in practice for the data domains

21

(maximum number of ports, routes and data messages). Clearly, these values largely influence
the size of the resulting LTS.

number of data ports:
We chose to implement a maximum of 2 data ports, labelled from 0 to 1

number of routes:
Once the number of data ports has been established, the maximal number of distinct port
sets can be deduced, and so for the number of distinct routes (a route is uniquely defined by
its associated port set). We obtain here 4 routes, from the one defining no data port (the
associated port set is empty), to the one defining all possible data ports (the associated
port set contains port 0 and port 1).

number of data messages:
We chose to modelise 2 distinct data messages, labelled from 0 to 1.

From these values, and with the environment we described in section 4.1, the CHESAR-
ALDEBARAN compiler generates for the whole specification of the Transit-Node a LTS of about
120 000 states and 500 000 transitions. In the sequel, this LTS, representing the exhaustive
behaviour of the Transit-Node described by the LoTos specification will be noted Sty.

It seems at this point that the choices we made offer a reasonable compromise: the specification
is general enough to modelise non-trivial behaviour of the Transit-Node, and the size of the
model obtained remains small enough to expect subsequent verifications to be carried out on a
reasonable execution time.

5 Correctness of the specification

Once the Transit-Node system has been fully described, it remains to verify that the LoTos
program obtained is correct with respect to its initial informal description. In other words,
we have to ensure that this LoTos program can be considered as a formal specification of the
Transit-Node allowing — for instance — to design an executable implementation.

In the following sections we check each clause of the informal definition of section 2, trying to
establish whether it is preserved or node in the LoTos description. More precisely, this set of
clauses is split into three classes:

o the clauses which are preserved “by construction” of the LoTos program,
o the clauses which require a verification at the LTS level,

o the clauses which are not preserved by the LoTo0S program.

Each class is presented in turn, respectively in sections 6, 7 and 8.

6 Clauses preserved “by construction”

Most of the clauses concern only some very general features of the Transit-Node design. Therefore
they are straightly preserved, by the program architecture itself.

22

clause 1:
Control Port-In, Control Port-Oul, Data Port-In and Data Port-Oul have been specified.
Two data ports can be created (N = 2), and four distinct routes can be defined (M = 4).

clause 2:

(a) Each Port is serialised: they accept only one message at a time from the environment
(rendez-vous mechanism).

(b) They are concurrent to each others: they are implemented as independent processes,
without any synchronisation on a control or data message reception.

(¢) A data message can be received on a data port p only when the corresponding Inport
subprocess becomes active, which happens on reception of a Create-Port(p) internal
message. Since this message is sent only when a port creation has been requested, the
clause is preserved.

clause 5:
Initially, even if all LoTos processes are created, only process Controller is active (i.e.,
may receive messages from the environment). Data ports are not active, since subprocesses
Inport and Outport are not active.

clause 6:
This clause mainly refers to the behaviour of process Controller:

a) Data ports can only be defined once (so only new ports are created). ata por

Data port ly be defined ly port ted). A data port
creation (internal message Create-Port(p)) activates new Inport and Outport sub-
processes, able to accept data messages (see clause 5).

(b) Routes can be created several times (a same route number r can define several suc-
cessive port sets s). Whenever a route is (re)-defined, the data structure maintaining
the current route set is update.

clause 8:
Processes ErrHandler and Outport accept any data messages, without restrictions on
their value. Control messages are not sent directly to them, but through the internal
message Control-Frror-In. This message is itself generated when an erroneous control
message reception occurs. Messages leaving the node through Data Port-Out are non
deterministically chosen in the associated buffers, so any ordering is likely to happen.

Some of the “proof” arguments proposed here may seem tricky, or not sufficiently motivated. In
fact, to be really rigorous, some of them would require deeper verifications, for instance at the
LTS level. However, if such a check remains always possible, we prefer to keep this approach for
more interesting clauses.

7 Clauses verified at the LTS level

A second class of clauses concerns more fundamental properties of the Transit-Node, related to its
“run-time behaviour”. In other words, it describes how any implementation of the node should
behave, from a functional point of view. Consequently, these clauses cannot be established only

23

by a source level analysis of the specification, and they require deeper verifications, carried out
on the underlying model (which represents the exhaustive behaviour of the node).

We present these clauses in three parts, depending if they refer to the general behaviour of the
node, to the routing of data messages or to the management of faulty messages. All these clauses
are verified on the LTS Stp, introduced in section 4.2.

7.1 General behaviour of the node

The expected behaviour of the node with respect to data messages is described by clause 4,
saying that “all data messages will eventually transit the node or become faulty”.

As it is often the case, the verification of this property is split into a “safety part” and a “liveness
part”.

7.1.1 Safety
From a safety point of view, clause 4 can be rephrased as:

Any received data message will have the ability to exit the node from a data port-out,
or to become faulty.

This statement refers to four events in our LoToOs specification:

o data message reception, occurring on gate DI (through a Data Port-In)
e data message emission, occurring on gate DO (through a Data Port-Out)

o faulty data message occurrence, notified either on gate DERRI (Data-Error-In internal mes-
sage) or on gate TIMEQUT (Timeout internal message).

Thus, these gates constitute the set V' of visible actions we want to observe to check if the clause
is preserved. Moreover, if we consider only V actions devoted to a single data message (for

instance message 0, actions devoted to other messages being hidden), the previous statement can
be represented by the LTS Sy4;:

DO

DERRI

DI

TIMEOUT

This LTS can be interpreted as follows:

24

o after its reception, data message 0 can always be sent out the node or be buffered as faulty

e one of this alternative must occur before the data message can re-enter the node.

Using the CESAR-ALDEBARAN toolbox, it can be established that this LTS is safety equivalent
to the one representing the exhaustive behaviour of the Transit-Node: Sy =5 S45. The same
verification can be performed with data message 1, and consequently the safety part of clause 4
is satisfied.

7.1.2 Liveness

It now remains to check that this expected behaviour is always executed, which means that
no deadlocks nor livelocks has been hidden during the safety equivalence comparison. Using
CESAR-ALDEBARAN, this can be performed as follows :

e we compute the quotient Syq of LTS Sty with respect to branching bisimulation®, when
only V actions are visible,

e we check whether 54 contains deadlock states,

e finally, we also check if LTS Syn contains livelocks when only V' actions are visible (since
livelocks are not preserved by branching bisimulation, this check cannot be performed on

Sar).

Surprisingly, if no deadlock were found, this first experiment revealed the presence of numerous
livelocks. In fact, these livelocks occur because our LOoTOS specification is unfair. More precisely,
according to our description (but not according to the informal one !), the Transit-Node may
treat forever the same control message, provided it is offered infinitely often by the environment.
Thus, at any time, the Transit-Node may try for instance to always redefine the same route, or
to always proceed the same incorrect message: when these actions are hidden, such behaviours
are expressed by livelocks in the resulting LTS.

Of course, we want to omit this undesirable behaviour in the verification process, in order to
detect only the livelocks resulting from an incorrect specification (i.e., which happen because
of internal communications). Consequently, the solution we adopted is to extend the set V of
visible actions during the livelock detection by adding all control message receptions (i.e., actions
occurring on gate CI). Thus, “expected” livelocks disappear, since they correspond now to visible
actions. Clause 4 could then be verified in practice.

7.2 Data message routing

Inside the Transit-Node, the routing of data messages is described by clause 7, which asserts the
following properties :

(a) when a data message M is received with a route indication R, then it is routed to any one
of the open Data Ports-Out associated to R at the time of ils arrival, or put in the faulty
collection if no such port exists,

*In practice this quotient is not computed from LTS Sz, but straightly from the LoTos specification

25

(b) the Data Ports-Out are serialised, a buffer being associated with each port,

(¢) a data message is faulty when its total transit time within the node becomes greater than a
constant time 7.

Part (b) is verified by construction of the LoTos program, and consequently only parts (a) and
(¢) remain to be verified.

7.2.1 clause 7 (a)

We only need to verify a “safety” interpretation of the clause, since clause 4 already ensures
that any data message leaves the node on a Data Ports-Oul, or is put in the faulty collection.
Moreover, as the management of faulty messages will be discussed in section 7.3, the property
we want to check here can be rephrased as follows :

Whenever a data message M has been received with a route indication R, and if this
message is routed to a Data Port-Out P, then P must belong to the port set associated
to route R at the time of the message arrival.

To verify this property, we need to determine the port set associated to a given route when a
data message is received. In the LoTo0S program, this information is represented by an internal
variable of the Controller process. Therefore, it cannot be straightly accessed at the LTS level
(since it is encoded inside the states). However, this information can be retrieved at any time by
keeping track of each route definition received by the node (i.e., Add-Route messages).

Consequently, to verify this property for a given message M, received with route indication R, the
relevant actions of the LoT0os program are the following;:

e message reception: DI 'P M 'R, which indicates the reception of M on the data port-in P,
e route definition: CI 'ADROUTE 'R !PS, which associates port set PS to route R

e message delivery:, I0 'P M, which indicates that M is put in the buffer associated to data
port-out P.

Unfortunately, if we compute the quotient of LTS S7py with respect to safety equivalence for
this set of visible actions, we obtain a LTS of 60 states and 472 transitions, which is too large to
conclude “by hand on this” LTS whether the property is verified or not.

Therefore, we adopted another approach :

1. We consider a general behaviour which express the expected property. This behaviour can
be described for instance by a LoTOS program, and translated into a LTS S7,.

2. We verify that the actual behaviour of the Transit-Node “is included” in this expected
behaviour (i.e., that every visible action performed by the Transit-Node is “allowed” with
respect to the property). Such a notion of inclusion can be expressed by the safety preorder
relation: Sty C; S7,.

26

We give a first specification of a general behaviour expressing Clause 7 (a), for a given message
m and a given route r. Intuitively, this behaviour is the following :

e A port set current (initially empty) maintains the definition of route r.
o After reception of message m, two scenarios are allowed:

— either m is already faulty, so it will not be delivered on a data port-out (and there is
nothing to verify),

— or,mis correct, and the expected behaviour is that m will be delivered on a data port-
out belonging to current. However, as route r can be redefined at any time before
m is delivered, the current value of set current has to be memorised (variable ps0).
Finally, m may also become faulty at any time (e.g., timed-out), and therefore not be
delivered.

We give a LoT0s description of this behaviour :

process Waiting [CI, DI, I0]
(m:Env, r:RouteNo, current:PortSet) : noexit :=

(CI 'ADD_ROUTE !r ?7ps:PortSet ;
(¥ re-definition of route r : set "current" is updated *)
Waiting [CI, DI, I0] (m, r, ps))

(]
(DI ?p:PortNo !m ?rO:RouteNo;
(* reception of data message m with route indication r0 *)
(
Idle [CI, DI, I0] (m, r, rO, current, current)
(* message m may be correct, it will be routed on a data port *)
(]
Waiting [CI, DI, I0] (m, r, current)
(* message m is already faulty, it won’t be routed on a data port *)
)
)
endproc

process Idle [CI, DI, I0]
(m:Env, r:RouteNo, rO:RouteNo, current:PortSet, psO:PortSet) : noexit :=

(10 ?p:PortNo !m [(rO eq r) and (p IsIn ps0)] ;

(* message m has been received on route r :

it must be routed on a data port belonging to set psO *)
Waiting [CI, DI, I0] (m, r, current))

(]
(I0 ?p:PortNo !m [not (r0 eq r)] ;

(* message m has been received on a route different than r :

no verification is performed *)

27

Waiting [CI, DI, I0] (m, r, current))
(]
(CI 'ADD_ROUTE !0 of RouteNo ?ps:PortSet ;
(* re-definition of route O : set "current'" is updated *)
Idle [CI, DI, I0] (m, r, rO, ps, ps0))
(]
Waiting [CI, DI, I0] (m, r, current)
(* message m happens to be a faulty one,
it will not be routed on a data port *)
endproc

Surprisingly, it appears in practice that our description of the Transit-Node does not verify this
specification. More precisely, the diagnostic message returned by ALDEBARAN indicates that the
following execution sequence can be performed by the Transit-Node, whereas it is not allowed
by the above specification:

DI!0!0 !0 101110

O >0 29 >0 =0

CI''ADROUTE !0 {0} CITADROUTE !0 {1}

This unexpected scenario is:

1. route 0 is defined a first time, associated to port set {0} ;
2. data message 0 is received, with route indication 0 ;
3. route 0 is then redefined, associated to port set {1} ;

4. finally, data message 0 is delivered on data port-out 1, instead of the expected port-out 0
(associated to route 0 at the time of the message arrival).

In fact, the reason why such a sequence appears in the LoTos specification is twofold :

o when a data message is received, deciding on which data port-out it can be routed is
not an atomic action: internal messages have to be exchanged between DataInPorts and
Controller processes.

e the ports are independent and concurrent each other: a route can be redefined at any time
on Control Port-In, even while process DataInPorts is handling a data message.

Consequently, when a route is redefined just after the reception of a data message, it is impossible
to determine which definition of the route will be taken into account during the routing operation.
Note that this behaviour corresponds in practice to the one observed from outside the Transit-
Node, and is allowed by its original informal description.

According to this first experiment, a weaker specification has to be proposed to express
clause 7 (a). We give here such a specification, corresponding to a new interpretation of this
clause, properly dealing with route redefinition :

28

Whenever a data message M has been received with a route indication R, and if this
message is routed to a Data Port-Out P, then P must belong to the port set associated
to route R at any time between the message arrival and its delivery.

Thus, process Idle is modified by adding to port set psO the new ports associated to each
redefinition of route R :

process Idle [CI, DI, I0]
(m:Env, r:RouteNo, rO:RouteNo, current:PortSet, psO:PortSet) : noexit :=

(I0 ?p:PortNo !m [(rO eq r) and (p IsIn ps0)] ;
(* message m has been received on route r :
it must be routed on a data port belonging to set "current" *)
Waiting [CI, DI, I0] (m, r, current))
(]
(I0 ?p:PortNo !m [not (r0 eq r)] ;
(* message m has been received on a route different than r :
no verification is performed *)
Waiting [CI, DI, I0] (m, r, current))
(]
(CI 'ADD_ROUTE !0 of RouteNo ?ps:PortSet ;
(* re-definition of route O : sets "psO" and "current" are updated *)
Idle [CI, DI, I0] (m, r, rO, ps, Union(psO, ps)))
(]
Waiting [CI, DI, I0O] (m, r, current)
(* message e may happen to be a faulty one,
it will not be routed on a data port *)
endproc

This new specification is verified by the LoTos description of the Transit-Node: Sry T S7,.

7.2.2 clause 7 (c)

As we do not quantify in the LoTos specification the transit time of data messages within the
node, the only point remaining to be checked with respect to clause 7 (c) is that a (correct)
data message received by the node can always become faulty because a timeout occurs before its
delivery. In other words, such a message cannot be prevented to become “timed-out”.

For a given message M, this safety property can be expressed by the following LTS S7.:

TIMEOUT

DI

where:

29

e label DI denotes the reception of message M through a Data Ports-In (action DI 'P IM IR
in the LoTos specification, where P and R are any port and route identifier),

e label TIMEOUT denotes a timeout for message M (action TIMEOUT !M in the LoTos specifi-
cation)

The intuitive meaning of this LTS is that whenever message M is inside the node (state 1), then
it may become faulty because of a timeout event.

Using CESAR-ALDEBARAN we can show that this LTS is safety equivalent to the one modeling
the LoTos specification (S7n =5 S7.) when only DI and TIMEOUT actions are visible, which
ensures that clause 7 (c) is preserved by the LoTos specification.

7.3 Faulty messages management

The expected behaviour of the Transit-Node with respect to faulty messages is described by
several clauses of its informal specification:

o clause 10 defines the exact meaning of “faulty messages”: they are either undefined control
messages, or data messages with an incorrect route indication, or timed-out data messages,

o clause 9 indicates that all faulty messages have to be stored in a faully message collection
until reception of a Send-Faulls control message,

e and finally clause 6 (c) and 11 (c) indicate that a succession of Send-Faulls messages must
eventually route all faulty messages outside the node (through Control Port-Out), in any
order.

We examine successively these two phases, namely faulty messages collection (clause 9 and 10),
and faulty messages delivery (clause 6 and 11).

7.3.1 Faulty messages collection

In the LoTos description, the bufferisation of each possible faulty message (as defined by
clause 10) corresponds to communications with the ErrHandler process:

e CERRI action for an undefined control message (Control-Error-In internal message),
e DERRI action for an incorrect data message (Data-Error-In internal message),

e TIMEQUT action for a timed-out data message (Timeout internal message).

We verify that, whenever a faulty message is detected, one of these actions is eventually executed:

undefined control message reception:
They correspond to an Other-Command message reception by the Control Port-In. There-
fore it is suflicient to show that any occurrence of this message is followed by a CERRI action.
This check can be done using branching bisimulation, followed by a livelock detection: us-
ing CESAR-ALDEBARAN, we compute the quotient of LTS S7n for branching bisimulation,

30

when only these two actions are visible, together with a divergent predicate indicating if
each state of the quotient corresponds or not to a livelock in the LoTos program. We
obtain the following LTS, where only the initial state 0 is divergent:

CI'OTHER_.COMMAND

CERRI

Consequently, all incorrect messages are eventually bufferised.

incorrect data message reception:
A data message can be incorrect because its associated route is either undefined, or refers to
an empty open port set. According to clause 4, to show that such messages are eventually
bufferised as faulty, it is sufficient to show that they cannot be delivered on a Data Port-
Out. To perform this check using CESAR-ALDEBARAN we proceed as follows:

1. We modify the environment in such a way that a given data message (lets say data
message 0) is always faulty. For instance, this message is always associated to an
undefined route, or its associated route always refers to a set of non open ports.

2. We then show that, within this environment, message 0 cannot be delivered on a
data port. This can be done by computing the quotient of S7n with respect to safety
equivalence, when only action DO dedicated to message 0 are kept visible. As expected,
this LTS contains no transition.

It was not possible here to verify the clause in a more general context (i.e., without modi-
fying the environment). In fact, as we already seen, it is not possible to precisely determine
the route status associated to a data message — and consequently if this message is faulty
or not — when considering only external actions of the Transit-Node. Then, the solution
we adopted was to modify (temporarily) the environment in order to force a message to
become faulty.

timed-out data message:
Timed-out messages are always bufferised, since in our description, the same internal
message Timeoul both indicates a timed-out message occurrence and sends it to the
ErrHandler process.

7.3.2 Faulty messages delivery

The expected behaviour of the Transit-Node with respect to faulty message delivery is defined
by clause 11 and 6 (c). They indicate that, on a Send-Faulls message reception (resp. on a
succession of such receptions), some of (resp. all) the faulty messages bufferised so far must be
sent outside the node, through the Control Port-Out.

Here again, the verification is performed in two steps :

31

1. We first show that each Send-Faulls request is always followed by an emission through
Control Port-Oul. This check allows to verify the liveness part of the requirement.

2. Then, we verify that messages emitted on Control Port-Out are exactly messages previously
bufferised as faulty. Thus, the safety part of the requirement is preserved too.

To verify the liveness part within CESAR-ALDEBARAN, we compute the quotient of Sty with
respect to branching bisimulation when only CI !'SEND_FAULTS and CO actions are visible (corre-

sponding respectively to a Send-Faults request and a Control Port-Out emission). The resulting
LTS is the following :

CI ISEND_FAULTS CI ISEND_FAULTS

This quotient is small enough to check that, for all execution sequences, each occurrence of a CI
I SEND_FAULTS action is eventually followed (later in the sequence) by an occurrence of a CO action.
Note that this quotient contains a sink state (state 2), since, according to our environment, at
any time the Transit-Node may stop to receive any Send-Faulls message.

Finally, we also performed a second check to verify that only “expected” livelocks occur when
these two actions are visible. Consequently, each Send-Faulls request is always followed by a
Control Port-Oul emission.

To simplify the verification of the safety part of the requirement, we consider successively control
messages case, and data messages case.

1. Control messages

The requirement we have to check is that a control message is emitted on Control Port-Out if and
only if it has been previously bufferised by a Control-Frror-In internal message. In the LoTos
program, these two events are respectively expressed by a CO !TRUE !L action (for any value L
of sort EnvList), and by a CERRI action. So, this requirement can now be rephrased in terms of
execution sequences of the LTS S7n :

e a CERRI action cannot be followed by a CO !'FALSE 'L action (i.e., each control message
bufferised as faulty must leave the node upon request),

e two successive occurrences of a CO !'TRUE 'L action must be separated by an occurrence

of a CERRI action (i.e., only faulty control messages can leave the node through Control
Port-Out).

32

In practice these two properties are verified, since, when only CERRI and CO actions are kept
visible, and when each CO !TRUE !L (resp. CO !'FALSE !L) action has been renamed in CO_TRUE
(resp. CO_FALSE), then LTS Sy is safety equivalent to the following one (where state 0 is the
initial state):

CO_TRUE

0 1
CO_FALSE o Q CERRI

CERRI

2. Data messages

It remains to check that a data message is emitted on Conirol Pori-Out if and only if it has been
previously bufferised by either a Data-FError-In or a Timeoul internal message. In the LoTos
program, these events are expressed as follows:

e an emission of a data message M on Control Port-QOut is represented by a CO !B !L message,
where B can be any boolean value and L is a list of message, containing M,

o for a given data message M, internal messages Data-FError-In and Timeout are represented
respectively by DERRI 'M and TIMEOUT !M actions.

Here again, the requirements can be rephrased in terms of execution sequences of the LTS Sypy:

e after a DERRI !'M or a TIMEQUT !M action, the next occurrence of CO !B !L action must be
such that M IsIn L (i.e., each data message bufferised as faulty must leave the node upon
request),

e two successive occurrences of a CO !B !L action, such that a given M belongs to L, must be
separated by an occurrence of either DERRI !M action or a TIMEOUT !M action (i.e., only
faulty data messages can leave the node through Control Port-Out).

As for control messages, we can show using CESAR-ALDEBARAN that for each data message M,
these two properties are verified: if,

1. only DERRI !M, TIMEOUT !M and CO !B !L actions are visible,

2. each CO !B 'L action such that M IsIn L (resp. not (M IsIn L)) is renamed in COM
(resp. in CO_NOTM action),

then the LTS S is safety equivalent to the following one (where state 0 is the initial state):

COM

CONOT.M 0

DERRI IM

TIMEOUT !

33

8 Non preserved clauses

Finally, some of the clauses present appearing in the informal description of the Transit-Node
are clearly not preserved by our formal specification, either because of the choices we made, or
because the formalism we used was not suitable enough.

Clause 3:

As we mention in the previous section, our specification does not describe a fair Transit-Node,
in the sense that some messages may be ignored forever. More precisely, this notion of fairness
appears at different steps of the specification:

o All data or control messages proposed infinitely often by the environment must be accepted
by the node, and no data port should benefit from any priority. This statement is not
verified in our specification, since the same message can be accepted forever, and then
starving the other ones.

e Similarly, all internal messages must be fairly treated by the processes modeling the Transit-
Node. For instance, no route status request addressed to the Controller process by a
given OutPort subprocess (Route-Query internal message) should be postponed forever.
Here again, this is not true in our specification.

e For a data message emission, the choice of a data port-out among the set of ports defined
by its associated route must be fair. No port should have any priority. This condition is
verified in our specification, since it describes all possible choices.

e No data message can stay forever on the buffer associated to a data port-out, nor in the
faulty message buffer. This statement is verified in our specification : port-out buffers are
managed as fifo queues, and the faulty buffer is flushed by an atomic action.

However, to verify liveness properties, we assumed a fair behaviour of the Transit-Node by
rejecting unfair execution sequences at the model level. Another solution would have been to
prevent these sequences to occur at the program level, for instance by adding explicit schedulers
on critical message receptions.

Clause 11 (a) and Clause 12:

Since we do not take into account timing aspects on a quantitative point of view these two clauses
are not relevant in our specification.

Conclusion

We have presented in this report a LoToS specification of a Transit-Node informal description,
together with its formal verification following a “model-based” approach. From this practical
experiment, several comments can be done with respect to the general method we used.

First of all, the formalism we consider to formally specify the Transit-Node greatly influenced
the description we obtained. More precisely, choosing a “process algebra oriented” formalism like
LoTos naturally leads to an operational description of the system (answering to “how is it built
?” rather than to “what must it perform”). This is not without consequences in the verification

34

process, since properties which are checked relies on this system description, and hence must
be expressed on the same vocabulary, and following a similar point of view. Therefore, such
formalisms seems more suitable to specify rather detailed system descriptions, including design
considerations, whereas more declarative formalisms (such abstract data types) are more adapted
to deal with higher-level descriptions. Thus, these two kinds of formalisms should be both used
in a verification process, at different stages, depending on the abstraction level of the system
description under consideration.

Furthermore, one can also notice that a formalism based on communicating processes allows
to easily describe system environments (the environment being specified as an external and
independent process, progressing in parallel with the system). However, this technique also
suffers from some limitations, since (for instance) it hardly allows to describe fair environments.

Regarding the verification method, one the most important characteristic of model-based ap-
proaches is that, within their application domain, they can be considered as ezhaustive and
decidable. Moreover, and even if current results are not yet completely satisfying, verification
algorithms and tools are now able to deal with rather large models, corresponding to non-trivial
system descriptions.

However, expressing the correct properties to verify may remain difficult, and sometimes tricky.
This aspect was enforced in this case-study, since the toolbox used did not provide (yet) any
temporal logic checker, and each property has been expressed as a behavioural specification. A
related problem is that the LTS generated from the LoTOS program does not contain any more
references to the variables appearing in this program (for instance the “route definitions” in the
Transit-Node). Consequently, properties which can be checked on this LTS cannot refer to these
variables, and must be expressed only in terms of wvisible actions of the LoTOS program. Even if
this constraint corresponds to something realistic in practice, since the expected behaviour of the
program is usually defined with respect to an external observer (who cannot access its internal
variables), it could be sometimes useful being able to refer to such variables in the properties
to verify, at least for debugging purpose (in the first stage of the verification process, or to
investigate why a given specification is not true).

Finally, further work could be carried out on this case study, for instance dealing in a more
quantitative point of view with timing considerations, or extending the correctness proofs for
arbitrary values of the system parameters (i.e., the number data ports, of distinct routes, or
distinct data messages, ..., etc.). This would require more powerful specification formalisms
and verification techniques.

References

[BFGT91] Ahmed Bouajjani, Jean-Claude Fernandez, Susanne Graf, Carlos Rodriguez, and
Joseph Sifakis. Safety for Branching Time Semantics. In Proceedings of the 18th
ICALP, Madrid, Spain, volume 510 of Lecture Notes in Computer Science. Springer
Verlag, Berlin, July 1991.

[FGM192] Jean-Claude Fernandez, Hubert Garavel, Laurent Mounier, Anne Rasse, Carlos
Rodriguez, and Joseph Sifakis. A Toolbox for the Verification of LOTOS Programs.
In Lori A. Clarke, editor, Proceedings of the 14th International Conference on Soft-

35

[FKM93]

[FMO1]

[GS90]

[GWS9]

[HoaT78]

[1SO87]

[Lam77]

[Mil80]

[NV90]

[Par81]

ware Engineering ICSE’14 (Melbourne, Australia), pages 246-259, New-York, May
1992. ACM.

J.C. Fernandez, A. Kerbrat, and L. Mounier. Symbolic Equivalence Checking. In
C. Courcoubetis, editor, Proceedings of the 5th Workshop on Computer-Aided Veri-
fication (Heraklion, Greece), 1993.

Jean-Claude Fernandez and Laurent Mounier. “On the Fly” Verification of Be-
havioural Equivalences and Preorders. In K. G. Larsen, editor, Proceedings of the
3rd Workshop on Computer-Aided Verification (Aalborg, Denmark), volume 575 of
Lecture Notes in Computer Science, Berlin, July 1991. Springer Verlag.

Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS Specifi-
cations. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the 10th

International Symposium on Protocol Specification, Testing and Verification (Oltawa,
Canada), Amsterdam, June 1990. IFIP, North-Holland.

R.J van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in Bisimu-
lation Semantics (extended abstract). CS R8911, Centrum voor Wiskunde en Infor-
matica, Amsterdam, 1989. also in proc. IFIP 11th World Computer Congress, San
Francisco, 1989.

C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8):666-677, August 1978.

ISO. LOTOS — A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. Draft International Standard 8807, International Or-
ganization for Standardization — Information Processing Systems — Open Systems
Interconnection, Geneve, July 1987.

L. Lamport. Proving the correctness of multiprocess programs. IEFFE Transactions
on Software Engineering, 3(2):125-143, 1977.

Robin Milner. A Calculus of Communicaling Systems, volume 92 of LNCS. Springer
Verlag, Berlin, 1980.

Rocco De Nicola and Frits Vaandrager. Three logics for branching bisimulation.
In Proceedings 5th Annual Symposium on Logic in Computer Science (LICS 90),
Philadelphia USA, pages 118-129, Los Alamitos, CA, June 1990. IEEE Computer
Society Press.

David Park. Concurrency and Automata on Infinite Sequences. In Peter Deussen,
editor, Theoretical Computer Science, volume 104 of Lecture Notes in Computer Sci-
ence, pages 167-183. Springer Verlag, Berlin, March 1981.

36

Appendix: abstract data types

We give here the set of abstract data types used in the LoTos specification of the Transit-Node
build upon the standard Boolean and Integer libraries.

type PORT is NATURAL renamedby
sortnames PortNo for Nat
endtype

type ROUTE is NATURAL renamedby
sortnames RouteNo for Nat
endtype

type ENVELOPPE is NATURAL renamedby
sortnames Env for Nat
endtype

type COMMANDS is
sorts Command

opns
Add_Data_Port (*! constructor *),
Add_Route (*! constructor *),
Send_Faults (*! constructor *),
Other_Command (*! constructor *)
: —> Command
endtype

type ERROR_CODE is
sorts ErrorCode

opns
Unknown_Route (*! constructor *),
(* Timed_Out constructor ,*)
Wrong_Msg (*! constructor *)
: => ErrorCode
endtype

type PORT_SET is BOOLEAN, PORT
sorts PortSet

opns
emptyset (*! constructor *) : -> PortSet
add (*! constructor *) : PortNo, PortSet —> PortSet
IsIn : PortNo, PortSet -> Bool
includes : PortSet, PortSet -> Bool
== : PortSet, PortSet -> Bool
eqns

forall ps, psl, ps2:PortSet, p, pl, p2:PortNo
ofsort Bool
p IsIn emptyset = false ;
p IsIn add(p, ps) = true ;

37

not (pl eq p2) => p1l IsIn add(p2, ps) = pl IsIn ps ;
ofsort Bool

ps includes emptyset = true ;

not (p IsIn psil) => psl includes add(p, ps2) = false ;

p IsIn psil => psl includes add(p, ps2) = psl includes ps2 ;
ofsort Bool

emptyset == emptyset = true ;

emptyset == add(p2, ps2) = false ;

add(pl, psl) == emptyset = false ;

add(pl, psil) == add(p2, ps2) = (pl eq p2) and (psl == ps2) ;

endtype

type ROUTE_LIST is BOOLEAN, PORT_SET, ROUTE
sorts RoutelList

opns
emptyrl (*! constructor *) : —-> Routelist
insert (*! constructor *) : RouteNo, PortSet, RouteList -> RoutelList
IsIn : RouteNo, RouteList -> Bool
route : RouteNo, RouteList -> PortSet
update : RouteNo, PortSet, RoutelList —> RoutelList

eqns

forall rl:RoutelList, r, rl, r2:RouteNo, ps, psl, ps2:PortSet

ofsort Bool

r IsIn emptyrl = false ;

r IsIn insert (r, ps, rl) = true ;

not (rl1 eq r2) => r1 IsIn insert(r2, ps, rl) = r1 IsIn rl ;
ofsort PortSet

route(r, emptyrl) = emptyset ;

route(r, insert(r, ps, rl)) = ps ;

not (rl eq r2) => route(ri, insert(r2, ps, rl)) = route(ri, rl) ;
ofsort RoutelList

update(r, ps, emptyrl) = emptyrl ;

update(r, psi, insert(r, ps2, rl)) = insert(r, psi, rl) ;

not (rl eq r2) =>

update(rl, psil, insert(r2, ps2, rl)) =
insert(r2, ps2, update(rl, psi, rl)) ;
endtype

type ENV_LIST is BOOLEAN, ENVELOPPE
sorts EnvList

opns
emptyl (*! constructor *) : -> EnvlList
insert (*! constructor *) : Env, EnvList —-> EnvList
head : EnvList —-> Env
tail : EnvList -> Envlist
remove : Env, EnvList -> EnvList
IsIn : Env, EnvList -> Bool
== : EnvList, EnvList -> Bool
eqns

forall 1, 11, 12:EnvList, r, rl, r2:Env

38

ofsort Env

head(insert(r,1)) = r ;
ofsort EnvList

tail(insert(r,1)) = 1 ;

remove(r, emptyl) = emptyl ;

remove(r, insert(r, 1)) =1 ;
not (rl eq r2) =>

remove(r1l, insert(r2, 1)) = insert(r2, remove(ri, 1))

ofsort Bool

r IsIn emptyl = false ;

r IsIn insert (r, 1) = true ;

not (rl1 eq r2) => rl1 IsIn insert(r2, 1) = rl1 IsIn 1 ;
ofsort Bool

emptyl == emptyl = true ;

emptyl == insert(r2, 12) = false ;

insert(r1l, 11) == emptyl = false ;

insert(r1, 11) == insert(r2, 12)

(r1 eq r2) and (11 ==
endtype

39

12)

>

3

