
I. Simulation of an Industrial
Production cell

Artur Brauer

Abstract

In this work, an application of Tk/Tcl to the domain of process visualization is described. We
developed a simulation of an industrial production cell for to evaluate and validate control soft-
ware for this (reactive) system. This paper describes the abilities of the simulation and how it is
used.

1.1 Problem

In the context of the German “Korso” Project (Correct Software) a number of for-
mal software construction methodologies are developed. The Forschungszentrum
Informatik (FZI) proposed the case study “production cell” to evaluate and com-
pare these approaches. It bases on a realistic functional model of a small industrial
production cell, which is completely described in [1].

The task of the case study, which is treated by several research groups in Germany,
is the development of control software with various approaches, in order to com-
pare the approaches and to show the usefulness of formal methods enforcing safety
requirements in industrial applications. As the partners are distributed all over Ger-
many it was necessary to provide them with a facility to evaluate their develop-



2

ments. We decided to construct a graphical software simulation of the production
cell that should be easy to build and easy to connect with any control software.

1.2 Simulation

We developed a simulation of the production cell, which imitates the important
abilities of the real production cell. The simulation runs a graphical window which
displays the substantial elements of the production cell. For a better performance
(which suffers anyway) all the devices are drawn simplified, see figure 1.

The simulation is managed by transmitting commands to it and receiving sensor
information from it (the commands are described in subsection 1.5). Both kind of
communication is done via UNIX-pipes, so a control software just have to write
commands to stdout and read the status information from stdin. It performs the
movement of the devices and blanks, detects collisions and reports them. The sim-
ulation displays the production cell from the top view. The elevating rotary table,
the press and the crane can change their height too. This kind of movement would-
n’t be visible in the chosen view. For that reason we have introduced scales, which
represents the height of a device. A scale shows the name of the corresponding de-

Figure 1 Screen dump of the visualization (together with a control panel)



3

vice and the height indication. Additionally, it contains height marks, which rep-
resents the height of the neighbour devices. For a simple identification the marks
use the same colour like the devices they stand for.

The simulation machines blanks which are stored in the left bottom corner of the
window. To put a blank onto belt 1, one can use the related command. During the
testing it might be useful to put a blank directly on a particular device. This can be
done by selecting the blank pressing the left mouse button and dragging it over one
of the following devices: both belts, elevating rotary table or press.

The simulation is distributed together with a control panel. It can be used to get
familiar with the simulation by manual control. It also provides ademo button
which causes the simulation to perform a demonstration.

The simulation can be used in two modes. There is once theasynchronous mode,
which means that the simulation will use its own stroke. This is useful when it is
used with the manual control panel. Once a command is given to the simulation it
will be performed until it is stopped intern or extern. Imagine, you give the com-
mand for rotating the robot left. The simulation will rotate the robot step by step
until you stop it or until it reaches its left stop (or causes a collision). Thesynchro-
nous mode means, that you have to give the stroke for the simulation. After you
have given the command for rotating the robot left in the above example, you have
to give areact command each time you want the robot (or all the other devices) to
move one more step. In this way the simulation can be forced to run synchronous
to your controller.

1.3 Install the simulation

The implementation of the simulation was done using Tk/Tcl. For that reason you
need a running Tk/Tcl installation on you system to start the simulation. The sim-
ulation is available as the compressed tarfilevisualization.tar.Z on the ftp server
gate.fzi.de [141.21.4.3] in the directorypub/korso/fzelle/simulation. To use the
simulation you first have to uncompress and then to un-tar the file into a directory
of your choice. The README file contains a list of files which all should be now
in your simulation directory. Change the filestartsimu by entering the correct path
of yourwish interpreter in the first line (note: the path must not be longer than 30
characters!) and set the variablewishpath in the third line also to the path forwish.
Now you should have an executable version of the simulation which can be stated



4

with thestartsimu file. The next subsection describes in detail how the simulation
is started.

1.4 Starting the simulation

For starting the simulation the executable file startsimu is provided together with
the simulation. It takes several parameters and starts the simulation coupled to-
gether with your control program or with the control panel. If you call startsimu
without any parameters, it will come up together with the manual control panel,
both will use colours display mode and english language. The simulation will use
the asynchronous mode. In below the parameters are listed which can be used to
configure the simulation.

• -con controllername the simulation will be started together with the con-
troller controllername; in case you want to give some parameters to the
controller you have to quote them together withcontrollername

• -snc the simulation will use the synchronous mode; the controller have
give a react command each time it want the simulation to do one more
cycle

• -bw the simulation will use monochrome display

• -grm the simulation will use german language

• -eng the simulation will use english language

1.5 Commands protocol

To couple the control program and simulation UNIX-pipes are used. This allows
the control program to steer the simulation just by writing ASCII commands tost-
dout and reading status information of the simulation fromstdin.

The simulation provides two kinds of commands. There are once commands for
goggling the devices and manipulating the whole system, which don’t provide
feedback. On the other hand there are some commands to get information from the
simulation, which then can be read from stdin. It is of great importance that after
both kinds of commands the control program flushes the pipe, since otherwise the
commands will be buffered and will have no effect. This can be done e.g. in C with
the fflush command. All possible commands are now described below.



5

1.5.1 System commands

This commands provide the facility to manipulate the simulation. They don’t be-
long to particular device and don’t produce any output from the simulation.

• system_quit quits the simulation

• system_stop stops any movement in the simulation

• blank_add puts a blank from the stock on the feed belt

• blanks_collect puts all the blanks dropped irregularly back to the stock

• system_demo starts a demonstration of the simulation

• system_restore restores the simulation

• react this command is only available in the synchronous mode; it is then
used to force the simulation to do one more cycle; before this command
is not transmitted the simulation won’t perform a change

1.5.2 Feed belt commands

This commands allow to toggle the feed belt. They don’t produce any output from
the simulation.

• belt1_start starts the feed belt to move right

• belt1_stop stops the feed belt

1.5.3 Deposit belt commands

This commands allow to toggle the deposit belt. They don’t produce any output
from the simulation.

• belt2_start starts the deposit belt to move left

• belt2_stop stops the deposit belt

1.5.4 Elevating rotary table commands

This commands can be used to rotate and move up and down the elevating rotary
table. They don’t produce any output from the simulation.

• table_left starts the rotation to the left of the elevating rotary table

• table_stop_h stops the rotation of the elevating rotary table

• table_right starts the rotation to the right of the elevating rotary table

• table_upward starts the upward movement of the elevating rotary table



6

• table_stop_v stops the upward or downward movement of the elevating
rotary table

• table_downward starts the downward movement of the elevating rotary
table

1.5.5 Robot commands

This commands allows to rotate the robot and move the arms forward and back-
ward. They don’t produce any output from the simulation.

• arm1_forward starts the forward movement of arm 1

• arm1_stop stops the movement of arm 1

• arm1_backward starts the backward movement of arm 1

• arm1_mag_on activates the magnet of arm 1

• arm1_mag_off deactivates the magnet of arm 1

• arm2_forward starts the forward movement of arm 2

• arm2_stop stops the movement of arm 2

• arm2_backward starts the backward movement of arm 2

• arm2_mag_on activates the magnet of arm 2

• arm2_mag_off deactivates the magnet of arm 2

• robot_left starts the rotation to the left of the robot

• robot_stop stops the rotation of the robot

• robot_right starts the rotation to the right of the robot

1.5.6 Crane commands

This commands start and stop the movement of the crane. They don’t produce any
output from the simulation.

• crane_to_belt2 starts the crane moving toward the deposit belt

• crane_stop_h stops the movement of the crane

• crane_to_belt1 starts the crane moving toward the feed belt

• crane_lift starts the crane’s magnet moving upward

• crane_stop_v stops the movement of the crane’s magnet

• crane_lower starts the crane’s magnet moving downward

• crane_mag_on activates the crane’s magnet



7

• crane_mag_offdeactivates the crane’s magnet

1.5.7 Press commands

This commands are used to steer the press. They don’t produce any output from
the simulation.

• press_upwardstarts the press moving upward

• press_stopstops the movement of the press

• press_down wardstarts the press moving downward

1.5.8 Commands to get status information from the
simulation

The simulation provides two commands which can be used to obtain information
from the production cell. Both produce a output from the simulation which can be
read from stdin. The important one is sure the get_status command. It provides in-
formation of device sensors. The get_passings command was introduced to
achieve some synchronization possibilities. It shouldn’t be necessary when the
synchronous mode is used.

• get_status

writes the status information of the simulation to the standard output

This command causes the simulation to write all the status information to
stdout, as a 15 element vector. Each element of the vector is separated by
a newline. The status vector contains all the information that the real pro-
duction cell can provide and additionally a list of errors that occurred
since the last status report. The format of the status vector is described be-
low.

Index Sensor corre-
sponding to device

Description Value/

Meaning

Notes

1 press Press in bottom
position

1 = yes

0 = no

2 press Press in middle
position

1 = yes

0 = no

3 press Press in top

position

1 = yes

0 = no

4 robot Extension of
arm 1

0..1 Value 1 mens the arm is fully extended.

5 robot Extension of

arm 2

0..1 Value 1 mens the arm is fully ex

tended.



8

6 robot angle of rotation
of the robot

-100..70 Value of 0 degrees means that the robot
is in the starting position.

7 elevating rotary ta-
ble

elevating rotary
table in bottom
position

1 = yes

0 = no

8 elevating rotary ta-
ble

elevating rotary
table in top posi-
tion

1 = yes

0 = no

9 elevating rotary ta-
ble

angle of rotation
of the table

-5..90 Value of 0 degrees means that the

table is in the starting position.

10 crane is the crane over
the deposit belt

1 = yes

0 = no

11 crane is the crane over

the feed belt

1 = yes

0 = no

12 crane height of the
crane’s magnet

0..1 Value 0 means the magnet is in top po-
sition.

13 feed belt is a blank inside

the photoelec-
tric barrier

1 = yes

0 = no

14 deposit belt is a blank inside
the photoelec-
tric barrier

1 = yes

0 = no

15 all error report A list of errors, that occurred since the
last status report. The list is enclosed in
curly braces and each element is sepa-
rated by a space. The errors are coded
as shown in the next table.

The meaning of the error numbers

Number Meaning

0 No error occurred; if this is true, no other elements are in the error list.

1 A blank dropped irregularly, during the passage from the feed belt to the elevating rotary table.

2 Collision between elevating rotary table and the feed belt.

3 elevating rotary table reached the right stop.

4 Robot reached the left stop.

5 Robot reached the right stop.

6 Arm 1 dropped a blank invalidly.

7 Collision between arm 1 and press.

8 Arm 2 dropped a blank invalidly.

9 Collision between arm 2 and press.

10 A blank dropped from the end of the deposit belt.

11 Collision between crane and the deposit belt.

12 Collision between crane and the feed belt.

13 Crane dropped a blank irregularly.

14 Crane reached the stop over the feed belt.

15 Crane reached the stop over the deposit belt.

Index Sensor corre-
sponding to device

Description Value/

Meaning

Notes



9

• get_passings

writes the number of passings through the main loop tostdout

This command causes the simulation to write the number of passings
through the main loop to stdout. The number of passings is computed
modulo 10000. This can be used to synchronize the control program with
the simulation, since the performance of the simulation depends a lot on
the host it is running on.

1.5.9 Advanced commands

This command should only be used if the controller’s speed is to low to assure that
a device is stopped at the right time. Even then, the command should be unneces-
sary if the simulation is used in the synchronous mode. Nevertheless, the command
may be useful in some situations.

• new_guardsensor_number operator destination_value command

a new guard is created

The simulation allows to create guards, which assures that a particular ac-
tion is performed at the right time. A guard tests a condition until it be-
comes true and than call a simulation command and removes himself.
The condition to be tested consists of a sensor, an operator and a destina-
tion value. Thesensor_number describes which sensor should be com-
pared with theoperator to thedestination_value. When this expression
is true,command will be executed.

1.6 Operating the cell

To machine a blank through the production circuit of the simulation one have to
know some detail information about it. There are various collisions that can occur
during operating the cell and which of course should be avoided. On the other hand
one have to know constants describing e.g. at which angle of the robot and of the
table how far have arm 1 to extend to reach the blank. Both knowledge is provided
below.

1.6.1 Collisions

There are three kinds of irregular behaviour detected by the simulation. Firstly, two
devices can clash against each other. Second a device should be stopped before it



10

reaches the end of it’s possible movement, if the user misses to do so this is treated
as a failure. And third, a blank that doesn’t settle correct from one device to another
causes a error report, too.

The following list enumerates the collisions between devices and gives conditions
which assures that the production cell works to rule. Note, that the conditions be-
low aren’t the only one which assure collision avoidance, but when considered no
collisions will occur.

1. The rotary elevating table can clash against the feed belt. This can be
avoided, if the angle of the table keeps greater or equal to 0.

2. The rotary elevating table and the robot run the risk of collision, if both
arm 1 and the table hold a blank and the table is in top position. Then the
two blanks can touch each other, what is detected as a collision. To pre-
vent this, one can keep the robot from the table by one of the following
conditions:

— the angle of the robot is less or equal to 0,

— the extension of the robot is 0,

— the table is in bottom position.

3. The robot can reach the press with both arms and cause a collision when
the press’s height is in the range oh the corresponding arm. Collisions be-
tween the arm 1 may be avoided by one of the following conditions:

— the angle of the robot is greater or equal to -70,

— the extension of arm1 is less or equal to 0.3708,

— the press is in bottom or middle position.

To prevent arm 2 from clashing with the press one the following condi-
tions is satisfying:

— the robot’s angle is greater or equal to 55,

— the robot’s angle is less or equal to 15,

— the extension of arm 2 is 0,

— the press is in top or in bottom position.

4. The two last possible collisions between devices are the collisions of the
crane with the both belts. If the crane moves over one of the belts and it’s
magnet is deeper as the belt a collision is detected. Following method is
sufficient to prevent failures:



11

— during the crane’s movement it’s height should be less or equal to
0.6593 (remember that the height of the crane is the distance from the
top to the current position).

Besides collisions between devices a controller can cause conflicts by moving
some devices out of their moving range. So one have to regard some constraints
when moving the devices.

1. The robot’s angle should stay between 65 and -95.

2. The elevating rotary table haven’t to rotate over 85 degrees.

3. The crane shouldn’t move outside the region which is limited by the two
photoelectric barriers.

The third kind of possible conflict occurs when a device consign a blank irregular-
ly to the next device. That is e.g. when arm 1 of the robot releases a blank not over
the press or the table. There are various situations where a blank can be released
faulty. We won’t describe all them here, since for a error-free operating of the sim-
ulated cell one just have to know some constraints. If the controller pay attention
to them when a blank changes from one device to the next. This information is pro-
vided in the section Constants below.

1.6.2 Constants

During operating the cell blanks moves from one device to the next. It is obvious
that for such a transition the concerned devices should satisfy some conditions.
They are mow described below.

1. When a blank changes from the feed belt to elevating rotary table, the ta-
ble have to be in bottom position and it’s angle have to be 0.

2. When arm 1 wants to pick up a blank from the elevating rotary table, the
following conditions should be satisfied:

— robot’s angle: 50

— arm 1 extension: 0.5208

— table is in top position

— table’s angle: 50.

3. To put the blank from arm 1 into the press, one have to ensure the follow-
ing conditions:

— robot’s angle: -90

— arm 1 extension: 0.6458



12

— press is in middle position.

4. To get a blank from the press with arm 2 one have to make sure:

— robot’s angle: 35

— arm 2 extension: 0.7971

— press in bottom position.

5. Arm 2 can release the blank on the deposit belt when:

— robot’s angle between -90 and -45

— arm 2 extension: 0.5707

6. The crane can pick up the blank from the deposit belt when:

— the crane moves over the deposit belt, the crane should be stopped
when the corresponding photoelectric barrier becomes active

— crane’s height: 0.9450.

7. The crane can deliver the blank on the feed belt when:

— the crane moves over the feed belt, the crane should be stopped when
the corresponding photoelectric barrier becomes active

— crane’s height: 0.6593.

References

[1] Thomas Lindner, Case Study Production Cell: Task Definition, Forschungszentrum
Informatik, Haid-und-Neu-Straße 10-14, D-76131 Karlsruhe.


