
Implementing a Visualization of an
Industrial Production Cell Using Tcl/Tk*

Artur Brauer, Claus Lewerentz, Thomas Lindner†

Forschungszentrum Informatik
Haid-und-Neu-Straße 10-14

7500 Karlsruhe 1‡

Germany
email: {brauer, lewerentz, lindner}@fzi.de

April 7, 1993

Abstract

In this work, an application of Tcl/Tk to the domain of process visualization is de-
scribed. We developed a simulation of an industrial production cell for to evaluate and
validate control software for this (reactive) system. A major requirement was to pro-
vide a simple integration of the simulation with control programs.

In the first chapter the production cell and requirements for the visualization are de-
scribed. Then the way the simulation was implemented using Tcl/Tk and our experi-
ences are reported. This should be interesting for people who want to use Tcl/Tk for
building visualizations of reactive or real time systems.

1. Problem

In the context of the German “Korso” Project (Correct Software) a number of formal software
construction methodologies are developed. The Forschungszentrum Informatik (FZI) proposed
the case study “production cell” to evaluate and compare these approaches. At FZI we built a
realistic functional model of a small industrial production cell, sized about 1 x 1 meter. A sche-
matic diagram of the cell is shown in figure 2. The task of the case study, which is treated by
several research groups in Germany, is the development of control software with various ap-
proaches, in order to compare the approaches and to show the usefulness of formal methods en-
forcing safety requirements in industrial applications. As the partners are distributed all over
Germany it was necessary to provide them with a facility to evaluate their developments. We
decided to construct a graphical software simulation of the production cell that should be easy
to build and easy to connect with any control software.

We decided to use Tcl/Tk by the following reasons: Firstly, Tcl/Tk enables one to program
in X on a higher level. Especially the canvas widget helped us to speed up the application devel-
opment. In previous experiments with Tcl/Tk we observed a much faster development compared
with standard X programming. The second reason was that we had to provide an extremely sim-
ple coupling mechanism between the visualization and any control software developed by the
project partners. A students work [3] had shown us that this coupling is very simple using Tcl
mechanisms (see section 2).

* submitted to the Tcl/Tk Workshop 1993
† This work is sponsored by the German Ministry of Research and Technology (BMFT) as

part of the compound project „KORSO — Korrekte Software“.
‡ From July, 1st, 1993, on there are new zip codes in Germany: 76131 Karlsruhe!

2

2. Solution

The production cell is equipped with about a dozen of sensors, measuring for example the angle
of rotation of a robot, and about a dozen of actors, for example a motor for closing or opening a
press. For a complete understanding of the model see [4]. This understanding is not needed to
catch the main points of the following presentation.

The first subsection describes the implementation of the visualization in Tcl/Tk, the second
subsection reports on the coupling between the visualization and the control software.

2.1 Graphical Visualization Using Tcl/Tk

All objects making up the production cell are drawn in a canvas widget of Tk. The definition and
manipulation of graphical objects is well supported by the facilities of the canvas widget. We
used very simple geometric shapes such as lines and rectangles, in order to achieve good perfor-
mance. Good performance is an important requirement, because the real time behavior of the
production cell has to fit as well as possible to the behavior of the hardware model. As the visu-
alization requires moving and rotating about a dozen of graphical objects, this performance is
lost when using complicated graphical representation.

The updating of the graphics is performed within a main loop. There, the script looks for the
status of the actor switches and moves or rotates the corresponding devices if necessary. The ca-
pabilities of Tcl/Tk for moving objects simplified the implementation. As the production cell
processes metal blanks the blanks must often be moved together with other objects, e.g. the con-
veyor belt transporting them. This is easily achieved in Tcl/Tk by packing them to a joint object
and applying the move command to the whole group. The capabilities of Tcl/Tk of dealing with

control panel
panel

(Tcl/Tk)

communication in ASCII via UNIX pipes

communication using Tcl send command

Figure 1 Communication architecture

may be replaced by: may be replaced by:

visualization
tksim

(Tcl/Tk)

control program
prog1
(Eiffel)

send utility
feedback_pipe

(Tcl/Tk)

hardware model
tkmodel

(Extended Tcl)
control program

prog2
(Pascal)

control program
prog2

(Hascel)

3

what is in the foreground and what is in the background of the canvas have proven to be useful
when dealing with overlapping.

The details of the implementation will be described in a technical report in preparation [5].

2.2 Coupling the Visualization and the Control Software

We defined a simple ASCII communication protocol between the visualization and the control
program. A control program issues commands provided by this protocol to stdout, and can thus
switche the actors of the production cell on or off. With a special command also provided by the
protocol definition, the control program can ask for the sensor status, which can then be read
from stdin.

We designed the visualization as a set of Tcl/Tk procedures, such that to each actor com-
mand there is a corresponding procedure. The status of the sensor values is recorded internally
and, if requested for, is written to stdout. We added a simple Tcl-script called feedback_pipe. Its
task is to recognize commands issued from the control program (read in by stdin), and to call the
respective procedures of the visualization using the Tcl-built in send command. The very simple
overall architecture of the application is shown in figure 1.

This coupling mechanism is flexible in two ways: of course, one can easily replace prog1
by another control program, even by a panel for manual control (which was written using Tcl/
Tk, too). Note that this would not be so simple if we had used UNIX named pipes. In addition,
it is also possible to replace the simulation by a simpler Tcl-script which directly sends com-
mands and retrieves the state (via the serial port) from the hardware model. In order to achieve
this, some small low-level C procedures were added to Tcl, thus resulting in a Tcl extension.

3. Conclusion

The use of Tcl/Tk allowed for building a quite complex animated graphical simulation in a rather
short time. The entire effort including the learning of Tcl/Tk by one of the authors was about 120

conveyor belt 1

conveyor belt 2

positioning

press

arm 2

arm 1robot

travelling

table

crane

Figure 2 Schematic diagram of
the production cell

Figure 3 Screen dump of the visu-
alization (together with panel)

4

hours. The Tcl/Tk interpreter proved to be a robust and reliable tool for this task. The smooth
embedding in the standard communication mechanism of UNIX (using character streams and
pipes) and the straight-forward extensibility of the Tcl interpreter by custom C functions were
very useful for the integration of different parts of the system.

One major drawback of the current Tcl/Tk version in this application was the degradation
of performance when relying extensively on procedures to structure the application. Additional-
ly, powerful and suitable modularization and abstraction mechanisms for data structures as well
as for functions would be very useful. We would like to have object-oriented concepts for struc-
turing and reusing Tcl programs.

References

[1] J. K. Ousterhout, An Embeddable Command Language, Proceedings of the1990 Winter
USENIX Conference.

[2] J. K. Ousterhout, An X11 Toolkit Based on the Tcl Language, Proceedings of the 1991
Winter USENIX Conference.

[3] Kai Gutenkunst, Techniques for the coupling of user interfaces and applications,
Forschungszentrum Informatik, Haid-und-Neu-Straße 10-14, D-7500 Karlsruhe 1, 1992
(in German language).

[4] Thomas Lindner, Case Study Production Cell: Task Definition, Technical Report,
Forschungszentrum Informatik, Haid-und-Neu-Straße 10-14, D-7500 Karlsruhe 1.

[5] Artur Brauer, Claus Lewerentz, Thomas Lindner, Implementing a visualization of an
Industrial Production Cell Using Tcl/Tk, Technical Report, Forschungszentrum Informatik,
Haid-und-Neu-Straße 10-14, D-7500 Karlsruhe 1, in preparation.

Appendix: How to Install and Use the Visualization

Prerequisite: Have a running Tcl/Tk installation.

1. Get the file visualization.tar.Z from the FZI ftp server gate.fzi.de (Internet 141.21.4.3)
in directory pub/korso/fzelle/simulation. Use binary transfer mode.

2. Un-compress and un-tar the file.

3. Change the files tksim, panel, and feedback_pipe by entering the correct path of your
wish interpreter in the first line.

4. Under UNIX, now just enter tksim | panel | feedback_pipe. The simulation will come up,
together with a control panel for hand steering, which was also implemented using Tcl/
Tk.

5. Press the DEMO button in order to get a demonstration of a typical processing cycle of
the production cell.

Please report any errors to lindner@fzi.de. Also comments are welcome.

