Specification of the CFS coherency protocol in
LOTOS

version 4

Charles Pecheur

INRIA Rhone-Alpes

655 avenue de I’Europe
38330 Montbonnot Saint Martin

FRANCE

Tél: +33-4-76.61.52.98

Fax: +33-4-76.61.52.52
E-mail: Charles.Pecheur@Qinria.fr

cfs.nw 4.4 - 98/02/19

February 19, 1998

1 Introduction

This document contains the LOTOS specification of the CFs coherency protocol,
presented in a litterate programming style. The specification covers access to a
single page of a CFs file, and describes both the CFs coherency protocol (see
process Site) and the real transfer and access to file data (see process Memory).

Notational Convention The full LoTOS code is provided, in the form of
labelled chunks like the following sample!:

la (sample la)=

(* ... some LOTDS text here ... *)

A chunk may contain references to other chunks, to be interpreted as textual
inclusion:

1b (other sample 1b)=
(x ... %)

(sample 1a)

(* ... *)

The LoTos language is officially defined by the ISO standard 8807 [ISO88].
Tutorials can be found in [BB88, Tur93].

I This is produced automatically using N. Ramsey’s Noweb literate programming system.

cfs.nw 4.4 - 98/02/19 2

Model Generation This specification is intended for model-checking using
the CADP validation tools [Gar96]. This has some consequences in the way it is
written:

e To limit state space explosion, data types are kept as small as possible.
In particular, small sets of constants are often used to model potentially
large data domains.

e The behaviour part has a bounded synchronization structure (no recursion
over parallelism), and the number of concurrent processes is kept to a
minimum.

e Equations are written assuming sequential evaluation (i.e. the first ap-
plicable equation is applied). This often allows a drastic reduction of the
number of equations, but relies on the particular evaluation strategy used
by CADP. It is not to be interpreted according to the standard algebraic
semantics of LoTOS.

Data Type Syntax Extensions The APERO syntax extensions [Pec96] are
used to shorten and clarify the definitions of data types. These notations are
not standard LOTOSs; a translator is used to expand them into plain LOTOS data
type definitions (taking into account the requirements of CADP).

2 Version History

Version 1 First version, based on the automaton found in [Fas96], p. 52,
plus [Jac]. Describes the synchronization part of different sites for one page
(actual memory transfer is not covered). Different control states are modelled
as different LOTOS processes.

Version 2 To tackle state space explosion, the different processes are merged
in a single one, with the control state represented explicitly as a data variable.

Version 3 Add modelling of page contents. Since the latest revisions of ver-
sion 2, model generation is handled compositionally, so we take less care into
reducing the number of variables in processes. CAESAR’s inefficiency in state
representation is eliminated in subsequent minimizations.

Version 4 Drastic housecleaning: all unused processes and definitions re-
moved. Intended for final distribution.

3 Data Types

3.1 Base Domains

Booleans and natural numbers are used throughout.

3a

3b

3c

3d

cfs.nw 4.4 - 98/02/19 3

(data types 2)=
library Boolean, NaturalNumber endlib

Defines:
Bool, used in chunk 4.
Nat, never used.

Each site is identified by an identifier of sort Site. This sort is defined as an
enumerated type and is iterated upon in model generations; it should be kept
as small as possible. This specification is bounded to three different sites.

(data types 2)+=

enumtype SiteType is
enum sitel,site2,site3 : Site
endtype

Defines:

Site, used in chunks 5, 7-18, and 23b.

Val is the sort of page content. This sort is iterated upon and thus is kept
as small as possible, i.e. two different values.

(data types 2)+=

enumtype ValType is
enum vall, val2 : Val
endtype

Defines:

Val, used in chunks 5, 13, and 18.

3.2 Interaction Primitives

CfsCall describes the CFs primitives offered to applications.
(data types 2)+=

enumtype CfsCallType is
enum read, beginwrite, endwrite : CfsCall
endtype

Defines:

CfsCall, never used.
Message defines the message exchanged between CFS entities.

(data types 2)+=

enumtype MessageType is
enum readrq,readok,writerq,writeok, invalidate,firstmaster
endtype

Defines:

Message, used in chunks 5b, 12b, and 13.

cfs.nw 4.4 - 98/02/19 4

State is used in monitoring interactions, to observe the internal state of the
different sites. The last four are transient states where internal information is
processed; no message or request can be received in those states.

master The site is master, no one is writing.

writing The site is master and in a writing session.

invalid The site has no valid copy.

valid The site owns a valid copy.

waitread The site is waiting for a valid copy.

waitwrite The site is waiting for mastership.

flushrqgs The site is master and is flushing pending requests (transient).

forwardrqgs The site has no valid copy and is forwarding pending requests
to the current master (transient).

invalwriting The site is invalidating remote copies before writing (tran-
sient).

invalinvalid The site is invalidating remote copies while giving up mas-
tership (transient).

4 (data types 2)+=
enumtype StateType is
enum master,writing,invalid,valid,waitread,waitwrite,
flushrqgs,forwardrqs,invalwriting,invalinvalid : State
endtype
type StateOpns is stateType
opns istransient : State -> Bool

ismaster : State -> Bool

eqns forall s : State
ofsort Bool

istransient (flushrqs) = true ;
istransient(forwardrqs) = true ;
istransient(invalinvalid) = true ;
istransient(invalwriting) = true ;
istransient(s) = false ;

ismaster(master) = true ;

ismaster(writing) = true ;

ismaster(s) = false ;
endtype

Defines:
State, used in chunk 6.
Uses Bool 2.

5a

5b

5¢C

cfs.nw 4.4 - 98/02/19 5

3.3 State Variables

SiteSet defines sets of site identifiers, used by a page master to remember all
remote copy requesters and holders.

(data types 2)+=

csettype SiteSetType is SiteType
cset SiteSet
elements sitel,site2,site3 : Site
endtype

Defines:

SiteSet, used in chunks 5d and 6.
Uses Site 3a 6.

PktList defines a list of (Site, Message) pairs. It is used by the underlying
communication channel to store transitting messages. the Site is the remote

(i.e. non-master) site; it can be either the source or the destination of the
message, depending on the message type.

(data types 2)+=

recordtype PktType is SiteType, Messagetype
record pkt : Pkt
fields site : Site
msg : Message
endtype
listtype PktListType is PktType
list PktList
elements Pkt
endtype
Defines:

Pkt, never used.
PktList, used in chunks 5d and 6.
Uses Message 3d and Site 3a 6.

ValArray is an array of Val indexed on Site, used in process Memory to
store the different copies of a page for each site.

(data types 2)+=

arraytype ValArrayType is ValType, SiteType
array ValArray
elements Val
indices sitel,site2,site3 : Site
endtype
Defines:

ValArray, used in chunks 5d and 13.
Uses Site 3a 6 and Val 3b.

Some complementary constants for convenience.

5d

cfs.nw 4.4 - 98/02/19 6

(data types 2)+=

type ConstantsType is SiteSetType, PktListType, ValArrayType
opns nocopies : -> SiteSet

norqs : —> PktList

init : -> Val

init : -> ValArray

eqns
ofsort SiteSet

nocopies = {} ;
ofsort PktList

norgs = <> ;
ofsort Val

init = vall ;
ofsort ValArray

init = £fill(init of Val) ;
endtype

Uses PktList 5b, SiteSet 5a, Val 3b, and ValArray 5c.

4 System Processes

4.1 CFs entity

The process Site describes the management of a single page by a CFS site.
This is a state-oriented specification, originally based on the state machine pre-
sented in [Fas96]. All state is specified as data parameters. The parameter
state:StateType encodes the control part of the state.

As a special case, the first site to request (read or write) access to the page
receives initial mastership. This is modelled as a firstmaster message received
before the readrq or writerq has been sent.

Note: for simplification, initial mastership assignment is not covered in the
generated models. Instead, mastership is given arbitrarily to sitel..

(processes 6)=
process Site [cfsreq,cfsans,send,rcv]
(s : Site,
state : State,
copies : SiteSet,
rgs : Pktlist)
: noexit :=
((local read 8b))
[1
((local beginwrite 8c))

(1

((local endwrite 9a))

cfs.nw 4.4 - 98/02/19 7

1

((remote readrq 9b))

1

((remote writerg 9¢))

1

((remote readok 10a))

1

((remote writeok 10b))

1

((remote invalidate 10c))

1

((transient flushrgs 11c))

1

((transient forwardrgs 12a))

1

((transient invalwriting 11a))
1

((transient invalinvalid 11b))

endproc

Defines:
Site, used in chunks 5, 7-18, and 23b.
Uses PktList 5b, SiteSet 5a, and State 4.

InitSite defines a site in initial state, i.e. no valid copy and both lists are
empty. Maybe this should not be used since there is a risk that CAESAR keeps
its variables in the state vector.

(processes 6)+=
process InitSite [cfsreq,cfsans,send,rcv] (s : Site) : noexit :=
Site [cfsreq,cfsans,send,rcv] (s,invalid,nocopies,norqs)
endproc

Defines:

cfs.nw 4.4 - 98/02/19 8

InitSite, used in chunk 19.
Uses Site 3a 6.

InitMaster is similar to InitSite, except that the site is given mastership.

8a (processes 6)+=
process InitMaster [cfsreq,cfsans,send,rcv] (s : Site) : noexit :=
Site [cfsreq,cfsans,send,rcv] (s,master,nocopies,norqgs)

endproc

Defines:
InitMaster, used in chunk 19.
Uses Site 3a 6.

4.1.1 Local Requests

The following paragraphs detail the handling of CFs requests from local appli-
cations.

local read

8b (local read 8b)=
[(state eq master) or (state eq valid) or (state eq invalid)] ->
cfsreq !s !read;
([state eq master] ->
cfsans !s !read;
Site [cfsreq,cfsans,send,rcv] (s,master,copies,rgs)

(]

[state eq valid] ->
cfsans !s !read;
Site [cfsreq,cfsans,send,rcv] (s,valid,copies,rqs)

(]

[state eq invalid] ->
(send !s !readrq !s;
Site [cfsreq,cfsans,send,rcv] (s,waitread,copies,rgs)
(]
rcv !s !firstmaster !s;
cfsans !s !read;
Site [cfsreq,cfsans,send,rcv] (s,master,copies,rqs)))
Uses Site 3a 6.

local beginwrite

8¢ (local beginwrite 8cy=
[(state eq master) or (state eq valid) or (state eq invalid)] ->
cfsreq !s !beginwrite;
([state eq master] ->
cfsans !s !'beginwrite;

9a

9b

cfs.nw 4.4 - 98/02/19 9

Site [cfsreq,cfsans,send,rcv] (s,invalwriting,copies,rqgs)
[1

[state eq valid] ->
send !s !writerq !s;
Site [cfsreq,cfsans,send,rcv] (s,waitwrite,copies,rqgs)

(]

[state eq invalid] ->
(send !s !writerq !s;
Site [cfsreq,cfsans,send,rcv] (s,waitwrite,copies,rqgs)
[]
rcv !s !firstmaster !s;
cfsans !s !beginwrite;
Site [cfsreq,cfsans,send,rcv] (s,writing,copies,rgs)))
Uses Site 3a 6.

local endwrite

(local endwrite 9a)=

[state eq writing] ->

cfsreq !s !endwrite;

cfsans !s !endwrite;

Site [cfsreq,cfsans,send,rcv] (s,flushrqgs,copies,rqs)
Uses Site 3a 6.

4.1.2 Remote Messages

The following paragraphs detail the handling of CFs protocol messages from
remote CFS sites.

remote readrq

(remote Teadrq 9b)=
[(state eq master) or (state eq writing)] ->
rcv !s !readrq ?sl:Site;
([state eq master] ->
send !s !readok !si;
Site [cfsreq,cfsans,send,rcv] (s,master,insert(sl,copies),rgs)

(1

[state eq writing] ->
Site [cfsreq,cfsans,send,rcv]
(s,writing, copies, rqs+pkt(sl,readrq)))
Uses Site 3a 6.

remote writerq

9c

10a

10b

10c

cfs.nw 4.4 - 98/02/19 10

(remote writerq 9c)=
[(state eq master) or (state eq writing)] ->
rcv !s !writerq 7sl:Site;
([state eq master] ->
send !s !writeok !si;
Site [cfsreq,cfsans,send,rcv] (s,invalinvalid,copies,rqs)

(1

[state eq writing] ->
Site [cfsreq,cfsans,send,rcv]
(s,writing, copies, rqs+pkt(sl,writerq)))
Uses Site 3a 6.

remote readok

(remote readok 10a)=

[state eq waitread] ->

rcv !s l!readok !s;

cfsans !s !read;

Site [cfsreq,cfsans,send,rcv] (s,valid,copies,rqs)
Uses Site 3a 6.

remote writeok

(remote writeok 10b)=

[state eq waitwrite] ->

rcv !s lwriteok !s;

cfsans !s !beginwrite;

Site [cfsreq,cfsans,send,rcv] (s,writing,copies,rqgs)
Uses Site 3a 6.

remote invalidate Note: unexpected reception of invalidate is possible in
any state other than valid. This has been observed as a cause of deadlock of
this specification. These cases have been added in the specification; the message
is ignored in these cases.

(remote invalidate 10c)=

[(state eq valid) or
(state eq master) or
(state eq writing) or
(state eq waitwrite) or
(state eq waitread) or
(state eq invalid)] ->

rcv !s l!linvalidate !s;

([state eq valid] ->
Site [cfsreq,cfsans,send,rcv] (s,invalid,copies,rqgs)

(1

[state ne valid] ->
Site [cfsreq,cfsans,send,rcv] (s,state,copies,rqs))
Uses Site 3a 6.

cfs.nw 4.4 - 98/02/19 11

4.1.3 Transient States

The following paragraphs detail the processing done in transient states. Typ-
ically this involves flushing some internal list and sending corresponding mes-
sages.

transient invalwriting Invalidate remote copies in copies before going to
writing.
11a (transient invalwriting 1la)=
[state eq invalwriting] ->
([copies ne nocopies] ->
send !s !invalidate !min(copies);
Site [cfsreq,cfsans,send,rcv] (s,invalwriting,butmin(copies),rqgs)

(]

[copies eq mnocopies] ->
Site [cfsreq,cfsans,send,rcv] (s,writing,copies,rqs))
Uses Site 3a 6.

transient invalinvalid Invalidate remote copies in copies before going to
invalid.

11b (transient invalinvalid 11b)=
[state eq invalinvalid] ->
([copies ne nocopies] ->
send !s !invalidate !min(copies);
Site [cfsreq,cfsans,send,rcv] (s,invalinvalid,butmin(copies),rqgs)

(1

[copies eq nocopies] ->
Site [cfsreq,cfsans,send,rcv] (s,invalid,copies,rgs))
Uses Site 3a 6.

transient flushrqs Answer the pending requests in rgs.

1lc (transient flushrgs 1lc)=
[state eq flushrqgs] ->
([rgs ne norgs] ->
([msg(first(rgs)) eq readrq] ->
send !s !readok !site(first(rgs));
Site [cfsreq,cfsans,send,rcv]
(s, flushrqgs, insert(site(first(rqs)),copies), butfirst(rgs))

1
[msg(first(rqs)) eq writerq] ->

send !s !writeok !site(first(rqgs));
Site [cfsreq,cfsans,send,rcv] (s,forwardrqs,copies,butfirst(rgs)))

(]

12a

12b

cfs.nw 4.4 - 98/02/19 12

[rqs eq norgs] ->
Site [cfsreq,cfsans,send,rcv] (s,master,copies,rqs))
Uses Site 3a 6.

transient forwardrqgs Invalidate remote copies in copies, then forward pend-
ing requests in rgs to the current master.

(transient forwardrgs 12a)=
[state eq forwardrqgs] ->
([copies ne nocopies] ->
send !s !invalidate !min(copies);
Site [cfsreq,cfsans,send,rcv] (s,forwardrgs,butmin(copies),rqs)

(]

[copies eq mnocopies] ->
([rqs ne norgs] ->
send !s !msg(first(rgs)) !site(first(rgs));
Site [cfsreq,cfsans,send,rcv] (s,forwardrqs,copies,butfirst(rgs))

1

[rgs eq norqs] ->
Site [cfsreq,cfsans,send,rcv] (s,invalid,copies,rgs)))
Uses Site 3a 6.

4.2 Communication Channel

The following processes define the medium through which CFS sites communi-
cate. All events on send and rcv have the following attributes:

send 7?sl1 : Site ?m : Msg 7s2 : Site

rcv ?sl : Site ?m : Msg 7s2 : Site

s1 is the site that sends/receives the message; s2 is the site concerned by
the message. The channel ignores s1 and keeps s2. Note that no destination
address is given; each site is responsible for accepting only the messages it is
supposed to receive. This works because each kind of message has a well-defined
destination: requests go to the master, responses go to the concerned site.

OutputCell is a one-slot bounded buffer whose input is restricted to a single
site. The restriction to a single message avoids state space explosion. Using a
different channel for each site allows messages from different sites to be received
in any order (and blows up the state space). This is necessary for a correct
working of the protocol; deadlocks have been observed in models with a single
common channel.

(processes 6)+=
process OutputCell [send,rcv] (s : Site) : noexit :=
send !s ?m:Message ?sl:Site;

rcv 7dest:Site !m !si;
OutputCell [send,rcv] (s)

13

cfs.nw 4.4 - 98/02/19 13

endproc

Defines:
OutputCell, used in chunks 21 and 23b.
Uses Message 3d and Site 3a 6.

4.3 Memory

Memory holds the data (of sort Val) of the page controlled through the Crs
protocol. Different copies are kept for each site. The CFs messages are seen
through gate ctrl and cause data to be transfered on readok and writeok mes-
sages. Gates read and write model the access to memory by the application,
with the following profiles:

read 7?s : Site ?v : Val

write 7s : Site ?v : Val

(processes 6)+=
process Memory [read,write,ctrl] (mems: ValArray) : noexit :=

(choice s:Site []
read !s !get(s, mems) ;
Memory [read,write,ctrl] (mems))

(1

write 7s:Site ?v:Val;
Memory [read,write,ctrl] (set(s, v, mems))

(]

ctrl ?s1:Site 7m:Message 7s2:Site;
([(m eq readok) or (m eq writeok)] ->
Memory [read,write,ctrl] (set(s2, get(sl, mems), mems))
]
[(m ne readok) and (m ne writeok)] ->
Memory [read,write,ctrl] (mems))

endproc
process InitMemory [read,write,send] : noexit :=
Memory [read,write,send] (init of ValArray)
endproc
Defines:

InitMemory, used in chunk 23b.
Memory, never used.
Uses Message 3d, Site 3a 6, Val 3b, and ValArray 5c.

5 Environment processes

This section defines processes which describe the expected behaviour of the
environment of components of a CFs system. These processes are used to filter

14

cfs.nw 4.4 - 98/02/19 14

out impossible execution paths when generating those components separately,
in a compositional approach.

5.1 Environment for Sites

MasterSiteProxy, SlaveSiteProxy abstract the behaviour of another site,
as seen from a given site through gates send and rcv. MasterSiteProxy covers
messages to and form a master site, independently of its number; SlaveSiteProxy
covers messages to and from a given slave site.

(processes 6)+=
process MasterSiteProxy [send,rcv] (s:Site) : noexit :=

send !s !readrq !s;
MasterSiteProxy [send,rcv] (s)

(]

send !s !writerq !s;
MasterSiteProxy [send,rcv]l (s)

(]

rcv !s !readok !s;
MasterSiteProxy [send,rcv]l (s)

(1

rcv !s lwriteok !s;
MasterSiteProxy [send,rcv] (s)

(1

rcv !s !invalidate !s;
MasterSiteProxy [send,rcv] (s)

endproc
process SlaveSiteProxy [send,rcv] (s:Site, other:Site) : noexit :=

rcv !s !readrq !other;

(send 's !'readok !other;
SlaveSiteProxy [send,rcv] (s,other)
[]
send !s !readrq !other;
SlaveSiteProxy [send,rcv] (s,other))

(1

rcv !s !writerq !other;
(send 's !'writeok !other;
SlaveSiteProxy [send,rcv] (s,other)

1

15a

cfs.nw 4.4 - 98/02/19 15

send !s !writerq !other;
SlaveSiteProxy [send,rcv] (s,other))

(1

send !s !'invalidate !other;
SlaveSiteProxy [send,rcv] (s,other)

endproc

Defines:
MasterSiteProxy, used in chunk 15a
SlaveSiteProxy, used in chunk 15a
Uses Site 3a 6.

To constitute an environment for a given site, we need a single MasterSiteProxy
plus one SlaveSiteProxy for each site. It is not necessary to include a SlaveSiteProxy
for the constrained site, because in no case can a site become its own master: it
cannot receive a readrq or writerq from itself, nor need to send an invalidate
to itself.

(processes 6)+=

process Site2Proxy [send,rcv] (s:Site, other:Site) : noexit :=
MasterSiteProxy [send,rcv]l (s)
11
SlaveSiteProxy [send,rcv] (s,other)

endproc

process Site3Proxy [send,rcv]
(s:Site, other1:Site, other2:Site) : noexit :=
MasterSiteProxy [send,rcv] (s)
11
SlaveSiteProxy [send,rcv] (s,otherl)
11
SlaveSiteProxy [send,rcv] (s,other2)
endproc

Defines:
Site2Proxy, used in chunk 20a
Site3Proxy, used in chunk 20a
Uses MasterSiteProxy 14, Site 3a 6, and SlaveSiteProxy 14.

5.2 Environment for Channels

Note: since Site and Message are small enumerated types, it is possible to
generate the graph for a finite channel without any constraint.

SlaveSendProxy, MasterSendProxy fix the messages sent by a site on its out-
put channel, resp. in slave and master state. Note that the former depends only
on the sender while the latter also depends on the receiver. They are used for
restricting the environment of channel processes.

cfs.nw 4.4 - 98/02/19 16

15b (processes 6)+=
process SlaveSendProxy [send] (s:Site) : noexit :=

send !s !readrq !s;
SlaveSendProxy [send] (s)

(1

send !s !writerq !s;
SlaveSendProxy [send] (s)

endproc
process MasterSendProxy [send] (s:Site, other:Site) : noexit :=

send !s !readok !other;
MasterSendProxy [send] (s,other)

(1

send !s !writeok !other;
MasterSendProxy [send] (s,other)

(1

send !s !readrq !other;
MasterSendProxy [send] (s,other)

(]

send !s !writerq !other;
MasterSendProxy [send] (s,other)

(]

send !s !invalidate !other;
MasterSendProxy [send] (s,other)

endproc

Defines:
MasterSendProxy, used in chunk 17.
SlaveSendProxy, used in chunk 17.
Uses Site 3a 6.

RcvProxy fixes message received from some channel by another site. It is used
for restricting the environment of channel processes.

16 (processes 6)+=
process RcvProxy [rcv] (s:Site, other:Site) : noexit :=

rcv !other !readrq 7z:site;

17

cfs.nw 4.4 - 98/02/19

RcvProxy [rcv] (s,other)
[

rcv !other !writerq ?z:site;
RcvProxy [rcv] (s,other)

(1

rcv !other !'readok !other;
RcvProxy [rcv] (s,other)

(1

rcv !other !'writeok !other;
RcvProxy [rcv] (s,other)

(]

rcv !other !readrq !other;
RcvProxy [rcv] (s,other)

(]

rcv !other !writerq !other;
RcvProxy [rcv] (s,other)

(1

rcv !other !'invalidate !other;
RcvProxy [rcv] (s,other)

endproc

Defines:
RcvProxy, used in chunk 17.
Uses Site 3a 6.

17

Channel proxies are grouped to constrain a given channel, according to the
expected number of sites. With the same reasoning as for site proxies, we can

safely omit communications from a site to itself.

(processes 6)+=

process Channel2Proxy [send,rcv]
(s:Site, other:Site) : noexit :=
SlaveSendProxy [send] (s)
[
MasterSendProxy [send] (s,other)
[
RcvProxy [rcv]l (s,other)

endproc

process Channel3Proxy [send,rcv]
(s:Site, otherl:Site, other2:Site) : noexit

18

cfs.nw 4.4 - 98/02/19

SlaveSendProxy [send] (s)

11

MasterSendProxy [send] (s,otherl)
11

MasterSendProxy [send] (s,other2)
11

RcvProxy [rcv] (s,otherl)

11

RcvProxy [rcv]l (s,other2)

endproc

Uses MasterSendProxy 15b, RcvProxy 16, Site 3a 6, and SlaveSendProxy 15b.

5.3 User behaviour

18

Process GeneralUser links calls to Crs and accesses to memory. It encodes the

expected use of CFs by the application:

e call (request/answer) read then read the page any number of times;

e call beginwrite and endwrite before and after writing and/or reading

the page any number of times.
(processes 6)+=
process GeneralUser [read,write,cfsreq,cfsans] (s:Site)
cfsreq !s !read;

cfsans !s !read;
ReadingUser [read,write,cfsreq,cfsans] (s)

1

cfsreq !s !'beginwrite;

cfsans !s !beginwrite;

WritingUser [read,write,cfsreq,cfsans] (s)
endproc

process ReadingUser [read,write,cfsreq,cfsans] (s:Site)

read !s 7v:Val;
ReadingUser [read,write,cfsreq,cfsans] (s)

]
GeneralUser [read,write,cfsreq,cfsans] (s)
endproc
process WritingUser [read,write,cfsreq,cfsans] (s:Site)

read !s ?v:Val;
WritingUser [read,write,cfsreq,cfsans] (s)

: noexit

: noexit

. noexit

19

cfs.nw 4.4 - 98/02/19 19

(]
write !s ?v:Val;
WritingUser [read,write,cfsreq,cfsans] (s)

(]

cfsreq !s !endwrite;
cfsans !s !endwrite;
GeneralUser [read,write,cfsreq,cfsans] (s)

endproc

Defines:
GeneralUser, used in chunk 23.
ReadingUser, never used.
WritingUser, never used.

Uses Site 3a 6 and Val 3b.

6 Instanciated Processes

This section defines instances of previously defined processes as parameter-less
processes. They are used with CAESAR’s -root option to generate models of
system components in a compositional approach.

Site instances

(processes 6)+=

process Sitel [cfsreq,cfsans,send,rcv] : noexit :=
InitSite [cfsreq,cfsans,send,rcv] (sitel)

endproc

process Site2 [cfsreq,cfsans,send,rcv] : noexit :=
InitSite [cfsreq,cfsans,send,rcv] (site2)

endproc

process Site3 [cfsreq,cfsans,send,rcv] : noexit :=
InitSite [cfsreq,cfsans,send,rcv] (site3)

endproc

process Masterl [cfsreq,cfsans,send,rcv] : noexit :=
InitMaster [cfsreq,cfsans,send,rcv] (sitel)

endproc

process Sitel2 [cfsreq,cfsans,send,rcv] : noexit :=

Masterl [cfsreq,cfsans,send,rcv]

11

Site2 [cfsreq,cfsans,send,rcv]
endproc

process Sitel23 [cfsreq,cfsans,send,rcv] : noexit :=
Masterl [cfsreq,cfsans,send,rcv]

20a

20b

cfs.nw 4.4 - 98/02/19

Site2 [cfsreq,cfsans,send,rcv]

11
Site3 [cfsreq,cfsans,send,rcv]
endproc

Uses InitMaster 8a and InitSite 7.

Proxy instances

(processes 6)+=

process Proxyl2 [send,rcv] : noexit
Site2Proxy [send,rcv] (sitel,site2)
endproc

process Proxy2l [send,rcv] : noexit
Site2Proxy [send,rcv] (site2,sitel)
endproc

process Proxy123 [send,rcv] : noexit
Site3Proxy [send,rcv] (sitel,site2,site3)
endproc

process Proxy213 [send,rcv] : noexit :=
Site3Proxy [send,rcv] (site2,sitel,site3)
endproc

process Proxy312 [send,rcv] : noexit :=
Site3Proxy [send,rcv] (site3,sitel,site2)
endproc

Uses Site2Proxy 15a and Site3Proxy 15a.

Site instances with proxies

(processes 6)+=

process SitelWith2 [cfsreq,cfsans,send,rcv]
Sitel [cfsreq,cfsans,send,rcv]
| [send,rcv] |
Proxy12 [send,rcv]

endproc

process Site2Withl [cfsreq,cfsans,send,rcv]
Site2 [cfsreq,cfsans,send,rcv]
| [send,rcv] |
Proxy21 [send,rcv]

endproc

process SitelWith23 [cfsreq,cfsans,send,rcv]
Sitel [cfsreq,cfsans,send,rcv]
| [send,rcv] |
Proxy123 [send,rcv]

: noexit

: noexit

: noexit

20

cfs.nw 4.4 - 98/02/19

endproc

process Site2With13 [cfsreq,cfsans,send,rcv] : noexit :=
Site2 [cfsreq,cfsans,send,rcv]
| [send,rcv]|
Proxy213 [send,rcv]

endproc

process Site3Withl2 [cfsreq,cfsans,send,rcv] : noexit :=
Site3 [cfsreq,cfsans,send,rcv]
| [send,rcv]|
Proxy312 [send,rcv]

endproc

process MasterlWith2 [cfsreq,cfsans,send,rcv] : noexit :=
Masterl [cfsreq,cfsans,send,rcv]
| [send,rcv]|
Proxy12 [send,rcv]

endproc

process Master1With23 [cfsreq,cfsans,send,rcv] : noexit :=
Masterl [cfsreq,cfsans,send,rcv]
| [send,rcv] |
Proxy123 [send,rcv]

endproc

Cell instances

21 (processes 6)+=

process OutputCelll [send,rcv] : noexit :=
OutputCell [send,rcv] (sitel)

endproc

process OutputCell2 [send,rcv] : noexit :=
OutputCell [send,rcv] (site2)

endproc

process OutputCell3 [send,rcv] : noexit :=
OutputCell [send,rcv] (site3)

endproc

process OutputCelll2 [send,rcv] : noexit :=

OutputCelll [send,rcv]

11

OutputCell2 [send,rcv]
endproc

process OutputCelli23 [send,rcv] : noexit :=
OutputCelll [send,rcv]
[
OutputCell2 [send,rcv]
[

22a

22b

cfs.nw 4.4 - 98/02/19

OutputCell3 [send,rcv]
endproc

Uses OutputCell 12b.

Channel proxy instances

(processes 6)+=

process ChannelProxyl2 [send,rcv] : noexit
Channel2Proxy [send,rcv] (sitel,site2)
endproc

process ChannelProxy2l [send,rcv] : noexit
Channel2Proxy [send,rcv] (site2,sitel)
endproc

process ChannelProxy123 [send,rcv] : noexit :=
Channel3Proxy [send,rcv] (sitel,site2,site3)

endproc

process ChannelProxy213 [send,rcv] : noexit :=

Channel3Proxy [send,rcv] (site2,sitel,site3)
endproc

process ChannelProxy312 [send,rcv] : noexit :=
Channel3Proxy [send,rcv] (site3,sitel,site2)
endproc

Cell instances with proxies

(processes 6)+=

process OutputCelliwith2 [send,rcv] : noexit
OutputCelll [send,rcv]
| [send,rcv] |
ChannelProxyl12 [send,rcv]

endproc

process OutputCell2withl [send,rcv] : noexit
OutputCell2 [send,rcv]
| [send,rcv] |
ChannelProxy21 [send,rcv]

endproc

process OutputCelliwith23 [send,rcv] : noexit
OutputCelll [send,rcv]
| [send,rcv] |
ChannelProxy123 [send,rcv]

endproc

process OutputCell2withl3 [send,rcv] : noexit
OutputCell2 [send,rcv]

22

cfs.nw 4.4 - 98/02/19 23

| [send,rcv]|
ChannelProxy213 [send,rcv]
endproc

process OutputCell3withl2 [send,rcv] : noexit :=
OutputCell3 [send,rcv]
| [send,rcv]|
ChannelProxy312 [send,rcv]

endproc

General User instances

23a (processes 6)+=

process GeneralUserl [read,write,cfsreq,cfsans] : noexit
GeneralUser [read,write,cfsreq,cfsans] (sitel)
endproc

process GeneralUser2 [read,write,cfsreq,cfsans] : noexit
GeneralUser [read,write,cfsreq,cfsans] (site2)
endproc

process GeneralUser3 [read,write,cfsreq,cfsans] : noexit
GeneralUser [read,write,cfsreq,cfsans] (site3)
endproc

Uses GeneralUser 18.

7 Top Level specification

Note: the models used for the validation of Crs have been generated compo-
sitionally, using the instanciated processes above to produce separate compo-
nents. The following top-level behaviour is given for illustration only; currently
it cannot be compiled monolithically within available memory.

The specification covers the management of and access to a single page by
three concurrent sites. An initial firstmaster message is generated sponta-
neously before the channel starts its normal operation.

23b (behaviour 23b)=

(
GeneralUser [read,write,cfsreq,cfsans] (sitel)
11
GeneralUser [read,write,cfsreq,cfsans] (site2)
11
GeneralUser [read,write,cfsreq,cfsans] (site3)
)
| [read,write,cfsreq,cfsans] |
(
(

Initsite [cfsreq,cfsans,send,rcv] (sitel)

cfs.nw 4.4 - 98/02/19 24

Initsite [cfsreq,cfsans,send,rcv] (site2)
11
Initsite [cfsreq,cfsans,send,rcv] (site3)
)
| [send,rcv]|
(
(rcv 7s1:Site !firstmaster 7s2:Site;
(
OutputCell [send,rcv] (sitel)
11
OutputCell [send,rcv] (site2)
11
OutputCell [send,rcv] (site3)

)
| [send] |
InitMemory [read,write,send]
)
)

Uses GeneralUser 18, InitMemory 13, OutputCell 12b, and Site 3a 6
Finally, here is the specification itself.
24 (cfs.LOTOS 24)=

(sskskskoksk ok skok ok ok stk sk ok sk ok skok ok kok ok sk kok o ko ko ko ok skok ko s skok ko sk skok sk sk ok sk ok sk sk ok sk o
Compiled from Q(#)cfs.nw 4.4 - 98/02/19
Charles Pecheur, INRIA Rhone-Alpes

seokokskok skosk ok sk ok ko ok ok sk sk sk ok sk ok skok ko ok skok ko ko ok sk skok sk sk ok skok sk sk ok skok sk sk ok sk sk sk sk ok sk sk ok sk ok)

specification CfsSystem [cfsreq,cfsans,send,rcv,read,write] : noexit
(data types 2)

behaviour
(behaviour 23b)

where
(processes 6)

endspec

This code is written to file cfs.LOTOS.

References

[BB88] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Spec-
ification Language LOTOS. Computer Networks and ISDN Systems,
14(1):25-29, January 1988.

[Fas96] Jean-Philippe Fassino. Utilisation d’une mémoire virtuelle répartie
pour le support d’un systéme de fichiers réparti. DEA, Université
Joseph Fourier, Grenoble, June 1996.

cfs.nw 4.4 - 98/02/19 25

[Gar96]

[1SO88]

[Jac]

[Pec96]

[Tur93]

Hubert Garavel. An Overview of the Eucalyptus Toolbox. In
Z. Brezo¢nik and T. Kapus, editors, Proceedings of the COST 247 In-
ternational Workshop on Applied Formal Methods in System Design
(Maribor, Slovenia), pages 76—88. University of Maribor, Slovenia, June
1996.

ISO/IEC. LOTOS — A Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour. International Stan-
dard 8807, International Organization for Standardization — Informa-

tion Processing Systems — Open Systems Interconnection, Geneve,
September 1988.

Thierry Jacquin. Le protocole de cohérence mémoire de CFS. Personal
notes.

Charles Pecheur. Improving the Specification of Data Types in LOTOS.
Doctorate thesis, University of Liege, November 1996. Collection of
Publications of the Faculty of Applied Sciences, Nr 171.

Kenneth J. Turner, editor. Using Formal Description Techniques — An
Introduction to ESTELLE, LOTOS, and SDL. John Wiley, 1993.

cfs.nw 4.4 - 98/02/19 26

Index of LOTOS Identifiers

Bool: 2,4
CfsCall: 3c
GeneralUser: 18, 23a, 23b
InitMaster: 8a, 19
InitMemory: 13, 23b
InitSite: 7,19
MasterSendProxy: 15b, 17
MasterSiteProxy: 14, 15a
Memory: 13
Message: 3d, 5b, 12b, 13
Nat: 2
OutputCell: 12b, 21, 23b
Pkt: 5b
PktList: 5b, 5d, 6
RcvProxy: 16, 17
ReadingUser: 18
Site: 3a, 5a, ob, 5¢, 6, 7, 8a, 8b, 8c, 9a, 9b, 9c, 10a, 10b, 10c, 11a, 11b, 11c,
12a, 12b, 13, 14, 15a, 15b, 16, 17, 18, 23b
Site2Proxy: 1b5a, 20a
Site3Proxy: 1b5a, 20a
SiteSet: ba, 5d, 6
SlaveSendProxy: 15b, 17
SlaveSiteProxy: 14, 15a
State: 4,6
Val: 3b, 5c, 5d, 13, 18
ValArray: 5c, 5d, 13
WritingUser: 18

