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ABSTRACT

The HAVi specification [9] proposes an architecture for audio/video interoperability in home networks. Part of
the HAVi specification is a distributed leader election protocol. We have modelled this leader election protocol
in Promela and Lotos and have checked several properties with the tool Spin and the tool Xtl (from the
Caesar/Aldébaran package).

It turns out that the protocol does not meet some safety properties and that there are situations in which
the protocol may never converge to designate a leader. Our conclusion is that realistic timing requirements
on sending and processing of messages should be added to the HAVi specification. Then a (timed) formal
verification could give a definite answer with respect to correctness of the leader election protocol.
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1 Introduction

The Home Audio/Video Interoperability (HAVi) project [9] is a joint effort by eight consumer electron-
ics companies to solve interoperability problems for audio/video networks in the home environment.

The HAVi specification specifies a set of Application Programming Interfaces (APIs) and protocols
that allow consumer electronics manufacturers and third parties to develop applications for the home
network. Thus the home network is viewed as a distributed computing platform, and the primary goal
of the HAVi architecture is to assure that products from different vendors can cooperate to perform
application tasks. The HAVi architecture is supposed to work on top of an IEEE 1394 serial bus
[16, 17].

There are two types of HAVi devices: controllers and controlled devices. The controller acts a host
for controlled devices via a Device Control Module (DCM). Installation and allocation of such DCMs is
done by a HAVi software element which is called the Device Control Module Manager (DCM Manager).
Each controller is supposed to have a DCM Manager. All DCM Managers have to cooperate with
each other to ensure that the installation and allocation of DCMs works properly. A complicating
factor here is the dynamic plug-and-play character of the 1394 network. Each time when a change in
the 1394 network occurs, the DCM Managers restart their activities by first choosing a leader among
them, and then under the control of the designated leader, complete their DCM controlling tasks.

The purpose of the leader election is that the DCM Manager with the best capabilities will play a
central role in the DCM controlling tasks. Since not all of these capabilities are persistent and globally
available, the DCM Managers need to communicate to find out which one is the best candidate for
leadership.

In this paper, we study the leader election protocol between the DCM Managers. Our goal is to
analyse this protocol with several model checking tools, to determine whether the protocol is correct,
and to compare the model checking tools. Our approach is to construct a model of the behaviour of
the protocol in a suitable formal language, and to establish certain properties through model checking.
Model checking is a verification approach where one checks whether a property holds by exploring the
reachable state space of the model. The manual construction of such proofs is a tedious and error-prone
process. Nowadays, there are several tools that fully automate the model checking process.

We present several models of the protocol leader election protocol in the formal languages Promela
[11] and Lotos [7]. Several properties have been checked with the model checking tools Spin [11, 12]
and Xtl [22] (part of the Caesar/Aldébaran distribution [6]).

We have found errors in the formal models with both Spin and Xtl. It turns out that some safety
properties are not met by the protocol and that there are situations in which the protocol may never
converge to a designate a leader. The cause of these errors is that the HAVi specification is not
detailed enough to ensure that HAVi compliant implementations are faultless. The errors occur when
communication between different devices is faster than communication between components in one
device. Besides our conclusions on the correctness of the HAVi protocol, we compare the two model
checking tools.

As far as we know, the only other paper in which HAVi leader election protocol between DCM
Managers is studied is [28]. Here, a comparison is made between the performance of state space
exploration of Spin and the uCRL tool set [8]. The model of the protocol differs from ours and no
model checking is performed.

This paper is organised as follows. Section 2 gives an informal description of the HAVi leader
election protocol. Section 3 introduces the tools and languages used. Section 4 describes our model
of the protocol. Section 5 gives the details of all the model checking experiments. Finally, Section 6
gives several conclusions that we drew from this experiment.

In the appendices, relevant excerpts from the HAVi and 1394 specifications and several code listings
can be found.
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2 The DCM Manager leader election protocol

The DCM Manager leader election protocol is described in the HAVi specification [9] at page 160. The
protocol tries to find a suitable leader for the actual task of the DCM Managers, which is performed
in the autonomous operation phase. We only study the leader election phase.

The parts of the HAVi specification and the IEEE 1394 standard that are relevant for this protocol
are listed in Appendices A and B. Here, we give an informal explanation of the protocol, and the
services that it requires from several HAVi components.

2.1 Protocol

Each DCM Manager enters the leader election phase upon initialisation and each time a bus reset
event is received. First it obtains information on the current network topology, by sending a request to
another HAVi element, the Communications Media Manager, which returns a list with all the devices
that are active in the (1394) network. The list contains the Global Unique ID (GUID) of all devices in
the network. The DCM Manager then questions the 1394 level of each active device to find out some
more information. The information needed for this protocol is the HAVi type of the device is (FAV,
TAV, BAV or LAV), and whether there is a DCM Manager present at the device (at FAV compulsory,
at TAV optional). Based on this information, the DCM Manager selects an initial leader from the
GUIDs of devices on which a DCM Manager is present. Since each DCM Manager uses the same
procedure for the selection, all of them choose the same initial leader without communicating with
each other. Each DCM Manager which is not the initial leader is called initial follower.

The initial leader waits for initialisation requests from all initial followers, in which they state their
capability. Using this new information and the HAVi type of the devices, the initial leader decides
which DCM Manager is the best candidate for the final leadership. One of the criterions is the HAVi
controller type, which is found in the (static) information of the HAVi device and which can be
accessed from outside the device. The other criterion is Internet access which is found in the request
messages from the followers. Each initial follower is informed of the decision with an initialisation
reply, and the DCM Manager which has been elected as final leader is informed last. After this, the
leader election phase ends and the autonomous operation phase phase is entered. Here, each DCM
Manager which is not the final leader is called final follower.

During or after the leader election phase, the network topology may change, which causes a bus
reset phase to start. Whenever this happens, the DCM Managers should start anew with the leader
election because the previously elected leader may have disappeared from the network or a more
suitable candidate may have appeared. The DCM Managers are informed of a bus reset phase by
the Communications Media Manager with an event. The HAVi specification does not lay down any
implementation rules for the delivery of this event, such as timing requirements. So it is possible that
the bus reset event is delivered after the bus reset phase has already ended. If multiple bus reset
phases occur (almost) adjacently, the DCM Managers may get out of phase in their leader election.
Then one DCM Manager might be sending its initialisation request to an initial leader which is not
aware of any bus reset phase having taken place, or vice versa. To keep things in order, the DCM
Manager which is to be the initial leader, must remember this role and answer initialisation requests
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with an initialisation reply, even after leader election has ended. During and after the protocol, all
unexpected messages are ignored.

2.2 HAVi components

The DCM Managers use the services of the local elements Messaging System, Communication Media
Manager, and Event Manager. These elements will be available at each HAVi device that contains a
DCM Manager.

The Messaging System provides two services and two modes of sending messages to software
elements, whether local or not. The service choices are to block while waiting for a response by the
receiver or not to wait for a response. The modes are reliable or simple. The reliable mode implicates
that the sender is informed by the Messaging Systems involved whether the message reached the
receiver. The sender is blocked until such an acknowledgement arrives or a time-out occurs. The
simple mode implicates no acknowledgement information from the Messaging Systems is given to the
sender. The Messaging System on the device of the receiver delivers the message to the receiver via a
call back function, which the receiver has dispensed to the Messaging System at start-up time. The
Messaging System uses the 1394 network for the actual message passing. From the 1394 specification
we learn that at the 1394 level, no messages can be sent between different devices while a bus reset is
taking place.

The DCM Managers communicate with each other using the reliable method and the response
service. The HAVi specification does not limit the nature of the call back function that the DCM
Managers use. The DCM Managers use a timeout of 3 seconds on all messages.

The Event Manager accepts requests to post events and sends a message with the event through
the Messaging System to every local software element that has subscribed to the event. A posting re-
quest must be sent through the Messaging System. The DCM Managers all subscribe to the BusReset
event during initialisation.

The Communication Media Manager provides information on the network configuration which
it gets from the 1394 layer. Upon the start of a bus reset phase, it posts the event BusReset. Since
each FAV or IAV device has its own Communication Media Manager to signal the bus reset start, the
BusReset event only needs to be sent to software elements on the same device. This means that the
Messaging System can at all times deliver the messages containing this event to the interested parties,
as long as the device is powered up.

The Communication Media Manager also allows software elements to request network information
in the form of a GUIDList. This service is only available outside bus reset phases, after the Com-
munication Media Manager has received the information from 1394. This information is to be asked
with a message through the Messaging System.

An example scenario In Figure 1 we show an example scenario in the following happens. A bus
reset period starts. The Communication Media Manager posts the BusReset to the Event Manager.
The Event Manager delivers the BusReset to the DCM Manager. The DCM Manager reacts by
requesting the GUIDList from the Communication Media Manager. This list is available only when
the bus reset period has ended.

3 Languages and tools

This section gives a short introduction to the languages and tools used for formalisation and verification
of the leader election protocol. For details we refer to the documentation cited below.
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Figure 1: A bus reset scenario

3.1

Spin [11, 12] is a tool that supports simulation and verification of Promela [11] models of distributed
systems. Models in Promela (a Process Meta Language) consist of definitions of process behaviour,
with variable assignments, sequential and alternative composition, repetition and dynamic process
creation. Communication between processes happens on synchronous or asynchronous channels. Syn-
chronous communication always involves two processes. The support of data types is very limited:
basic types are booleans and naturals, from which arrays and record structures can be built.

Verification is supported through detection of deadlocks, invalid end-states or non-progress loops,
through violation of assertions and through LTL [24, 20] properties. The verification is done on the
fly: the global state space is not constructed, but explored directly from an interpreted version of the
Promela code.

Spin and Promela

3.2 Lotos, Caesar/Aldébaran and Xtl

Lotos [7] is a standardised language for abstract modelling of distributed systems. Lotos models consist
of a data part and a behaviour part: the data part is expressed in ACT-ONE, an algebraic formalism for
abstract data types, and the behaviour part is expressed in process algebra with sequential, alternative
and parallel composition, and recursion. Communication happens on synchronous gates and can
involve more than two processes.

The Caesar/Aldébaran tool set [6] facilitates simulation and verification of Lotos models. Simulation
and detection of deadlocks, livelocks et cetera can be done on the fly.

The Xtl tool [22] (which is part of the Caesar/Aldébaran tool set) facilitates the verification of
temporal properties over Lotos models. First the global state space must be generated (with Caesar),
then Xtl can verify a property given in one of the following logics: HML [10], CTL [1], LTAC [26],
ACTL [4, 3] and the modal p-calculus [18]. It is even possible to define one’s own modal logic in terms
of the libraries provided by Xtl (including greatest and least fixpoint operators).
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4 Modelling decisions

In this section, our model of the protocol is explained. What is presented here is the result of a
process of experimenting with different models, imposing and lifting restrictions until a satisfactory
model with a manageable size was obtained.

First we explain the general modelling decisions, and give a description of the processes involved.
Then the details of the Promela and Lotos models are explained (See Appendices C and D for code
listings). Unless stated otherwise, the explanations refer to the model of the protocol with 3 DCM
Managers and asynchronous communication between the DCM Managers. In the remainder of this
section we abbreviate DCM Manager (DM), Communication Media Manager (CMM), and Messaging
System (MS).

4.1 General description

Restrictions on the network FEach of the following choices is a restriction on what is allowed by
the HAVi model. These restrictions are imposed in order to obtain a model of manageable size.

We study only situations with one network in which maximally three devices are active, and demand
that in the start state no device is powered on.

The HAVi device types are FAV, TAV, BAV and LAV. We assume that there only are FAV devices
in the network, and that on each of these devices there is a DM present.

A bus reset in the 1394 network may be caused by a change in the network topology (a device being
added to or removed from the network), by a device in the network being powered up or down, by
race conditions in the 1394 protocol or by other error situations. We model the cause of a bus reset
as the power change of zero or more devices in the network. Here, zero power changes represents
some other cause of bus reset, and the power change of a device also represents the connecting or
disconnecting of that device (when a device is disconnected but still powered up, it operates in a new
network consisting of just itself; we only study one network). The network behaviour is modelled with
the process Bus_Reset.

From IEEE 1394 we learn that the worst-case time delay between the start of the bus reset phase
and the moment that the last device in the network notices the bus reset is less than 167 microseconds.
The duration of the bus reset phase until normal operation resumes is at least 414 and maximally 581
microseconds. We restrict the bus reset phase delay to zero, which means that the bus reset phase
starts at the same time at all devices in the network. For our verification purposes we only want
to consider properties that concern situation in which a bus reset is not taking place. Therefore it
is convenient to have the start of the bus reset phase actually precede the change of network which
causes the bus reset phase.

In the HAVi design, each DCM Manager use a capability and a preference in the leader election
protocol. We restrict ourselves to the capability UrlCapable, which indicates whether a device has
Internet access (true) or not (false). We assume that the value of UrlCapable does not change.

In a 1394 network a device may be unplugged (powered off), and then plugged back in (powered
on). This may cause the device to get a different 1394 physical ID and HAVi SEID (Software Element
ID) once it is back in the network, than the 1394 and HAVi IDs it had before. Since each device has a
globally unique ID (GUID) which does not change, and other devices can find out about this through
the GUIDList which is managed by their CMM, we only identify devices with their GUID and do not
model the physical ID.

Which HAVi components? We model the DM, the MS and the CMM with separate processes,
which are described below. We do not include a process for the Event Manager. The only event
posted to this component will be the BusReset, and all different scenarios of delivery of this event
can be modelled by one synchronous communication between the CMM and the DM. If the delivery
is unsuccessful, the communication does not occur. An extra process Bus_Reset is needed to model



4. Modelling decisions 8

HAVTI specification: Our model: Our model:
synchronous communication asynchronous communication synchronous communication
DM 1 DM 2 DM 1 DM 2 DM 1 DM 2

)
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HAVi/1394 communication

Figure 2: DCM Manager to DCM Manager communication

the behaviour of the 1394 network.

Process Bus_Reset This process determines whether a new bus reset period will start, and which
devices (hence which DMs and CMMs) will be powered up or down. Both of these choices are non-
deterministic, hence in a verification all possibilities will be considered. Whenever a device is powered
up or down, the DM, CMM and MS on that device are informed by Bus_Reset in a synchronous
manner. The power changes are determined in increasing order of device ID.

Process CMM This process controls the GUIDList, in which all devices present in the network
are listed. It also signals any start or end of a bus reset period on the 1394 network, and passes this
information on to the DM and the MS on the same device.

When several bus reset periods follow each other with little time in between, it is possible that a
CMM has not posted the occurrence of a previous bus reset, when the next is already taking place.
The HAVi specification does not define whether both bus reset events should be posted or just one.
We choose to have the new bus reset overrule the previous one, and have only the last bus reset
notification being posted and delivered.

Process MS This process takes care of the communication between the DMs and acts as a buffer.
All message transfers that use the MS, are performed in reliable mode, therefore we model such a
message transfer as one communication involving just the sending and the receiving component. The
message transfer is shown in Figure 2. The HAVi design is that DM 1 sends a message, intended for
DM 2, to the MS 1 (which is on the same device as DM 1). MS 1 sends the message on the network
to MS 2, which delivers it to DM 2. After sending the message, DM 1 will wait for an error message
or an acknowledgement of successful delivery to DM 2. DM 1 only continues its operation after such
a notification. In Figure 2, continuous arrows show how a message is transported through the HAVi
architecture from DM 1 to DM 2, and the dashed arrows show how the notifications are generated and
returned. In case of erroneous transfer, the message may not reach MS 2 or DM 2. Successful delivery
to DM 2 means that either DM 2 is interrupted to receive the message (synchronous communication) or
the message is put into a buffer designated by DM 2 (asynchronous communication). We have modelled
the synchronous version of this communication with direct synchronous communication between DM
1 and DM 2 (and then there is no need for any MS process), and the asynchronous version by
synchronous communication between DM 1 and MS 2. In the latter case, DM 2 can get the message
from MS 2 by synchronous communication. Note that MS 1 is not used in this communication scheme.
This modelling choice is made to limit the possibilities for the communication, which is reasonable
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since we are only interested in the communication succeeding (modelled by the message put into the
buffer) or failing (modelled by the communication not occurring at all). Of course, the size of the
buffer maintained by the MS limits the number of messages that can be sent to a DM before it actually
receives them.

So, in short, in the case of synchronous communication between DMs, there will be no MS process
in our model. In the case of asynchronous communication between DMs, there will be an MS process
which acts as a buffer for incoming messages directed to the DM at the same device. The buffer
size is a parameter for the model; in all our models the buffer size is 1. In case of asynchronous
communication, the DM will empty the buffer in the event of a bus reset period or whenever the
power is switched off.

Process DCM _Manager The general task of the DM is explained in Section 2. Our model follows
this procedure as closely as possible, except for a few modelling choices.

1. In our model we skip the subscription that the DM uses to inform the EM that it wants to
receive all bus reset events. We also skip the registration of the call back function that the DM
must dispense to the MS.

2. From the two parameters that the DM uses in the protocol, we only consider UrlCapable (In-
ternet access).

3. The HAVi method of electing the initial leader, is to choose the DM on the device with the
highest bit order reversed ID. Since our assignment of IDs to DMs is arbitrary, we just choose
the DM with the lowest ID for initial leader.

4. The selection of the final leader in the HAVi design should be an arbitrary choice of the devices
with the best capabilities. We study networks with only FAV devices on which a DM is present,
hence we let the device with the lowest ID and UrlCapable set to true be the final leader (which
is not arbitrary, but does limit the size of the state space). If no device has special capabilities,
the HAVi design allows the initial leader to elect an arbitrary device for final leader. In this
case, we have the initial leader elect itself for final leader (which also limits the state space size).

5. In the HAVi protocol, each initial follower will send its initialisation request to the initial leader,
and will resend the request if a reply was not received before a timeout occurs (which is after 3
seconds). All our models are without timing information. Hence we let the initial follower choose
arbitrarily between resending the request and receiving the reply. In this manner we cover all
possibilities. Note that this choice does not introduce new behaviour, that is, behaviour that is
not permitted by the HAVi specification.

4.2 Promela

The Promela code is listed in Appendix C.1.

At the beginning of the code, some type definitions are given for the global variables in which all
information about the several DMs is stored. These variables must be global (as opposed to local for
the DCM_Manager process that actually ‘owns’ the information) in order to facilitate access to this
information in the model checking process. Then some channels are defined which are used for com-
munication between DMs (asynchronous in this model), between DM and CMM (synchronous), and
between DM and the Bus_Reset process. We have chosen to model the asynchronous communication
between DMs with the channel chanDM, and not a separate MS process. This helps in keeping the
model simple and the state space small.

The statement labels indicate the state a process is in. By default, execution of a process starts at
the first statement. When a change of state is desired, this is done with the goto <label> statement,
where <label> is the target state.
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Many statements in the processes are not meant to be executed in an interleaved manner with other
activities in the network. With the atomic attribute, we can express that the statements in its scope
are to be executed without creating new states in between. This also helps in keeping the state space
small.

Most of the processes should be interrupted when the power on the corresponding device is switched
off. This interruption is modelled with the operator unless.

Process Bus_Reset First a bus reset period is started. The decision to actually execute this
statement is made non-deterministically, meaning that in the whole state space it is always possible
to postpone this branch of execution as long as there is another statement that can be executed.

The start of the bus reset period is forwarded to all the CMMs that are up, by setting the corre-
sponding delivery boolean in the global BusResetDelivery array. If this boolean was true already
because a previous bus reset was not handled yet by a CMM, the boolean will remain true, so only
the last bus reset notification is delivered.

Whenever a device is powered up or down, a power_change message is sent to the corresponding
DM, which will in its turn inform the CMM. If Promela supported multi-way communication, both
DM and CMM could be informed at the same time. As it is, this modelling choice keeps the size of
the state space manageable.

The model in Appendix C.3 allows maximally two bus reset periods. This makes the behaviour
of the model finite and allows us to search for invalid end states. The reason for this is given in
Section 5.4.

Process CMM Whenever the device of the CMM is being powered up or down, it will get a message
on the (synchronous) channel chanCMM and goto the corresponding state. Whenever the device of the
CMM is up and the start of a bus reset period is marked in the delivery variable in the global
array BusResetDelivery, then the CMM forwards this information to the DM on the same device,
by means of a message on chanCMM, which will interrupt the DM.

The control of the GUIDList is not done explicitly by CMM, since it is not possible to send the list
on a channel (because Promela forbids the sending of array structures). Instead, we have the DMs
read a global variable, which is permitted only outside bus reset periods.

Process DCM_Manager This process actually performs the tasks of the leader election protocol.
If it becomes initial leader, it needs a local array for keeping track of information received from initial
followers. This information is stored the array InfoHost. When the power of the device is not on,
the process just waits for a message that power has been turned on. When this happens, it forwards
the information to the local CMM (which is one of many ways to solve the multi-way synchronisation
which is not provided by Promela), and starts the leader election protocol.

First the DM needs the contents of the GUIDList. This list can be obtained as soon as the latest
bus reset period has ended. The information from global array Global is copied into the appropriate
entry of global array Local (this entry is owned by this process; the array is global only for model
checking purposes). From the GUIDList, the initial leader is determined. The DM continues being
either the initial leader, or an initial follower.

Being the initial leader is not kept track of in a variable in this model. Only final leadership
is recorded in a fleader variable for each DM. The model in Appendix C.2 records both kinds of
leadership in a leader variable for each DM. Which model is used during verification depends on the
property that is to be checked,

The initial leader and follower tasks are described in Section 2.

The final leader and followers should perform the tasks of the autonomous operation phase, but we
have not modelled this behaviour. Therefore a final leader or follower DM does nothing, except wait
for a new bus reset period, a power change or (in case it was the initial leader) answer initialisation
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requests with the initialisation reply.

Process MS This process is not present in the Promela model. We choose to have the asynchronous
channel chanDM perform the desired functionality. This decision forces us to put the awareness of a
bus reset taking place (hence no communication on the network possible) in a different process. We
choose to have the sending DM inspect the global variable BusResetPeriod.

Process Init Here, all the processes are actually started, and the non-deterministic choice for
UrlCapable to be true or false is made. Note that the process Assertion is also started, which is not
listed in the Promela model itself. This process monitors the property which is to be checked. The
properties are explained in Section 5.

4.3 Lotos

The Lotos code is listed in Appendices D.1, D.2 and D.3.

We will not explain the data parts any further, since they mostly speak for themselves.

As for the behaviour part, this is modelled with a process definition for each small part of the
protocol’s behaviour. Because of the cyclic character of the whole protocol and certain parts of it,
recursion is often used in these process definitions. Casar does not allow some forms of recursion,
which are part of Lotos, such as recursion in combination with a communication operator. This means
that we cannot recursively instantiate the DM processes.

Most of the processes should be interrupted when the power on the corresponding device is switched
off. This is done with the reception of a power_change message at the right-hand side of the disrupt
operator [>. This operator works as follows: (1) the process A[>B can perform an action from process
A and then behave as A’ [>B (with A’ the remainder of A), and (2) A[>B can perform an action from
process B and then behave as B’ (with B’ the remainder of B).

Because of the enforced multi-way synchronisation, a process must sometimes participate in a
communication even if the power of its device is off. The subprocess FlushBusReset takes care of this.

Process LE This is the top process expression which initialises all the subprocesses that are to
communicate with each other. In the initialisation of this process, the network consists of 3 DMs
that are not up. This parameter can then be passed to subprocesses. There are also gates, which
are used for synchronous communication, which can be multi-way. For instance, process BusReset
communicates over gate gBusReset with all instances of process CMM and of process MS. A commu-
nication from BusReset on this gate can only take place if all of the processes mentioned participate
in it (enforced synchronisation). The instantiation of the DM processes is a non-deterministic choice
between instantiation with UrlCapable set to either true or false.

Process BusReset As in the Promela model, the only option of this process is to start a bus reset
period, but this choice may be delayed if there is any other activity in the network. Starting with ID
1, the subprocess BusReset2 decides non-deterministically for each device whether its power status
changes or not. The operator + works modulo 4, so 3+1 yields 0, and at this ID the subprocess
BusReset2 ends the bus reset period, and calls the top process again.

Process CMM The states of this process are reflected in the subprocesses CMMDown, CMMUp,
CMMReady, CMMDeliver and CMMDeliver2.

Whenever CMMUp is executed, the CMM has to get the GUIDList first, which is available only at
the end of the bus reset period. This information is sent by BusReset. After this, the CMM is ready
for normal operation.
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CMMReady is the normal situation when the CMM is up. It can send the GUIDList on gate gInfo
to the DM with the same ID, or signal a bus reset start. After a bus reset start, the CMM executes
CMMDeliver.

In CMMDeliver two things must happen: an update of the GUIDList must be received from Bus-
Reset, and a bus_reset_event must be sent to the DM on this device. If the message to DM is sent
first, then all the CMM can do is wait for the reception of the new GUIDList, after which it is ready
for normal operation. If the bus reset period ends before the message to DM is sent, the process
CMMDeliver2 is executed.

In CMMDeliver2 the GUIDList is available again for the DM on this device, the bus_reset_event
must be sent to the DM, and a new bus reset period may start.

At any point in this behaviour, the power of the device may be switched off, which is handled with
the disrupt operator [>.

Process MS The states of this process are reflected in the subprocesses MSDown, MSUp, MSSus-
pend, and MSReady. Of these we only explain the latter two.

MSSuspend is executed whenever the MS is up, but a bus reset is taking place. No communication
is possible on the network, but the DM at the same device may still receive messages from the buffer.
This state is left as soon as the bus reset period ends.

MSReady is the normal situation when the MS is up.

At any point in this behaviour, the power of the device may be switched off, which is handled with
the disrupt operator [>.

Process DCM _Manager The states of this process are reflected in the subprocesses DMDown,
DMUp, DMif, DMSendRequest, DMil, DMElect, DMSendReply, DMff, DMffi, DMfl and DMAli.

In DMUp, the leader election process starts. The DM gets the GUIDList from the CMM on the
same device, and uses the function i_leader to compute the initial leader.

In DMif and DMSendRequest, the initial follower’s actions are executed (See Section 2).

In DMil, DMElect and DMSendReply, the initial leader’s actions are executed (See Section 2).

In DMff, DMffi, DMfl and DMA{li, the final leader and followers should determine resource allocation
of the DCM units in the network, but we have not modelled this behaviour. Therefore a final leader
or follower DM does nothing, except wait for a new bus reset period, a power change or (in case it was
the initial leader, which is in DMffi and DMfli) answer initialisation requests with the initialisation
reply.

At any point in this behaviour, the power of the device may be switched off, which is handled with
the disrupt operator [>.

5 Model checking experiments

In order to check that the protocol works as intended, we have checked four properties on several
models of the protocol. Each of the following sections is dedicated to one property. The properties
are listed in this section in an informal manner and in a notation slightly different from the actual
input for the tools. For the exact definitions of the properties, we refer to the Appendices C.5, D.4
and D.6.

The properties presented here were devised after the models of the protocol had been constructed.
This has both advantages and disadvantages. A disadvantage is that it turns out to be rather difficult
to express properties for our specific models. In fact we have had to change them slightly to make some
information visible. An advantage is that the models have not been tailored towards the properties
that should be checked except the changes mentioned. A potential danger is that the the model does
not resemble the protocol close enough anymore, and the properties to be checked trivially hold.
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Since the behaviour of the protocol is unpredictable during bus resets or the period that the CMMs
need to deliver the bus reset event, we only demand that the properties be true for stable situations,
that is, in states where it is not the case that a bus reset is taking place or a bus reset event should
still be delivered. Since a new bus reset period may start at any moment after the previous bus reset
has ended and since we have included this possibility in our models with non-deterministic choice, we
get the behaviour depicted in Figure 3 from our models. Suppose that si,ss, s3,...,s, in Figure 3
are stable states, which means that no bus reset is taking place, and all events concerning the last
bus reset have been delivered. We see that from s; it is possible that a new bus reset period starts,
but it is also possible that some other behaviour takes place on the transition to ss. If we establish
a property in terms of behaviour, we can only capture the desired behaviour from s; by using an
exists quantifier: from s; there exists a behaviour which satisfies a certain requirement. Moreover, in
our models the amount of activity that concerns the protocol is bounded. After a certain point, the
protocol is stuck or completed, and the only possible behaviour is that a new bus reset period starts.
So it is not possible to express a property as follows: “for all behaviours: if no bus reset starts in this
behaviour then fulfill a requirement”.

Expressing properties for Promela models Safety properties can be checked in Spin through
the use of assertion statements. We use a process with only such an assertion statement in the
verification for checking whether there is a state in which the assertion is false. If this happens, Spin
reports this as an error and stops the verification. An error trace is saved which can be used for
diagnostic purposes.

Liveness properties can be checked in Spin through the use of LTL [24, 20] formulas, which are
translated into never claims. A never claim is a process which will only terminate if the corresponding
LTL formula was violated. Actually, never claims represent w-regular properties. Spin checks whether
never claims hold in the initial state. This means that if the never claims is already satisfied by the
initial state, no further exploration of the state space is needed.

Both assertions and LTL formulas are expressed in terms of predicates, which range over values of
variables. It is also possible to check a pattern of communications, but not in combination with checks
of state variable values. Since in our case, it is by far easiest to find error situations by referencing
the state variable values, we stick to the assertions and never claims.

Expressing properties for Lotos models We express safety and liveness properties in ACTL
[4, 3] for the verification of the Lotos models is done with A property is checked by Xtl on the
reachable state space, by checking for each reachable state whether the property holds in that state.

Since the model checker Xtl is only used on state spaces which have been generated from the Lotos
model, the information of state variables is lost. Actually, the states are identified by natural numbers
in the state graph accepted by Xtl. This means that we cannot express properties in terms of values
of state variables, and we can just observe the occurrences of actions. A consequence of this approach
is that safety properties can only be expressed as liveness properties. With the ACTL logic we are
able to observe certain patterns of occurrences of actions. In order to still reference state variable
values, one could build self-loops into the Lotos model. which give the values of the state variables in

start start start start
bus reset bus reset bus reset bus reset

o 0 ———

Figure 3: Protocol behaviour
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that state. However, this was not a feasible approach in our case.

An action can be observed by comparing an action label from a transition to a label set in the
property that is being checked. Comparing an action label to the label set T (F) always succeeds
(fails). Label sets can be constructed from syntactic expressions that capture one or more action
labels, and boolean operators. For instance, it is straightforward to construct a label set that succeeds
when compared to the label BUS_RESET_START or the label POWER_CHANGE and fails otherwise.

In order to enable the checking of not just communications between the DCM Managers, but also
other important actions, the model contains a few extra observable events. These the occurrences of
communication on the special gate GEvent. In this way we observe a DCM Manager electing itself for
initial or final leader.

We now give an overview of the ACTL operators used, and their informal meaning®.

T,—,A,V,— Boolean true, negation, and, or, implication
[a] ¢ For every transition s 5 t from the current state: formula ¢ must hold in the target state ¢

VG,¢ For each (possibly finite) path from the current state where all actions are either a or 7, formula
¢ must hold in every state

A(p,Upyp) There exists a path from the current state along which for a finite fragment formula ¢
holds in each state and all actions are either a or 7, and this fragment is immediately followed

by a transition s LA t, and in state t formula ¢ holds.

For a complete list of ACTL operators and a formal definition, we refer to [10, 4, 3].

The standard library in the Caesar/Aldébaran distribution for using these operators is the actl.xtl
library (implemented by Mateescu [22]) which establishes the validity of a formula by checking whether
the formula holds in all reachable states of the Lotos model. This library is not implemented in such a
way that it gives diagnostics in case a property is not true. Diagnostics can be obtained by using the
walk_actl.xtl library (implemented by Pecheur [23]), which also implements the ACTL operators
mentioned, and which tries to find an error trace. This implementation establishes the validity of a
formula by checking whether the formula holds in the initial state of the Lotos model. Of course, in
general the use of this library is more costly since there is more administration involved in finding the
trace, and a lot of backtracking occurs.

5.1 Safety: At most one leader

It is never the case that more than one DCM Manager is a (initial or final) leader.

Spin We use an assertion statement, and check the following formula:
Vd,d' .(—~bus_reset A leader(d) A leader(d') — (d=d'))

This property does not hold for any of the models. It turns out that the error trace found by Spin for
the property checked in Section 5.3 is also an error trace for this property. See Figure 4 for the trace
and Section 5.3 for an explanation. In Section 5.5 we discuss whether the HAVi protocol is wrong.

Xtl What we want to establish, is that there are not multiple InitialLeader or FinalLeader events in
between bus reset periods. Since we can check for patterns of actions, we formulate the property as
follows: if a bad pattern of Initial or FinalLeader events occurs, then we are not in a stable situation
(where no bus reset is taking place and the last bus reset events have all been delivered). This boils

INote that the [] operator does not have the ACTL interpretation, but the interpretation of the Hennessy-Milner
modal logic [10]. Since the Xtl library for ACTL is defined using the Xtl libraries for the Hennessy-Milner modal logic
and the modal p-calculus [18], we can use operators from these logics in any ACTL expression
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down to expressing that when a bad pattern does occur outside bus reset periods, apparently a bus
reset event must still be delivered.
We check the following formula:

(1] VG, (i3] VG, ([is] A(T3, Uy, T))) A ([b1] VG, ([f] VG, ([ia U f] 3(T3, U, T)))
where b; = BusResetEnd
by = BusResetFvent
iy = Ignore, = =(BusResetEventV BusResetStartV Initleader V FinalLeader)
i2 = Ignore, = —~(BusResetEvent\V BusResetStart)
i3 = InitLeader
i4 = InitLeaderV FinalLeader
f = FinalLeader

This formula expresses two patterns that should be followed by a bus reset event being delivered. Both
patterns start with the end of a bus reset period, and do not allow the start of a new bus reset period
by the use of the action label sets Ignore; and Ignore,. The first pattern checks the double occurrence
of the InitialLeader event. The second pattern checks the occurrence of a FinalLeader event, followed
by either an InitialLeader or FinalLeader event. The action label sets in the subscript of the G and
T symbols enable the actions in the subscripts to occur in any sequence in between.

This property holds for all models. Since we found errors in the Promela models for this property
using Spin two questions remain, namely whether the error behaviour found with Spin also occurs here
and if so, why it is not found with the ACTL formula used. Simulating the behaviour from the Spin
error trace is possible for the Lotos model with two DCM Managers and synchronous behaviour. As
to the second question. The answer is that the label set Ignore, is too restrictive. The idea of checking
a pattern when a bus reset event has completed turns out counterproductive. We might have checked
all occurrences of the FinalLeader event followed by bad patterns, and qualified the occurrence of a
BusResetStart, BusResetEnd or BusResetEvent as a good pattern. In any case, it appears that the
formulation of the property in this setting is very complicated. In Section 5.5 we discuss whether the
HAVi protocol is wrong.

5.2 Safety: Best candidate becomes final leader

It is never the case that a final leader is selected which is not UrlCapable, while there is a DCM
Manager active in the network which is UrlCapable.

Spin We use an assertion statement, and check the following formula:
—bus_reset AVd.((fleader(d) A —url_capable(d)) — Vd'.(up(d') — —url_capable(d’)))

This property holds for all models except for the setting with three DCM Managers and asynchronous
communication. However, the error found here reveals problems with the interpretation and execution
of the Promela code rather than an error in the protocol. In fact, we can reason why in our model the
property should be true for any number of DCM Managers with either synchronous or asynchronous
communication. The idea is that upon receipt of a bus reset event, each DCM Manager will clear the
information of being final leader and ask for the new network topology (the GUIDList). Since the
start of a bus reset period causes the delivery of a bus reset event at some time, in a stable situation all
bus reset events have been delivered, and each DCM Manager must have the correct network topology
information. So after the last bus reset event delivery to a DCM Manager, it cannot choose a non
UrlCapable final Leader if there is a UrlCapable DCM Manager present. So the only way in which a
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non UrlCapable DCM Manager can still be the final leader in a stable situation, while a UrlCapable
DCM Manager is present, is to receive an InitReply with its identity from the initial leader, when the
initial leader has not received the latest bus reset event. But we have modelled the final leader election
by having the initial leader choose itself, if no UrlCapable Manager is present. So it cannot ever send
an InitReply with the identity of another, non UrlCapable DCM Manager. It is clear that although
the property must hold in our models, it does not hold when we lift the restriction that the initial
leader chooses itself for final leader when no UrlCapable DCM Manager is present. In Section 5.5 we
discuss whether the HAVi protocol is wrong.

Xtl The situation that a DCM Manager is up and UrlCapable is signalled by the request from such
a DCM Manager to the initial leader, in which the UrlCapable parameter is true. Whenever such a
request is followed by the election of a final leader which is not UrlCapable, there must be a bus reset
event pending that needs to be delivered.

We check the following formula:

[u] YG, (1] 3(T:, U,T))
where b = BusResetEvent
i1 = Ignore, = ~(BusResetFEvent\V BusResetStartV BusResetEndV FinalLeader)
iz = Ignore, = =(BusResetEvent\V BusResetStart)
f = FinalLeaderNotUrlCapable
u = RequestUrlCapable

This property holds for all models. See the paragraph above on Spin experiments for this property,
for a discussion whether this property holds in general or not. In Section 5.5 we discuss whether the
HAVi protocol is wrong.

5.3 Safety: All agree on the final leader

Whenever a final leader is selected, all DCM Managers agree on the identity of this leader. Of course
this can only be checked as soon as all DCM Managers have been informed of the decision of the
initial leader. Since the final leader is informed last of the decision (and whenever this happens to
be also the initial leader, it will ‘inform itself last’), this can be checked as soon as one of the DCM
Managers has been elected for final leader.

Spin We use an assertion statement, and check the following formula:
Vd.(=bus_reset A f leader(d) — Vd'.(up(d') — leader_id(d") = d))

This property does not hold for any of the models. In Figure 4 an error trace constructed by Spin for
the model with two DCM Managers and synchronous communication is listed. This trace describes
the following behaviour. In the first bus reset period both DCM Managers are powered up. They
start leader election, in which DCM Manager A is the initial leader and DCM Manager B is the initial
follower. B is UrlCapable and A is not. B sends A an InitRequest, A computes the final leader which
is B, and sends the InitReply to B. A new bus reset period starts and ends without change in the
network topology. The CMM on the device of B delivers the bus reset event to B, and B starts afresh
with the leader election. B is again initial follower and sends A an InitRequest. A does not know
about the second bus reset period so it is in its final follower phase where it answers any InitRequest
with the same InitReply as before. A sends B the InitReply and B concludes it is the final leader.
Now the CMM on the device of A delivers the bus reset event to A, and A starts afresh with the leader
election. A is again initial leader and does not know the identity of the final leader to be elected,
while B still thinks it is final leader. In this state the property checked is violated. In Section 5.5 we
discuss whether the HAVi protocol is wrong.
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AG_A(A, F) is FALSE
(0, "GBUSRESET !'BUS_RESET_START", 5036)
(5036, "GUPDOWN !1 !'POWER_CHANGE", 3437)
(3437, i, 4798)
(4798, "GBUSRESET !'BUS_RESET_END !CONSNET (CONSN(TRUE),CONSN(FALSE))", 4797)
(4797, "GINFO !1 !'GUID_LIST !CONSNET(CONSN(TRUE),CONSN(FALSE))", 4790)
(4790, "GBUSRESET !BUS_RESET_START", 4789)
(4789, "GEVENT 'INIT_LEADER '1", 4769)
(4769, i, 133)
(133, "GUPDOWN '2 !POWER_CHANGE", 142)
(142, "GBUSRESET !'BUS_RESET_END !CONSNET (CONSN(TRUE) ,CONSN(TRUE))", 658)
10 : (658, "GEVENT !FINAL_LEADER !1 !FALSE", 150)
11 : (150, "GINFO !2 !GUID_LIST !CONSNET (CONSN(TRUE),CONSN(TRUE))", 2542)
12 : (2542, "GDMOUT !1 !CONSM(DMINITREQUEST,2,TRUE)", 552)
13 : (552, "GDMIN !1 !'CONSM(DMINITREQUEST,2,TRUE)", 2524)
14 : (2524, "GDMOUT !2 !CONSM(DMINITREPLY,1,FALSE)", 316)
15 : (316, "GINFO !1 !BUS_RESET_EVENT", 303)
16 : (303, "GDMOUT !'1 !'EMPTY", 1924)
17 : (1924, "GDMOUT !'1 !CONSM(DMINITREQUEST,2,TRUE)", 1921)
Box (A, F) is FALSE
18 : (1921, "GDMIN !2 !CONSM(DMINITREPLY,1,FALSE)", 1909)
AG_A(A, F) is FALSE
19 : (1909, "GINFO !'1 !'GUID_LIST !CONSNET (CONSN(TRUE),CONSN(TRUE))", 1486)
20 : (1486, "GEVENT 'INIT_LEADER !1", 1662)
21 : (1662, "GDMIN '1 !'CONSM(DMINITREQUEST,2,TRUE)", 1507)
Box (A, F) is FALSE
22 : (1507, "GDMOUT !'2 !CONSM(DMINITREPLY,2,FALSE)", 1548)
EU_A_B(F, A, B, G) is FALSE
*Failure.*

O 00N O d WN - O

Figure 5: The Xtl error trace for ‘same final leader’

Xtl We can only check that everyone has the same leader identity by checking the parameters of

messages/events concerning the final leader. We require the leader identity parameter to be equal for

all such actions in stable situations. So the property must express that whenever two actions carry a

different leader identity outside a bus reset period, apparently a bus reset event must still be delivered.
We check the following formula:

vd. [l4] VG, ([I-4] 3(T;, U, T))
where b = BusResetFEvent
11 = Ignore;
—(BusResetEvent V BusResetStartV BusResetEndV InitReplyV FinalLeader)
i2 = Ignore, = —~(BusResetEvent\/ BusResetStart\V BusResetEnd)
l4 = (InitReply V FinalLeader) with leader identity d
[-q = (InitReply V FinalLeader) with leader identity not equal to d

This property holds only when communication between DCM Managers is synchronous. In the
asynchronous case an erroneous initialisation reply may be lingering in someones input queue, after
the corresponding bus reset event has been handled by the sender of the erroneous message. In Figure 5
an error trace constructed with the walk_actl library is listed. The behaviour described by this trace
is as follows. In the first bus reset period DCM Manager A is powered up. A is not UrlCapable.
A starts the leader election and elects itself for initial leader. In the second bus reset period DCM
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Manager B is powered up. B is UrlCapable. After the second bus reset, A has not received the bus
reset event yet. A elects itself for final leader which completes the leader election. B elects A for initial
leader and sends an InitRequest. A receives the InitRequest from the MS and sends an InitReply with
its own identity for final leader. Now A receives the bus reset event and starts the leader election
anew. B has not received the InitReply from the MS yet and sends a second InitRequest to A. Now B
receives the InitReply from the MS and concludes that A is the final leader. A elects itself for initial
leader, and receives the second InitRequest that B sent from the MS. A elects B for final leader and
sends an InitReply with the identity of B for final leader. The property is violated.

Since we found errors for the Promela models with synchronous communication using Spin, two
questions remain, namely whether the error behaviour found with Spin also occurs here and if so,
why it is not found with the ACTL formula used. In Section 5.1 we have already simulated the error
behaviour found by Spin and depicted in Figure 4 on the Lotos model with two DCM Managers
and synchronous communication. As to the second question. The ACTL formula used only checks
communication involving leader identities. Here we are really hampered by the fact that for the
current Lotos models it is not possible to include state information in the formula. It turns out that
in the synchronous Lotos models a bus reset event will appear in between the two events carrying a
different leader identity. Since such a pattern is in general not erroneous, it is not possible with this
approach to find the erroneous behaviour constructed with Spin. In Section 5.5 we discuss whether
the HAVi protocol is wrong.

5.4 Liveness: Eventually there will always be a final leader

Whenever there is at least one DCM Manager active in the network, there should eventually be a
final leader. The property we check is whether from each stable state in which at least one DCM
Manager is up there exists a path on which no bus reset period starts and a final leader is chosen.
It may be argued that this property is too strong since it assumes that there exists a path on which
bus reset periods can be delayed until after the election of the final leader. If the environment would
violate this assumption, the property would be false even when the protocol was correct. There are
two reasons for our approach. First, we know that in our models the choice between a bus reset period
starting and any other activity is non-deterministic. So bus reset periods can be delayed as long as
other activity is possible. Second, the alternative property to be checked would be: ‘After the handing
out of the GUIDList, each path leads to a new bus reset period or a final leader being elected’. This
formula requires that during and after the leader election activity, the DCM Managers can perform
idle/internal actions indefinitely, in order to distinguish between situations where leader election is
interrupted by a bus reset period and situations where leader election does not terminate for some
other reason, i.e. livelock rather than deadlock, since in case of a deadlock a bus reset period is forced
to start. Moreover, the models already contain a livelock when there are more two initial followers of
which one keeps sending InitRequests and the other never gets a turn. The problem with livelocks
is that the property should then be checked under certain fairness aspects. This makes the situation
increasingly complex, and we have chosen to stick with the first formulation.

Spin The only way to model a liveness property like this and have Spin check its validity, is with
an LTL formula. We have been able to express this without too much trouble in ACTL, as can be
seen below. However, the expressivity of LTL and branching time logics like ACTL is not comparable
[27]. When we try to express the property to be checked in LTL and formulate it as follows, we get
an expression which is not in LTL syntax:

O((—bus-reset A (Ad. up(d))) — I(—bus_reset U—bus_reset A Ad. f-leader(d)))

Because of the 3 operator, this is not an LTL formula. However, we do need an 3 operator to express
the behaviour that the Promela models should have (See also Figure 3). The reason is that an LTL
formula is interpreted to be true if and only if it holds for each behaviour of the model. So if it is only
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Figure 6: The Spin error trace for ‘always final leader’

possible to express desired or undesired properties for one behaviour. But the property that we desire
to have is that there always exists a good path. The property that we desire not to have is that there
is no state from which there are only bad paths. This cannot be expressed in LTL. This problem has
been discussed via e-mail [2, 13], but no solution was found, other than to change the model such
that there is a fixed number of bus reset periods, after which the network remains stable. Then Spin’s
capability to find invalid end states can be used to check that the protocol ends up with a leader, or
identify a finite path as undesirable with LTL. A drawback of this approach is that it is not a priori
clear how many bus reset periods should be allowed to obtain correctness for the more general model.
However, we already found errors in the Spin models for other properties, and in the Lotos models for
this property. In the Spin models, errors occur already after two bus reset periods. We have changed
all models such that at most two bus reset periods can take place, and added labels to indicate what
states in the model are valid end states. Then it turns out that all new models have an invalid end
state, which indicates that the protocol ends without electing a final leader even though at least one
DCM Manager is up.

In Figure 6 the error trace constructed by Spin for the model with two DCM Managers and syn-
chronous communication is listed. This trace describes the following behaviour. In the first bus reset
period DCM Manager A is powered up. The first bus reset period is immediately followed by a second,
in which DCM Manager B is powered up. A and B are both not UrlCapable. After the end of the
second bus reset period, A does not receive the bus reset event yet. Now both A and B start the leader
election, in which DCM Manager A is the initial leader and DCM Manager B is the initial follower.
B sends A an InitRequest, A computes the final leader which is A, and sends the InitReply to B. B
concludes that A is the final leader which completes the leader election. Now the CMM on the device
of A delivers the bus reset event to A, and A starts afresh with the leader election. A is again initial
leader and waits for the InitRequest from B, while B has already completed leader election. Since
there is no action possible we are in an end state, and since for A the leader election has not been
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AG_A(A, F) is FALSE

0 : (0, "GBUSRESET !BUS_RESET_START", 962)

1 : (962, "GUPDOWN !1 !'POWER_CHANGE", 72)

2 (72, i, 1024)

3 (1024, "GBUSRESET !BUS_RESET_END !CONSNET (CONSN(TRUE) ,CONSN(FALSE))", 1023)
4 (1023, "GBUSRESET !BUS_RESET_START", 820)

5 : (820, i, 612)

6 : (612, "GUPDOWN !'2 !POWER_CHANGE", 542)

7 (542, "GBUSRESET !BUS_RESET_END !CONSNET (CONSN(TRUE) ,CONSN(TRUE))", 288)
8 (288, "GINFO !'2 !GUID_LIST !CONSNET (CONSN(TRUE),CONSN(TRUE))", 97)

9 (97, "GINFO !1 !'GUID_LIST !CONSNET (CONSN(TRUE),CONSN(TRUE))", 335)

10 : (335, "GEVENT !INIT_LEADER !1", 231)

11 : (231, "GDM !1 !2 !DMINITREQUEST !FALSE", 199)

12 : (199, "GDM !2 !1 !DMINITREPLY !1", 995)

13 : (995, "GINFO '1 !'BUS_RESET_EVENT", 95)
Box(A, F) is FALSE

14 (95, "GINFO '1 !'GUID_LIST !CONSNET (CONSN(TRUE),CONSN(TRUE))", 1003)
EU_A_B(F, A, B, G) is FALSE
*Failure.*

Figure 7: The Xtl error trace for ‘always final leader’

completed, it is an invalid end state. In Section 5.5 we discuss whether the HAVi protocol is wrong.

Xtl We check whether a DCM Manager is up in a stable state by observing the transaction in which
the CMM hands out the GUIDList. We check whether a final leader is elected by observing the
FinalLeader event. We demand that there exists a path from each GUIDList transaction on which no
bus reset period starts and on which a FinalLeader event occurs.

We check the following formula:

[g) (T, U, T)
where i = Ignore
g = GetGUIDList
f = FinalLeader

This formula does not hold for any of the models.

In Figure 7 an error trace constructed with the walk_actl library is listed. By coincidence, the
behaviour described by this trace is the same as the behaviour described by the error trace found by
Spin for this property. See earlier in this section for an explanantion of the behaviour. In Section 5.5
we discuss whether the HAVi protocol is wrong.

5.5 Is the HAVi protocol wrong?

The error traces given in Figures 4, 5, 6 and 7 show that either our model of the protocol or the HAVi
specification itself must be wrong.

The error traces indicate that problems occur when the delivery of a bus reset event message is
delayed beyond the duration of the sending and delivery of both a message and a response between dif-
ferent devices. In the case of synchronous communication, another cause of problems is the availability
of the GUIDList before the delivery of the corresponding bus reset event.

If all assumptions and restrictions that we made in our model are correct, then these scenarios
may occur in an implementation that is totally compliant with this version of the HAVi specification,
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because of two reasons. First, the HAVi specification does not lay down how long messages may be
on their way in the system. Second, the delivery of any event has to go through the Event Manager.
The Event Manager may cause a delay of the event for several reasons. It is not known how many
events the Event Manager may get due to a bus reset period, which need to be delivered, and in what
manner these events are processed. Furthermore, there may be many components that listen to the
bus reset event and in a sequential approach to delivery of the events, the DCM Manager may very
well be the last of them to receive this message.

If our assumptions are not correct, then obviously it is hard to say whether the protocol would be
correct or not. However, all of the assumptions we made are restrictions on configurations or scenarios
permitted by the HAVi document which means that we only exclude some HAVi behaviour. So the
error behaviour we found would almost certainly be present in a model with fewer restrictions. In
fact, the chances are high that with fewer restrictions more erroneous behaviour could be found in the
protocol. We already argued in Section 5.2 that lifting the restriction that the initial leader chooses
itself for final leader when no UrlCapable DCM Managers are present, will lead to violations of the
property ‘the best candidate becomes final leader’. Other generalisations we could make are: several
types of devices in the network, physical IDs that change, bus reset periods that start and end at
different moments in different devices, no difference between processing of events and messages, et
cetera. Also, it may still be the case that one or more of the software elements used for this protocol
have a potential deadlock in their behaviour, and thus prevent the DCM Managers from completing
their leader election.

Our conclusion is that for the HAVi leader election protocol to be correct (meaning that any imple-
mentation that complies with HAVi works correctly), the HAVi specification should have requirements
added on the duration of delivery of events related to the duration of communication between devices.
Since the disruption by bus reset periods makes it difficult to establish such requirements, we think
the easiest solution is to establish real-time constraints on the duration of sending and processing mes-
sages and events, which are realistic for HAVi-compliant implementations. This information should
then be checked in a timed formal verification. Since timed model checking is beyond the scope of
this experiment, we cannot give an estimate of time bounds that would work, or say whether such
time bounds exist.

5.6 Statistics

The statistics for model checking the different models with the Spin tool set (version 3.2.4, version
3.3.0 beta-13 May 1999) and the Caesar/Aldébaran tool set (Caesar version 5.3, Aldébaran version
6.4, Xtl version 1.1) are given in Tables 1, 2 and 3. All experiments with Spin were done on an SGI
IRIX64 6.5 machine with 42 Gbyte of memory. All Caesar/Aldébaran experiments were done on a
SUN Ultra 5.10 SunOS 5.6 machine with 1 Gbyte of memory.

A few remarks are in order.

e Spin, Caesar, Aldébaran and Xtl all generate C code which after compilation performs the state
space generation, minimisation and/or exploration.

e The memory numbers mentioned in Table 3 indicate the amount of memory used by the verifier
generated by Xtl in C code, compiled to executable form. However, C compilation takes at least
6 Mb. For the walk_actl library, C compilation takes at least 12 Mb for the models with 2
DCM Managers.

e For the Spin experiments, the memory usage is provided in the output of Spin. Note that this is
always a little higher than the memory usage observed with the UNIX command ‘top’. For the
Caesar, Aldébaran and Xtl experiments, the memory usage is obtained by observing the outcome
of the UNIX command ‘top’.

e For all experiments, the timing information is obtained by the UNIX command ‘time’.
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one leader
model | states | trans | holds? | mem (Mb) | time (h:m:s) Spin
2 sy 18K 93K F 136 0:00:04 3.24
2 as 23K | 108K F 135 0:00:06 | 3.3.0 beta
3 sy 781K | 4.7TM F 161 0:03:539 | 3.3.0 beta
3 as 2.8M | 18M F 230 0:15:30 | 3.3.0 beta
best final leader
2 sy 167K | 806K T 140 0:00:43 | 3.3.0 beta
2 as 418K | 2.1M T 149 0:01:57 | 3.3.0 beta
3 sy 44M | 279M T 1767 7:32:22 | 3.3.0 beta
3 as 194M | 3.8G F 7778 49:43:03 | 3.3.0 beta
same final leader
2 sy 16K 77K F 135 0:00:04 | 3.3.0 beta
2 as 19K 91K F 135 0:00:05 | 3.3.0 beta
3 sy 407K | 2.5M F 148 0:02:05 | 3.3.0 beta
3 as 1.7M | 10M F 190 0:08:54 | 3.3.0 beta
always final leader
2 sy 17K 58K F 135 0:00:04 | 3.3.0 beta
2 as 27K 98K F 135 0:00:06 | 3.3.0 beta
3 sy 674K | 3.2M F 134 0:03:32 | 3.3.0 beta
3 as 1.5M | 7.5M F 182 0:07:52 | 3.3.0 beta

Table 1: Spin statistics: state space generation + model checking

e Normally, Lotos state space generation is done with Caesar in the .bcg format, which is very
compact. However, Caesar does not always create the smallest state space possible, and for the
models in this case this means that state space generation gets stuck at an unknown portion of the
desired total, and fails due to lack of memory. So we turned to an alternative route, and generated
the state spaces separately for each instance of each process in the main parallel composition
expression. This again is done with Caesar. The state spaces generated are first minimised with
respect to strong bisimulation equivalence (with Aldébaran and the bmin criterion), which is
also done in the .bcg format. Then these minimised state spaces must be combined into one
state space. This is done with Aldébaran and works only if the separate state spaces are in
the .aut format. The target state space is then also in the .aut format. The .bcg version is
computed and then minimised.

When generating the state space for one of the communicating processes, often the receipt of
a messages is not restricted other than by all possible instantiations of the parameters of the
communication. These parameter values had to be restricted in the separate process definitions
to make state space generation manageable. Without these restrictions, it was not possible to
generate a state space for the DCM Manager process with the lowest identity, in the case of
asynchronous communication and 3 DCM Managers.

e All state space generation sizes in Table 2 are for a state space in the .bcg format, except the
comb network entries which represent a state space in the .aut format. Minimised state spaces
are always in the .bcg format. In some cases, the .bcg version has fewer states for the same
state space than the original .aut version.

e In Table 3, the full state space size is listed for each model. When using the actl library, the
full state space is explored, even when errors are found. When using the walk_actl library, the
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2 DCM Managers, synchronous
generating minimising

per process states | trans | mem (Mb) | time (h:m:s) | states | trans | mem (Mb) | time (h:m:s)
DM 1 16K | 79K 3 0:00:11 32 144 9 0:00:04
DM 2 1.0K | 54K 3 0:00:03 21 96 4 0:00:02
Bus_Reset 46 59 3 0:00:02 16 24 4 0:00:01
CMM 1,2 12K | 55K 3 0:00:09 12 49 ) 0:00:02
Other 1,2 2 8 3 0:00:02 1 4 4 0:00:01
comb network | 1.0K | 5.0K ) 0:00:01 | 1.2K | 4.0K 4 0:00:01

2 DCM Managers, asynchronous
DM 1 404K | 3.0M 28 0:05:12 37 233 183 0:01:18
DM 2 2.1K | 18K 3 0:00:05 27 170 4 0:00:01
Bus_Reset 46 59 3 0:00:02 16 24 4 0:00:01
CMM 1,2 12K | 55K 3 0:00:09 12 49 ) 0:00:02
MS 1,2 23K | 19K 3 0:00:04 27 159 4 0:00:02
comb network | 6.3K | 23K 7 0:00:07 | 5.1K 19K b} 0:00:02

3 DCM Managers, synchronous
DM 1 2.1M | 16M 140 0:43:46 63 474 897 0:08:52
DM 2 177K | 1.4M 12 0:02:31 37 255 92 0:00:39
DM 3 46K | 38K 3 0:00:07 25 174 4 0:00:02
Bus_Reset 186 243 2 0:00:02 40 64 3 0:00:02
CMM 1,23 | 297K | 2.1M 79 0:14:00 20 93 139 0:00:49
Other 1,2,3 2 40 2 0:00:02 1 20 3 0:00:01
comb network | H8K | 247K 47 0:00:52 | 44K | 193K 24 0:00:21

3 DCM Managers, asynchronous
DM 1 2.0M | 11M 109 0:24:29 55 360 620 0:05:33
DM 2 509K | 3.8M 31 0:06:52 35 199 233 0:01:36
DM 3 9.8K | 105K 3 0:00:13 31 254 10 0:00:03
Bus_Reset 186 243 3 0:00:02 40 64 4 0:00:02
CMM 1,23 | 297K | 2.1M 111 0:13:57 20 93 139 0:00:47
MS 1,2,3 39K | 47K 3 0:00:08 35 279 6 0:00:02
comb network | 1.0M | 5.2M 358 0:31:12 | 748K | 3.9M 423 0:10:21

Table 2: Caesar/Aldébaran statistics: state space generation

verification stops after the construction of the first diagnostic trace. We do not know how many
states and transitions were explored by walk_actl to construct the diagnostic traces.

The Promela models for 2 DCM Managers are more efficient than the ones with 3 DCM Managers
in the sense that they use the datatype bit instead of byte for the Id parameter in the general
process DCM_Manager.

With Spin we first tried to explore the whole state space. Whenever an error was found, we
reran the verification with a smaller search depth (option ‘-m’ at run time) to see if a smaller
error trail could be found. In this way we found the trails reported in Table 1, which are the
shortest trails we could find. Sometimes the search for a shorter trail involves the exploration
or more states and transitions, due to the order in which the depth-first search is performed.

Only after completion of the verification experiments, we found that the option -DREACH’ (to
be used at compile time) guarantees a complete search of the truncated state space. This explains
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one leader
model | states | trans | holds? | mem (Mb) | time (h:m:s)
2 sy 1.2K | 4.0K T 3 0:00:08
2 as 5.1K 19K T 3 0:00:13
3 sy 44K | 193K T 4 0:05:11
3 as 748K | 3.9M T 68 25:12:18
best final leader
2 sy 1.2K | 4.0K T 3 0:00:05
2 as 5.1K 19K T 3 0:00:08
3 sy 44K | 193K T 4 0:02:17

3 as 748K | 3.9M T 68 10:31:08
same final leader

2 sy 1.2K | 4.0K T 3 0:00:05
2 as 5.1K | 19K F 3 0:00:11
3 sy 44K | 193K T 4 0:05:51
3 as 748K | 3.9M F 69 29:05:41

error trace same f_leader
2 as 5.1K 19K F 5 0:00:26
3 as 748K | 3.9M F 199 15:22:48

always final leader

2 sy 1.2K | 4.0K F 3 0:00:05
2 as 5.1K 19K F 3 0:00:08
3 sy 44K | 193K F 4 0:03:28

3 as 748K | 3.9M F 69 18:57:39

error trace always final leader

2 sy 1.2K | 4.0K F 3 0:00:05
2 as 5.1K 19K F 3 0:00:08
3 sy 44K | 193K F 6 0:05:32
3 as 748K | 3.9M F 199 14:16:50

Table 3: Xtl statistics: model checking

why we found a shorter error trail with Spin version 3.2.4 in one case than with Spin version
3.3.0 beta. The -DREACH’ option may increase memory usage and duration of verification
experiments. It is very well possible that with this option we would have been able to find the
error in the model with three DCM Managers and asynchronous communication for the property
‘best final leader’ with a much smaller search depth. Without the ‘-DREACH’ option we did
not find an error with search depth ‘-m1000’ but ran out of memory.

e Checking the property ‘best final leader’ for the Promela model with 3 DCM Managers and
asynchronous communication was done with the new Spin 3.3.0 beta option -DSC’ to keep the
major part of the depth first search stack on disk, and not in memory. Otherwise this experiment,
would have taken much more memory. The stack file size was 281 Mbyte.

e All experiments with Spin were first done on Promela models in which the global variable m
was ‘hidden’, which means that it is not part of the state vector. In this situation Spin did
not explore the entire state space. Major parts of the code were unreachable because of using
the hidden variable inside two branches of an ‘if’ statement inside an atomic statement. The
predicate ‘hidden’ should not be used this way but this was not listed in the manuals (it is in the
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Spin on-line manual now). The difference in semantics between the simulator and the verifier
made the situation increasingly unclear, since the parts of the state space that were unreachable
to the verifier, were reachable in simulation. Some improvements have been made in Spin 3.3.0
beta to the semantics of the simulator.

e All experiments in Spin were done without partial order reduction by using the compile time
option -DNOREDUCE’. The reason for this is that the use of synchronous communication in
the escape guard of an unless command is not compatible with the partial order reduction, hence
when using partial order reduction it is possible that error behaviour is missed.

e The error traces produced by Spin can be simulated interactively. The figures in this paper
are the message sequence charts that were created during such simulation. The figures have
been adjusted a little to improve the presentation in black and white. Each thin vertical line
in the figure refers to a process in the Promela model, arrows between process lines refers to
communication. The thick vertical line refers to the global variable BusResetPeriod in the
Promela model. The numbers in the figures refer to steps in the error trail.

e The error traces produced by Xtl were found with the use of the walk_actl library. Traces are
only produced in case of a universal property that does not hold, or an existential property that
does hold. Since we used universal properties, we got traces only in case of an error. The error
traces were constructed from end to beginning, and have been reversed in the figures to improve
the presentation. The layout of the steps is:
<step nr> : (<source state>, <transition label>, <target state>)

The transition labels consist of the gate and the offers exchanged at the gate (each offer is
preceded by !). In between of the steps, messages occur that indicate that a temporal operator
from the formula checked does not hold at that point.

6 Conclusions

We have modelled the leader election protocol among DCM Manager components in the HAVi archi-
tecture, and found that this protocol does not meet some safety requirements and that it does not
always converge to a situation with a leader actually elected. The errors are due to the absence of
requirements on how long it takes for messages and events to reach their destination. It is expected
that if these requirements are added, a formal verification will be able to show whether the restricted
protocol works correctly.

6.1 Concerning Spin

Using Promela and Spin Promela is an easy language at first, and more difficult at second sight.
The basic language constructs have an intuitive meaning, but combining many aspects such as rendez-
vous communication, the atomic and the unless construct makes behaviour more fuzzy. The treatment
of data is manageable as long as the data is not too involved. In our case, we are clearly overstepping
the bounds of the type of model for which Promela was designed.

The graphical interface of Spin is attractive, and it is easy to use. The semantics of the simulator
and the verifier have been made more alike recently, which is very important since simulation is often
used as a justification for having modelled things right. We are in favour of the semantics being
exactly the same for simulator and verifier. After a while, we turned to the command-line use of the
tools rather than the graphical interface. This was partly due to the experimental use of Spin on a 64
bit machine.

Expressing safety properties in assertions is very straightforward. Expressing liveness properties in
LTL is rather cumbersome and proved impossible in our case, mostly because of the nature of LTL
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and the nature of the protocol. However, the possibility to track invalid end states was a simple way
around this, although it implied changing the models.

Performance of Spin As can be seen in Table 1, the performance of Spin is quite good, as long as
the number of DCM Managers remains small, and there are no asynchronous channels. We achieved
the best performance by using all the advice given in Spin’s Help Section on reducing the state space
size. Of course, when the communication channels in a Promela model are asynchronous rather than
synchronous, the state space grows tremendously because of all possibilities of interleaving the sending
and receiving of messages with other activities. Spin uses a partial order reduction technique [15] to
reduce the model checking effort. This technique identifies transitions as independent and takes only
one of the many orders in which these transitions might be explored. The independence criterion
holds for transitions that (1) access only local variables, (2) access only communication channels to
which the executing process has exclusive read or write access. In our case, we could not use the
partial order reduction because we had synchronous communication in the escape guard of an unless
command. If we had been able to use partial order reduction, then we would not have had a great
benefit for the following reasons. In our models, most variables have to be used in the verification and
are global, and all communication channels for which exclusive read or write access can be guaranteed,
are declared as arrays of channels which prohibits the use of the exclusive access declaration construct.
The latter is a syntactical restriction for which some escape routes are available, such as the creation
of a process where a channel from an array is bound to an ordinary channel, on which the exclusive
read or write access can be declared. The other restriction is at the core of the reduction method,
and cannot be lifted.

Another important memory usage-increasing factor for our models is probably that, whereas using
atomic sequences does reduce the number of states, still the number steps performed in one such
atomic sequence is reflected in the ‘search depth’ of the tool. This search depth is limited by the
user, and determines the portion of the state space to be explored, the size of the heap that is to be
allocated for the search, and hence the amount of memory used for the verification.

What one would like to have (and what might help to improve the performance of Spin tremen-
dously) is to be able to define functions that perform computations without adding to the state space
size, and atomic sequences to be truly atomic. One would then lose the possibility of exactly tracing
down a statement where error situations occur or simulating per statement, but we feel that when
using atomic sequences, it is fair to not have those possibilities anymore. Since the focus of Spin is
on synchronisation and not on computation, there is no plan to improve Spin in this respect [14].

Multi-way synchronisation It is difficult to model multi-way synchronisation in Promela and
keep the state space small. Channels are by definition one-to-one, and several processes glancing a
global variable or a channel cannot be forced to do this in one atomic action. There is no plan to
improve Spin in this respect [14].

Data structures Spin forbids the initialisation of processes with a parameter which is a non-basic
data structure, such as an array or record. This hampers the construction of generic models. Recently,
the sending of messages with an array as parameter became possible.

Never claims and traces A mixture of ‘never claim’ and ‘trace’ processes will probably affect the
performance of Spin very badly. Nevertheless, the possibility to use assertions (that reference global
state variables) in the ‘trace’ process seems like a desirable and useful feature for Spin. This is also a
planned improvement for Spin [14].
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6.2 Concerning Casar/Aldébaran and Lotos

Using Lotos, Caesar, Aldébaran and Xtl Lotosis a hard language at first, and a precise language
at second sight. It can be hard to grasp the meaning of the language constructs at first, but they have
a clear semantics and do not become more complicated when combined. Modelling data is not very
hard as long as the data is of a constructive and simple nature. Constructions like sets are not easy
to model, but lists are.

The graphical interface of the tool set is easy to use. The simulator has the same semantics as the
verifiers, which makes simulation a good means for validation of models. After a while, we turned to
the command-line use of the tools rather than the graphical interface.

Expressing properties in an action based logic like ACTL turned out to be quite hard. This is partly
due to the nature of the protocol, with bus reset periods disrupting normal behaviour. However, the
greatest difficulty is caused by the fact that we cannot use state information in the formulas since
Xtl does not yet work on the fly. Using ACTL, we were not able to find some violations of safety
properties which we found with assertions in the Promela models.

Performance of Caesar For this protocol, the performance of the Caesar generator is poor. It does
not produce the minimal graph under strong bisimulation equivalence, but generates far more states.
Judging from the Lotos code and Table 2, we think this is caused by the use of the abstract data
types. Apparently, terms which are equal on the basis of the data models are not recognised as such
during state space generation.

If it were not for the Aldébaran possibility to compose several communicating components, we would
not have been able to construct a complete a state space even for 2 DCM Managers. Actually, for
the Lotos model with synchronous communication between DCM Managers, and 2 DCM Managers
in the network, Caesar generated about 1.3M states and 2.5M transitions in one hour, and then got
stuck due to lack of memory. It is hard to say whether the error traces present in this model, would
have been found with a far more restricted model of the protocol.

In order to use the Aldébaran facility of combining state spaces, we had to enumerate some
datatypes, which affected the genericity of the Lotos model. We also had to restrict the possibili-
ties for communication, which proved essential when generating the state space for the asynchronous
case with 3 DCM Managers.

State variables It is awkward not to be able to check the values of variables in the Lotos model.
This could be done by adding extra self-loops per process with this information, but due to the poor
performance of Casar this approach was not feasible. Currently, work is going on to make Xtl work
on-the-fly [21].

6.3 Comparison of the tools

Models, state spaces The models in Promela or Lotos are hard to compare. Some tasks can
be performed in one atomic sequence in Promela (but do increase the size of the verification itself)
which take several atomic actions in Lotos. In Lotos, the data types and process parameters allow
for computations being made without state space enlargement. In Promela, most computations must
be translated into (parts of) atomic sequences. In Promela one would like a little more support for
data types and functions. The Lotos models with asynchronous communication and 3 DCM Managers
are about as general as they can be. With the current tool support, state space generation becomes
impossible with any generalisation of the behaviour.

LTL versus CTL We have found an error in the protocol with an ACTL property which we cannot
express in LTL, and which we could only find with Spin by changing the models. The LTL versus
CTL issue is the inspiration of many papers and discussions of which we only cite [25, 5, 27, 19]. Some
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attempts have been made at unification of the two approaches (See for instance [19]). However, the
property that we expressed in ACTL turns out to be a classic example of the difference in expressivity
between the two paradigms.

State space sizes The state spaces are smaller for the Lotos models than for the Promela models,
when the models are fully explored. On the one hand, this definitely is a flattered view, since generating
the state space for a complete Lotos model as such gives tremendously high numbers. On the other
hand, the Spin sizes hide the actual number of statements that must be executed to reach a certain
state. Because of the atomic predicate, the number of statements may be much higher. This does
not affect the state space size, but it does affect the amount of memory used for the verification.

When errors are found, Spin stops immediately, hence explores only part of the state space. In Xtl,
the library actl always explores the full model. The library walk_actl stops immediately when a
diagnostic trace is constructed.

Memory usage when model checking It turns out that we needed much less memory for the Xtl
verifications than with the Spin tool, which is probably due to the state space sizes being larger for
Promela, and atomic sequences consisting of more steps causing more memory to be used than one
statement. When verifying a property with the walk_actl library, much more memory is used then
with the actl library, which we think is due to backtracking and overhead for the diagnostic trace.

Size of generated code The size of C code generated by Spin is manageable considering the state
space size. For state space generation from Lotos models, the C files become larger. Finally, large
state spaces cause Xtl to generate very large C files in which very many variables are allocated (a
stack size greater than 2 Gbyte).

Expressing the properties to be checked The properties verified with Spin and with Xtl are
not comparable. In Spin we used assertions (and tried in vain to use LTL) in terms of state variable
values. In Xtl we used ACTL properties in terms of observable actions.

We would like to use state information from the Lotos process parameters in the properties to be
verified with Xtl.

In Spin one would like to reference the values of state variables in a trace process, where the
occurrences of communications can be checked. The combination of these features, which is as yet
forbidden, would be very useful. This is a planned improvement.

Comparing model checking times When errors can be found, Spin is overall faster than Xtl
except when the models become very large. For full state space exploration, Xtl is faster, probably
due to the state space sizes. It should be noted that Spin builds the state space anew during exploration
whereas Xtl checks properties on state spaces that have already been built, so in this case one should
add the state space generation times to the model checking time. Both approaches have advantages
and drawbacks in terms of efficiency.

Tailoring models for model checking We had slightly different Promela models depending on
whether we were checking properties concerning final leadership, properties concerning any type of
leadership, or the property which we could not express in LTL. In the former two cases, differences
were only in the variables used for observation. In the latter, a fundamental change was made to the
environment behaviour by having maximally two bus reset periods instead of arbitrarily many. If we
had used one general model for all properties, we would have had a much larger state space. This was
not necessary with the Lotos model because the experiments there were based on observing actions
rather than state variable values and it was possible to express all properties in ACTL. The addition
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of the events that signal the election of a leader in the Lotos models do not seem to enlarge the state
space size as much as the state variables in the Promela models do.

Efficiency of model checking When verifying an ACTL property with the actl.xtl library, Xtl
visits all reachable states, thus verification does not stop as soon as the property is found to be false,
and it cannot become true anymore, or vice versa. When using the walk_actl.xtl library, Xtl will
stop as soon as a diagnostic trace has been constructed. This will be a trace showing truth in the case
of an ‘exists’ property, and it will be a trace showing falsity in the case of a ‘for all’ property.

Spin uses partial order reduction [15] to improve efficiency. We already mentioned that a small
change in the Promela syntax accepted by Spin can increase the benefit of this reduction technique.
In our case the partial order reduction cannot be exploited because of the combination of rendez-vous
communication and unless constructs. This may be a consideration when constructing models.

Spin stops the verification as soon as an error is found. A diagnostic trace leading to the error
situation is presented to the user. The trace may reveal the falsity of the property to be checked, but
also a dynamic error because an array index is out of range, et cetera.

6.4 Concerning this experiment

It appears that the combined approach of having different models of the same protocol and different
verification techniques, gives better results, for several reasons:

1. The restrictions of the different modelling languages force one to think carefully about how to
model all the aspects of the protocol.

2. The different verification techniques enable establishing different kinds of properties for the
protocol.

3. One approach acts as a debugger for the other, in the sense that
e Mistakes at the syntactic or semantic level are generally not made in the exact same manner
during the different modelling efforts.
e Results can be checked in two different situations.

e Negative results obtained on one side and not on the other can still be ‘checked’ by simu-
lating with the counterexample, and validating whether the error behaviour is also present
in the model for which this could not be verified.

Thus, the results are more convincing than when only one modelling/verification approach is ap-
plied.
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A Excerpts from the HAVi Specification

The following parts of text are quoted from [9]. Most of the quotes are followed by our interpretation.

General

Page 15, Section 2.4.4 (Software Elements)

The following table summarises which architectural elements are present for the various
device categories, which are absent and which are optional.

Device Type/Element FAV 1AV BAV LAV
DCM Manager v V]
Event Manager Vv Vv
Messaging System Vv Vv

1394 Communication Media Manager — +/ Vv

Interpretation So on each FAV device a DCM Manager must be present, while on an TAV device it
is optional. The Event Manager, Messaging System and 1394 Communication Media Manager must
be present on each FAV and IAV device. Neither BAV nor LAV devices have any of these software
elements.

Page 82, Section 5.1.1 (HAVi API Descriptions)

Communication Type:

- messaging (M) - communication is via the Messaging System. This form of commu-
nication is initiated by the client.

DCM Manager
Page 155, Section 5.8.3 (DCM Manager API)

DCMManager::DMInitialization

The initial leader shall accept this message at any time, replying with the selected output
parameters. An initial follower shall ignore any message until it has received the reply.
(Note that a network reset event shall reinitiate the leader election phase on all DCM
Managers)

Interpretation So the initial leader remembers its role even after leader election has ended. The
word ‘ignore’ probably means ‘accepts but throws away’.

Page 160, Section 5.8.5 (DCM Management Protocol)

The DCM management system is constructed from a distributed group of DCM Managers
on FAV and TAV devices. DCM Managers interact on a peer-to-peer basis to implement, the
DCM management service, while in turn using services of local system elements. These are
the CMM, Messaging System, Event Manager, and DCM code units. Each DCM Manager
can read SDD data directly from devices connected to the HAVi 1394 network. The DCM
management protocol supports the use of device storage and Internet access facilities.

In a nutshell, each DCM Manager starts with a leader election after a network reset
event is received. One DCM Manager will be selected as the leader. All DCM Managers
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are followers, and subordinate to the leader (i.e., the leader DCM Manager also plays
the role of a follower in this protocol description). Leader and followers subsequently
collaborate to install DCM code units autonomously for each guest found on the network,
if none is installed for it already. In addition to automatic DCM management, each DCM
Manager may also accept method invocations. The leader will control most of the protocol
activities.

DCM Managers can support URL access facilities, and may announce this during the
leader election. FAV devices capable of doing this shall do so. TAV devices may, but need
not announce such a capability. Any device announcing such a capability shall be selected
as the leader, where a FAV device is favoured over an IAV device.

The following abstractions are made in the description of the protocol:

- At any moment a network reset event can occur. Each DCM Manager will (re)start
the leader election when this event is received as soon as possible. A pending message
send or receive action shall be aborted due to network reset event.

- Protocol messages shall be implemented by MsgSendRequestSync and
MsgSendResponse. The specified timeout values are not critical. Except for DMGet-
DCM, they shall be set to 3 seconds. The sending DM shall retry sending the request
message each time a timeout condition occurs (or until a network reset event is re-
ceived). Only for DMGetDCM, the sender may decide to stop resending the message
after a limited number of timeouts.

- Potential deadlock conditions shall be prevented, e.g., by applying multi-threading
in DCM Manager implementations. Unexpected messages shall be ignored by DCM
Managers.

Interpretation The DCM Manager uses reliable message sending with the synchronous waiting-
for-a-response method for communication to other DCM Managers.

We do not know what callback function will be used by the DCM Manager for receiving mes-
sages, but we assume that it is either a synchronous function (with an interrupt-like method) or an
asynchronous function (that puts the message in some buffer).

Multi-threading is probably advised for the situations in which the DCM Manager is waiting for a
response message, so that it can still receive other messages (like the bus reset event).

Page 161, Section 5.8.5.1 (Leader Election)

After a host device is powered up, or after a network reset event is received, each DCM
Manager will enter this activity. (A reset or power up/down of a device shall cause network
reset events on all other host devices.)

All DCM Managers shall behave as follows:

- The GUID list is retrieved through CMM1394::GetGUIDList. The relevant HAVi
SDD data of all devices are retrieved: HAVi_Device_Type, HAVi_.DCM_Manager,
Model ID, Model_Vendor_Id, Node_Unique_ID (GUID). Devices without such SDD
data are classified as LAV devices.

- Each FAV or IAV device without a DCM Manager (derived from HAVi_DCM_Manager)
shall be ignored, and shall not be a host for any guest on the HAVi 1394 network.

- From all host GUIDs, the highest bit order-reversed GUID is calculated, and the DCM
Manager on the device with this GUID is declared the initial leader. The reversal
prevents devices from certain vendors acting as the initial leader in many network
configurations (since the GUID starts with a vendor identifier.) Note that all devices
read the same GUID list, and will declare the same DCM Manager as initial leader.
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At this time, each DCM Manager knows if it is the initial leader or an initial follower.
Each device knows which other DCM Managers there are, and which SEIDs they have.
(The SEID is the concatenation of the device GUID and the fixed DCM Manager soft-
ware element handle.) Message passing between DCM Managers is enabled. Each DCM
Manager shall be registered.

The initial leader shall behave as follows to select and announce the final leader:

- From all identified initial followers, it awaits a DMInitialization request with zero or
more declared URL capabilities and URL access capable guest GUIDs from the initial
followers.

- The selection of the final leader is as follows:

- If there are FAV devices with a declared URL access capability, one of them is
selected.

- Otherwise, if there are IAV devices with a declared URL access capability, one
of them is selected.

- Otherwise, if there are FAV devices, one of them is selected.
- Otherwise, if there are IAV devices, one of them is selected.

- The DMInitialization reply is sent to all initial followers. The final leader is the last
one to which this message shall be sent. The reply carries the GUID of the final
leader and the GUID of an arbitrarily selected URL capable guest, if any.

An initial follower shall send a DMInitialization request to the initial leader and awaits
the reply. Upon a timeout, the request is resent.

Each DCM Manager now knows which one is the final leader, and which others are final
followers. The autonomous operation starts.

Interpretation The only URL information that is of use to the leader election protocol is the URL
access capability of device itself on which the DCM Manager resides.

The timeout, which causes the initialisation request to be resent, could occur in a number of
situations. We assume that besides the obvious error situations, the following scenarios are reasonable:

e The message was sent but is delayed on its way to the destination and the timeout occurs before
the acknowledgement of delivery is received by the sending DCM Manager.

e The message was sent, and acknowledgement has been received, but the response (whether sent
or not) has not been received yet.

So a timeout occurring does not mean that the destination DCM Manager did not receive the message.

Messaging System
Page 26, Section 3.2.1.2.2 (Service Description)

Message Transfer Modes:

Simple mode is very basic: no control is performed by the Messaging System. The
message is sent on the network and that is all.

Reliable mode is more complicated and expects the destination device to acknowledge
the message.

Note that at the originating side, the calling software element is blocked until it gets the
acknowledgement.

To avoid blocking a software element indefinitely an acknowledgement timeout is used.
Its value shall be 30 seconds.
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Interpretation We do not know what callback function the DCM Manager will give to the Messag-
ing System, but we assume that it is either a synchronous function (with an interrupt-like method)
or an asynchronous function (that puts the message in some buffer).

We assume that a multi-threading implementation is meant to have the DCM Manager receive other
messages, not while it is busy sending a message itself, but while it is waiting for a response.

Page 35, 3.2.3.5 (Messaging System Description)

The message passing API will provide a synchronous service allowing a caller to block until
a response is received. As shown in the following figure, the caller asks to send a function
call through the message passing API. The local Messaging System sends a request message
according to the request mode (reliable mode in this example) and waits for the response
or a timeout condition. The remote Messaging System receives the request and passes it
to the destination software element. The destination element sends its function response
message using a normal send in simple form. The requester’s Messaging System receives
the response and transmits it to the requester.

Interpretation Here the proposed multi-threading implementation can help the DCM Manager to
receive messages while it is still waiting for a response.

Note that it is not said anywhere how long a message can be ‘en route’ from the source to the
destination, let alone that the destination DCM Manager will process the message, send a response
and have this delivered in the 3 seconds proposed. So we assume that Initialisation requests, once
sent, could still be on their way when the sending DCM Manager experiences a timeout and will
resend the request.

Page 94, Section 5.3.4 (Messaging System API)
MsgCallback

- sourceld: the 80-bit software element identifier of the software element that issued
the message

- state: the status of the message.

- SUCCESS if everything worked fine

- MSG::EALLOC if the message passing cannot deliver the entire received message
due to a lack of resources

- MSG::EDISAPPEAR if the supervision of the software element (described in
sourceld) has been detected as disappeared. The software element sourceld is no
longer reachable (device unplugged, or software element performed a MsgClose).
Fields other than sourceld are undefined.

- payload: consists of the MessageLength and MessageBody

This function is the callback supplied by a software element. This call back is invoked
by the Messaging System each time an incoming message (incoming reliable request or
simple messages) is received for that software element. It may also be invoked to notify
the software element about a disappearance of a target software element (this service is
provided only after a MsgWatchOn request).

After the callback returns, and depending on the return code (SUCCESS or MSG::EFAIL),
the Messaging System acknowledges the message: if the callback returns with SUCCESS,
the Messaging System generates an ACK message. If the callback returns with EFAIL,
the Messaging System generates an NOACK message
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Warning: a callback function is not allowed to call blocking functions. A callback always
executes in the context of the Messaging System, and is not allowed to block the Messaging
System. Applications should treat the callback as an interrupt.

Page 95, 5.3.4 (Messaging System API)

MsgOpen

- callback: the call back function that the messaging system calls when it receives a
message for that software element

- seid: the 80 bits software element identifier that has been assigned to the software
element.

This function is called by a software element that requires the services of the Messaging
System. This function provides a unique software element identifier to the software element,
which is to be used by the software element to register and to communicate with other
software elements. This function also allows the calling software element to provide a
call back function that will be used by the Messaging System when an incoming message
(either a reliable request, or a simple message) has to be passed to the software element.

Interpretation It seems that for events and messages the same callback function is used. Never-
theless, we assume that a DCM Manager can make a difference between messages and (urgent) bus
reset events, either in the callback function itself or by some combination of the callback function and
the opCode which the DCM Manager gives to the Event Manager when it registers its interest in the
bus reset events.

Page 101, Section 5.3.3 (Messaging System API)

MsgSendResponse

This function is used to send a “function response” message (see 3.2.3.2) to one software
element which has previously performed a MsgSendRequest call. According to the chosen
transfer mode, the function returns immediately or once the sending is completed (message
acknowledge received).
MsgSendRequestSync

This function is used by a software element when it wants to send a “function call”
message (see 3.2.3.2) to one destination software element and block until the response is
received (synchronous mode, see section 3.2.3.5). All requests are sent in “reliable mode”.
A timeout value of zero defaults to the system timeout value. The timeout condition
overrides the messaging system timeout (ackTimeout) condition.

Interpretation As we already saw, for the DCM Managers communicating with each other, the
timeout is 3 seconds. It is not clear how this value overrides the ackTimeout. It could be that the
whole process of delivering the “function call”, the destination processing this call and finally returning
the response, should not take longer than 3 seconds. Or the timer that signals this timeout could be
restarted after the acknowledgement of delivery of the “function call” was received.

In our approach, this timing information is not modelled.

Communication Media Manager for 1394
Page 23, Section 3.1 (CMM description)
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1394 bus is a dynamically configurable network. After each bus reset, a device may have
a completely different physical ID than it had before. If a HAVi component or an appli-
cation has been communicating with a device in the network, it may want to continue the
communication after a bus reset, though the device may have a different physical ID. To
identify a device uniquely regardless of frequent bus resets, The Global Unique ID (GUID)
is used by CMM and other HAVi entities. GUID is a 64 bit number that is composed of
24 bits of node-vendor ID and 40 bits of chip ID. While a device’s physical ID may change
constantly, its GUID is permanent. CMM makes device GUID information available for
its clients.

Interpretation In order to know what devices there are in the network, the CMM must use the
topology map of 1394. This gives only physical IDs subject to change. These physical IDs must
then be used to get the GUID for every device in the network, by asynchronous 1394 read operation
(transaction layer)?? Then CMM can use new GUID list to compare with old one, detect devices who
have left or connected and post events accordingly.

Page 23, Section 3.1 (CMM description)

One of the advanced features the 1394 bus provides to the HAVi system is its support
for dynamic device actions such as hot plugging and unplugging. To fully support this
up to the user level, HAVi system components or applications need to be aware of these
network changes. CMM works with the Event Manager to detect and announce such
dynamic changes in network configuration. Since any topology change within the 1394
bus will cause a bus reset to occur, the CMM can detect topology changes and post an
event to the Event Manager about these changes along with associated information. The
Event Manager will then distribute a related event (called a network reset) to all interested
HAVi entities or applications.

Interpretation DCM Managers are interested in this event.

Page 86, Section 5.2.1 (CMM1394 Services)
CMM1394::GetGUIDList: Communication Type = M

Interpretation So in order to use this service, the DCM Manager must send a message through
the Messaging System to the CMM.

Page 86, Section 5.2.2 (CMM1394 API)

CMM1394::Get GUIDList

Get GUID lists of both active and non-active devices on the network. The first item
returned in activeGuidList shall be the GUID of the local device. A device is defined
as active if it can process HAVi messages (IAV or FAV) or respond to commands from
HAVi software elements (BAV or LAV). For FAV, TAV, or BAV devices, an SDD entry
(HAVi_Device_Status) in the HAVi_unit_directory can be read to determine the status of
the device (see section 9.7.7). A value of one indicates that the device is active. A value of
zero indicates that the device is not active. An LAV device is considered active whenever
its GUID is visible on the network.

Since each device on the network can be identified by its GUID, the GUID list gives all
devices available in the system.

Error codes

- ENOTREADY: GUID list is not available yet - system may be updating it
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Interpretation By the explanation of Communication Types at Page 82 (Section 5.1.1), we conclude
that whenever the DCM Manager wants to have the GUIDList, it sends a message to the CMM through
the Messaging System.

Page 93, Section 5.2.4 (CMM1394 Events)

NetworkReset

NetworkReset is a local event. This event is generated whenever there is a change in the
home network topology (e.g. a connection of a new device). The CMM is generally the
component posting this event. As opposed to the NewDevices and GoneDevices events,
the CMM does not gather GUID list of the changed devices. This event is intended for
target software elements that are only interested in knowing when network topology has
changed but are not interested in specifics of the change.

Interpretation Since DCM Managers need to know about bus resets, and then find out new or
disappeared devices later with GetGUIDList, they only need to subscribe to the event NetworkReset.
We assume that they only listen to the event NetworkReset.

Page 353, 10.3 (Scenarios)

A new BAV or LAYV is plugged into the network
In this scenario, a new BAV or LAV device is plugged into the 1394 bus.

- The CMM of each FAV or IAV generates locally a NetworkReset event (and also the
NewDevices event)

- DCM Managers have previously registered interest in NetworkReset event and so
receive the event. Using the CMM1394::GetGUIDList method, they get the GUIDs
of the new and gone devices on the network.

Interpretation Indeed this scenario indicates that DCM Managers only listen to event NetworkRe-
set.

Event Manager

Page 36, Section 3.3 (Event Manager Description)

If a Software Element wishes to be notified when a particular event is posted, it must
register such intention with its local Event Manager.

When a software element posts an event, it does so via a service provided by Event
Manager. The Event Manager checks its internal table and notifies those software elements
who have registered this event.

An Event Manager notifies software elements by using the HAVi Messaging System; in
particular, it sends a notification message to the software element that is to be notified.

Interpretation The messaging system is used for events. Probably this is done with the simple
mode without waiting for a response, since event messages are only sent to Software Elements on the
same device.
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Page 105, Section 5.4.3 (Event Manager API)

EventManager::Register

EventManager::Register adds the software element (that has sent the message) to the
Event Manager’s internal table. A new entry is created to register the software element
and the list of events it wishes to “listen to”. There is no limit on the internal table
size so long as Event Manager can find enough system resources to maintain the table.
When any of the events in the software element’s “interested” event list occurs, the Event
Manager sends a notification message to the software element. The message contains
opCode, the EventID representing the event, and possibly additional information about
the event. When the software element receives the event notification message, it uses the
opCode to determine how to process the message. It is therefore the responsibility of the
software element to define the operation code for its event-notification message processing
procedure call, and to pass it to the Event Manager at event registration time.

Interpretation We do not know what opCode the DCM Managers will use, but assume that it
enables them to distinguish between ordinary messages and urgent events, even before the callback
function should put messages in a buffer.

Page 108, Section 5.4.3 (Event Manager API)

EventManager::PostEvent

Post the specified event to the home network. Posting an event means notifying all
“target” software elements (i.e., those including the event in their “listen-to” even list)
regardless of their location on the network. Event notification messages are sent by the
Event Manager to all target software elements. The event poster simply sends a message to
an Event Manager indicating its intention to post the specified event. It is the responsibility
of the Event Managers to ensure that all target software elements receive notification.

Page 110, Section 5.4.5 (Event Manager Protocol)

When an event is posted globally to all Event Managers in the home network, the following
mechanism is used:

The event poster sends a EventManager::PostEvent message to its local Event Manager
requesting the event to be posted on its behalf. The message contains the SEID of the
event poster, the EventID of the event to be posted, whether the event is to be delivered
locally or globally, and possibly additional information about the event.

The local Event Manager checks if any software element residing locally have the posted
event in its “listen-to” event list. All target software elements that meet this condition
will get an event notification message from this Event Manager. The message contains the
operation code selected by the target software, the SEID of event poster, the EventID of
the posted event and possibly additional information about the event. The target software
element, upon receiving the notification message, will presumably respond to the event.

Interpretation All of the messages are sent through the Messaging System.

B Excerpts from the IEEE 1394 Standard

The following parts of text are quoted from [16] and [17]. Most of the quotes are followed by our
interpretation.
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1394-1995, Page 200, Section 8.2.1

Serial Bus control request (SB_.CONTROL.request)
This service shall provide the following actions:

- Present Status. The Serial Bus management layer shall return status to the applica-
tion via the Serial Bus control confirmation service.

1394-1995, Page 201, Section 8.2.2

Serial Bus control confirmation (SB_.CONTROL.confirmation)
This service shall communicate the following parameters after a control request of
Present Status:

- Bus Manager ID. The 6-bit physical ID of the bus manager. If no bus manager is
active, this parameter shall have a value of 3F16. This parameter is available only if
the node is bus-manager or isochronous-resource-manager capable.

Interpretation If an application (the HAVi 1394 Communication Media Manager for instance)
wants to know the network configuration, it is likely that the SB_.CONTROL.request service is used
to ask for ‘Present Status’, and a SBL.CONTROL.confirmation with the ‘Bus Manager ID’ is received.
The Bus Manager is supposed to have a TOPOLOGY_MAP register which can be read through an
asynchronous (transaction layer) READ request.

1394-1995, Page 201, Section 8.2.3

Serial Bus event indication

BUS EVENT with values
- BUS RESET START. A bus reset has started

- BUS RESET COMPLETE. A bus reset process has completed. In the cable environ-
ment, this is indicated by the first subaction gap after the bus reset has started.

Interpretation It is not stated explicitly, but we expect from this text that these events are issued
by the serial bus management layer each time a bus reset process starts or is completed, and that
these events are caught by the HAVi 1394 Communication Media Manager.

1394-1995, Page 204, Section 8.3.1.6

A node that is capable of becoming the bus manager shall
b) Implement the SPEED_MAP and TOPOLOGY_MAP registers

1394-1995, Page 229, Section 8.4.2

Bus configuration procedures

When a bus reset occurs, all asynchronous and isochronous traffic on the Serial Bus
ceases. Asynchronous may resume as soon as the self-identify process that follows a bus
reset has completed. Previously established isochronous data streams, either talker or
listener, are to resume as soon as possible after the self-identify process completes. In
general, the roles of cycle master, isochronous resource manager, and bus manager shall
be redetermined before new allocation of isochronous resources can be performed and
before the new topology and speed maps can be made available.
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Interpretation So messages through the HAVi Messaging System cannot be sent from one device
to another while a bus reset is taking place. Sending may proceed as soon as the self-identify process
is completed. The new GUIDList which must come from the topology map can actually be obtained
only after the new cycle master, isochronous resource manager and bus manager have been elected.

1394-1995, Page 319, Annex H.1

Bus configuration timeline
(see Figure H-1) At point B, the following are true:

- bus manager has made the TOPOLOGY_MAP registers available

Interpretation So it takes at most 625 us after completion of the self-identify process to enable
the reading of GUIDList.

1394a March 15, 1998, Page 18, Section 3.2.1

Arbitrated (short) bus reset

The last phase, self-identify, requires approximately one microsecond per node or about
70 ps worst case when there are 63 nodes. Tree identify is also quite rapid and takes less
than 10 us. The longest phase is bus reset and it lasts about 167 ps while the BUS_.RESET
signal is propagated.

The reason for the long duration of BUS_RESET is that a transmitting node is unable
to detect this arbitration line state. It is only after packet transmission is complete that
the node will observe the reset. Hence BUS_RESET must be asserted longer than the
longest possible packet transmission. This guarantees the success of bus reset regardless
of the bus activity in progress.

Interpretation So it takes less than 167 us after the start of the bus reset period for all devices to
notice that a bus reset has started. After sending the bus reset signal for 167 us, all nodes propagate
the idle signal for another 167 us. Based on these numbers, we get a best-case bus reset phase duration
of 414 ps and a worst-case bus reset phase duration of < 581 us.

C The input files for Spin

C.1 Promela model for 3 DCM Managers with asynchronous communica-
tion (final leader)

The Promela model of the leader election protocol with 3 DCM Managers, asynchronous communica-
tion between the DCM Managers, and tailored to verify final leader properties.
For an explanation of the following code, we refer to Section 4.2.

creation date : May 6, 1998
last modified : May 31, 1999

[ K e +
| PROMELA SPECIFICATION |
I I
| file : leader_election.spin |
| author : Judi Romijn (judi@cwi.nl) I
I I
I I

= © 00 ~J O Ot W+

0  /* ----CONSTANTS, SHORTHANDS-—======== === oo oo oo oo */
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

#define maxHost 3 /* maximum nr of host nodes (each has unique ID) */
#define maxMessages 1

/* ====PROPERTY DEF S === == oo oo o o o e */

/% === =TYPE DEF === === = oo o oo oo o e e */

mtype = {power_change, bus_reset, DMInitRequest, DMInitReply }

typedef FieldHost { /* information about a host node */
bool rec_req; /* did I receive a request already? */

I

typedef Field { /* general information about a host node */
bool up; /* is it powered up? */

I

typedef Field2 { /* for all CMMs */

bool delivery; /* whether a bus reset event should be delivered */
};
typedef Array {

Field network[maxHost];

bool fleader; /* final leader? */

byte Leader; /* Leader id */
bool UrlCapable; /* Am I in UrlCapable mode? (constant!!!!) x/
}
/% —===CHANNEL S === === == = == o e e e */
chan chanUpDown[maxHost] = [0] of { mtype } /* synchronous! */
chan chanCMM[maxHost] = [0] of { mtype } /* synchronous! */

chan chanDM[maxHost] = [maxMessages] of { mtype, byte }
/% ====GLOBAL VARIABLES === = = e e e e e */

/* semaphor variables */

show bool BusResetPeriod=0; /* are we in a bus_reset period? */

show Field2 BusResetDelivery[maxHost]; /* bus_reset events to be delivered? */
show Field Global[maxHost]; /* ‘up’ info per host node */

show Array Local[maxHost]; /* as Global, but one whole array per host */

/* scratch variables that are referenced within atomic sequences only */
hidden byte k;
mtype m; /* ERRORS if hidden! */

/% ====PROCESS DEFINITIONS===r==mmmmmmm = mm = e o e o e */
/* ———--PROCESS Bus_Reset————————————— == e e e e x/
proctype Bus_Reset()
{

byte j=0; /* for running through array */

do

: d_step
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66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

{ BusResetPeriod = 1; /* start of a bus_reset period */
3=0;
do
(j<maxHost) ->
if
(Global[j].up) -> BusResetDelivery[j].delivery=1;
/* start one more bus_reset delivery cycle */
(1Global[jl.up) -> skip;
fi;
j++;
(j>=maxHost) -> break;
od;
j=0; /* change network topology */
I
do /* decide new power status per host node */
:: atomic{(j<maxHost) ->
if
:: Global[j]l.up = !'Globallj].up;
chanUpDown[j] !power_change;
: skip; /* stay up/down */
fi;
j++;

}

/* come up/go down */

:: atomic{(j>=maxHost) ->
BusResetPeriod = 0; /* now GUIDlist is stable again */
j=0;
break;

od;
od

100 /% ====PROCESS CMM—mmmmmmm e oo oo e e
101 proctype CMM(byte Id)

102 {

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

downCMM:

{ (0);

} unless {atomic{chanCMM[Id]?power_change;
goto upCMM;};

s
upCMM:
{ do
:: atomic
{ (BusResetDelivery[Id].delivery) ->
BusResetDelivery[Id].delivery = O;
chanCMM[Id] !bus_reset;
}
od;

} unless {atomic{chanCMM[Id]?power_change;
BusResetDelivery[Id].delivery = 0;
goto downCMM;};

s

44



C. The input files for Spin

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

}

/* ———-PROCESS DCM_Manager————-——————————=————— ==~ */
proctype DCM_Manager(byte Id)
{ byte j = 0;

FieldHost InfoHost [maxHost]; /* all info per host node */

/* the following is invalid because of array reference */

/* xr chanDM[Id]; to support partial order reduction */
down_DM:
{ (0); /* unexecutable, forces to wait */

} unless { atomic{ chanUpDown[Id]?power_change;
Local[Id].network[Id].up = Globall[Id].up;
chanCMM[Id]!power_change;
goto leader_election_DM };

};
leader_election_DM: /* first part of leader election */
{ d_step /* GetGUIDList + AsyncRead */
{if
(!BusResetPeriod) -> /* as soon as allowed */
j=0; /* copy GUIDlist to local var */
do
:: (j<maxHost) -> Local[Id].network[j].up = Global[j].up;
j++;
:: (j>=maxHost) -> break;
od;
j=0;
fi;
};
d_step /* compute initial leader */
{ j=0;
do
:: (j<maxHost && Local[Id].network[j].up==1) -> /*found one! *x/
break;
:: (j<maxHost && Local[Id].network[j].up==0) -> j++; /* not yet */
:: (j>=maxHost) -> break; /* no candidate left */
od;
Local[Id].Leader = j; /* maxHost if no init Leader candidate */
3=0;
};
atomic /* am I leader or not? */
{if

(Local[Id] .Leader == Id) ->
goto init_leader_DM;
(Local[Id] .Leader != Id) -> goto init_follower_DM;
fi;
};
init_follower_DM:

{ atomic
{ (!'BusResetPeriod && Global[Local[Id].Leader].up) ->

45
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176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

chanDM[Local[Id].Leader]!DMInitRequest(Id); /* send until */
I
goto init_follower_DM;
} unless {atomic
{ chanDM[Id]?m(k) ->

if
(m==DMInitReply) -> /* declaration recvd */
Local[Id] .Leader = k;
(m!=DMInitReply) -> /* unexpected message: ignore */
goto init_follower_DM;
fi;
I
};

atomic{ if
(Local[Id].Leader==Id ) -> Local[Id].fleader = 1;
goto final_leader_DM;
(Local[Id] .Leader!=Id) -> goto final_follower_DM;
fi;
};

init_leader_DM: /* copy info from local DM and compute #(host & up) */

atomic
{ j=0;
k=0;
do
(j<maxHost) ->
InfoHost[j].rec_req = 0;
k = (Local[Id].network[j].up==1 -> k+1 : k);
jH+;
(j>=maxHost) -> break;

=k
s
do /* then wait for mes DMInitRequest from all up DMs */
: atomic
{ (>1) >
chanDM[Id] ?m(k) ->
if
(m==DMInitRequest) -> /* expected message */
if
(Local[Id].network[k].up &% !InfoHost[k].rec_req) ->
InfoHost [k] .rec_req = 1;
J=7s
(!'Local[Id].network[k].up || InfoHost[k].rec_req) -> skip;
fi;
(m !'= DMInitRequest) -> skip /* ignore unexp mes */
fi;
s
1 atomic{ (j==1) -> /* got mes from all DMs except myself */
break };
od;
atomic /* search for final leader: up and UrlCapable */
{j=0;
do

(j<maxHost && Locall[Id].network[j]l.up && Locall[j].UrlCapable) ->
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231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

break; /* found! */
(j==maxHost) -> break; /* no candidate left */
(j<maxHost && (!Local[Id].network[j].up || !Local[j].UrlCapable)) ->
jH+; /* not yet */
od;
Local[Id].Leader = j; /* maxHost if no candidate (no DM UrlCapable) */
j=0;
I
d_step{ if
(Local[Id].Leader>=maxHost) -> /* all DM’s not UrlCapable */
Local[Id] .Leader = Id; /* anyone can be leader: me */
(Local[Id] .Leader<maxHost) -> skip;
fi;
j=0 };
do
:: atomic
{ (j<maxHost && j!'=Local[Id].Leader
&& j'=Id &% Local[Id].network[j].up
&& !'BusResetPeriod && Globall[j].up) ->
chanDM[j]!DMInitReply(Local[Id].Leader);
I
j++;
:: d_step{ (j==Local[Id].Leader || j==Id) -> j++; }
:: atomic{ (j==maxHost) -> j=0; break; }
:: d_step{ (j<maxHost && !Local[Id].network[jl.up) -> j++; }
od;
if /* done! */
: atomic{ (Local[Id].Leader != Id /* Leader informed last */
&& !'BusResetPeriod
&& Global[Local[Id].Leader].up) ->
chanDM[Local[Id].Leader]!DMInitReply (Locall[Id].Leader);
I
goto final_follower_i_DM;
: atomic{ (Local[Id].Leader == Id) ->
Local[Id].fleader = 1;
goto final_leader_i_DM;
I
fi;

final_follower_DM:
do
: chanDM[Id]7m(k) ;
od;

final_follower_i_DM:
do
: atomic{ chanDM[Id]?m(j) ->
if
(m==DMInitRequest) -> /* never unexpected mes */
atomic{
(!BusResetPeriod && Globall[j].up) ->
chanDM[j]!DMInitReply(Local[Id].Leader);};
j=0;
(m != DMInitRequest) -> skip /* ignore unexp mes */
fi;
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286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

}
od;

48

final_leader_DM:

do

: chanDM[Id]7?m(k);

od;

final_leader_i_

do

DM:

:: atomic{ chanDM[Id]?m(j) ->

}
od;

} unless
{ if
:: atomicq{

: atomicq{

if
(m==DMInitRequest) -> /* never unexpected mes */
atomic{
(!BusResetPeriod && Globall[j].up) ->
chanDM[j]!DMInitReply(Id);};
j=0;
(m != DMInitRequest) -> skip /* ignore unexp mes */
fi;

chanCMM[Id] ?bus_reset;

Local[Id] .Leader=0; /* clear scratch+non-hidden vars */
Local[Id].fleader = 0; /* new leader to be elected */
3=0;

do

(j<maxHost) -> InfoHost[j].rec_req=0; /* clear InfoHost */
Local[Id].network[j].up=0; /* clear Local */
jH+;

(j>=maxHost) -> j=0;break;

od;

do /* empty the queue */
(chanDM[Id]?[m(k)]) -> chanDM[Id]?m(k);

:: else -> break;

od;

goto leader_election_DM };

chanUpDown [Id] ?power_change;

Local[Id].network[Id].up = Global[Id].up;

Local[Id].fleader = 0; /* new leader to be elected */
Local[Id].Leader=0; /* clear scratch+non-hidden vars */
3=0;

do

(j<maxHost) -> InfoHost[j]l.rec_req=0; /* clear InfoHost */
Local[Id].network[j].up=0; /* clear Local */
j++;

(j>=maxHost) -> j=0;break;

od;

do /* empty the queue */
(chanDM[Id]1?[m(k)]) -> chanDM[Id]?m(k);

:: else -> break;

od;

chanCMM[Id] !power_change;
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341 goto down_DM };

342 fi;

343 } /* end unless */

344 }

345

346

347 /* ———=INIT PROCESS——————————— == x/
348 init{

349 /* byte j; */

350

351

352 atomic{ run Assertion();

353 run Bus_Reset();

354 /* run copy of DCM_Manager for each ID */
355 if

356 :: Local[0].UrlCapable = 0; /% not in UrlCapable mode */
357 :: Local[0].UrlCapable = 1; /% in UrlCapable mode */

358 fi;

359 if

360 :: Local[1l].UrlCapable = 0; /* not in UrlCapable mode */
361 :: Local[1].UrlCapable = 1; /* in UrlCapable mode */

362 fi;

363 if

364 :: Local[2].UrlCapable = 0; /* not in UrlCapable mode */
365 :: Local[2].UrlCapable = 1; /% in UrlCapable mode */

366 fi;

367 run CMM(O);

368 run DCM_Manager(0);

369 run CMM(1);

370 run DCM_Manager(1);

371 run CMM(2);

372 run DCM_Manager(2);

373 };

374

375 }

376

C.2 Promela model for 3 DCM Managers with asynchronous communica-
tion (leader)

The Promela model of the leader election protocol with 3 DCM Managers, asynchronous communica-
tion between the DCM Managers, and tailored to verify general leader properties.

The differences with the model tailored to verify final leader properties is the moment at which the
leader of a DCM Manager variable is set to true. In the former model this was only after becoming
the final leader, and hence the name of the variable was fleader. In this model, any initial or final
leadership is reason to set the variable leader to true.

We now list the difference between this model (>) and the model in Appendix C.1 (<).

32c32

< bool fleader; /* final leader? */

> bool leader; /* leader? */

167c167

< :: (Local[Id].Leader == Id) ->
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> :: (Locall[Id].Leader == Id) -> Locall[Id].leader = 1;

190c190

< :: (LocallId].Leader==Id ) -> Locall[Id].fleader = 1;

> :: (Locall[Id].Leader==Id ) -> Locall[Id].leader = 1;
242c242,244

< :: (Local[Id].Leader<maxHost) -> skip;

> :: (Local[Id].Leader<maxHost && Id==Local[Id].Leader) -> skip;
> :: (Locall[Id].Leader<maxHost && Id'=Local[Id].Leader) ->

> Local[Id].leader = 0;

265d266

< Local[Id].fleader = 1;

312c313

< Local[Id].fleader = 0; /* new leader to be elected */
> Local[Id].leader = 0; /* new leader to be elected */
327c328

< Local[Id].fleader = 0; /* new leader to be elected */
> Local[Id].leader = 0; /* new leader to be elected */

C.3 Promela model for 3 DCM Managers with asynchronous communica-
tion (end states)

The Promela model of the leader election protocol with 3 DCM Managers, asynchronous communi-
cation between the DCM Managers, tailored to verify final leader properties and with a restricted
number of bus reset periods.

The differences with the model tailored to verify final leader properties is the that there are maxi-
mally two bus reset periods. This makes the behaviour of the model finite and allows us to search for
invalid end states.

We now list the difference between this model (>) and the model in Appendix C.1 (<).

62a63

> byte HowManyBusResets=2; /# for verification purposes */
66c67,69

< { BusResetPeriod = 1; /* start of a bus_reset period */
> { (HowManyBusResets>0) ->/* only a limited number of bus reset periods */
> HowManyBusResets——;

> BusResetPeriod = 1; /* start of a bus_reset period */
96¢99,101

< od

> :: (HowManyBusResets==0) -> break;

> od;

>

104,105c109,112

< { (0);

< } unless {atomic{chanCMM[Id]?power_change;

> { {skip;

> end_cmmi:

> (0}

> unless {atomic{chanCMM[Id]?power_change;
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107c114

< I

> Ik

109c116,118

< { do

> { {skip;

> end_cmm2:

> do

115,116c124,125

< od;

< } unless {atomic{chanCMM[Id]?power_change;
> od}

> unless {atomic{chanCMM[Id]?power_change;
119c128

< s

> Ik

134,135c143,146

< { (0); /* unexecutable, forces to wait */

<} unless { atomic{ chanUpDown[Id]?power_change;

> { skip;

> end_dcml:

> {(0)} /* unexecutable, forces to wait */

> unless { atomic{ chanUpDown[Id]?power_change;

139a151

>

191,192¢203,204

< goto final_leader_DNM;

< :: (Local[Id].Leader!=Id) -> goto final_follower_DM;

> goto end_final_leader_DNM;
> :: (Locall[Id].Leader!=Id) -> goto end_final_follower_DM;
263c275

< goto final_follower_i_DM;

> goto end_final_follower_i_DM;

266c278

< goto final_leader_i_DM;

> goto end_final_leader_i_DM;

270c282

< final_follower_DM:

> end_final_follower_DM:
275c287

< final_follower_i_DM:

> end_final_follower_i_DM:
289c¢301

< final_leader_DM:

51
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> end_final_leader_DM:
294c306
< final_leader_i_DM:

> end_final_leader_i_DM:

352,353c364
< atomic{ run Assertion();
< run Bus_Reset();

> atomic{ run Bus_Reset();

C.4 Promela model for 3 DCM Managers with synchronous communica-
tion

The Promela model of the leader election protocol with 3 DCM Managers, synchronous communication
between the DCM Managers and tailored to verify final leader properties can be obtained from the
model in Appendix C.1 with the following UNIX diff code. The other models with synchronous
communication are obtained similarly from the models in Appendices C.2 and C.3).

12411

< #define maxMessages 1

41c40

< chan chanDM[maxHost] = [maxMessages] of { mtype, byte }
> chan chanDM[maxHost]
58d56

<

320,323d317

< do /* empty the queue */
< :: (chanDM[Id]?[m(k)]) -> chanDM[Id]?m(k);

< :: else -> break;

< od;

336,339d329

< do /* empty the queue */
< :: (chanDM[Id]?[m(k)]) -> chanDM[Id]?m(k);

< :: else -> break;

< od;

351d340

<

[0] of { mtype, byte } /* synchronous! */

C.5 Promela assertions for 3 DCM Managers

The properties described in these assertions are explained informally in Section 5.1, 5.2, and 5.3. All
assertions are the same for synchronous or asynchronous communication between the DCM Managers.

Promela assertion: At most one leader

/* ———=T0 BE VERIFIED-————————————— e e e e */
/* ‘there is at most one leader’
*/

proctype Assertion()
{
assert (
1 ( ('BusResetPeriod)
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&& (!BusResetDelivery[0].delivery)

&& (!BusResetDelivery[1].delivery)

&& (!BusResetDelivery[2].delivery)

&& ( (Local[0].leader && Local[1].leader)
|| (Local[0].leader && Locall[2].leader)
|| (Local[1] .leader && Locall[2].leader)

)

Promela assertion: Best final leader

/% ====T0 BE VERIFIED————— === === o e o
‘if a UrlCapable dcm is up, the final leader is
always in UrlCapable mode’

/*

*/

proctype Assertion()

{

assert(

(

(!'BusResetPeriod)
&& (!BusResetDelivery[0].delivery)
&& (!BusResetDelivery[1].delivery)
&& (!BusResetDelivery[2].delivery)
&& ( ( (Local[O].fleader && !Locall[0].UrlCapable)
&% ( (Global[1].up && Locall[1].UrlCapable)
|1 (Global[2].up && Local[2].UrlCapable)))
[1C ( (Localll].fleader && !Local[l].UrlCapable)
&% ( (Global[O].up && Locall[O].UrlCapable)
|1 (Global[2].up && Locall[2].UrlCapable)))
[1(C (Local[2].fleader && !Locall[2].UrlCapable)
&% ( (Global[O].up && Locall[O].UrlCapable)
|1 (Global[1].up && Locall1].UrlCapable))))

Promela assertion: Same final leader

/* ====T0 BE VERIFIED-—= === oo oo oo o o o e e

/*
*/

‘if there is a final leader, then everyone agrees on who this is’

proctype Assertion()

{

assert(

( (!BusResetPeriod)
&& (!BusResetDelivery[0].delivery)
&& (!BusResetDelivery[1].delivery)
&& (!BusResetDelivery[2].delivery)
&& ( ( Local[0].fleader
|| (Local[1] .fleader || Local[2].fleader)
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D The input files for Caesar/Aldébaran and Xtl

)
&& (

(  Global[O].up

&& Global[1].up

&& (Local[0] .Leader!=Local[1] .Leader))
[(  GloballO].up

&& Global[2].up

&& (Local[0] .Leader!=Local[2] .Leader))
[(  Globall1l.up

&& Global[2].up

&& (Local[1] .Leader!=Local[2] .Leader))

54

D.1 ACT-ONE naturals library for 3 DCM Managers
The library MY_NATURALS.1ib contains the naturals modulo 3, with the + and - operators, and some boolean
operators.

1 type My_Natural is Boolean

2 sorts Nat

3 opns O (*! constructor x),

4 1 (*! constructor *),

5 2 (*! constructor %),

6 3 (*! constructor ) : -> Nat

7 t_ .,

8 _-_ : Nat, Nat -> Nat

9 _==_,

10 <>,

11 <_,

12 <=_,

13 >,

14 _>=_ : Nat, Nat -> Bool

15 eqns

16 forall m, n : Nat

17 ofsort Nat (x 3+ 1 or 1+ 3 reaches 0 again *)
18 m+ 0 = m;

19 0 +m=m;

20 1+1=2;

21 1 +2=3;

22 1 +3=0;

23 2+1=3;

24 (x 2 + 2 = 4; %)

25 (x 2 + 3 =05; %)

26 3+1=0;

27 (* 3+ 2 =05; %)

28 (x 3+ 3 =6; *)

29 ofsort Nat (* I do not want to give equations for m-n with m<n! *)
30 m- 0 = m;

31 1-1-=0;
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32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

2-1=1;

2 -2=0;

3-1-=2;

3-2=1;

3-3=0;
ofsort Bool

0==0

1 ==1

2 =2

3 =3

0==1

0 == 2

0 ==3

1 ==0

1 ==2

1 ==3

2 =0

2 ==1

2 =3

3 =0

3==1

3 =2
ofsort Bool

m <> n
ofsort Bool

m < 0

0<1

0<2

0<3

1<1

1 <2

1 <3

2<1

2 <2

2<3

3<1

3<2

3<3

ofsort Bool

m <=

n

ofsort Bool

m >=

n

ofsort Bool

endtype

m >

n

true;

true;

true;

true;

false;
false;
false;
false;
false;
false;
false;
false;
false;
false;
false;
false;

not (m == n);

false;
true;
true;
true;
false;
true;
true;
false;
false;
true;
false;
false;
false;

(m < n) or (m == n);
not (m < n);

not (m <= n);

55

D.2 ACT-ONE data part for 3 DCM Managers with asynchronous com-
munication

The following data part is tailored towards the situation of three DCM Managers in a setting with asynchronous

communication between the DCM Managers (through a messaging system).
However, the data parts for two DCM Managers, or for a setting with synchronous communication are very
similar to this particular listing.

1
2

library MY_NATURAL endlib
library X_BOOLEAN endlib
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3

4 type Message is BOOLEAN, MY_NATURAL

5 sorts Messagel, Message2, MesFrame

6 opns

7 init_leader (*! constructor *),

8 final_leader (*! constructor *),

9 bus_reset_start (%! constructor *),

10 bus_reset_end (*! constructor *),

11 bus_reset_event (*! constructor *),

12 power_change (*! constructor *),

13 GUID_list (*! constructor *),

14 empty (*! constructor *) : -> Messagel
15

16 DMInitRequest (%! constructor *),

17 DMInitReply (*! constructor *) : -> Message2
18

19 _==_ : Message2, Message2 -> Bool

20 _<>_ : Message2, Message2 -> Bool

21

22 consm (*! constructor *) : Message2, Nat, Bool -> MesFrame
23 mes : MesFrame -> Message2

24 id : MesFrame -> Nat

25 UrlCapable : MesFrame -> Bool

26

27 eqns forall m,ml,m2: Message2, n:Nat, b:Bool
28

29 ofsort Message2

30 mes (consm(m,n,b)) =m

31 ofsort Nat

32 id(consm(m,n,b)) = n

33 ofsort Bool

34 UrlCapable(consm(m,n,b)) = b;

35 DMInitRequest == DMInitRequest = true;
36 DMInitReply == DMInitReply = true;

37 DMInitReply == DMInitRequest = false;
38 DMInitRequest == DMInitReply = false;
39 ml <> m2 = not(ml == m2)

40  endtype

41

42  type Messagelist is Message

43 sorts Buffer

44 opns

45 emptyb (*! constructor *) : -> Buffer

46 addb (*! constructor *) : MesFrame, Buffer -> Buffer
47 headb : Buffer -> MesFrame

48 tailb : Buffer -> Buffer

49

50 eqns forall 1 : Buffer,

51 e : MesFrame

52

53 ofsort MesFrame

54 headb(addb(e,1l)) = e

55

56 ofsort Buffer

57 tailb(emptyb) = emptyb;
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58 tailb(addb(e,1)) =1

59

60  endtype

61

62  type EnrichedMessagelist is Messagelist

63 opns

64 append: MesFrame, Buffer -> Buffer

65 length: Buffer -> Nat

66 MaxBuf: -> Nat

67 eqns forall m,ml,m2: MesFrame, buf:Buffer
68 ofsort Buffer

69 append (m,emptyb) = addb(m,emptyb);
70 append (m1,addb(m2,buf)) = addb(m2,append(ml,buf))
71 ofsort Nat

72 length(emptyb) = 0;

73 length(addb(m,buf))= 1 + length(buf);
74 MaxBuf = 1

75  endtype

76

7 type Node is BOOLEAN, MY_NATURAL

78 sorts Node

79 opns

80 consn (%! constructor *) : Bool -> Node
81 up : Node -> Bool

82 count_up : Node -> Nat

83

84 eqns forall n:Node, bl,b2:Bool

85 ofsort Bool

86 up(consn(b2)) = b2;

87 ofsort Nat

88 up(n) => count_up(n) = 1;

89 not(up(n)) => count_up(n) = 0;

90

91  endtype

92

93

94  type NodeTuple is Node

95 sorts Network

96 opns

97 consnet (*! constructor *) : Node, Node, Node -> Network
98 firstn : Network -> Node

99 secondn : Network -> Node

100 thirdn : Network -> Node

101

102 eqns forall 1 : Network,

103 n1,n2,n3 : Node

104

105 ofsort Node

106 firstn(consnet(n1,n2,n3)) = ni;
107 secondn (consnet (n1,n2,n3)) = n2;
108 thirdn(consnet(nl1,n2,n3)) = n3;
109

110

111 endtype
112
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113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

type EnrichedNodeTuple is NodeTuple
opns
nr_uphosts : Network -> Nat
flip : Nat, Network -> Network
i_leader: Network -> Nat
eqns forall nl1,n2,n3,n4,n5,n6: Node
ofsort Network
flip(1,consnet(n1,n2,n3))
= consnet (consn(not (up(nl))),n2,n3);
flip(2,consnet(n1,n2,n3))
= consnet(nl,consn(not(up(n2))),n3);
flip(3,consnet(nl,n2,n3))
= consnet(nl,n2,consn(not (up(n3))));
ofsort Nat
nr_uphosts (consnet (nl,n2,n3))
= count_up(n1l) + (count_up(n2) + count_up(n3));
up(nl) => i_leader(consnet(nl,n2,n3)) = 1;
not(up(nl)) and up(n2) => i_leader(consnet(nl,n2,n3)) = 2;
not(up(n1)) and (not(up(n2)) and up(n3)) =>

i_leader (consnet(n1,n2,n3)) = 3;
not(up(nl)) and (not(up(n2)) and not(up(n3))) =>
i_leader (consnet(n1,n2,n3)) = 0;

endtype

type Host is BOOLEAN, MY_NATURAL
sorts Host

opns
consh (%! constructor *) : Nat, Bool, Bool -> Host
id : Host -> Nat
UrlCapable : Host -> Bool

rec_req : Host -> Bool

eqns forall n:Nat, bl:Bool, b2:Bool
ofsort Nat
id(consh(n,b1,b2)) =n
ofsort Bool
UrlCapable(consh(n,b1,b2)) = bi;
rec_req(consh(n,bl,b2)) = b2
endtype

type HostList is Host
sorts Hosts

opns
emptyh (%! constructor *) : -> Hosts
addh (*! constructor *) : Host, Hosts -> Hosts
headh : Hosts -> Host
tailh : Hosts -> Hosts

egns forall 1 : Hosts,
e : Host

ofsort Host
headh(addh(e,1l)) = e

ofsort Hosts

58
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168 tailh(emptyh) = emptyh;

169 tailh(addh(e,1)) =1

170

171 endtype

172

173 type EnrichedHostList is HostList, EnrichedNodeTuple
174 opns

175 _==_: Hosts, Hosts -> Bool

176 _<>_: Hosts, Hosts -> Bool

177 init_hosts: Network -> Hosts

178 chge_rec: Nat, Bool, Hosts -> Hosts

179 rec: Nat, Hosts -> Bool

180 f_leader: Nat, Hosts -> Nat

181 eqns forall host,hostl,host2: Host, hosts,hostsl,hosts2: Hosts,
182 nl,n2,n3:Node, n:Nat, b:Bool

183 ofsort Bool

184 emptyh == emptyh = true;

185 addh (host,hosts) == emptyh = false;

186 emptyh == addh(host,hosts) = false;

187 addh (hostl,hostsl) == addh(host2,hosts2)

188 = ((id(host1l)==id(host2)) and ((UrlCapable(hostl) iff UrlCapable(host2))
189 and ((rec_req(hostl) iff rec_req(host2)) and (hostsl==hosts2))));
190 hostsl <> hosts2 = not(hostsl == hosts2);
191 ofsort Hosts

192 not (up(n1)) and (not(up(n2)) and not(up(n3)) ) =>
193 init_hosts(consnet(nl,n2,n3))

194 = emptyh;

195 not(up(n1)) and (not(up(n2)) and up(n3) ) =>
196 init_hosts(consnet(nl,n2,n3))

197 = addh(consh(3,false,false) ,emptyh);

198 not(up(n1)) and (up(n2) and not(up(n3)) ) =>
199 init_hosts(consnet(nl,n2,n3))

200 = addh(consh(2,false,false) ,emptyh);

201 up(nl) and (not(up(n2)) and not(up(n3)) ) =>
202 init_hosts(consnet(nl,n2,n3))

203 = addh(consh(1l,false,false),emptyh);

204 not(up(n1)) and (up(n2) and up(n3) ) =>

205 init_hosts(consnet(nl,n2,n3))

206 = addh(consh(2,false,false),

207 addh(consh(3,false,false) ,emptyh));
208 up(nl) and (not(up(n2)) and up(n3) ) =>

209 init_hosts(consnet(nl,n2,n3))

210 = addh(consh(1,false,false),

211 addh(consh(3,false,false) ,emptyh));
212 up(nl) and (up(n2) and not(up(n3)) ) =>

213 init_hosts(consnet(n1,n2,n3))

214 = addh(consh(1,false,false),

215 addh(consh(2,false,false) ,emptyh));
216 up(nl) and (up(n2) and up(n3) ) =>

217 init_hosts(consnet(nl,n2,n3))

218 = addh(consh(1,false,false),

219 addh(consh(2,false,false),

220 addh(consh(3,false,false) ,emptyh)));
221 chge_rec(n,b,emptyh) = emptyh;

222 (n <> id(host)) =>
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223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

chge_rec(n,b,addh(host ,hosts))

(n == id(host)) =>

chge_rec(n,b,addh(host,hosts))

ofsort Bool
rec(n,emptyh) = true;
(n<>id(host)) =>
rec(n,addh(host,hosts))
(n==id (host)) =>
rec(n,addh(host,hosts))
ofsort Nat
f_leader(n,emptyh) = n;
not (UrlCapable(host)) =>

= addh(host,chge_rec(n,b,hosts));

= addh(consh(n,b,true) ,hosts)

rec(n,hosts);

rec_req(host)

f_leader(n,addh(host,hosts)) =

UrlCapable (host) =>

f_leader(n,addh(host,hosts)) =

endtype

f_leader(n,hosts);

id (host)

60

D.3 Lotos behaviour part for 3 DCM Managers with asynchronous com-

Q0 ~J O Ui W N~

munication

specification leader_election

[ginfo, gUpDown, gBusReset, gDMin, gDMout, gEvent]

: noexit

behaviour

LE [ ginfo, gUpDown, gBusReset, gDMin, gDMout, gEvent ]
( consnet(consn(false), consn(false), consn(false)) ) (* all dcms down *)

where

process LE [ gInfo, gUpDown, gBusReset, gDMin, gDMout, gEvent ]

( net:Network )
: noexit :=

( BusReset[gUpDown,gBusReset,gEvent] (net)

)

| [gUpDown, gBusReset] |

( ( ( DCM_Manager [gInfo,gUpDown,gDMin,gDMout ,gEvent]

(1,true)
[]

DCM_Manager [gInfo,gUpDown,gDMin,gDMout ,gEvent]

(1,false) )
11

( DCM_Manager [gInfo,gUpDown,gDMin,gDMout ,gEvent]

(2,true)
[]

DCM_Manager [gInfo,gUpDown,gDMin,gDMout ,gEvent]

(2,false) )
11

( DCM_Manager [gInfo,gUpDown,gDMin,gDMout ,gEvent]

(3,true)
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35 1

36 DCM_Manager [gInfo,gUpDown,gDMin, gDMout ,gEvent]
37 (3,false) )

38 )

39 | [gInfo,gUpDown,gDMin, gDMout] |

40 ( ( CMM[gInfo,gUpDown,gBusReset] (1)

41 | [gBusReset] |

42 CMM[gInfo,gUpDown,gBusReset] (2)

43 | [gBusReset] |

44 CMM[gInfo,gUpDown,gBusReset] (3)

45 )

46 | [gUpDown, gBusReset] |

47 ( MS[gUpDown,gBusReset,gDMout,gDMin] (1) (x DM’s out is MS’s in and vv *)
48 | [gBusReset] |

49 MS [gUpDown , gBusReset ,gDMout ,gDMin] (2) (¥ DM’s out is MS’s in and vv *)
50 | [gBusReset] |

51 MS [gUpDown , gBusReset ,gDMout ,gDMin] (3) (* DM’s out is MS’s in and vv *)
52 )

53 )

54 )

55

56 where

57

58 process BusReset [ gUpDown, gBusReset , gEvent ]

59 ( net: Network )

60

61 : noexit :=

62

63 gBusReset ! bus_reset_start

64 ; BusReset2[gUpDown,gBusReset,gEvent]

65 (net,1)

66

67 where

68

69 process BusReset2 [ gUpDown, gBusReset, gEvent ]
70 (net: Network, j:Nat)

71

72 : noexit :=

73

74 ( [j==0]

75 -> ( gBusReset ! bus_reset_end ! net

76 ; BusReset[gUpDown,gBusReset,gEvent] (net)
7 )

78 )

79 1

80 ( [j<>0]

81 -> ( ( gUpDown ! j ! power_change

82 ; BusReset2[gUpDown,gBusReset,gEvent]
83 (flip(j,net),j+1)

84

85 0

86 (i

87 ; BusReset2[gUpDown,gBusReset,gEvent]
88 (net,j+1)

89 )
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90

91

92

93

94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

)

endproc (* BusReset2 x)
endproc (* BusReset *)

process FlushBusReset [gBusReset]
: noexit :=

( gBusReset ! bus_reset_start
; FlushBusReset [gBusReset] )
[]
( choice b1,b2,b3:Bool
[1 ( gBusReset ! bus_reset_end ! consnet(consn(bl),consn(b2),consn(b3))
; FlushBusReset [gBusReset] ) )

endproc (* FlushBusReset x)

process CMM[ gInfo, gUpDown, gBusReset ]
( Id: Nat )
: noexit :=

CMMDown [gInfo,gUpDown,gBusReset] (Id)
where

process CMMDown[ gInfo, gUpDown, gBusReset ]
( Id: Nat )
: noexit :=

FlushBusReset [gBusReset]
[> ( gUpDown ! Id ! power_change
; ( choice b1,b2,b3:Bool
[1 gBusReset ! bus_reset_end ! consnet(consn(bl),consn(b2),consn(b3))
; CMMUp [gInfo,gUpDown,gBusReset]
(Id,consnet (consn(bl),consn(b2),consn(b3))) ) )
endproc (* CMMDown *)

process CMMUp[ gInfo, gUpDown, gBusReset ]
( Id: Nat , net: Network )
: noexit :=

CMMReady [gInfo,gUpDown,gBusReset] (Id,net)
[> ( gUpDown ! Id ! power_change
; CMMDown [gInfo,gUpDown,gBusReset] (Id) )

where
process CMMReady[ gInfo, gUpDown, gBusReset ]
( Id: Nat , net: Network )
: noexit :=

( gInfo ! Id ! GUID_list ! net
; CMMReady [gInfo,gUpDown,gBusReset] (Id,net) )
[]

( gBusReset ! bus_reset_start

62
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145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

; CMMDeliver[gInfo,gUpDown,gBusReset] (Id) )
endproc (* CMMReady *)

process CMMDeliver[ gInfo, gUpDown, gBusReset ]
( Id: Nat )
: noexit :=

( gInfo ! Id ! bus_reset_event
; ( choice b1,b2,b3:Bool
[1 (gBusReset ! bus_reset_end ! consnet(consn(bl),consn(b2),consn(b3))
; CMMReady [gInfo,gUpDown,gBusReset]
(Id,consnet (consn(bl),consn(b2),consn(b3))))))
[]
( choice b1,b2,b3:Bool
[1 (gBusReset ! bus_reset_end ! consnet(consn(bl),consn(b2),consn(b3))
; CMMDeliver2 [gInfo,gUpDown,gBusReset]
(Id,consnet(consn(bl),consn(b2),consn(b3)))

)
endproc (* CMMDeliver *)

process CMMDeliver2[ gInfo, gUpDown, gBusReset ]
( Id: Nat , net: Network )
: noexit :=

( gInfo ! Id ! GUID_list ! net

; CMMDeliver2[gInfo,gUpDown,gBusReset] (Id,net) )
0]
( gInfo ! Id ! bus_reset_event

; CMMReady[gInfo,gUpDown,gBusReset] (Id,net) )
0]
( gBusReset ! bus_reset_start

; CMMDeliver[gInfo,gUpDown,gBusReset] (Id) )
endproc (* CMMDeliver2 x)

endproc (* CMMUp *)
endproc (* CMM *)

process MS[ gUpDown, gBusReset, gin, gout ]

( Id: Nat )

: noexit :=
MSDown [gUpDown , gBusReset,gin,gout] (Id)
where

process MSDown[ gUpDown, gBusReset, gin, gout ]

( Id: Nat )
: noexit :=

FlushBusReset [gBusReset]
[> ( gUpDown ! Id ! power_change
; MsUpl[gUpDown,gBusReset,gin,gout] (Id,emptyb) )
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200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

endproc (* MSDown *)

process MSUp[ gUpDown, gBusReset, gin, gout ]
( Id: Nat, buf: Buffer )
: noexit :=

MSSuspend [gUpDown , gBusReset,gin,gout] (Id,buf)
[> gUpDown ! Id ! power_change
; MSDown [gUpDown,gBusReset,gin,gout] (Id)

where

process MSSuspend[ gUpDown, gBusReset, gin, gout ]
( Id: Nat, buf: Buffer )
: noexit :=

( gin ! Id ! empty

; MSSuspend [gUpDown,gBusReset,gin,gout] (Id,emptyb) )
[]
( [length(buf)>0]

-> ( gout ! Id ! headb(buf)
; MSSuspend [gUpDown,gBusReset,gin,gout] (Id,tailb(buf)) ) )

[]
( choice b1,b2,b3:Bool

[1 (gBusReset ! bus_reset_end ! consnet(consn(bl),consn(b2),consn(b3))

; MSReady [gUpDown,gBusReset,gin,gout] (Id,buf)) )

endproc (* MSSuspend *)

process MSReady[ gUpDown, gBusReset, gin, gout ]
( Id: Nat, buf: Buffer )
: noexit :=

( [length(buf)<maxBuf]
-> ( choice m:Message2, j:Nat,b:Bool
[l gin ! Id ! consm(m,j,b)
; MSReady [gUpDown,gBusReset,gin,gout]
(Id,append(consm(m,j,b),buf)) ) )
(]
( gin ! Id ! empty
; MSReady[gUpDown,gBusReset,gin,gout] (Id,emptyb) )
(]
( [length(buf)>0]
-> ( gout ! Id ! headb(buf)
; MSReady[gUpDown,gBusReset,gin,gout] (Id,tailb(buf)) ) )
(]
( gBusReset ! bus_reset_start
; MSSuspend [gUpDown,gBusReset,gin,gout] (Id,buf) )
endproc (* MSReady *)

endproc (* MSUp *)

endproc (* MS *)
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255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

process DCM_Manager[ ginfo, gUpDown, gDMin, gDMout, gEvent ]

( Id: Nat , UrlCapable: Bool )
: noexit :=
downDM[ginfo,gUpDown,gDMin, gDMout ,gEvent] (Id,UrlCapable)
where

process downDM[ ginfo, gUpDown, gDMin, gDMout, gEvent ]
( Id: Nat , UrlCapable: Bool )
: noexit :=

stop
[> (gUpDown! Id ! power_change (* Disrupt !! *)
; leDM[ginfo,gUpDown,gDMin,gDMout,gEvent]
(Id,UrlCapable) )

endproc (* downDM *)

process leDM[ ginfo, gUpDown, gDMin, gDMout, gEvent ]
( Id: Nat , UrlCapable: Bool )
: noexit :=

( choice b1,b2,b3:Bool
[1 gInfo ! Id ! GUID_list ! consnet(consn(bl),consn(b2),consn(b3))
; ( [i_leader(consnet (consn(bl),consn(b2),consn(b3)))==Id]
-> gEvent ! init_leader ! Id
; 11DM[gDMin, gDMout ,gEvent]
(Id,UrlCapable,consnet(consn(bl),consn(b2),consn(b3)))
[
[i_leader(consnet (consn(bl) ,consn(b2),consn(b3)))<>Id]
-> ifDM[gDMin, gDMout ,gEvent]
(Id4,UrlCapable,consnet(consn(bl),consn(b2),consn(b3)),
i_leader (consnet (consn(bl),consn(b2),consn(b3))))
)
)
[> ( ( gInfo ! Id ! bus_reset_event (* Disrupt !! *)
; ( gDMout ! Id ! empty
; leDM[ginfo,gUpDown,gDMin, gDMout,gEvent] (Id,UrlCapable))
(]
( gUpDown ! Id ! power_change
; downDM[ginfo,gUpDown,gDMin, gDMout,gEvent] (Id,UrlCapable))
)
(]
( gUpDown ! Id ! power_change
; downDM[ginfo,gUpDown,gDMin,gDMout,gEvent] (Id,UrlCapable))
)
endproc (* leDM *)

process ifDM[ gDMin, gDMout, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network , leader: Nat )

. noexit :=

DeclareCapability[ gDMin, gDMout, gEvent](Id,UrlCapable,leader)

65
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310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
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336
337
338
339
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341
342
343
344
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346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

[> ( choice j:Nat, b:Bool
[J gbMin ! Id ! consm(DMInitReply,j,b)
; ( [j==Id]
-> gEvent ! final_leader ! Id ! UrlCapable
; £1DM[gDMin,gDMout,gEvent]
(Id,UrlCapable,net)
(]
[j<>1d]
-> ffDM[gDMin, gDMout ,gEvent]
(I4,UrlCapable,net, j)

where
process DeclareCapability[ gDMin, gDMout, gEvent ]
( Id:Nat , UrlCapable: Bool , leader: Nat )

: noexit :=

(gDMout ! leader ! consm(DMInitRequest,Id,UrlCapable)

; DeclareCapability[gDMin,gDMout,gEvent] (Id,UrlCapable,leader))

(]

(choice j:Nat, b:Bool

[1 gDMin ! Id ! consm(DMInitRequest,j,b)
; DeclareCapability[gDMin,gDMout,gEvent] (Id,UrlCapable,leader))

endproc (* DeclareCapability *)
endproc (* ifDM x)

process ilDM[ gDMin, gDMout, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network )
: noexit :=

Elect [gDMin,gDMout,gEvent]
(Id,UrlCapable,net,init_hosts(net) ,nr_uphosts(net))

where
process Elect[ gDMin, gDMout, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network ,
hosts: Hosts, nr: Nat)
: noexit :=
([nr==1]
-> DeclareLeader [gDMin,gDMout ,gEvent]
(Id4,UrlCapable,net,hosts,f_leader(Id,chge_rec(Id,UrlCapable,hosts))))
[]
([nr>1]
-> ( choice m:Message2,j:Nat,b:Bool
[] gbMin ! Id ! consm(m,j,b)
; ( ([m==DMInitRequest and not(rec(j,hosts))]
-> Elect [gDMin, gDMout ,gEvent]
(Id,UrlCapable,net,chge_rec(j,b,hosts) ,nr-1))
(]
([m<>DMInitRequest or rec(j,hosts)]
-> Elect [gDMin,gDMout ,gEvent]
(Id,UrlCapable,net,hosts,nr))
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365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
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386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

))
endproc (* Elect *)

process DeclareLeader[ gDMin, gDMout, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network ,
hosts: hosts , leader: Nat )
: noexit :=
([hosts==emptyh]
-> ( [leader==Id]
-> (gEvent ! final_leader ! Id ! UrlCapable
; £1iDM[gDMin,gDMout ,gEvent]
(Id,UrlCapable,net))
(]
[leader<>Id]
-> (gDMout ! leader ! consm(DMInitReply,leader,false)
; £fiDM[gDMin,gDMout ,gEvent]
(Id4,UrlCapable,net,leader))
))
(]
([hosts<>emptyh and ((id(headh(hosts))==Id)or(id(headh(hosts))==1eader))]
-> DeclareLeader [gDMin,gDMout ,gEvent]
(Id,UrlCapable,net,tailh(hosts),leader))
(]
([hosts<>emptyh and ((id(headh(hosts))<>Id)and(id(headh(hosts))<>leader))]
-> (gDMout ! id(headh(hosts)) ! consm(DMInitReply,leader,false)
; DeclareLeader [gDMin,gDMout,gEvent]
(Id,UrlCapable,net,tailh(hosts),leader)))
endproc (* DeclareLeader *)

endproc (* ilDM *)

process ffDM[ gDMin, gDMout, gEvent ]

( Id: Nat , UrlCapable: Bool , net: Network , leader: Nat )

: noexit :=

choice m:Message2,j:Nat,b:Bool
[1 gbMin ! Id ! consm(m,j,b)
; £fDM[gDMin,gDMout,gEvent] (Id,UrlCapable,net,leader)

endproc (* f1DM *)

process ffiDM[ gDMin, gDMout, gEvent ]

( Id: Nat , UrlCapable: Bool , net: Network , leader: Nat )

. noexit :=

( choice m:Message2,j:Nat,b:Bool

[J ghMin ! Id ! comsm(m,j,b)

; ( ([m==DMInitRequest]

-> (gDMout ! j ! consm(DMInitReply,leader,false)
; ££iDM[gDMin,gDMout ,gEvent]
(Id,UrlCapable,net,leader)))
[]
([m<>DMInitRequest]
-> f££iDM[gDMin, gDMout, gEvent]
(Id4,UrlCapable,net,leader))
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420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

)
endproc (* ffiDM *)

process f1DM[ gDMin, gDMout, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network )
: noexit :=

choice m:Message2, j:Nat,b:Bool
[1 gbMin ! Id ! consm(m,j,b)
; £1DM[gDMin,gDMout,gEvent] (Id,UrlCapable,net)

endproc (* f1DM *)

process fliDM[ gDMin, gDMout, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network )
. noexit :=

( choice m:Message2,j:Nat,b:Bool
[0 gDMin ! Id ! consm(m,j,b)
; ( ([m==DMInitRequest]
-> (gDMout ! j ! consm(DMInitReply,Id,false)
; £1iDM[gDMin,gDMout ,gEvent]
(Id4,UrlCapable,net)))
(]
([m<>DMInitRequest]
-> f1iDM[gDMin,gDMout , gEvent]
(Id,UrlCapable,net))

endproc (* f1iDM *)
endproc (* DCM_Manager *)
endproc (* LE *)

endspec (* leader_election *)

D.4 ACTL properties for 3 DCM Managers with asynchronous communi-

cation

The properties described in these formulas are explained informally in Section 5.1, 5.2, 5.3, and 5.4.

ACTL property: At most one leader

(* *)
(* Libraries used *)

library actl.xtl end_library

(x *)

(* Basic predicates over actions *)
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let
BusResetStart : labelset = EVAL_A( GBUSRESET !"BUS_RESET_START" ),
BusResetEnd : labelset = EVAL_A( GBUSRESET !"BUS_RESET_END" _ ),
BusResetEvent : labelset = EVAL_A( GINFO _ !"BUS_RESET_EVENT" ),
InitLeader : labelset = EVAL_A( GEVENT !"INIT_LEADER" _ ),
FinalLeader : labelset = EVAL_A( GEVENT !"FINAL_LEADER" _ _ )

in let
InitOrFinallLeader : labelset = InitLeader or FinalLeader,
Ignorel : labelset = (not(BusResetEvent or BusResetStart

or Initleader or Finalleader)),

Ignore2 : labelset = (not(BusResetStart or BusResetEvent))

in

(*

(¥ Safety properties x)

print (" Safety properties:") fby

(x If more than one DCM Manager becomes initial or final leader,
then a busreset event must be pending *)

PRINT_FORM ("\tProperty \n
If more than one DCM Manager becomes initial or final leader,\n
then a bus reset event must be pending : \n",

Box( BusResetEnd,
AG_A( Ignorel,
Box( InitLeader,
AG_A( Ignorel,
Box( Initleader,

EU_A_B( true,
Ignore2,
BusResetEvent,
true

)
and
Box( BusResetEnd,
AG_A( Ignorel,
Box( Finalleader,
AG_A( Ignorel,
Box( InitOrFinalLeader,
EU_A_B( true,
Ignore2,
BusResetEvent,
true

*)
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nop

end_let
end_let

ACTL property: Best final leader

(*

(* Libraries used *)

library actl.xtl end_library

(*

(* Basic predicates over actions *)
let

ReqUrlCapable : labelset =
EVAL_A ( GDMIN _ ?m:string
where
(m="CONSM (DMINITREQUEST, 1, TRUE)")
or
(m="CONSM (DMINITREQUEST, 2, TRUE)")
or
(m="CONSM (DMINITREQUEST, 3, TRUE)")

or
EVAL_A ( GDMOUT
where
(m="CONSM (DMINITREQUEST, 1, TRUE)")
or
(m="CONSM (DMINITREQUEST, 2, TRUE)")
or
(m="CONSM (DMINITREQUEST, 3, TRUE)")

?m:string

)’

BusResetStart : labelset = EVAL_A( GBUSRESET !"BUS_RESET_START" ),
BusResetEnd : labelset = EVAL_A( GBUSRESET !"BUS_RESET_END" _ ),
BusResetEvent : labelset = EVAL_A( GINFO _ !'"BUS_RESET_EVENT" ),
Finalleader : labelset = EVAL_A( GEVENT !'"FINAL_LEADER" _ _ ),

FLNotUrlCapable : labelset EVAL_A( GEVENT !"FINAL_LEADER" _ ?b:boolean
where not(b) )

in let

Ignorel : labelset = (not(BusResetEvent or BusResetStart or BusResetEnd
or FinalLeader)),
Ignore2 : labelset = (not(BusResetStart or BusResetEvent))

%)

*)
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in

(* *)
(¥ Safety properties x)

print (" Safety properties:") fby

(x If a DCM Manager becomes final leader in not UrlCapable mode,
and there were InitRequests with UrlCapable=true
then a busreset event must be pending *)

PRINT_FORM ("\tProperty \n
If a DCM Manager becomes final leader in not UrlCapable mode, \n
and there were InitRequests with UrlCapable=true \n
then a bus reset event must be pending : ",
Box( ReqUrlCapable,
AG_A( Ignorel,
Box( FLNotUrlCapable,
EU_A_B( true,

Ignore2,

BusResetEvent,

true

)
)
)
)
)
nop
end_let
end_let
ACTL property: Same final leader
(* *)
(* Libraries used *)
library actl.xtl end_library
(* *)
(* Maximum number of DCM Managers *)
def N () : integer = 3 end_def
(* *)
(* Basic predicates over actions *)
macro InitReplj (j) =
if (j=1)
then ( EVAL_A ( GDMOUT _ ? m:string

where
(m="CONSM (DMINITREPLY, 1, FALSE)")
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) or
( EVAL_A ( GDMIN _ ? m:string
where
(m="CONSM (DMINITREPLY,

)
else_if (j=2)
then ( EVAL_A ( GDMOUT
where
(m="CONSM (DMINITREPLY,

? m:string

) or
( EVAL_A ( GDMIN _ ? m:string
where
(m="CONSM (DMINITREPLY,

)
else (% (j=3) *)
( EVAL_A ( GDMOUT _ ? m:string
where

(m="CONSM (DMINITREPLY,
)
) or
( EVAL_A ( GDMIN _ ? m:string
where
(m="CONSM (DMINITREPLY,
)
)
end_if

end_macro
macro InitReplnotj (j) =
if (3=1)
then ( EVAL_A ( GDMOUT
where
(m="CONSM (DMINITREPLY,
or
(m="CONSM (DMINITREPLY,

? m:string

) or
( EVAL_A ( GDMIN _ ? m:string
where
(m="CONSM (DMINITREPLY,
or
(m="CONSM (DMINITREPLY,

)
else_if (j=2)
then ( EVAL_A ( GDMOUT
where
(m="CONSM (DMINITREPLY,
or
(m="CONSM (DMINITREPLY,

? m:string

) or
( EVAL_A ( GDMIN _ ? m:string

FALSE)")

FALSE)")

FALSE)")

FALSE)")

FALSE)")

FALSE)")

FALSE)")

FALSE)")

FALSE)")

FALSE)")

FALSE)")
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where
(m="CONSM (DMINITREPLY, 1, FALSE)")
or
(m="CONSM (DMINITREPLY, 3, FALSE)")

)
else (x (j=3) *)
( EVAL_A ( GDMOUT
where
(m="CONSM (DMINITREPLY, 1, FALSE)")
or
(m="CONSM (DMINITREPLY, 2, FALSE)")

? m:string

) or
( EVAL_A ( GDMIN _ ? m:string
where
(m="CONSM (DMINITREPLY, 1, FALSE)")
or
(m="CONSM (DMINITREPLY, 2, FALSE)")
)
)
end_if

end_macro

macro FinalLeaderj (j) = EVAL_A( GEVENT !"FINAL_LEADER" ?n:integer _
where (n=j))

end_macro

macro FinalLeadernotj (j) = EVAL_A( GEVENT !"FINAL_LEADER" ?n:integer _
where (n<>j))

end_macro

macro IRorFLj(j) = InitReplj(j) or FinalLeaderj(j) end_macro
macro IRorFLnotj(j) = InitReplnotj(j) or FinallLeadernotj(j) end_macro

let
InitReply : labelset
= EVAL_A ( GDMOUT
where

(m="CONSM (DMINITREPLY, 1, FALSE)")
or
(m="CONSM (DMINITREPLY, 2, FALSE)")
or
(m="CONSM (DMINITREPLY, 3, FALSE)")
or
(m="CONSM (DMINITREPLY, 1, TRUE)")
or
(m="CONSM (DMINITREPLY, 2, TRUE)")
or
(m="CONSM (DMINITREPLY, 3, TRUE)")

? m:string

or
EVAL_A ( GDMIN _ 7 m:string
where
(m="CONSM (DMINITREPLY, 1, FALSE)")
or
(m="CONSM (DMINITREPLY, 2, FALSE)")
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or
(m="CONSM (DMINITREPLY, 3, FALSE)")
or
(m="CONSM (DMINITREPLY, 1, TRUE)")
or
(m="CONSM (DMINITREPLY, 2, TRUE)")
or
(m="CONSM (DMINITREPLY, 3, TRUE)")
) E
BusResetStart : labelset = EVAL_A (GBUSRESET !"BUS_RESET_START"),
BusResetEnd : labelset = EVAL_A (GBUSRESET !"BUS_RESET_END" _),
BusResetEvent : labelset = EVAL_A (GINFO _ !'"BUS_RESET_EVENT" ),
FinalLeader : labelset = EVAL_A (GEVENT !"FINAL_LEADER" _ _)
in let
Ignorel : labelset = not( BusResetEvent or BusResetStart or BusResetEnd
or InitReply or FinallLeader ),
Ignore2 : labelset = not( BusResetEvent or BusResetStart or BusResetEnd )
in
(x *)
(* Safety properties *)
print ("\n Safety properties:\n\n") fby
PRINT_FORM ("\tProperty \n
If init replies/leader events carry a different Leader Id\n
then a bus reset event must be pending :\n ",
forall j: integer among {1 ... N} in
Box ( IRorFLj(j),
AG_A( Ignorel,
Box( IRorFLnotj(j),
EU_A_B( true,
Ignore2,
BusResetEvent,
true
)
)
)
)
end_forall
)
nop
end_let
end_let
ACTL property: Eventually final leader
(x *)

(* Libraries used

*)

library actl.xtl end_library
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(x *)

(* Basic predicates over actions *)

let
FinalLeader : labelset = EVAL_A (GEVENT !"FINAL_LEADER" _ _),
BusResetStart : labelset = EVAL_A (GBUSRESET !"BUS_RESET_START"),
InfoGUIDlist : labelset = EVAL_A (GINFO _ !'"GUID_LIST" _)

in let
Ignore : labelset = not(BusResetStart or FinalLeader)

in

(x *)

(* Liveness properties *)

print (" Liveness properties:\n\n") fby

(* AlwaysFinalLeaderIfOneDMUpAndNotBusResetStart x*)

print ("\tProperty ‘Always Final Leader If One DM Up And Not BusResetStart’ : ") fby
PRINT_FORM(

Box( InfoGUIDlist,
EU_A_B( true,

Ignore,
FinalLeader,
true
)
)

)

nop

end_let

end_let

D.5 Lotos behaviour for 3 DCM Managers with synchronous communica-
tion

This Lotos behaviour model uses the library listed in Appendix D.1, and a data part very similar to the listing
in Appendix D.2 (it can be obtained from the latter by deleting the MesFrame and Buffer definitions).

specification leader_election
[gInfo, gUpDown, gBusReset, gDM, gEvent]
: noexit

1

2

3

4

5 behaviour
6

7 LE [ gInfo, gUpDown, gBusReset, gDM, gEvent ]

8 ( consnet(consn(false), consn(false), consn(false)) ) (* all dcms down *)
9

10 where

11

12 process LE [ gInfo, gUpDown, gBusReset, gDM, gEvent ]
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

( net:Network )
: noexit :=

( BusReset[gUpDown,gBusReset,gEvent] (net)
)

| [gUpDown, gBusReset] |

( ¢ ¢ ( DCM_Manager [gInfo,gUpDown,gDM,gEvent]
(1,true)
(]
DCM_Manager [gInfo,gUpDown,gDM,gEvent]
(1,false) )
[
OtherCommunications[gDM] (1) )
| [gDM] |
( ( DCM_Manager [gInfo,gUpDown,gDM,gEvent]
(2,true)
(]
DCM_Manager [gInfo,gUpDown,gDM, gEvent]
(2,false) )
[
OtherCommunications[gDM] (2) )
| [gDM] |
( ( DCM_Manager [gInfo,gUpDown,gDM,gEvent]
(3,true)
0]
DCM_Manager [gInfo,gUpDown,gDM, gEvent]
(3,false) )
[
OtherCommunications[gDM] (3) )
)
| [gInfo,gUpDown] |
( ( CMM[gInfo,gUpDown,gBusReset] (1)
| [gBusReset] |
CMM[gInfo,gUpDown,gBusReset] (2)
| [gBusReset] |
CMM[gInfo,gUpDown,gBusReset] (3)

where

process BusReset [ gUpDown, gBusReset , gEvent ]
( net: Network )

: noexit :=
gBusReset ! bus_reset_start
; BusReset2[gUpDown,gBusReset,gEvent]

(net,1)

where
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68 process BusReset2 [ gUpDown, gBusReset, gEvent ]
69 (net: Network, j:Nat)

70

71 : noexit :=

72

73 ( [j==01]

74 -> ( gBusReset ! bus_reset_end ! net

75 ; BusReset[gUpDown,gBusReset,gEvent] (net)
76 )

7 )

78 1

79 ( [j<>0]

80 -> ( ( gUpDown ! j ! power_change

81 ; BusReset2[gUpDown,gBusReset,gEvent]
82 (flip(j,net), j+1)

83 )

84 0

85 (i

86 ; BusReset2[gUpDown,gBusReset,gEvent]
87 (net, j+1)

88 )

89 )

90 )

91 endproc (* BusReset2 *)

92

93 endproc (* BusReset *)

94

95 process FlushBusReset [gBusReset]

96 : noexit :=

97

98 ( gBusReset ! bus_reset_start

99 ; FlushBusReset [gBusReset] )

100 1

101 ( choice b1,b2,b3:Bool

102 [1 ( gBusReset ! bus_reset_end ! consnet(consn(bl),consn(b2),consn(b3))
103 ; FlushBusReset [gBusReset] ) )

104

105 endproc (* FlushBusReset *)

106

107 process CMM[ gInfo, gUpDown, gBusReset ]

108 ( Id: Nat )

109 : noexit :=

110

111 CMMDown [gInfo,gUpDown,gBusReset] (Id)

112

113 where

114

115 process CMMDown[ gInfo, gUpDown, gBusReset ]

116 ( Id: Nat )

117 : noexit :=

118

119 FlushBusReset [gBusReset]

120 [> ( gUpDown ! Id ! power_change

121 ; ( choice b1,b2,b3:Bool

122 [1 gBusReset ! bus_reset_end ! consnet(consn(bl),consn(b2),consn(b3))
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123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

; CMMUp[gInfo,gUpDown,gBusReset]
(Id,consnet (consn(bl),consn(b2),consn(b3))) ) )
endproc (* CMMDown *)

process CMMUp[ gInfo, gUpDown, gBusReset ]
( Id: Nat , net: Network )
: noexit :=

CMMReady [gInfo,gUpDown, gBusReset] (Id,net)
[> ( gUpDown ! Id ! power_change
; CMMDown [gInfo,gUpDown,gBusReset] (Id) )

where
process CMMReady[ gInfo, gUpDown, gBusReset ]
( Id: Nat , net: Network )
: noexit :=

( gInfo ! Id ! GUID_list ! net

; CMMReady[gInfo,gUpDown,gBusReset] (Id,net) )
(]
( gBusReset ! bus_reset_start

; CMMDeliver[gInfo,gUpDown,gBusReset] (Id) )

endproc (* CMMReady *)

process CMMDeliver[ gInfo, gUpDown, gBusReset ]
( Id: Nat )
: noexit :=

( gInfo ! Id ! bus_reset_event
; ( choice b1,b2,b3:Bool
[1 (gBusReset ! bus_reset_end ! consnet(consn(bl),consn(b2),consn(b3))
; CMMReady [gInfo,gUpDown,gBusReset]
(Id,consnet (consn(bl),consn(b2),consn(b3))))))
[]
( choice b1,b2,b3:Bool
[1 (gBusReset ! bus_reset_end ! consnet(consn(bl),consn(b2),consn(b3))
; CMMDeliver2 [gInfo,gUpDown,gBusReset]
(Id,consnet(consn(bl),consn(b2),consn(b3)))

)
endproc (* CMMDeliver *)

process CMMDeliver2[ gInfo, gUpDown, gBusReset ]
( Id: Nat , net: Network )
: noexit :=

( gInfo ! Id ! GUID_list ! net
; CMMDeliver2[gInfo,gUpDown,gBusReset] (Id,net) )
0]
( gInfo ! Id ! bus_reset_event
; CMMReady[gInfo,gUpDown,gBusReset] (Id,net) )
0]
( gBusReset ! bus_reset_start
; CMMDeliver[gInfo,gUpDown,gBusReset] (Id) )
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178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

endproc (* CMMDeliver2 x)

endproc (* CMMUp *)

endproc (* CMM *)

process OtherCommunications[ gDM ]
( Id: Nat )

: noexit :=

( gDM ? j:Nat 7 k:Nat ! DMInitRequest ? b:Bool
[(j<>Id) and (j<>0) and (k<>Id) and (k<>0)]
; OtherCommunications [gDM] (Id))

(]

( gDM 7 j:Nat 7 k:Nat ! DMInitReply ? 1l:Nat
[(j<>Id) and (j<>0) and (k<>Id) and (k<>0) and (1<>0)]
; OtherCommunications [gDM] (Id))

endproc (* OtherCommunications *)

process DCM_Manager[ gInfo, gUpDown, gDM, gEvent ]

( Id: Nat
: noexit :=

, UrlCapable: Bool )

downDM [gInfo,gUpDown,gDM, gEvent] (Id,UrlCapable)

where

process downDM[ gInfo, gUpDown, gDM, gEvent ]
( Id: Nat , UrlCapable: Bool )

: noexit :=

stop

[> (gUpDown! Id ! power_change (* Disrupt !! *)
; leDM[gInfo,gUpDown,gDM,gEvent]
(Id,UrlCapable) )

endproc (* downDM *)

process leDM[ gInfo, gUpDown, gDM, gEvent ]
( Id: Nat , UrlCapable: Bool )

. noexit :=

( choice b1,b2,b3:Bool
[1 let net:Network=consnet (consn(bl),consn(b2),consn(b3))
in ( gInfo ! Id ! GUID_list ! net

>

( [i_leader(net)==Id]
-> gEvent ! init_leader ! Id
; 11DM[gDM,gEvent] (Id,UrlCapable,net)
[]
[i_leader(net)<>Id]
-> ifDM[gDM, gEvent]
(Id,UrlCapable,net,i_leader(net))

79



D. The input files for Caesar/Aldébaran and Xtl 80

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
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250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

)
[> ( ( gInfo ! Id ! bus_reset_event (* Disrupt !! *)
; leDM[gInfo,gUpDown,gDM,gEvent] (Id,UrlCapable))
[
( gUpDown ! Id ! power_change
; downDM[gInfo,gUpDown,gDM,gEvent] (Id,UrlCapable))
)
endproc (* leDM *)

process ifDM[ gDM, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network , leader: Nat )
. noexit :=

DeclareCapability[ gDM, gEvent](Id,UrlCapable,leader)

[> ( gbM ! Id ! leader ! DMInitReply 7 j:Nat[j<>0]
; C [j==Id]
-> ( gEvent ! final_leader ! Id ! UrlCapable
; £1DM[gDM,gEvent] (Id,UrlCapable,net) )
(]
[j<>1d]
-> ffDM[gDM,gEvent] (Id,UrlCapable,net, j)

where
process DeclareCapability[ gDM, gEvent ]
( Id:Nat , UrlCapable: Bool , leader: Nat )
: noexit :=

( gDM ! leader ! Id ! DMInitRequest ! UrlCapable

; DeclareCapability[gDM,gEvent] (Id,UrlCapable,leader))
(]
( gDM ! Id ? k:Nat ! DMInitRequest 7 b:Bool

[(k<>Id) and (k<>0)]

; DeclareCapability[gDM,gEvent] (Id,UrlCapable,leader))

endproc (* DeclareCapability *)
endproc (* ifDM x)

process ilDM[ gDM, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network )
: noexit :=

Elect[gDM,gEvent]
(Id,UrlCapable,net,init_hosts(net) ,nr_uphosts(net))

where
process Elect[ gDM, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network ,
hosts: Hosts, nr: Nat)
: noexit :=
([nr==1]
-> DeclareLeader [gDM,gEvent]
(Id4,UrlCapable,net,hosts,f_leader(Id,chge_rec(Id,UrlCapable,hosts))))
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288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

[]
([nr>1]
-> ( gDM ! Id ? j:Nat ! DMInitRequest 7 b:Bool
[(j<>Id) and (j<>0)]
; ( [not(rec(j,hosts))]
-> Elect [gDM, gEvent]
(Id,UrlCapable,net,chge_rec(j,b,hosts) ,nr-1)
N
[rec(j,hosts)]
-> Elect [gDM, gEvent]
(Id,UrlCapable,net,hosts,nr)
)
)
)
[]

( gDM ! Id 7 k:Nat ! DMInitReply 7 1l:Nat
[(k<>Id) and (k<>0) and (1<>0)]
; Elect[gDM,gEvent] (Id,UrlCapable,net,hosts,nr))
endproc (* Elect *)

process DeclareLeader[ gDM, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network ,
hosts: hosts , leader: Nat )
: noexit :=
([hosts==emptyh]
-> ( [leader==Id]
-> (gEvent ! final_leader ! Id ! UrlCapable

; £1iDM[gDM,gEvent]

(Id,UrlCapable,net))

[]
[leader<>Id]
-> (gDM ! leader ! Id ! DMInitReply ! leader
; ££iDM[gDM,gEvent]
(Id4,UrlCapable,net,leader))
))

(]
([hosts<>emptyh and ((id(headh(hosts))==Id)or(id(headh(hosts))==1eader))]
-> DeclareLeader [gDM,gEvent]
(Id,UrlCapable,net,tailh(hosts),leader))
(]
([hosts<>emptyh and ((id(headh(hosts))<>Id)and(id(headh(hosts))<>leader))]
-> (gbDM ! id(headh(hosts)) ! Id ! DMInitReply ! leader
; DeclareLeader [gDM,gEvent]
(Id,UrlCapable,net,tailh(hosts),leader)))
endproc (* DeclarelLeader *)

endproc (* ilDM x)

process ffDM[ gDM, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network , leader: Nat )
. noexit :=

( gDM ! Id ? k:Nat ! DMInitRequest 7 b:Bool
[(k<>Id) and (k<>0)]
; £fDM[gDM,gEvent] (Id,UrlCapable,net,leader))
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[

( gDM ! Id ? k:Nat ! DMInitReply 7 1:Nat
[(k<>Id) and (k<>0) and (1<>0)]
; £fDM[gDM,gEvent] (Id,UrlCapable,net,leader))

endproc (* f1DM *)

process ffiDM[ gDM, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network , leader: Nat )
: noexit :=

( gDM ! Id ? j:Nat ! DMInitRequest 7 b:Bool

[j<>Id and (j<>0)]

; (gDM ! j ! Id ! DMInitReply ! leader

; ££iDM[gDM,gEvent] (Id,UrlCapable,net,leader)))

(1
( gDM ! Id ? k:Nat ! DMInitReply 7 1l:Nat

[(k<>Id) and (k<>0) and (1<>0)]

; £fiDM[gDM,gEvent] (Id,UrlCapable,net,leader))

endproc (* ffiDM *)

process f1DM[ gDM, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network )
: noexit :=

( gDM ! Id ? k:Nat ! DMInitRequest 7 b:Bool
[(k<>Id) and (k<>0)]
; f1DM[gDM,gEvent] (Id,UrlCapable,net))

[

( gDM ! Id ? k:Nat ! DMInitReply 7 1:Nat
[(k<>Id) and (k<>0) and (1<>0)]
; f1DM[gDM,gEvent] (Id,UrlCapable,net))

endproc (* f1DM *)

process f1liDM[ gDM, gEvent ]
( Id: Nat , UrlCapable: Bool , net: Network )
. noexit :=

( gDM ! Id ? j:Nat ! DMInitRequest 7 b:Bool

[j<>Id and(j<>0)]

; (gDM ! j !'TId ! DMInitReply ! Id
; f1iDM[gDM,gEvent] (Id,UrlCapable,net)))

[
( gDM ! Id ? k:Nat ! DMInitReply 7 1:Nat

[(k<>Id) and (k<>0) and (1<>0)]

; f1iDM[gDM,gEvent] (Id,UrlCapable,net))

endproc (* f1iDM *)
endproc (* DCM_Manager *)

endproc (* LE %)
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398 endspec (* leader_election *)

D.6 ACTL properties for 3 DCM Managers with synchronous communi-
cation

The properties described in these formulas are explained informally in Section 5.1, 5.2, 5.3, and 5.4.

ACTL property: At most one leader
(* *)

(* Libraries used *)

library actl.xtl end_library

(* *)
(* Basic predicates over actions *)
let
BusResetStart : labelset = EVAL_A( GBUSRESET !"BUS_RESET_START" ),
BusResetEnd : labelset = EVAL_A( GBUSRESET !"BUS_RESET_END" _ ),
BusResetEvent : labelset = EVAL_A( GINFO _ !"BUS_RESET_EVENT" ),
InitLeader : labelset = EVAL_A( GEVENT !"INIT_LEADER" _ ),
FinalLeader : labelset = EVAL_A( GEVENT !"FINAL_LEADER" _ _ )
in let
InitOrFinallLeader : labelset = InitLeader or FinalLeader,
Ignorel : labelset = (not(BusResetEvent or BusResetStart
or Initleader or FinallLeader)),
Ignore2 : labelset = (not(BusResetStart or BusResetEvent))
in
(* *)
(* Safety properties *)
print (" Safety properties:") fby

(x If more than one DCM Manager becomes initial or final leader,
then a busreset event must be pending *)

PRINT_FORM ("\tProperty \n
If more than one DCM Manager becomes initial or final leader,\n
then a bus reset event must be pending : \n",

Box( BusResetEnd,
AG_A( Ignorel,
Box( InitLeader,
AG_A( Ignorel,
Box( Initleader,

EU_A_B( true,
Ignore2,
BusResetEvent,
true
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)
and
Box( BusResetEnd,

AG_A( Ignorel,
Box( Finalleader,
AG_A( Ignorel,
Box( InitOrFinalLeader,
EU_A_B( true,

Ignore2,
BusResetEvent,
true
)
)
)
)
)
)

)

nop

end_let

end_let

ACTL property: Best final leader

(*

(* Libraries used *)
library actl.xtl end_library

(*

(* Basic predicates over actions *)
let
ReqUrlCapable : labelset =

EVAL_A ( GDM _ _ !"DMINITREQUEST" ?b:boolean
where (b) ),

BusResetStart : labelset = EVAL_A( GBUSRESET !"BUS_RESET_START" ),
BusResetEnd : labelset = EVAL_A( GBUSRESET !"BUS_RESET_END" _ ),
BusResetEvent : labelset = EVAL_A( GINFO _ !'"BUS_RESET_EVENT" ),
FinalLeader : labelset = EVAL_A( GEVENT !"FINAL_LEADER" _ _ ),

FLNotUrlCapable : labelset
where not(b) )

in let

Ignorel : labelset = (not(BusResetEvent or BusResetStart or BusResetEnd

or FinalLeader)),

EVAL_A( GEVENT !"FINAL_LEADER" ?b:boolean

*)

*)
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Ignore2 : labelset = (not(BusResetStart or BusResetEvent))

in

(*
(* Safety properties *)

print (" Safety properties:") fby

(x If a DCM Manager becomes final leader in not UrlCapable mode,
and there were InitRequests with UrlCapable=true
then a busreset event must be pending *)

PRINT_FORM ("\tProperty \n
If a DCM Manager becomes final leader in not UrlCapable mode, \n
and there were InitRequests with UrlCapable=true \n

then a bus reset event must be pending : ",

Box( ReqUrlCapable,
AG_A( Ignorel,
Box( FLNotUrlCapable,
EU_A_B( true,

*)

%)

*)

*)

Ignore2,
BusResetEvent,
true
)
)
)
)
)
nop
end_let
end_let
ACTL property: Same final leader
(*
(* Libraries used *)
library actl.xtl end_library
(*
(* Maximum number of DCM Managers *)
def N () : integer = 3 end_def
(*
(* Basic predicates over actions *)
macro InitReplyj (j) = EVAL_A ( GDM _ _ !"DMINITREPLY" 7n:integer

where (n=j))
end_macro

macro InitReplynotj (j) = EVAL_A ( GDM _ _ !"DMINITREPLY" ?n:integer
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where (n<>j))

end_macro

macro FinalLeaderj (j) = EVAL_A( GEVENT !"FINAL_LEADER" ?n:integer _
where (n=j))

end_macro

macro FinalLeadernotj (j) = EVAL_A( GEVENT !"FINAL_LEADER" ?7n:integer _
where (n<>j))

end_macro

macro IRorFLj(j) = InitReplyj(j) or FinalLeaderj(j) end_macro
macro IRorFLnotj(j) = InitReplynotj(j) or FinalLeadernotj(j) end_macro

let
InitReply : labelset = EVAL_A (GDM _ _ !"DMINITREPLY" _),
BusResetStart : labelset = EVAL_A (GBUSRESET !"BUS_RESET_START"),
BusResetEnd : labelset = EVAL_A (GBUSRESET !"BUS_RESET_END" _),
BusResetEvent : labelset = EVAL_A (GINFO _ !'"BUS_RESET_EVENT" ),
FinalLeader : labelset = EVAL_A (GEVENT !"FINAL_LEADER" _ _)

in let
Ignorel : labelset = not( BusResetEvent or BusResetStart or BusResetEnd

or InitReply or FinalLeader ),

Ignore2 : labelset = not( BusResetEvent or BusResetStart or BusResetEnd )

in

(x *)

(* Safety properties *)
print ("\n Safety properties:\n\n") fby
(* Between bus resets, at most 1 leader %)

PRINT_FORM ("\tProperty \n
Between BusReset Periods all init replies/leader events carry\n
the same Leader Id :\n ",

forall j: integer among {1 ... N} in
Box ( IRorFLj(j),
AG_A( Ignorel,
Box (IRorFLnotj(j),
EU_A_B( true,

Ignore2,
BusResetEvent,
true
)
)
)
)
end_forall

)

nop

end_let

end_let
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ACTL property: Eventually final leader

(x *)

(* Libraries used *)

library actl.xtl end_library

(* *)

(* Basic predicates over actions *)

let
FinalLeader : labelset = EVAL_A (GEVENT !"FINAL_LEADER" _ _),
BusResetStart : labelset = EVAL_A (GBUSRESET !"BUS_RESET_START"),
InfoGUIDlist : labelset = EVAL_A (GINFO _ !"GUID_LIST" _)

in let
Ignore : labelset = not(BusResetStart or FinalLeader)

in

(* *)

(¥ Liveness properties *)

print (" Liveness properties:\n\n") fby

(* AlwaysFinallLeaderIfOneDMUpAndNotBusResetStart *)

print ("\tProperty ‘Always Final Leader If One DM Up And Not BusResetStart’
PRINT_FORM(

Box( InfoGUIDlist,
EU_A_B( true,

Ignore,
FinalLeader,
true
)
)

)

nop

end_let

end_let

n) fby
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