
Model Checking the HAVi Leader Election Protocol

Judi Romijn

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

judi�cwi�nl

ABSTRACT

The HAVi speci�cation ��� proposes an architecture for audio�video interoperability in home networks� Part of

the HAVi speci�cation is a distributed leader election protocol� We have modelled this leader election protocol

in Promela and Lotos and have checked several properties with the tool Spin and the tool Xtl �from the

C�sar�Ald	ebaran package
�

It turns out that the protocol does not meet some safety properties and that there are situations in which

the protocol may never converge to designate a leader� Our conclusion is that realistic timing requirements

on sending and processing of messages should be added to the HAVi speci�cation� Then a �timed
 formal

veri�cation could give a de�nite answer with respect to correctness of the leader election protocol�

���� Mathematics Subject Classi�cation	 ��M
�� ��Q
�� ��Q��� ��Q��� ��Q��� ��Q��

���� ACM Computing Classi�cation System	 C����� D����� D����� F�
�
� F�
��� F���
� G��

Keywords and Phrases	 model checking� protocol veri�cation� abstraction� process algebra� temporal logic�

safety� liveness

Note	 This research was carried out as part of the project �Speci�cation� Testing and Veri�cation of Software

for Technical Applications� at the Stichting Mathematisch Centrum for Philips Research Laboratories under

Contract RWC���
�PS��������ps�

�

Table of Contents

� Introduction �

� The DCM Manager leader election protocol �
��� Protocol �
��� HAVi components �

� Languages and tools �
��� Spin and Promela �
��� Lotos� C	sar
Ald�ebaran and Xtl �

� Modelling decisions �
��� General description �
��� Promela �

��� Lotos ��

� Model checking experiments ��
��� Safety� At most one leader ��
��� Safety� Best candidate becomes �nal leader ��
��� Safety� All agree on the �nal leader ��
��� Liveness� Eventually there will always be a �nal leader � � � � � � � � � � � � � � � � � � �

��� Is the HAVi protocol wrong� ��
��� Statistics ��

� Conclusions ��
��� Concerning Spin ��
��� Concerning C	sar
Ald�ebaran and Lotos ��
��� Comparison of the tools ��
��� Concerning this experiment ��

References ��

A Excerpts from the HAVi Speci	cation ��

B Excerpts from the IEEE ��
� Standard ��

C The input 	les for Spin ��
C�� Promela model for � DCM Managers with asynchronous communication ��nal leader� ��
C�� Promela model for � DCM Managers with asynchronous communication �leader� � � � �

C�� Promela model for � DCM Managers with asynchronous communication �end states� � ��
C�� Promela model for � DCM Managers with synchronous communication � � � � � � � � � ��
C�� Promela assertions for � DCM Managers ��

D The input 	les for C�sar�Ald
ebaran and Xtl ��
D�� ACT�ONE naturals library for � DCM Managers ��
D�� ACT�ONE data part for � DCM Managers with asynchronous communication � � � � � ��
D�� Lotos behaviour part for � DCM Managers with asynchronous communication � � � � � ��
D�� ACTL properties for � DCM Managers with asynchronous communication � � � � � � � ��
D�� Lotos behaviour for � DCM Managers with synchronous communication � � � � � � � � ��
D�� ACTL properties for � DCM Managers with synchronous communication � � � � � � � ��

�� Introduction �

� Introduction

The Home Audio
Video Interoperability �HAVi� project �
� is a joint e�ort by eight consumer electron�
ics companies to solve interoperability problems for audio
video networks in the home environment�
The HAVi speci�cation speci�es a set of Application Programming Interfaces �APIs� and protocols

that allow consumer electronics manufacturers and third parties to develop applications for the home
network� Thus the home network is viewed as a distributed computing platform� and the primary goal
of the HAVi architecture is to assure that products from di�erent vendors can cooperate to perform
application tasks� The HAVi architecture is supposed to work on top of an IEEE ��
� serial bus
���� ����
There are two types of HAVi devices� controllers and controlled devices� The controller acts a host

for controlled devices via a Device Control Module �DCM�� Installation and allocation of such DCMs is
done by a HAVi software element which is called the Device Control Module Manager �DCMManager��
Each controller is supposed to have a DCM Manager� All DCM Managers have to cooperate with
each other to ensure that the installation and allocation of DCMs works properly� A complicating
factor here is the dynamic plug�and�play character of the ��
� network� Each time when a change in
the ��
� network occurs� the DCM Managers restart their activities by �rst choosing a leader among
them� and then under the control of the designated leader� complete their DCM controlling tasks�
The purpose of the leader election is that the DCM Manager with the best capabilities will play a

central role in the DCM controlling tasks� Since not all of these capabilities are persistent and globally
available� the DCM Managers need to communicate to �nd out which one is the best candidate for
leadership�
In this paper� we study the leader election protocol between the DCM Managers� Our goal is to

analyse this protocol with several model checking tools� to determine whether the protocol is correct�
and to compare the model checking tools� Our approach is to construct a model of the behaviour of
the protocol in a suitable formal language� and to establish certain properties through model checking�
Model checking is a veri�cation approach where one checks whether a property holds by exploring the
reachable state space of the model� The manual construction of such proofs is a tedious and error�prone
process� Nowadays� there are several tools that fully automate the model checking process�
We present several models of the protocol leader election protocol in the formal languages Promela

���� and Lotos ���� Several properties have been checked with the model checking tools Spin ���� ���
and Xtl ���� �part of the C	sar
Ald�ebaran distribution �����
We have found errors in the formal models with both Spin and Xtl� It turns out that some safety

properties are not met by the protocol and that there are situations in which the protocol may never
converge to a designate a leader� The cause of these errors is that the HAVi speci�cation is not
detailed enough to ensure that HAVi compliant implementations are faultless� The errors occur when
communication between di�erent devices is faster than communication between components in one
device� Besides our conclusions on the correctness of the HAVi protocol� we compare the two model
checking tools�
As far as we know� the only other paper in which HAVi leader election protocol between DCM

Managers is studied is ����� Here� a comparison is made between the performance of state space
exploration of Spin and the �CRL tool set ���� The model of the protocol di�ers from ours and no
model checking is performed�
This paper is organised as follows� Section � gives an informal description of the HAVi leader

election protocol� Section � introduces the tools and languages used� Section � describes our model
of the protocol� Section � gives the details of all the model checking experiments� Finally� Section �
gives several conclusions that we drew from this experiment�
In the appendices� relevant excerpts from the HAVi and ��
� speci�cations and several code listings

can be found�

� The DCM Manager leader election protocol �

Acknowledgements

I thank Eddy Zondag for his help in understanding and modelling the HAVi leader election protocol�
Gerard Holzmann for his help with running Spin on large machines� Radu Mateescu for his help with
C	sar� Ald�ebaran and Xtl� and Yaroslav Usenko for questioning the validity of my models� Dennis
Dams and Gerard Holzmann are thanked for their help in understanding the �ner details of the CTL
versus LTL problem� Finally� I thank Ron Koymans� Izak van Langevelde and Frits Vaandrager for
their comments on previous versions of this paper�

� The DCM Manager leader election protocol

The DCM Manager leader election protocol is described in the HAVi speci�cation �
� at page ���� The
protocol tries to �nd a suitable leader for the actual task of the DCM Managers� which is performed
in the autonomous operation phase� We only study the leader election phase�
The parts of the HAVi speci�cation and the IEEE ��
� standard that are relevant for this protocol

are listed in Appendices A and B� Here� we give an informal explanation of the protocol� and the
services that it requires from several HAVi components�

��� Protocol

Each DCM Manager enters the leader election phase upon initialisation and each time a bus reset
event is received� First it obtains information on the current network topology� by sending a request to
another HAVi element� the Communications Media Manager� which returns a list with all the devices
that are active in the ���
�� network� The list contains the Global Unique ID �GUID� of all devices in
the network� The DCM Manager then questions the ��
� level of each active device to �nd out some
more information� The information needed for this protocol is the HAVi type of the device is �FAV�
IAV� BAV or LAV�� and whether there is a DCM Manager present at the device �at FAV compulsory�
at IAV optional�� Based on this information� the DCM Manager selects an initial leader from the
GUIDs of devices on which a DCM Manager is present� Since each DCM Manager uses the same
procedure for the selection� all of them choose the same initial leader without communicating with
each other� Each DCM Manager which is not the initial leader is called initial follower�
The initial leader waits for initialisation requests from all initial followers� in which they state their

capability� Using this new information and the HAVi type of the devices� the initial leader decides
which DCM Manager is the best candidate for the �nal leadership� One of the criterions is the HAVi
controller type� which is found in the �static� information of the HAVi device and which can be
accessed from outside the device� The other criterion is Internet access which is found in the request
messages from the followers� Each initial follower is informed of the decision with an initialisation
reply� and the DCM Manager which has been elected as �nal leader is informed last� After this� the
leader election phase ends and the autonomous operation phase phase is entered� Here� each DCM
Manager which is not the �nal leader is called �nal follower�
During or after the leader election phase� the network topology may change� which causes a bus

reset phase to start� Whenever this happens� the DCM Managers should start anew with the leader
election because the previously elected leader may have disappeared from the network or a more
suitable candidate may have appeared� The DCM Managers are informed of a bus reset phase by
the Communications Media Manager with an event� The HAVi speci�cation does not lay down any
implementation rules for the delivery of this event� such as timing requirements� So it is possible that
the bus reset event is delivered after the bus reset phase has already ended� If multiple bus reset
phases occur �almost� adjacently� the DCM Managers may get out of phase in their leader election�
Then one DCM Manager might be sending its initialisation request to an initial leader which is not
aware of any bus reset phase having taken place� or vice versa� To keep things in order� the DCM
Manager which is to be the initial leader� must remember this role and answer initialisation requests

�� Languages and tools �

with an initialisation reply� even after leader election has ended� During and after the protocol� all
unexpected messages are ignored�

��� HAVi components

The DCM Managers use the services of the local elements Messaging System� Communication Media
Manager� and Event Manager� These elements will be available at each HAVi device that contains a
DCM Manager�
The Messaging System provides two services and two modes of sending messages to software

elements� whether local or not� The service choices are to block while waiting for a response by the
receiver or not to wait for a response� The modes are reliable or simple� The reliable mode implicates
that the sender is informed by the Messaging Systems involved whether the message reached the
receiver� The sender is blocked until such an acknowledgement arrives or a time�out occurs� The
simple mode implicates no acknowledgement information from the Messaging Systems is given to the
sender� The Messaging System on the device of the receiver delivers the message to the receiver via a
call back function� which the receiver has dispensed to the Messaging System at start�up time� The
Messaging System uses the ��
� network for the actual message passing� From the ��
� speci�cation
we learn that at the ��
� level� no messages can be sent between di�erent devices while a bus reset is
taking place�
The DCM Managers communicate with each other using the reliable method and the response

service� The HAVi speci�cation does not limit the nature of the call back function that the DCM
Managers use� The DCM Managers use a timeout of � seconds on all messages�
The Event Manager accepts requests to post events and sends a message with the event through

the Messaging System to every local software element that has subscribed to the event� A posting re�
quest must be sent through the Messaging System� The DCM Managers all subscribe to the BusReset
event during initialisation�
The Communication Media Manager provides information on the network con�guration which

it gets from the ��
� layer� Upon the start of a bus reset phase� it posts the event BusReset� Since
each FAV or IAV device has its own Communication Media Manager to signal the bus reset start� the
BusReset event only needs to be sent to software elements on the same device� This means that the
Messaging System can at all times deliver the messages containing this event to the interested parties�
as long as the device is powered up�
The Communication Media Manager also allows software elements to request network information

in the form of a GUIDList� This service is only available outside bus reset phases� after the Com�
munication Media Manager has received the information from ��
�� This information is to be asked
with a message through the Messaging System�

An example scenario In Figure � we show an example scenario in the following happens� A bus
reset period starts� The Communication Media Manager posts the BusReset to the Event Manager�
The Event Manager delivers the BusReset to the DCM Manager� The DCM Manager reacts by
requesting the GUIDList from the Communication Media Manager� This list is available only when
the bus reset period has ended�

� Languages and tools

This section gives a short introduction to the languages and tools used for formalisation and veri�cation
of the leader election protocol� For details we refer to the documentation cited below�

�� Languages and tools �

Event�BusReset�

PostEvent�BusReset�

messages to other nodes

CMM� GUIDList

not available

MS� no delivery of

end

bus reset phase

start

bus reset phase

DCM Manager EM CMM

GetGUIDList

Figure �� A bus reset scenario

��� Spin and Promela

Spin ���� ��� is a tool that supports simulation and veri�cation of Promela ���� models of distributed
systems� Models in Promela �a Process Meta Language� consist of de�nitions of process behaviour�
with variable assignments� sequential and alternative composition� repetition and dynamic process
creation� Communication between processes happens on synchronous or asynchronous channels� Syn�
chronous communication always involves two processes� The support of data types is very limited�
basic types are booleans and naturals� from which arrays and record structures can be built�
Veri�cation is supported through detection of deadlocks� invalid end�states or non�progress loops�

through violation of assertions and through LTL ���� ��� properties� The veri�cation is done on the
�y� the global state space is not constructed� but explored directly from an interpreted version of the
Promela code�

��� Lotos� C�sar�Ald�ebaran and Xtl

Lotos ��� is a standardised language for abstract modelling of distributed systems� Lotos models consist
of a data part and a behaviour part� the data part is expressed in ACT�ONE� an algebraic formalism for
abstract data types� and the behaviour part is expressed in process algebra with sequential� alternative
and parallel composition� and recursion� Communication happens on synchronous gates and can
involve more than two processes�
The C	sar
Ald�ebaran tool set ��� facilitates simulation and veri�cation of Lotos models� Simulation

and detection of deadlocks� livelocks et cetera can be done on the �y�
The Xtl tool ���� �which is part of the C	sar
Ald�ebaran tool set� facilitates the veri�cation of

temporal properties over Lotos models� First the global state space must be generated �with C	sar��
then Xtl can verify a property given in one of the following logics� HML ����� CTL ���� LTAC �����
ACTL ��� �� and the modal ��calculus ����� It is even possible to de�ne one�s own modal logic in terms
of the libraries provided by Xtl �including greatest and least �xpoint operators��

�� Modelling decisions �

� Modelling decisions

In this section� our model of the protocol is explained� What is presented here is the result of a
process of experimenting with di�erent models� imposing and lifting restrictions until a satisfactory
model with a manageable size was obtained�
First we explain the general modelling decisions� and give a description of the processes involved�

Then the details of the Promela and Lotos models are explained �See Appendices C and D for code
listings�� Unless stated otherwise� the explanations refer to the model of the protocol with � DCM
Managers and asynchronous communication between the DCM Managers� In the remainder of this
section we abbreviate DCM Manager �DM�� Communication Media Manager �CMM�� and Messaging
System �MS��

	�� General description

Restrictions on the network Each of the following choices is a restriction on what is allowed by
the HAVi model� These restrictions are imposed in order to obtain a model of manageable size�
We study only situations with one network in which maximally three devices are active� and demand

that in the start state no device is powered on�
The HAVi device types are FAV� IAV� BAV and LAV� We assume that there only are FAV devices

in the network� and that on each of these devices there is a DM present�
A bus reset in the ��
� network may be caused by a change in the network topology �a device being

added to or removed from the network�� by a device in the network being powered up or down� by
race conditions in the ��
� protocol or by other error situations� We model the cause of a bus reset
as the power change of zero or more devices in the network� Here� zero power changes represents
some other cause of bus reset� and the power change of a device also represents the connecting or
disconnecting of that device �when a device is disconnected but still powered up� it operates in a new
network consisting of just itself� we only study one network�� The network behaviour is modelled with
the process Bus Reset�
From IEEE ��
� we learn that the worst�case time delay between the start of the bus reset phase

and the moment that the last device in the network notices the bus reset is less than ��� microseconds�
The duration of the bus reset phase until normal operation resumes is at least ��� and maximally ���
microseconds� We restrict the bus reset phase delay to zero� which means that the bus reset phase
starts at the same time at all devices in the network� For our veri�cation purposes we only want
to consider properties that concern situation in which a bus reset is not taking place� Therefore it
is convenient to have the start of the bus reset phase actually precede the change of network which
causes the bus reset phase�
In the HAVi design� each DCM Manager use a capability and a preference in the leader election

protocol� We restrict ourselves to the capability UrlCapable� which indicates whether a device has
Internet access �true� or not �false�� We assume that the value of UrlCapable does not change�
In a ��
� network a device may be unplugged �powered o��� and then plugged back in �powered

on�� This may cause the device to get a di�erent ��
� physical ID and HAVi SEID �Software Element
ID� once it is back in the network� than the ��
� and HAVi IDs it had before� Since each device has a
globally unique ID �GUID� which does not change� and other devices can �nd out about this through
the GUIDList which is managed by their CMM� we only identify devices with their GUID and do not
model the physical ID�

Which HAVi components� We model the DM� the MS and the CMM with separate processes�
which are described below� We do not include a process for the Event Manager� The only event
posted to this component will be the BusReset� and all di�erent scenarios of delivery of this event
can be modelled by one synchronous communication between the CMM and the DM� If the delivery
is unsuccessful� the communication does not occur� An extra process Bus Reset is needed to model

�� Modelling decisions �

DM � DM �

MS �

DM � DM �

MS �

DM � DM �

MS �

asynchronous communication

HAVI speci�cation�

synchronous communication

HAVi����� communication

Our model� Our model�

synchronous communication

Figure �� DCM Manager to DCM Manager communication

the behaviour of the ��
� network�

Process Bus Reset This process determines whether a new bus reset period will start� and which
devices �hence which DMs and CMMs� will be powered up or down� Both of these choices are non�
deterministic� hence in a veri�cation all possibilities will be considered� Whenever a device is powered
up or down� the DM� CMM and MS on that device are informed by Bus Reset in a synchronous
manner� The power changes are determined in increasing order of device ID�

Process CMM This process controls the GUIDList� in which all devices present in the network
are listed� It also signals any start or end of a bus reset period on the ��
� network� and passes this
information on to the DM and the MS on the same device�
When several bus reset periods follow each other with little time in between� it is possible that a

CMM has not posted the occurrence of a previous bus reset� when the next is already taking place�
The HAVi speci�cation does not de�ne whether both bus reset events should be posted or just one�
We choose to have the new bus reset overrule the previous one� and have only the last bus reset
noti�cation being posted and delivered�

Process MS This process takes care of the communication between the DMs and acts as a bu�er�
All message transfers that use the MS� are performed in reliable mode� therefore we model such a
message transfer as one communication involving just the sending and the receiving component� The
message transfer is shown in Figure �� The HAVi design is that DM � sends a message� intended for
DM �� to the MS � �which is on the same device as DM ��� MS � sends the message on the network
to MS �� which delivers it to DM �� After sending the message� DM � will wait for an error message
or an acknowledgement of successful delivery to DM �� DM � only continues its operation after such
a noti�cation� In Figure �� continuous arrows show how a message is transported through the HAVi
architecture from DM � to DM �� and the dashed arrows show how the noti�cations are generated and
returned� In case of erroneous transfer� the message may not reach MS � or DM �� Successful delivery
to DM � means that either DM � is interrupted to receive the message �synchronous communication� or
the message is put into a bu�er designated by DM � �asynchronous communication�� We have modelled
the synchronous version of this communication with direct synchronous communication between DM
� and DM � �and then there is no need for any MS process�� and the asynchronous version by
synchronous communication between DM � and MS �� In the latter case� DM � can get the message
from MS � by synchronous communication� Note that MS � is not used in this communication scheme�
This modelling choice is made to limit the possibilities for the communication� which is reasonable

�� Modelling decisions �

since we are only interested in the communication succeeding �modelled by the message put into the
bu�er� or failing �modelled by the communication not occurring at all�� Of course� the size of the
bu�er maintained by the MS limits the number of messages that can be sent to a DM before it actually
receives them�
So� in short� in the case of synchronous communication between DMs� there will be no MS process

in our model� In the case of asynchronous communication between DMs� there will be an MS process
which acts as a bu�er for incoming messages directed to the DM at the same device� The bu�er
size is a parameter for the model� in all our models the bu�er size is �� In case of asynchronous
communication� the DM will empty the bu�er in the event of a bus reset period or whenever the
power is switched o��

Process DCM Manager The general task of the DM is explained in Section �� Our model follows
this procedure as closely as possible� except for a few modelling choices�

�� In our model we skip the subscription that the DM uses to inform the EM that it wants to
receive all bus reset events� We also skip the registration of the call back function that the DM
must dispense to the MS�

�� From the two parameters that the DM uses in the protocol� we only consider UrlCapable �In�
ternet access��

�� The HAVi method of electing the initial leader� is to choose the DM on the device with the
highest bit order reversed ID� Since our assignment of IDs to DMs is arbitrary� we just choose
the DM with the lowest ID for initial leader�

�� The selection of the �nal leader in the HAVi design should be an arbitrary choice of the devices
with the best capabilities� We study networks with only FAV devices on which a DM is present�
hence we let the device with the lowest ID and UrlCapable set to true be the �nal leader �which
is not arbitrary� but does limit the size of the state space�� If no device has special capabilities�
the HAVi design allows the initial leader to elect an arbitrary device for �nal leader� In this
case� we have the initial leader elect itself for �nal leader �which also limits the state space size��

�� In the HAVi protocol� each initial follower will send its initialisation request to the initial leader�
and will resend the request if a reply was not received before a timeout occurs �which is after �
seconds�� All our models are without timing information� Hence we let the initial follower choose
arbitrarily between resending the request and receiving the reply� In this manner we cover all
possibilities� Note that this choice does not introduce new behaviour� that is� behaviour that is
not permitted by the HAVi speci�cation�

	�� Promela

The Promela code is listed in Appendix C���
At the beginning of the code� some type de�nitions are given for the global variables in which all

information about the several DMs is stored� These variables must be global �as opposed to local for
the DCM Manager process that actually �owns� the information� in order to facilitate access to this
information in the model checking process� Then some channels are de�ned which are used for com�
munication between DMs �asynchronous in this model�� between DM and CMM �synchronous�� and
between DM and the Bus Reset process� We have chosen to model the asynchronous communication
between DMs with the channel chanDM� and not a separate MS process� This helps in keeping the
model simple and the state space small�
The statement labels indicate the state a process is in� By default� execution of a process starts at

the �rst statement� When a change of state is desired� this is done with the goto �label� statement�
where �label� is the target state�

�� Modelling decisions 	

Many statements in the processes are not meant to be executed in an interleaved manner with other
activities in the network� With the atomic attribute� we can express that the statements in its scope
are to be executed without creating new states in between� This also helps in keeping the state space
small�
Most of the processes should be interrupted when the power on the corresponding device is switched

o�� This interruption is modelled with the operator unless�

Process Bus Reset First a bus reset period is started� The decision to actually execute this
statement is made non�deterministically� meaning that in the whole state space it is always possible
to postpone this branch of execution as long as there is another statement that can be executed�
The start of the bus reset period is forwarded to all the CMMs that are up� by setting the corre�

sponding delivery boolean in the global BusResetDelivery array� If this boolean was true already
because a previous bus reset was not handled yet by a CMM� the boolean will remain true� so only
the last bus reset noti�cation is delivered�
Whenever a device is powered up or down� a power�change message is sent to the corresponding

DM� which will in its turn inform the CMM� If Promela supported multi�way communication� both
DM and CMM could be informed at the same time� As it is� this modelling choice keeps the size of
the state space manageable�
The model in Appendix C�� allows maximally two bus reset periods� This makes the behaviour

of the model �nite and allows us to search for invalid end states� The reason for this is given in
Section ����

Process CMM Whenever the device of the CMM is being powered up or down� it will get a message
on the �synchronous� channel chanCMM and goto the corresponding state� Whenever the device of the
CMM is up and the start of a bus reset period is marked in the delivery variable in the global
array BusResetDelivery� then the CMM forwards this information to the DM on the same device�
by means of a message on chanCMM� which will interrupt the DM�
The control of the GUIDList is not done explicitly by CMM� since it is not possible to send the list

on a channel �because Promela forbids the sending of array structures�� Instead� we have the DMs
read a global variable� which is permitted only outside bus reset periods�

Process DCM Manager This process actually performs the tasks of the leader election protocol�
If it becomes initial leader� it needs a local array for keeping track of information received from initial
followers� This information is stored the array InfoHost� When the power of the device is not on�
the process just waits for a message that power has been turned on� When this happens� it forwards
the information to the local CMM �which is one of many ways to solve the multi�way synchronisation
which is not provided by Promela�� and starts the leader election protocol�
First the DM needs the contents of the GUIDList� This list can be obtained as soon as the latest

bus reset period has ended� The information from global array Global is copied into the appropriate
entry of global array Local �this entry is owned by this process� the array is global only for model
checking purposes�� From the GUIDList� the initial leader is determined� The DM continues being
either the initial leader� or an initial follower�
Being the initial leader is not kept track of in a variable in this model� Only �nal leadership

is recorded in a fleader variable for each DM� The model in Appendix C�� records both kinds of
leadership in a leader variable for each DM� Which model is used during veri�cation depends on the
property that is to be checked�
The initial leader and follower tasks are described in Section ��
The �nal leader and followers should perform the tasks of the autonomous operation phase� but we

have not modelled this behaviour� Therefore a �nal leader or follower DM does nothing� except wait
for a new bus reset period� a power change or �in case it was the initial leader� answer initialisation

�� Modelling decisions 		

requests with the initialisation reply�

Process MS This process is not present in the Promela model� We choose to have the asynchronous
channel chanDM perform the desired functionality� This decision forces us to put the awareness of a
bus reset taking place �hence no communication on the network possible� in a di�erent process� We
choose to have the sending DM inspect the global variable BusResetPeriod�

Process Init Here� all the processes are actually started� and the non�deterministic choice for
UrlCapable to be true or false is made� Note that the process Assertion is also started� which is not
listed in the Promela model itself� This process monitors the property which is to be checked� The
properties are explained in Section ��

	�� Lotos

The Lotos code is listed in Appendices D��� D�� and D���
We will not explain the data parts any further� since they mostly speak for themselves�
As for the behaviour part� this is modelled with a process de�nition for each small part of the

protocol�s behaviour� Because of the cyclic character of the whole protocol and certain parts of it�
recursion is often used in these process de�nitions� C	sar does not allow some forms of recursion�
which are part of Lotos� such as recursion in combination with a communication operator� This means
that we cannot recursively instantiate the DM processes�
Most of the processes should be interrupted when the power on the corresponding device is switched

o�� This is done with the reception of a power�change message at the right�hand side of the disrupt
operator ��� This operator works as follows� ��� the process A��B can perform an action from process
A and then behave as A���B �with A� the remainder of A�� and ��� A��B can perform an action from
process B and then behave as B� �with B� the remainder of B��
Because of the enforced multi�way synchronisation� a process must sometimes participate in a

communication even if the power of its device is o�� The subprocess FlushBusReset takes care of this�

Process LE This is the top process expression which initialises all the subprocesses that are to
communicate with each other� In the initialisation of this process� the network consists of � DMs
that are not up� This parameter can then be passed to subprocesses� There are also gates� which
are used for synchronous communication� which can be multi�way� For instance� process BusReset
communicates over gate gBusReset with all instances of process CMM and of process MS� A commu�
nication from BusReset on this gate can only take place if all of the processes mentioned participate
in it �enforced synchronisation�� The instantiation of the DM processes is a non�deterministic choice
between instantiation with UrlCapable set to either true or false�

Process BusReset As in the Promela model� the only option of this process is to start a bus reset
period� but this choice may be delayed if there is any other activity in the network� Starting with ID
�� the subprocess BusReset� decides non�deterministically for each device whether its power status
changes or not� The operator � works modulo �� so ��	 yields
� and at this ID the subprocess
BusReset� ends the bus reset period� and calls the top process again�

Process CMM The states of this process are re�ected in the subprocesses CMMDown� CMMUp�
CMMReady� CMMDeliver and CMMDeliver��
Whenever CMMUp is executed� the CMM has to get the GUIDList �rst� which is available only at

the end of the bus reset period� This information is sent by BusReset� After this� the CMM is ready
for normal operation�

�� Model checking experiments 	�

CMMReady is the normal situation when the CMM is up� It can send the GUIDList on gate gInfo
to the DM with the same ID� or signal a bus reset start� After a bus reset start� the CMM executes
CMMDeliver�
In CMMDeliver two things must happen� an update of the GUIDList must be received from Bus�

Reset� and a bus�reset�event must be sent to the DM on this device� If the message to DM is sent
�rst� then all the CMM can do is wait for the reception of the new GUIDList� after which it is ready
for normal operation� If the bus reset period ends before the message to DM is sent� the process
CMMDeliver� is executed�
In CMMDeliver� the GUIDList is available again for the DM on this device� the bus�reset�event

must be sent to the DM� and a new bus reset period may start�
At any point in this behaviour� the power of the device may be switched o�� which is handled with

the disrupt operator ���

Process MS The states of this process are re�ected in the subprocesses MSDown� MSUp� MSSus�
pend� and MSReady� Of these we only explain the latter two�
MSSuspend is executed whenever the MS is up� but a bus reset is taking place� No communication

is possible on the network� but the DM at the same device may still receive messages from the bu�er�
This state is left as soon as the bus reset period ends�
MSReady is the normal situation when the MS is up�
At any point in this behaviour� the power of the device may be switched o�� which is handled with

the disrupt operator ���

Process DCM Manager The states of this process are re�ected in the subprocesses DMDown�
DMUp� DMif� DMSendRequest� DMil� DMElect� DMSendReply� DM�� DM�� DM� and DM�i�
In DMUp� the leader election process starts� The DM gets the GUIDList from the CMM on the

same device� and uses the function i�leader to compute the initial leader�
In DMif and DMSendRequest� the initial follower�s actions are executed �See Section ���
In DMil� DMElect and DMSendReply� the initial leader�s actions are executed �See Section ���
In DM�� DM�� DM� and DM�i� the �nal leader and followers should determine resource allocation

of the DCM units in the network� but we have not modelled this behaviour� Therefore a �nal leader
or follower DM does nothing� except wait for a new bus reset period� a power change or �in case it was
the initial leader� which is in DM� and DM�i� answer initialisation requests with the initialisation
reply�
At any point in this behaviour� the power of the device may be switched o�� which is handled with

the disrupt operator ���

� Model checking experiments

In order to check that the protocol works as intended� we have checked four properties on several
models of the protocol� Each of the following sections is dedicated to one property� The properties
are listed in this section in an informal manner and in a notation slightly di�erent from the actual
input for the tools� For the exact de�nitions of the properties� we refer to the Appendices C��� D��
and D���
The properties presented here were devised after the models of the protocol had been constructed�

This has both advantages and disadvantages� A disadvantage is that it turns out to be rather di�cult
to express properties for our speci�c models� In fact we have had to change them slightly to make some
information visible� An advantage is that the models have not been tailored towards the properties
that should be checked except the changes mentioned� A potential danger is that the the model does
not resemble the protocol close enough anymore� and the properties to be checked trivially hold�

�� Model checking experiments 	�

Since the behaviour of the protocol is unpredictable during bus resets or the period that the CMMs
need to deliver the bus reset event� we only demand that the properties be true for stable situations�
that is� in states where it is not the case that a bus reset is taking place or a bus reset event should
still be delivered� Since a new bus reset period may start at any moment after the previous bus reset
has ended and since we have included this possibility in our models with non�deterministic choice� we
get the behaviour depicted in Figure � from our models� Suppose that s�� s�� s�� � � � � sn in Figure �
are stable states� which means that no bus reset is taking place� and all events concerning the last
bus reset have been delivered� We see that from s� it is possible that a new bus reset period starts�
but it is also possible that some other behaviour takes place on the transition to s�� If we establish
a property in terms of behaviour� we can only capture the desired behaviour from s� by using an
exists quanti�er� from s� there exists a behaviour which satis�es a certain requirement� Moreover� in
our models the amount of activity that concerns the protocol is bounded� After a certain point� the
protocol is stuck or completed� and the only possible behaviour is that a new bus reset period starts�
So it is not possible to express a property as follows� �for all behaviours� if no bus reset starts in this
behaviour then ful�ll a requirement��

Expressing properties for Promela models Safety properties can be checked in Spin through
the use of assertion statements� We use a process with only such an assertion statement in the
veri�cation for checking whether there is a state in which the assertion is false� If this happens� Spin
reports this as an error and stops the veri�cation� An error trace is saved which can be used for
diagnostic purposes�
Liveness properties can be checked in Spin through the use of LTL ���� ��� formulas� which are

translated into never claims� A never claim is a process which will only terminate if the corresponding
LTL formula was violated� Actually� never claims represent ��regular properties� Spin checks whether
never claims hold in the initial state� This means that if the never claims is already satis�ed by the
initial state� no further exploration of the state space is needed�
Both assertions and LTL formulas are expressed in terms of predicates� which range over values of

variables� It is also possible to check a pattern of communications� but not in combination with checks
of state variable values� Since in our case� it is by far easiest to �nd error situations by referencing
the state variable values� we stick to the assertions and never claims�

Expressing properties for Lotos models We express safety and liveness properties in ACTL
��� �� for the veri�cation of the Lotos models is done with A property is checked by Xtl on the
reachable state space� by checking for each reachable state whether the property holds in that state�
Since the model checker Xtl is only used on state spaces which have been generated from the Lotos

model� the information of state variables is lost� Actually� the states are identi�ed by natural numbers
in the state graph accepted by Xtl� This means that we cannot express properties in terms of values
of state variables� and we can just observe the occurrences of actions� A consequence of this approach
is that safety properties can only be expressed as liveness properties� With the ACTL logic we are
able to observe certain patterns of occurrences of actions� In order to still reference state variable
values� one could build self�loops into the Lotos model� which give the values of the state variables in

start
bus reset

start
bus reset

start
bus reset

start
bus reset

s� s� s� sn

Figure �� Protocol behaviour

�� Model checking experiments 	�

that state� However� this was not a feasible approach in our case�
An action can be observed by comparing an action label from a transition to a label set in the

property that is being checked� Comparing an action label to the label set T �F� always succeeds
�fails�� Label sets can be constructed from syntactic expressions that capture one or more action
labels� and boolean operators� For instance� it is straightforward to construct a label set that succeeds
when compared to the label BUS�RESET�START or the label POWER�CHANGE and fails otherwise�
In order to enable the checking of not just communications between the DCM Managers� but also

other important actions� the model contains a few extra observable events� These the occurrences of
communication on the special gate GEvent� In this way we observe a DCM Manager electing itself for
initial or �nal leader�
We now give an overview of the ACTL operators used� and their informal meaning��

T�������� Boolean true� negation� and� or� implication

�a� � For every transition s
a� t from the current state� formula � must hold in the target state t

�Ga� For each �possibly �nite� path from the current state where all actions are either a or � � formula
� must hold in every state

���aUb�� There exists a path from the current state along which for a �nite fragment formula �

holds in each state and all actions are either a or � � and this fragment is immediately followed

by a transition s
b� t� and in state t formula � holds�

For a complete list of ACTL operators and a formal de�nition� we refer to ���� �� ���
The standard library in the C	sar
Ald�ebaran distribution for using these operators is the actl�xtl

library �implemented by Mateescu ����� which establishes the validity of a formula by checking whether
the formula holds in all reachable states of the Lotos model� This library is not implemented in such a
way that it gives diagnostics in case a property is not true� Diagnostics can be obtained by using the
walk�actl�xtl library �implemented by Pecheur ������ which also implements the ACTL operators
mentioned� and which tries to �nd an error trace� This implementation establishes the validity of a
formula by checking whether the formula holds in the initial state of the Lotos model� Of course� in
general the use of this library is more costly since there is more administration involved in �nding the
trace� and a lot of backtracking occurs�

�� Safety� At most one leader

It is never the case that more than one DCM Manager is a �initial or �nal� leader�

Spin We use an assertion statement� and check the following formula�

�d� d����bus reset � leader�d� � leader�d�� � �d d���

This property does not hold for any of the models� It turns out that the error trace found by Spin for
the property checked in Section ��� is also an error trace for this property� See Figure � for the trace
and Section ��� for an explanation� In Section ��� we discuss whether the HAVi protocol is wrong�

Xtl What we want to establish� is that there are not multiple InitialLeader or FinalLeader events in
between bus reset periods� Since we can check for patterns of actions� we formulate the property as
follows� if a bad pattern of Initial or FinalLeader events occurs� then we are not in a stable situation
�where no bus reset is taking place and the last bus reset events have all been delivered�� This boils

�Note that the �� operator does not have the ACTL interpretation� but the interpretation of the Hennessy�Milner
modal logic ����	 Since the Xtl library for ACTL is de�ned using the Xtl libraries for the Hennessy�Milner modal logic
and the modal ��calculus ��
�� we can use operators from these logics in any ACTL expression

�� Model checking experiments 	�

down to expressing that when a bad pattern does occur outside bus reset periods� apparently a bus
reset event must still be delivered�
We check the following formula�

��b�� �Gi���i�� �Gi���i�� ��Ti�Ub�T��� � ��b�� �Gi���f � �Gi���i� � f � ��Ti�Ub�T���

where b� BusResetEnd

b� BusResetEvent

i� Ignore� ��BusResetEvent � BusResetStart � Initleader � FinalLeader�

i� Ignore� ��BusResetEvent � BusResetStart�

i� InitLeader

i� InitLeader � FinalLeader

f FinalLeader

This formula expresses two patterns that should be followed by a bus reset event being delivered� Both
patterns start with the end of a bus reset period� and do not allow the start of a new bus reset period
by the use of the action label sets Ignore� and Ignore�� The �rst pattern checks the double occurrence
of the InitialLeader event� The second pattern checks the occurrence of a FinalLeader event� followed
by either an InitialLeader or FinalLeader event� The action label sets in the subscript of the G and
T symbols enable the actions in the subscripts to occur in any sequence in between�
This property holds for all models� Since we found errors in the Promela models for this property

using Spin two questions remain� namely whether the error behaviour found with Spin also occurs here
and if so� why it is not found with the ACTL formula used� Simulating the behaviour from the Spin
error trace is possible for the Lotos model with two DCM Managers and synchronous behaviour� As
to the second question� The answer is that the label set Ignore� is too restrictive� The idea of checking
a pattern when a bus reset event has completed turns out counterproductive� We might have checked
all occurrences of the FinalLeader event followed by bad patterns� and quali�ed the occurrence of a
BusResetStart� BusResetEnd or BusResetEvent as a good pattern� In any case� it appears that the
formulation of the property in this setting is very complicated� In Section ��� we discuss whether the
HAVi protocol is wrong�

�� Safety� Best candidate becomes �nal leader

It is never the case that a �nal leader is selected which is not UrlCapable� while there is a DCM
Manager active in the network which is UrlCapable�

Spin We use an assertion statement� and check the following formula�

�bus reset � �d���f leader�d� � �url capable�d�� � �d���up�d��� �url capable�d����

This property holds for all models except for the setting with three DCM Managers and asynchronous
communication� However� the error found here reveals problems with the interpretation and execution
of the Promela code rather than an error in the protocol� In fact� we can reason why in our model the
property should be true for any number of DCM Managers with either synchronous or asynchronous
communication� The idea is that upon receipt of a bus reset event� each DCM Manager will clear the
information of being �nal leader and ask for the new network topology �the GUIDList�� Since the
start of a bus reset period causes the delivery of a bus reset event at some time� in a stable situation all
bus reset events have been delivered� and each DCM Manager must have the correct network topology
information� So after the last bus reset event delivery to a DCM Manager� it cannot choose a non
UrlCapable �nal Leader if there is a UrlCapable DCM Manager present� So the only way in which a

�� Model checking experiments 	�

non UrlCapable DCM Manager can still be the �nal leader in a stable situation� while a UrlCapable
DCM Manager is present� is to receive an InitReply with its identity from the initial leader� when the
initial leader has not received the latest bus reset event� But we have modelled the �nal leader election
by having the initial leader choose itself� if no UrlCapable Manager is present� So it cannot ever send
an InitReply with the identity of another� non UrlCapable DCM Manager� It is clear that although
the property must hold in our models� it does not hold when we lift the restriction that the initial
leader chooses itself for �nal leader when no UrlCapable DCM Manager is present� In Section ��� we
discuss whether the HAVi protocol is wrong�

Xtl The situation that a DCM Manager is up and UrlCapable is signalled by the request from such
a DCM Manager to the initial leader� in which the UrlCapable parameter is true� Whenever such a
request is followed by the election of a �nal leader which is not UrlCapable� there must be a bus reset
event pending that needs to be delivered�
We check the following formula�

�u� �Gi���f � ��Ti�UbT��

where b BusResetEvent

i� Ignore� ��BusResetEvent � BusResetStart � BusResetEnd � FinalLeader�

i� Ignore� ��BusResetEvent � BusResetStart�

f FinalLeaderNotUrlCapable

u RequestUrlCapable

This property holds for all models� See the paragraph above on Spin experiments for this property�
for a discussion whether this property holds in general or not� In Section ��� we discuss whether the
HAVi protocol is wrong�

�� Safety� All agree on the �nal leader

Whenever a �nal leader is selected� all DCM Managers agree on the identity of this leader� Of course
this can only be checked as soon as all DCM Managers have been informed of the decision of the
initial leader� Since the �nal leader is informed last of the decision �and whenever this happens to
be also the initial leader� it will �inform itself last��� this can be checked as soon as one of the DCM
Managers has been elected for �nal leader�

Spin We use an assertion statement� and check the following formula�

�d���bus reset � f leader�d� � �d���up�d��� leader id�d�� d��

This property does not hold for any of the models� In Figure � an error trace constructed by Spin for
the model with two DCM Managers and synchronous communication is listed� This trace describes
the following behaviour� In the �rst bus reset period both DCM Managers are powered up� They
start leader election� in which DCM Manager A is the initial leader and DCM Manager B is the initial
follower� B is UrlCapable and A is not� B sends A an InitRequest� A computes the �nal leader which
is B� and sends the InitReply to B� A new bus reset period starts and ends without change in the
network topology� The CMM on the device of B delivers the bus reset event to B� and B starts afresh
with the leader election� B is again initial follower and sends A an InitRequest� A does not know
about the second bus reset period so it is in its �nal follower phase where it answers any InitRequest
with the same InitReply as before� A sends B the InitReply and B concludes it is the �nal leader�
Now the CMM on the device of A delivers the bus reset event to A� and A starts afresh with the leader
election� A is again initial leader and does not know the identity of the �nal leader to be elected�
while B still thinks it is �nal leader� In this state the property checked is violated� In Section ��� we
discuss whether the HAVi protocol is wrong�

�� Model checking experiments 	�

<show>
BusResetPeriod 1

Bus_Reset:2
19

DCM_Manager:4
20

1!power_change

21

CMM:3
22

3!power_change

26

DCM_Manager:6
27

2!power_change

28

CMM:5
29

4!power_change

BusResetPeriod 0

81

82

5!DMInitRequest,1

110

111

6!DMInitReply,1

BusResetPeriod 1

126

127

4!bus_reset

BusResetPeriod 0

157

158

5!DMInitRequest,1

161

162

6!DMInitReply,1

169

170

3!bus_reset

BusResetPeriod 0
174

174
174

174
174

Assertion:1
174

:init::0
174

Figure �� The Spin error trace for �one leader� and �same �nal leader�

�� Model checking experiments 	�

AG�A�A� F� is FALSE

� � ��� 	GBUSRESET
BUS�RESET�START	� ���
�

� � ����
� 	GUPDOWN
�
POWER�CHANGE	� �����

� � ������ i� �����

� � ������ 	GBUSRESET
BUS�RESET�END
CONSNET�CONSN�TRUE��CONSN�FALSE��	� �����

� � ������ 	GINFO
�
GUID�LIST
CONSNET�CONSN�TRUE��CONSN�FALSE��	� �����

� � ������ 	GBUSRESET
BUS�RESET�START	� �����

 � ������ 	GEVENT
INIT�LEADER
�	� ��
��

� � ���
�� i� ����

� � ����� 	GUPDOWN
�
POWER�CHANGE	� ����

� � ����� 	GBUSRESET
BUS�RESET�END
CONSNET�CONSN�TRUE��CONSN�TRUE��	�
���

�� � �
��� 	GEVENT
FINAL�LEADER
�
FALSE	� ����

�� � ����� 	GINFO
�
GUID�LIST
CONSNET�CONSN�TRUE��CONSN�TRUE��	� �����

�� � ������ 	GDMOUT
�
CONSM�DMINITREQUEST���TRUE�	� ����

�� � ����� 	GDMIN
�
CONSM�DMINITREQUEST���TRUE�	� �����

�� � ������ 	GDMOUT
�
CONSM�DMINITREPLY���FALSE�	� ��
�

�� � ���
� 	GINFO
�
BUS�RESET�EVENT	� ����

�
 � ����� 	GDMOUT
�
EMPTY	� �����

�� � ������ 	GDMOUT
�
CONSM�DMINITREQUEST���TRUE�	� �����

Box�A� F� is FALSE

�� � ������ 	GDMIN
�
CONSM�DMINITREPLY���FALSE�	� �����

AG�A�A� F� is FALSE

�� � ������ 	GINFO
�
GUID�LIST
CONSNET�CONSN�TRUE��CONSN�TRUE��	� ���
�

�� � ����
� 	GEVENT
INIT�LEADER
�	� �

��

�� � ��

�� 	GDMIN
�
CONSM�DMINITREQUEST���TRUE�	� �����

Box�A� F� is FALSE

�� � ������ 	GDMOUT
�
CONSM�DMINITREPLY���FALSE�	� �����

EU�A�B�F� A� B� G� is FALSE

�Failure��

Figure �� The Xtl error trace for �same �nal leader�

Xtl We can only check that everyone has the same leader identity by checking the parameters of
messages
events concerning the �nal leader� We require the leader identity parameter to be equal for
all such actions in stable situations� So the property must express that whenever two actions carry a
di�erent leader identity outside a bus reset period� apparently a bus reset event must still be delivered�
We check the following formula�

�d� �ld� �Gi���l�d� ��Ti�UbT��

where b BusResetEvent

i� Ignore�

 ��BusResetEvent � BusResetStart� BusResetEnd � InitReply � FinalLeader�

i� Ignore� ��BusResetEvent � BusResetStart � BusResetEnd�

ld �InitReply � FinalLeader� with leader identity d

l�d �InitReply � FinalLeader� with leader identity not equal to d

This property holds only when communication between DCM Managers is synchronous� In the
asynchronous case an erroneous initialisation reply may be lingering in someones input queue� after
the corresponding bus reset event has been handled by the sender of the erroneous message� In Figure �
an error trace constructed with the walk�actl library is listed� The behaviour described by this trace
is as follows� In the �rst bus reset period DCM Manager A is powered up� A is not UrlCapable�
A starts the leader election and elects itself for initial leader� In the second bus reset period DCM

�� Model checking experiments 	�

Manager B is powered up� B is UrlCapable� After the second bus reset� A has not received the bus
reset event yet� A elects itself for �nal leader which completes the leader election� B elects A for initial
leader and sends an InitRequest� A receives the InitRequest from the MS and sends an InitReply with
its own identity for �nal leader� Now A receives the bus reset event and starts the leader election
anew� B has not received the InitReply from the MS yet and sends a second InitRequest to A� Now B
receives the InitReply from the MS and concludes that A is the �nal leader� A elects itself for initial
leader� and receives the second InitRequest that B sent from the MS� A elects B for �nal leader and
sends an InitReply with the identity of B for �nal leader� The property is violated�
Since we found errors for the Promela models with synchronous communication using Spin� two

questions remain� namely whether the error behaviour found with Spin also occurs here and if so�
why it is not found with the ACTL formula used� In Section ��� we have already simulated the error
behaviour found by Spin and depicted in Figure � on the Lotos model with two DCM Managers
and synchronous communication� As to the second question� The ACTL formula used only checks
communication involving leader identities� Here we are really hampered by the fact that for the
current Lotos models it is not possible to include state information in the formula� It turns out that
in the synchronous Lotos models a bus reset event will appear in between the two events carrying a
di�erent leader identity� Since such a pattern is in general not erroneous� it is not possible with this
approach to �nd the erroneous behaviour constructed with Spin� In Section ��� we discuss whether
the HAVi protocol is wrong�

�	 Liveness� Eventually there will always be a �nal leader

Whenever there is at least one DCM Manager active in the network� there should eventually be a
�nal leader� The property we check is whether from each stable state in which at least one DCM
Manager is up there exists a path on which no bus reset period starts and a �nal leader is chosen�
It may be argued that this property is too strong since it assumes that there exists a path on which
bus reset periods can be delayed until after the election of the �nal leader� If the environment would
violate this assumption� the property would be false even when the protocol was correct� There are
two reasons for our approach� First� we know that in our models the choice between a bus reset period
starting and any other activity is non�deterministic� So bus reset periods can be delayed as long as
other activity is possible� Second� the alternative property to be checked would be� �After the handing
out of the GUIDList� each path leads to a new bus reset period or a �nal leader being elected�� This
formula requires that during and after the leader election activity� the DCM Managers can perform
idle
internal actions inde�nitely� in order to distinguish between situations where leader election is
interrupted by a bus reset period and situations where leader election does not terminate for some
other reason� i�e� livelock rather than deadlock� since in case of a deadlock a bus reset period is forced
to start� Moreover� the models already contain a livelock when there are more two initial followers of
which one keeps sending InitRequests and the other never gets a turn� The problem with livelocks
is that the property should then be checked under certain fairness aspects� This makes the situation
increasingly complex� and we have chosen to stick with the �rst formulation�

Spin The only way to model a liveness property like this and have Spin check its validity� is with
an LTL formula� We have been able to express this without too much trouble in ACTL� as can be
seen below� However� the expressivity of LTL and branching time logics like ACTL is not comparable
����� When we try to express the property to be checked in LTL and formulate it as follows� we get
an expression which is not in LTL syntax�

����bus reset � ��d� up�d��� � ���bus reset U�bus reset � �d� f leader�d���
Because of the � operator� this is not an LTL formula� However� we do need an � operator to express
the behaviour that the Promela models should have �See also Figure ��� The reason is that an LTL
formula is interpreted to be true if and only if it holds for each behaviour of the model� So if it is only

�� Model checking experiments �

<show>

BusResetPeriod 1

Bus_Reset:1

15

DCM_Manager:3

16

3!power_change

17CMM:2

18 1!power_change
BusResetPeriod 0

BusResetPeriod 1

60 DCM_Manager:5

61

4!power_change

62CMM:4

63 2!power_change

BusResetPeriod 0

7071
5!DMInitRequest,1

74 75
6!DMInitReply,0

85 86
1!bus_reset

BusResetPeriod 0

109

109

109

109

109

:init::0

109

Figure �� The Spin error trace for �always �nal leader�

possible to express desired or undesired properties for one behaviour� But the property that we desire
to have is that there always exists a good path� The property that we desire not to have is that there
is no state from which there are only bad paths� This cannot be expressed in LTL� This problem has
been discussed via e�mail ��� ���� but no solution was found� other than to change the model such
that there is a �xed number of bus reset periods� after which the network remains stable� Then Spin�s
capability to �nd invalid end states can be used to check that the protocol ends up with a leader� or
identify a �nite path as undesirable with LTL� A drawback of this approach is that it is not a priori
clear how many bus reset periods should be allowed to obtain correctness for the more general model�
However� we already found errors in the Spin models for other properties� and in the Lotos models for
this property� In the Spin models� errors occur already after two bus reset periods� We have changed
all models such that at most two bus reset periods can take place� and added labels to indicate what
states in the model are valid end states� Then it turns out that all new models have an invalid end
state� which indicates that the protocol ends without electing a �nal leader even though at least one
DCM Manager is up�
In Figure � the error trace constructed by Spin for the model with two DCM Managers and syn�

chronous communication is listed� This trace describes the following behaviour� In the �rst bus reset
period DCM Manager A is powered up� The �rst bus reset period is immediately followed by a second�
in which DCM Manager B is powered up� A and B are both not UrlCapable� After the end of the
second bus reset period� A does not receive the bus reset event yet� Now both A and B start the leader
election� in which DCM Manager A is the initial leader and DCM Manager B is the initial follower�
B sends A an InitRequest� A computes the �nal leader which is A� and sends the InitReply to B� B
concludes that A is the �nal leader which completes the leader election� Now the CMM on the device
of A delivers the bus reset event to A� and A starts afresh with the leader election� A is again initial
leader and waits for the InitRequest from B� while B has already completed leader election� Since
there is no action possible we are in an end state� and since for A the leader election has not been

�� Model checking experiments �	

AG�A�A� F� is FALSE

� � ��� 	GBUSRESET
BUS�RESET�START	� �
��

� � ��
�� 	GUPDOWN
�
POWER�CHANGE	� ���

� � ���� i� �����

� � ������ 	GBUSRESET
BUS�RESET�END
CONSNET�CONSN�TRUE��CONSN�FALSE��	� �����

� � ������ 	GBUSRESET
BUS�RESET�START	� ����

� � ����� i�
���

 � �
��� 	GUPDOWN
�
POWER�CHANGE	� ����

� � ����� 	GBUSRESET
BUS�RESET�END
CONSNET�CONSN�TRUE��CONSN�TRUE��	� ����

� � ����� 	GINFO
�
GUID�LIST
CONSNET�CONSN�TRUE��CONSN�TRUE��	� ���

� � ���� 	GINFO
�
GUID�LIST
CONSNET�CONSN�TRUE��CONSN�TRUE��	� ����

�� � ����� 	GEVENT
INIT�LEADER
�	� ����

�� � ����� 	GDM
�
�
DMINITREQUEST
FALSE	� ����

�� � ����� 	GDM
�
�
DMINITREPLY
�	� ����

�� � ����� 	GINFO
�
BUS�RESET�EVENT	� ���

Box�A� F� is FALSE

�� � ���� 	GINFO
�
GUID�LIST
CONSNET�CONSN�TRUE��CONSN�TRUE��	� �����

EU�A�B�F� A� B� G� is FALSE

�Failure��

Figure �� The Xtl error trace for �always �nal leader�

completed� it is an invalid end state� In Section ��� we discuss whether the HAVi protocol is wrong�

Xtl We check whether a DCM Manager is up in a stable state by observing the transaction in which
the CMM hands out the GUIDList� We check whether a �nal leader is elected by observing the
FinalLeader event� We demand that there exists a path from each GUIDList transaction on which no
bus reset period starts and on which a FinalLeader event occurs�
We check the following formula�

�g� ��TiUfT�

where i Ignore

g GetGUIDList

f FinalLeader

This formula does not hold for any of the models�
In Figure � an error trace constructed with the walk�actl library is listed� By coincidence� the

behaviour described by this trace is the same as the behaviour described by the error trace found by
Spin for this property� See earlier in this section for an explanantion of the behaviour� In Section ���
we discuss whether the HAVi protocol is wrong�

�
 Is the HAVi protocol wrong

The error traces given in Figures �� �� � and � show that either our model of the protocol or the HAVi
speci�cation itself must be wrong�
The error traces indicate that problems occur when the delivery of a bus reset event message is

delayed beyond the duration of the sending and delivery of both a message and a response between dif�
ferent devices� In the case of synchronous communication� another cause of problems is the availability
of the GUIDList before the delivery of the corresponding bus reset event�
If all assumptions and restrictions that we made in our model are correct� then these scenarios

may occur in an implementation that is totally compliant with this version of the HAVi speci�cation�

�� Model checking experiments ��

because of two reasons� First� the HAVi speci�cation does not lay down how long messages may be
on their way in the system� Second� the delivery of any event has to go through the Event Manager�
The Event Manager may cause a delay of the event for several reasons� It is not known how many
events the Event Manager may get due to a bus reset period� which need to be delivered� and in what
manner these events are processed� Furthermore� there may be many components that listen to the
bus reset event and in a sequential approach to delivery of the events� the DCM Manager may very
well be the last of them to receive this message�
If our assumptions are not correct� then obviously it is hard to say whether the protocol would be

correct or not� However� all of the assumptions we made are restrictions on con�gurations or scenarios
permitted by the HAVi document which means that we only exclude some HAVi behaviour� So the
error behaviour we found would almost certainly be present in a model with fewer restrictions� In
fact� the chances are high that with fewer restrictions more erroneous behaviour could be found in the
protocol� We already argued in Section ��� that lifting the restriction that the initial leader chooses
itself for �nal leader when no UrlCapable DCM Managers are present� will lead to violations of the
property �the best candidate becomes �nal leader�� Other generalisations we could make are� several
types of devices in the network� physical IDs that change� bus reset periods that start and end at
di�erent moments in di�erent devices� no di�erence between processing of events and messages� et
cetera� Also� it may still be the case that one or more of the software elements used for this protocol
have a potential deadlock in their behaviour� and thus prevent the DCM Managers from completing
their leader election�
Our conclusion is that for the HAVi leader election protocol to be correct �meaning that any imple�

mentation that complies with HAVi works correctly�� the HAVi speci�cation should have requirements
added on the duration of delivery of events related to the duration of communication between devices�
Since the disruption by bus reset periods makes it di�cult to establish such requirements� we think
the easiest solution is to establish real�time constraints on the duration of sending and processing mes�
sages and events� which are realistic for HAVi�compliant implementations� This information should
then be checked in a timed formal veri�cation� Since timed model checking is beyond the scope of
this experiment� we cannot give an estimate of time bounds that would work� or say whether such
time bounds exist�

�� Statistics

The statistics for model checking the di�erent models with the Spin tool set �version ������ version
����� beta��� May �

� and the C	sar
Ald�ebaran tool set �C	sar version ���� Ald�ebaran version
���� Xtl version ���� are given in Tables �� � and �� All experiments with Spin were done on an SGI
IRIX�� ��� machine with �� Gbyte of memory� All C	sar
Ald�ebaran experiments were done on a
SUN Ultra � �� SunOS ��� machine with � Gbyte of memory�
A few remarks are in order�

� Spin� C	sar� Ald�ebaran and Xtl all generate C code which after compilation performs the state
space generation� minimisation and
or exploration�

� The memory numbers mentioned in Table � indicate the amount of memory used by the veri�er
generated by Xtl in C code� compiled to executable form� However� C compilation takes at least
� Mb� For the walk�actl library� C compilation takes at least �� Mb for the models with �
DCM Managers�

� For the Spin experiments� the memory usage is provided in the output of Spin� Note that this is
always a little higher than the memory usage observed with the UNIX command �top�� For the
C	sar� Ald�ebaran and Xtl experiments� the memory usage is obtained by observing the outcome
of the UNIX command �top��

� For all experiments� the timing information is obtained by the UNIX command �time��

�� Model checking experiments ��

one leader
model states trans holds� mem �Mb� time �h�m�s� Spin

� sy ��K
�K F ��� ������� �����
� as ��K ���K F ��� ������� ����� beta
� sy ���K ���M F ��� ������
 ����� beta
� as ���M ��M F ��� ������� ����� beta

best �nal leader
� sy ���K ���K T ��� ������� ����� beta
� as ���K ���M T ��
 ������� ����� beta
� sy ��M ��
M T ���� ������� ����� beta
� as �
�M ���G F ���� �
������ ����� beta

same �nal leader
� sy ��K ��K F ��� ������� ����� beta
� as �
K
�K F ��� ������� ����� beta
� sy ���K ���M F ��� ������� ����� beta
� as ���M ��M F �
� ������� ����� beta

always �nal leader
� sy ��K ��K F ��� ������� ����� beta
� as ��K
�K F ��� ������� ����� beta
� sy ���K ���M F ��� ������� ����� beta
� as ���M ���M F ��� ������� ����� beta

Table �� Spin statistics� state space generation ! model checking

� Normally� Lotos state space generation is done with C	sar in the �bcg format� which is very
compact� However� C	sar does not always create the smallest state space possible� and for the
models in this case this means that state space generation gets stuck at an unknown portion of the
desired total� and fails due to lack of memory� So we turned to an alternative route� and generated
the state spaces separately for each instance of each process in the main parallel composition
expression� This again is done with C	sar� The state spaces generated are �rst minimised with
respect to strong bisimulation equivalence �with Ald�ebaran and the bmin criterion�� which is
also done in the �bcg format� Then these minimised state spaces must be combined into one
state space� This is done with Ald�ebaran and works only if the separate state spaces are in
the �aut format� The target state space is then also in the �aut format� The �bcg version is
computed and then minimised�

When generating the state space for one of the communicating processes� often the receipt of
a messages is not restricted other than by all possible instantiations of the parameters of the
communication� These parameter values had to be restricted in the separate process de�nitions
to make state space generation manageable� Without these restrictions� it was not possible to
generate a state space for the DCM Manager process with the lowest identity� in the case of
asynchronous communication and � DCM Managers�

� All state space generation sizes in Table � are for a state space in the �bcg format� except the
comb network entries which represent a state space in the �aut format� Minimised state spaces
are always in the �bcg format� In some cases� the �bcg version has fewer states for the same
state space than the original �aut version�

� In Table �� the full state space size is listed for each model� When using the actl library� the
full state space is explored� even when errors are found� When using the walk�actl library� the

�� Model checking experiments ��

� DCM Managers� synchronous
generating minimising

per process states trans mem �Mb� time �h�m�s� states trans mem �Mb� time �h�m�s�

DM � ��K �
K � ������� �� ���
 �������
DM � ���K ���K � ������� ��
� � �������
Bus Reset �� �
 � ������� �� �� � �������
CMM ��� ��K ��K � ������
 �� �
 � �������
Other ��� � � � ������� � � � �������
comb network ���K ���K � ������� ���K ���K � �������

� DCM Managers� asynchronous
DM � ���K ���M �� ������� �� ��� ��� �������
DM � ���K ��K � ������� �� ��� � �������
Bus Reset �� �
 � ������� �� �� � �������
CMM ��� ��K ��K � ������
 �� �
 � �������
MS ��� ���K �
K � ������� �� ��
 � �������
comb network ���K ��K � ������� ���K �
K � �������

� DCM Managers� synchronous
DM � ���M ��M ��� ������� �� ��� �
� �������
DM � ���K ���M �� ������� �� ���
� ������

DM � ���K ��K � ������� �� ��� � �������
Bus Reset ��� ��� � ������� �� �� � �������
CMM ����� �
�K ���M �
 ������� ��
� ��
 ������

Other ����� � �� � ������� � �� � �������
comb network ��K ���K �� ������� ��K �
�K �� �������

� DCM Managers� asynchronous
DM � ���M ��M ��
 ������
 �� ��� ��� �������
DM � ��
K ���M �� ������� �� �

 ��� �������
DM �
��K ���K � ������� �� ��� �� �������
Bus Reset ��� ��� � ������� �� �� � �������
CMM ����� �
�K ���M ��� ������� ��
� ��
 �������
MS ����� ��
K ��K � ������� �� ��
 � �������
comb network ���M ���M ��� ������� ���K ��
M ��� �������

Table �� C	sar
Ald�ebaran statistics� state space generation

veri�cation stops after the construction of the �rst diagnostic trace� We do not know how many
states and transitions were explored by walk�actl to construct the diagnostic traces�

� The Promela models for � DCMManagers are more e�cient than the ones with � DCMManagers
in the sense that they use the datatype bit instead of byte for the Id parameter in the general
process DCM�Manager�

� With Spin we �rst tried to explore the whole state space� Whenever an error was found� we
reran the veri�cation with a smaller search depth �option ��m� at run time� to see if a smaller
error trail could be found� In this way we found the trails reported in Table �� which are the
shortest trails we could �nd� Sometimes the search for a shorter trail involves the exploration
or more states and transitions� due to the order in which the depth��rst search is performed�

Only after completion of the veri�cation experiments� we found that the option ��DREACH� �to
be used at compile time� guarantees a complete search of the truncated state space� This explains

�� Model checking experiments ��

one leader
model states trans holds� mem �Mb� time �h�m�s�

� sy ���K ���K T � �������
� as ���K �
K T � �������
� sy ��K �
�K T � �������
� as ���K ��
M T �� ��������

best �nal leader
� sy ���K ���K T � �������
� as ���K �
K T � �������
� sy ��K �
�K T � �������
� as ���K ��
M T �� ��������

same �nal leader
� sy ���K ���K T � �������
� as ���K �
K F � �������
� sy ��K �
�K T � �������
� as ���K ��
M F �
 �
������

error trace same f leader
� as ���K �
K F � �������
� as ���K ��
M F �

 ��������

always �nal leader
� sy ���K ���K F � �������
� as ���K �
K F � �������
� sy ��K �
�K F � �������
� as ���K ��
M F �
 �������

error trace always �nal leader
� sy ���K ���K F � �������
� as ���K �
K F � �������
� sy ��K �
�K F � �������
� as ���K ��
M F �

 ��������

Table �� Xtl statistics� model checking

why we found a shorter error trail with Spin version ����� in one case than with Spin version
����� beta� The ��DREACH� option may increase memory usage and duration of veri�cation
experiments� It is very well possible that with this option we would have been able to �nd the
error in the model with three DCM Managers and asynchronous communication for the property
�best �nal leader� with a much smaller search depth� Without the ��DREACH� option we did
not �nd an error with search depth ��m����� but ran out of memory�

� Checking the property �best �nal leader� for the Promela model with � DCM Managers and
asynchronous communication was done with the new Spin ����� beta option ��DSC� to keep the
major part of the depth �rst search stack on disk� and not in memory� Otherwise this experiment
would have taken much more memory� The stack �le size was ��� Mbyte�

� All experiments with Spin were �rst done on Promela models in which the global variable m
was �hidden�� which means that it is not part of the state vector� In this situation Spin did
not explore the entire state space� Major parts of the code were unreachable because of using
the hidden variable inside two branches of an �if� statement inside an atomic statement� The
predicate �hidden� should not be used this way but this was not listed in the manuals �it is in the

� Conclusions ��

Spin on�line manual now�� The di�erence in semantics between the simulator and the veri�er
made the situation increasingly unclear� since the parts of the state space that were unreachable
to the veri�er� were reachable in simulation� Some improvements have been made in Spin �����
beta to the semantics of the simulator�

� All experiments in Spin were done without partial order reduction by using the compile time
option ��DNOREDUCE�� The reason for this is that the use of synchronous communication in
the escape guard of an unless command is not compatible with the partial order reduction� hence
when using partial order reduction it is possible that error behaviour is missed�

� The error traces produced by Spin can be simulated interactively� The �gures in this paper
are the message sequence charts that were created during such simulation� The �gures have
been adjusted a little to improve the presentation in black and white� Each thin vertical line
in the �gure refers to a process in the Promela model� arrows between process lines refers to
communication� The thick vertical line refers to the global variable BusResetPeriod in the
Promela model� The numbers in the �gures refer to steps in the error trail�

� The error traces produced by Xtl were found with the use of the walk�actl library� Traces are
only produced in case of a universal property that does not hold� or an existential property that
does hold� Since we used universal properties� we got traces only in case of an error� The error
traces were constructed from end to beginning� and have been reversed in the �gures to improve
the presentation� The layout of the steps is�
�step nr� �
�source state�� �transition label�� �target state��

The transition labels consist of the gate and the o�ers exchanged at the gate �each o�er is
preceded by ��� In between of the steps� messages occur that indicate that a temporal operator
from the formula checked does not hold at that point�

� Conclusions

We have modelled the leader election protocol among DCM Manager components in the HAVi archi�
tecture� and found that this protocol does not meet some safety requirements and that it does not
always converge to a situation with a leader actually elected� The errors are due to the absence of
requirements on how long it takes for messages and events to reach their destination� It is expected
that if these requirements are added� a formal veri�cation will be able to show whether the restricted
protocol works correctly�

��� Concerning Spin

Using Promela and Spin Promela is an easy language at �rst� and more di�cult at second sight�
The basic language constructs have an intuitive meaning� but combining many aspects such as rendez�
vous communication� the atomic and the unless construct makes behaviour more fuzzy� The treatment
of data is manageable as long as the data is not too involved� In our case� we are clearly overstepping
the bounds of the type of model for which Promela was designed�
The graphical interface of Spin is attractive� and it is easy to use� The semantics of the simulator

and the veri�er have been made more alike recently� which is very important since simulation is often
used as a justi�cation for having modelled things right� We are in favour of the semantics being
exactly the same for simulator and veri�er� After a while� we turned to the command�line use of the
tools rather than the graphical interface� This was partly due to the experimental use of Spin on a ��
bit machine�
Expressing safety properties in assertions is very straightforward� Expressing liveness properties in

LTL is rather cumbersome and proved impossible in our case� mostly because of the nature of LTL

� Conclusions ��

and the nature of the protocol� However� the possibility to track invalid end states was a simple way
around this� although it implied changing the models�

Performance of Spin As can be seen in Table �� the performance of Spin is quite good� as long as
the number of DCM Managers remains small� and there are no asynchronous channels� We achieved
the best performance by using all the advice given in Spin�s Help Section on reducing the state space
size� Of course� when the communication channels in a Promela model are asynchronous rather than
synchronous� the state space grows tremendously because of all possibilities of interleaving the sending
and receiving of messages with other activities� Spin uses a partial order reduction technique ���� to
reduce the model checking e�ort� This technique identi�es transitions as independent and takes only
one of the many orders in which these transitions might be explored� The independence criterion
holds for transitions that ��� access only local variables� ��� access only communication channels to
which the executing process has exclusive read or write access� In our case� we could not use the
partial order reduction because we had synchronous communication in the escape guard of an unless
command� If we had been able to use partial order reduction� then we would not have had a great
bene�t for the following reasons� In our models� most variables have to be used in the veri�cation and
are global� and all communication channels for which exclusive read or write access can be guaranteed�
are declared as arrays of channels which prohibits the use of the exclusive access declaration construct�
The latter is a syntactical restriction for which some escape routes are available� such as the creation
of a process where a channel from an array is bound to an ordinary channel� on which the exclusive
read or write access can be declared� The other restriction is at the core of the reduction method�
and cannot be lifted�
Another important memory usage�increasing factor for our models is probably that� whereas using

atomic sequences does reduce the number of states� still the number steps performed in one such
atomic sequence is re�ected in the �search depth� of the tool� This search depth is limited by the
user� and determines the portion of the state space to be explored� the size of the heap that is to be
allocated for the search� and hence the amount of memory used for the veri�cation�
What one would like to have �and what might help to improve the performance of Spin tremen�

dously� is to be able to de�ne functions that perform computations without adding to the state space
size� and atomic sequences to be truly atomic� One would then lose the possibility of exactly tracing
down a statement where error situations occur or simulating per statement� but we feel that when
using atomic sequences� it is fair to not have those possibilities anymore� Since the focus of Spin is
on synchronisation and not on computation� there is no plan to improve Spin in this respect �����

Multi�way synchronisation It is di�cult to model multi�way synchronisation in Promela and
keep the state space small� Channels are by de�nition one�to�one� and several processes glancing a
global variable or a channel cannot be forced to do this in one atomic action� There is no plan to
improve Spin in this respect �����

Data structures Spin forbids the initialisation of processes with a parameter which is a non�basic
data structure� such as an array or record� This hampers the construction of generic models� Recently�
the sending of messages with an array as parameter became possible�

Never claims and traces A mixture of �never claim� and �trace� processes will probably a�ect the
performance of Spin very badly� Nevertheless� the possibility to use assertions �that reference global
state variables� in the �trace� process seems like a desirable and useful feature for Spin� This is also a
planned improvement for Spin �����

� Conclusions ��

��� Concerning C�sar�Ald�ebaran and Lotos

Using Lotos� C�sar� Ald
ebaran and Xtl Lotos is a hard language at �rst� and a precise language
at second sight� It can be hard to grasp the meaning of the language constructs at �rst� but they have
a clear semantics and do not become more complicated when combined� Modelling data is not very
hard as long as the data is of a constructive and simple nature� Constructions like sets are not easy
to model� but lists are�
The graphical interface of the tool set is easy to use� The simulator has the same semantics as the

veri�ers� which makes simulation a good means for validation of models� After a while� we turned to
the command�line use of the tools rather than the graphical interface�
Expressing properties in an action based logic like ACTL turned out to be quite hard� This is partly

due to the nature of the protocol� with bus reset periods disrupting normal behaviour� However� the
greatest di�culty is caused by the fact that we cannot use state information in the formulas since
Xtl does not yet work on the �y� Using ACTL� we were not able to �nd some violations of safety
properties which we found with assertions in the Promela models�

Performance of C�sar For this protocol� the performance of the C	sar generator is poor� It does
not produce the minimal graph under strong bisimulation equivalence� but generates far more states�
Judging from the Lotos code and Table �� we think this is caused by the use of the abstract data
types� Apparently� terms which are equal on the basis of the data models are not recognised as such
during state space generation�
If it were not for the Ald�ebaran possibility to compose several communicating components� we would

not have been able to construct a complete a state space even for � DCM Managers� Actually� for
the Lotos model with synchronous communication between DCM Managers� and � DCM Managers
in the network� C	sar generated about ���M states and ���M transitions in one hour� and then got
stuck due to lack of memory� It is hard to say whether the error traces present in this model� would
have been found with a far more restricted model of the protocol�
In order to use the Ald�ebaran facility of combining state spaces� we had to enumerate some

datatypes� which a�ected the genericity of the Lotos model� We also had to restrict the possibili�
ties for communication� which proved essential when generating the state space for the asynchronous
case with � DCM Managers�

State variables It is awkward not to be able to check the values of variables in the Lotos model�
This could be done by adding extra self�loops per process with this information� but due to the poor
performance of C	sar this approach was not feasible� Currently� work is going on to make Xtl work
on�the��y �����

��� Comparison of the tools

Models� state spaces The models in Promela or Lotos are hard to compare� Some tasks can
be performed in one atomic sequence in Promela �but do increase the size of the veri�cation itself�
which take several atomic actions in Lotos� In Lotos� the data types and process parameters allow
for computations being made without state space enlargement� In Promela� most computations must
be translated into �parts of� atomic sequences� In Promela one would like a little more support for
data types and functions� The Lotos models with asynchronous communication and � DCM Managers
are about as general as they can be� With the current tool support� state space generation becomes
impossible with any generalisation of the behaviour�

LTL versus CTL We have found an error in the protocol with an ACTL property which we cannot
express in LTL� and which we could only �nd with Spin by changing the models� The LTL versus
CTL issue is the inspiration of many papers and discussions of which we only cite ���� �� ��� �
�� Some

� Conclusions ��

attempts have been made at uni�cation of the two approaches �See for instance ��
��� However� the
property that we expressed in ACTL turns out to be a classic example of the di�erence in expressivity
between the two paradigms�

State space sizes The state spaces are smaller for the Lotos models than for the Promela models�
when the models are fully explored� On the one hand� this de�nitely is a �attered view� since generating
the state space for a complete Lotos model as such gives tremendously high numbers� On the other
hand� the Spin sizes hide the actual number of statements that must be executed to reach a certain
state� Because of the atomic predicate� the number of statements may be much higher� This does
not a�ect the state space size� but it does a�ect the amount of memory used for the veri�cation�
When errors are found� Spin stops immediately� hence explores only part of the state space� In Xtl�

the library actl always explores the full model� The library walk�actl stops immediately when a
diagnostic trace is constructed�

Memory usage when model checking It turns out that we needed much less memory for the Xtl
veri�cations than with the Spin tool� which is probably due to the state space sizes being larger for
Promela� and atomic sequences consisting of more steps causing more memory to be used than one
statement� When verifying a property with the walk�actl library� much more memory is used then
with the actl library� which we think is due to backtracking and overhead for the diagnostic trace�

Size of generated code The size of C code generated by Spin is manageable considering the state
space size� For state space generation from Lotos models� the C �les become larger� Finally� large
state spaces cause Xtl to generate very large C �les in which very many variables are allocated �a
stack size greater than � Gbyte��

Expressing the properties to be checked The properties veri�ed with Spin and with Xtl are
not comparable� In Spin we used assertions �and tried in vain to use LTL� in terms of state variable
values� In Xtl we used ACTL properties in terms of observable actions�
We would like to use state information from the Lotos process parameters in the properties to be

veri�ed with Xtl�
In Spin one would like to reference the values of state variables in a trace process� where the

occurrences of communications can be checked� The combination of these features� which is as yet
forbidden� would be very useful� This is a planned improvement�

Comparing model checking times When errors can be found� Spin is overall faster than Xtl
except when the models become very large� For full state space exploration� Xtl is faster� probably
due to the state space sizes� It should be noted that Spin builds the state space anew during exploration
whereas Xtl checks properties on state spaces that have already been built� so in this case one should
add the state space generation times to the model checking time� Both approaches have advantages
and drawbacks in terms of e�ciency�

Tailoring models for model checking We had slightly di�erent Promela models depending on
whether we were checking properties concerning �nal leadership� properties concerning any type of
leadership� or the property which we could not express in LTL� In the former two cases� di�erences
were only in the variables used for observation� In the latter� a fundamental change was made to the
environment behaviour by having maximally two bus reset periods instead of arbitrarily many� If we
had used one general model for all properties� we would have had a much larger state space� This was
not necessary with the Lotos model because the experiments there were based on observing actions
rather than state variable values and it was possible to express all properties in ACTL� The addition

REFERENCES �

of the events that signal the election of a leader in the Lotos models do not seem to enlarge the state
space size as much as the state variables in the Promela models do�

E�ciency of model checking When verifying an ACTL property with the actl�xtl library� Xtl
visits all reachable states� thus veri�cation does not stop as soon as the property is found to be false�
and it cannot become true anymore� or vice versa� When using the walk�actl�xtl library� Xtl will
stop as soon as a diagnostic trace has been constructed� This will be a trace showing truth in the case
of an �exists� property� and it will be a trace showing falsity in the case of a �for all� property�
Spin uses partial order reduction ���� to improve e�ciency� We already mentioned that a small

change in the Promela syntax accepted by Spin can increase the bene�t of this reduction technique�
In our case the partial order reduction cannot be exploited because of the combination of rendez�vous
communication and unless constructs� This may be a consideration when constructing models�
Spin stops the veri�cation as soon as an error is found� A diagnostic trace leading to the error

situation is presented to the user� The trace may reveal the falsity of the property to be checked� but
also a dynamic error because an array index is out of range� et cetera�

��	 Concerning this experiment

It appears that the combined approach of having di�erent models of the same protocol and di�erent
veri�cation techniques� gives better results� for several reasons�

�� The restrictions of the di�erent modelling languages force one to think carefully about how to
model all the aspects of the protocol�

�� The di�erent veri�cation techniques enable establishing di�erent kinds of properties for the
protocol�

�� One approach acts as a debugger for the other� in the sense that

� Mistakes at the syntactic or semantic level are generally not made in the exact same manner
during the di�erent modelling e�orts�

� Results can be checked in two di�erent situations�
� Negative results obtained on one side and not on the other can still be �checked� by simu�
lating with the counterexample� and validating whether the error behaviour is also present
in the model for which this could not be veri�ed�

Thus� the results are more convincing than when only one modelling
veri�cation approach is ap�
plied�

References

��� E�M� Clarke� E�A� Emerson� and A�P� Sistla� Automatic veri�cation of �nite�state concurrent
systems using temporal logic speci�cations� ACM Transactions on Programming Languages and
Systems� ��������"���� �
���

��� D� Dams� Personal communication� October �

��

��� R� De Nicola� A� Fantechi� S� Gnesi� and G� Ristori� An action based framework for verifying
logical and behavioural properties of concurrent systems� Computer Networks and ISDN Systems�
������"���� �

��

REFERENCES �	

��� R� de Nicola and F�W� Vaandrager� Action versus state based logics for transition systems� In
I� Guessarian� editor� Proceedings of Semantics of Systems of Concurrent Processes� volume ��

of Lecture Notes in Computer Science� pages ���"��
� Springer�Verlag� �

��

��� E�A� Emerson and C��L� Lei� Modalities for model checking� Branching time logic strikes back�
Science of Computer Programming� ��������"���� June �
���

��� J��C� Fernandez� H� Garavel� A� Kerbrat� R� Mateescu� L� Mounier� and M� Sighireanu� CADP� A
protocol validation and veri�cation toolbox� In R� Alur and T�A� Henzinger� editors� Proceedings
of the �th Conference on Computer�Aided Veri�cation �CAV�� volume ���� of Lecture Notes
in Computer Science� pages ���"���� Springer�Verlag� August �

�� Information and tool set
available from URL http���www�inrialpes�fr�vasy�pub�cadp�html�

��� International Organisation for Standardization� Information processing systems " Open Systems
Interconnection " LOTOS " a formal description technique based on the temporal ordering of
observational behaviour� ISO
IEC ����� �
�
�

��� J�F� Groote and A� Ponse� The syntax and semantics of �CRL� In A� Ponse� C� Verhoef� and
S�F�M� van Vlijmen� editors� Algebra of Communicating Processes ���� Workshops in Computing
Series� pages ��"��� Springer�Verlag� �

��

�
� Grundig� Hitachi� Matsushita� Philips� Sharp� Sony� Thomson� and Toshiba� The HAVi Speci��
cation " Speci�cation of the Home Audio
Video Interoperability �HAVi� Architecture� Version
��� beta� November �
� �

�� Available from URL http���www�havi�org��

���� M� Hennessy and R� Milner� Algebraic laws for nondeterminism and concurrency� Journal of the
ACM� ������"���� �
���

���� G�J� Holzmann� Design and Validation of Computer Protocols� Prentice Hall� �

��

���� G�J� Holzmann� The model checker SPIN� IEEE Transactions on Software Engineering�
��������
"�
�� May �

��

���� G�J� Holzmann� Personal communication� November �

��

���� G�J� Holzmann� Personal communication� June �

�

���� G�J� Holzmann and D� Peled� An improvement in formal veri�cation� In Proceedings of Formal
Description Techniques �FORTE�� pages �
�"���� Bern� Switzerland� October �

�� Chapman #
Hall�

���� IEEE Computer Society� IEEE Standard for a High Performance Serial Bus� Std ��
���

��
August �

��

���� IEEEComputer Society� Draft Standard for a High Performance Serial Bus �Supplement�� P��
�a
Draft ���� March �

��

���� D� Kozen� Results on the propositional mu�calculus� Theoretical Computer Science� ������"����
�
���

��
� O� Kupferman and M�Y� Vardi� Relating linear and branching model checking� In IFIP Work�
ing Conference on Programming Concepts and Methods �PROCOMET�� New York� June �

��
Chapman # Hall�

���� Z� Manna and A� Pnueli� The Temporal Logic of Reactive and Concurrent Systems	 Speci�cation�
Springer�Verlag� �

��

REFERENCES ��

���� R� Mateescu� Personal communication� December �

��

���� R� Mateescu and H� Garavel� XTL� A meta�language and tool for temporal logic model�checking�
In T� Margaria and B� Ste�en� editors� Proceedings of the International Workshop on Software
Tools for Technology Transfer STTT���� number NS�
��� in BRICS Notes Series� July �

��

���� C� Pecheur� Advanced modelling and veri�cation techniques applied to a cluster �le system�
Technical Report ����� INRIA Rh$one�Alpes� May �

��

���� A� Pnueli� The temporal logic of programs� In Proceedings of
�th IEEE Symposium on Founda�
tions of Computer Science �FOCS�� pages ��"��� IEEE� �
���

���� A� Pnueli� Linear and branching structures in the semantics and logics of reactive systems� In Pro�
ceedings of
�th International Colloquium on Automata� Languages and Programming �ICALP��
Lecture Notes in Computer Science� pages ��"��� Springer�Verlag� �
���

���� J��P� Queille and J� Sifakis� Fairness and related properties in transition systems " a temporal
logic to deal with fairness� Acta Informatica� �
��
�"���� �
���

���� C� Stirling� Modal and temporal logics� In S� Abramsky� Dov M� Gabbay� and T� S�%E� Maibaum�
editors� Handbook of Logic in Computer Science
 Volume �
 Background	 Computational Struc�
tures� pages ���"���� Oxford University Press� �

��

���� Y�S� Usenko� A comparison of spin and the �crl toolset on havi leader election protocol� Technical
Report SEN�R

��� CWI� Amsterdam� �

� Submitted�

A� Excerpts from the HAVi Speci�cation ��

A Excerpts from the HAVi Speci�cation

The following parts of text are quoted from �
�� Most of the quotes are followed by our interpretation�

General

Page ��� Section ����� �Software Elements�

The following table summarises which architectural elements are present for the various
device categories� which are absent and which are optional�

Device Type�Element FAV IAV BAV LAV
DCM Manager

p
�
p
�

Event Manager
p p

Messaging System
p p

��
� Communication Media Manager
p p

Interpretation So on each FAV device a DCM Manager must be present� while on an IAV device it
is optional� The Event Manager� Messaging System and ��
� Communication Media Manager must
be present on each FAV and IAV device� Neither BAV nor LAV devices have any of these software
elements�

Page ��� Section ����� �HAVi API Descriptions�

Communication Type�

� messaging �M� � communication is via the Messaging System� This form of commu�
nication is initiated by the client�

DCM Manager

Page ���� Section ����� �DCM Manager API�

DCMManager��DMInitialization
The initial leader shall accept this message at any time� replying with the selected output

parameters� An initial follower shall ignore any message until it has received the reply�
�Note that a network reset event shall reinitiate the leader election phase on all DCM
Managers�

Interpretation So the initial leader remembers its role even after leader election has ended� The
word �ignore� probably means �accepts but throws away��

Page ���� Section ����� �DCM Management Protocol�

The DCM management system is constructed from a distributed group of DCM Managers
on FAV and IAV devices� DCMManagers interact on a peer�to�peer basis to implement the
DCM management service� while in turn using services of local system elements� These are
the CMM� Messaging System� Event Manager� and DCM code units� Each DCM Manager
can read SDD data directly from devices connected to the HAVi ��
� network� The DCM
management protocol supports the use of device storage and Internet access facilities�
In a nutshell� each DCM Manager starts with a leader election after a network reset

event is received� One DCM Manager will be selected as the leader� All DCM Managers

A� Excerpts from the HAVi Speci�cation ��

are followers� and subordinate to the leader �i�e�� the leader DCM Manager also plays
the role of a follower in this protocol description�� Leader and followers subsequently
collaborate to install DCM code units autonomously for each guest found on the network�
if none is installed for it already� In addition to automatic DCM management� each DCM
Manager may also accept method invocations� The leader will control most of the protocol
activities�
DCM Managers can support URL access facilities� and may announce this during the

leader election� FAV devices capable of doing this shall do so� IAV devices may� but need
not announce such a capability� Any device announcing such a capability shall be selected
as the leader� where a FAV device is favoured over an IAV device�
The following abstractions are made in the description of the protocol�

� At any moment a network reset event can occur� Each DCM Manager will �re�start
the leader election when this event is received as soon as possible� A pending message
send or receive action shall be aborted due to network reset event�

� Protocol messages shall be implemented by MsgSendRequestSync and
MsgSendResponse� The speci�ed timeout values are not critical� Except for DMGet�
DCM� they shall be set to � seconds� The sending DM shall retry sending the request
message each time a timeout condition occurs �or until a network reset event is re�
ceived�� Only for DMGetDCM� the sender may decide to stop resending the message
after a limited number of timeouts�

� Potential deadlock conditions shall be prevented� e�g�� by applying multi�threading
in DCM Manager implementations� Unexpected messages shall be ignored by DCM
Managers�

Interpretation The DCM Manager uses reliable message sending with the synchronous waiting�
for�a�response method for communication to other DCM Managers�
We do not know what callback function will be used by the DCM Manager for receiving mes�

sages� but we assume that it is either a synchronous function �with an interrupt�like method� or an
asynchronous function �that puts the message in some bu�er��
Multi�threading is probably advised for the situations in which the DCM Manager is waiting for a

response message� so that it can still receive other messages �like the bus reset event��

Page ���� Section ������� �Leader Election�

After a host device is powered up� or after a network reset event is received� each DCM
Manager will enter this activity� �A reset or power up
down of a device shall cause network
reset events on all other host devices��
All DCM Managers shall behave as follows�

� The GUID list is retrieved through CMM��
���GetGUIDList� The relevant HAVi
SDD data of all devices are retrieved� HAVi Device Type� HAVi DCM Manager�
Model ID� Model Vendor Id� Node Unique ID �GUID�� Devices without such SDD
data are classi�ed as LAV devices�

� Each FAV or IAV device without a DCMManager �derived from HAVi DCM Manager�
shall be ignored� and shall not be a host for any guest on the HAVi ��
� network�

� From all host GUIDs� the highest bit order�reversed GUID is calculated� and the DCM
Manager on the device with this GUID is declared the initial leader� The reversal
prevents devices from certain vendors acting as the initial leader in many network
con�gurations �since the GUID starts with a vendor identi�er�� Note that all devices
read the same GUID list� and will declare the same DCM Manager as initial leader�

A� Excerpts from the HAVi Speci�cation ��

At this time� each DCM Manager knows if it is the initial leader or an initial follower�
Each device knows which other DCM Managers there are� and which SEIDs they have�
�The SEID is the concatenation of the device GUID and the �xed DCM Manager soft�
ware element handle�� Message passing between DCM Managers is enabled� Each DCM
Manager shall be registered�
The initial leader shall behave as follows to select and announce the �nal leader�

� From all identi�ed initial followers� it awaits a DMInitialization request with zero or
more declared URL capabilities and URL access capable guest GUIDs from the initial
followers�

� The selection of the �nal leader is as follows�

� If there are FAV devices with a declared URL access capability� one of them is
selected�

� Otherwise� if there are IAV devices with a declared URL access capability� one
of them is selected�

� Otherwise� if there are FAV devices� one of them is selected�

� Otherwise� if there are IAV devices� one of them is selected�

� The DMInitialization reply is sent to all initial followers� The �nal leader is the last
one to which this message shall be sent� The reply carries the GUID of the �nal
leader and the GUID of an arbitrarily selected URL capable guest� if any�

An initial follower shall send a DMInitialization request to the initial leader and awaits
the reply� Upon a timeout� the request is resent�
Each DCM Manager now knows which one is the �nal leader� and which others are �nal

followers� The autonomous operation starts�

Interpretation The only URL information that is of use to the leader election protocol is the URL
access capability of device itself on which the DCM Manager resides�
The timeout� which causes the initialisation request to be resent� could occur in a number of

situations� We assume that besides the obvious error situations� the following scenarios are reasonable�

� The message was sent but is delayed on its way to the destination and the timeout occurs before
the acknowledgement of delivery is received by the sending DCM Manager�

� The message was sent� and acknowledgement has been received� but the response �whether sent
or not� has not been received yet�

So a timeout occurring does not mean that the destination DCM Manager did not receive the message�

Messaging System

Page ��� Section ��������� �Service Description�

Message Transfer Modes�
Simple mode is very basic� no control is performed by the Messaging System� The

message is sent on the network and that is all�
Reliable mode is more complicated and expects the destination device to acknowledge

the message�
Note that at the originating side� the calling software element is blocked until it gets the

acknowledgement�
To avoid blocking a software element inde�nitely an acknowledgement timeout is used�

Its value shall be �� seconds�

A� Excerpts from the HAVi Speci�cation ��

Interpretation We do not know what callback function the DCM Manager will give to the Messag�
ing System� but we assume that it is either a synchronous function �with an interrupt�like method�
or an asynchronous function �that puts the message in some bu�er��
We assume that a multi�threading implementation is meant to have the DCM Manager receive other

messages� not while it is busy sending a message itself� but while it is waiting for a response�

Page ��� ������� �Messaging System Description�

The message passing API will provide a synchronous service allowing a caller to block until
a response is received� As shown in the following �gure� the caller asks to send a function
call through the message passing API� The local Messaging System sends a request message
according to the request mode �reliable mode in this example� and waits for the response
or a timeout condition� The remote Messaging System receives the request and passes it
to the destination software element� The destination element sends its function response
message using a normal send in simple form� The requester�s Messaging System receives
the response and transmits it to the requester�

Interpretation Here the proposed multi�threading implementation can help the DCM Manager to
receive messages while it is still waiting for a response�
Note that it is not said anywhere how long a message can be �en route� from the source to the

destination� let alone that the destination DCM Manager will process the message� send a response
and have this delivered in the � seconds proposed� So we assume that Initialisation requests� once
sent� could still be on their way when the sending DCM Manager experiences a timeout and will
resend the request�

Page
�� Section ����� �Messaging System API�

MsgCallback

� sourceId� the ���bit software element identi�er of the software element that issued
the message

� state� the status of the message�

� SUCCESS if everything worked �ne

� MSG��EALLOC if the message passing cannot deliver the entire received message
due to a lack of resources

� MSG��EDISAPPEAR if the supervision of the software element �described in
sourceId� has been detected as disappeared� The software element sourceId is no
longer reachable �device unplugged� or software element performed a MsgClose��
Fields other than sourceId are unde�ned�

� payload� consists of the MessageLength and MessageBody

This function is the callback supplied by a software element� This call back is invoked
by the Messaging System each time an incoming message �incoming reliable request or
simple messages� is received for that software element� It may also be invoked to notify
the software element about a disappearance of a target software element �this service is
provided only after a MsgWatchOn request��
After the callback returns� and depending on the return code �SUCCESS or MSG��EFAIL��

the Messaging System acknowledges the message� if the callback returns with SUCCESS�
the Messaging System generates an ACK message� If the callback returns with EFAIL�
the Messaging System generates an NOACK message

A� Excerpts from the HAVi Speci�cation ��

Warning� a callback function is not allowed to call blocking functions� A callback always
executes in the context of the Messaging System� and is not allowed to block the Messaging
System� Applications should treat the callback as an interrupt�

Page
�� ����� �Messaging System API�

MsgOpen

� callback� the call back function that the messaging system calls when it receives a
message for that software element

� seid� the �� bits software element identi�er that has been assigned to the software
element�

This function is called by a software element that requires the services of the Messaging
System� This function provides a unique software element identi�er to the software element
which is to be used by the software element to register and to communicate with other
software elements� This function also allows the calling software element to provide a
call back function that will be used by the Messaging System when an incoming message
�either a reliable request� or a simple message� has to be passed to the software element�

Interpretation It seems that for events and messages the same callback function is used� Never�
theless� we assume that a DCM Manager can make a di�erence between messages and �urgent� bus
reset events� either in the callback function itself or by some combination of the callback function and
the opCode which the DCM Manager gives to the Event Manager when it registers its interest in the
bus reset events�

Page ���� Section ����� �Messaging System API�

MsgSendResponse
This function is used to send a �function response� message �see �������� to one software

element which has previously performed a MsgSendRequest call� According to the chosen
transfer mode� the function returns immediately or once the sending is completed �message
acknowledge received��
MsgSendRequestSync
This function is used by a software element when it wants to send a �function call�

message �see �������� to one destination software element and block until the response is
received �synchronous mode� see section ��������� All requests are sent in �reliable mode��
A timeout value of zero defaults to the system timeout value� The timeout condition
overrides the messaging system timeout �ackTimeout� condition�

Interpretation As we already saw� for the DCM Managers communicating with each other� the
timeout is � seconds� It is not clear how this value overrides the ackTimeout� It could be that the
whole process of delivering the �function call�� the destination processing this call and �nally returning
the response� should not take longer than � seconds� Or the timer that signals this timeout could be
restarted after the acknowledgement of delivery of the �function call� was received�
In our approach� this timing information is not modelled�

Communication Media Manager for ���	

Page ��� Section ��� �CMM description�

A� Excerpts from the HAVi Speci�cation ��

��
� bus is a dynamically con�gurable network� After each bus reset� a device may have
a completely di�erent physical ID than it had before� If a HAVi component or an appli�
cation has been communicating with a device in the network� it may want to continue the
communication after a bus reset� though the device may have a di�erent physical ID� To
identify a device uniquely regardless of frequent bus resets� The Global Unique ID �GUID�
is used by CMM and other HAVi entities� GUID is a �� bit number that is composed of
�� bits of node�vendor ID and �� bits of chip ID� While a device�s physical ID may change
constantly� its GUID is permanent� CMM makes device GUID information available for
its clients�

Interpretation In order to know what devices there are in the network� the CMM must use the
topology map of ��
�� This gives only physical IDs subject to change� These physical IDs must
then be used to get the GUID for every device in the network� by asynchronous ��
� read operation
�transaction layer��� Then CMM can use new GUID list to compare with old one� detect devices who
have left or connected and post events accordingly�

Page ��� Section ��� �CMM description�

One of the advanced features the ��
� bus provides to the HAVi system is its support
for dynamic device actions such as hot plugging and unplugging� To fully support this
up to the user level� HAVi system components or applications need to be aware of these
network changes� CMM works with the Event Manager to detect and announce such
dynamic changes in network con�guration� Since any topology change within the ��
�
bus will cause a bus reset to occur� the CMM can detect topology changes and post an
event to the Event Manager about these changes along with associated information� The
Event Manager will then distribute a related event �called a network reset� to all interested
HAVi entities or applications�

Interpretation DCM Managers are interested in this event�

Page ��� Section ����� �CMM��
� Services�

CMM��
���GetGUIDList� Communication Type M

Interpretation So in order to use this service� the DCM Manager must send a message through
the Messaging System to the CMM�

Page ��� Section ����� �CMM��
� API�

CMM��
���GetGUIDList
Get GUID lists of both active and non�active devices on the network� The �rst item

returned in activeGuidList shall be the GUID of the local device� A device is de�ned
as active if it can process HAVi messages �IAV or FAV� or respond to commands from
HAVi software elements �BAV or LAV�� For FAV� IAV� or BAV devices� an SDD entry
�HAVi Device Status� in the HAVi unit directory can be read to determine the status of
the device �see section
������ A value of one indicates that the device is active� A value of
zero indicates that the device is not active� An LAV device is considered active whenever
its GUID is visible on the network�
Since each device on the network can be identi�ed by its GUID� the GUID list gives all

devices available in the system�
Error codes

� ENOTREADY� GUID list is not available yet � system may be updating it

A� Excerpts from the HAVi Speci�cation ��

Interpretation By the explanation of Communication Types at Page �� �Section ������� we conclude
that whenever the DCMManager wants to have the GUIDList� it sends a message to the CMM through
the Messaging System�

Page
�� Section ����� �CMM��
� Events�

NetworkReset
NetworkReset is a local event� This event is generated whenever there is a change in the

home network topology �e�g� a connection of a new device�� The CMM is generally the
component posting this event� As opposed to the NewDevices and GoneDevices events�
the CMM does not gather GUID list of the changed devices� This event is intended for
target software elements that are only interested in knowing when network topology has
changed but are not interested in speci�cs of the change�

Interpretation Since DCM Managers need to know about bus resets� and then �nd out new or
disappeared devices later with GetGUIDList� they only need to subscribe to the event NetworkReset�
We assume that they only listen to the event NetworkReset�

Page ���� ���� �Scenarios�

A new BAV or LAV is plugged into the network
In this scenario� a new BAV or LAV device is plugged into the ��
� bus�

� The CMM of each FAV or IAV generates locally a NetworkReset event �and also the
NewDevices event�

� DCM Managers have previously registered interest in NetworkReset event and so
receive the event� Using the CMM��
���GetGUIDList method� they get the GUIDs
of the new and gone devices on the network�

Interpretation Indeed this scenario indicates that DCM Managers only listen to event NetworkRe�
set�

Event Manager

Page ��� Section ��� �Event Manager Description�

If a Software Element wishes to be noti�ed when a particular event is posted� it must
register such intention with its local Event Manager�
When a software element posts an event� it does so via a service provided by Event

Manager� The Event Manager checks its internal table and noti�es those software elements
who have registered this event�
An Event Manager noti�es software elements by using the HAVi Messaging System� in

particular� it sends a noti�cation message to the software element that is to be noti�ed�

Interpretation The messaging system is used for events� Probably this is done with the simple
mode without waiting for a response� since event messages are only sent to Software Elements on the
same device�

B� Excerpts from the IEEE ���� Standard �

Page ���� Section ����� �Event Manager API�

EventManager��Register
EventManager��Register adds the software element �that has sent the message� to the

Event Manager�s internal table� A new entry is created to register the software element
and the list of events it wishes to �listen to�� There is no limit on the internal table
size so long as Event Manager can �nd enough system resources to maintain the table�
When any of the events in the software element�s �interested� event list occurs� the Event
Manager sends a noti�cation message to the software element� The message contains
opCode� the EventID representing the event� and possibly additional information about
the event� When the software element receives the event noti�cation message� it uses the
opCode to determine how to process the message� It is therefore the responsibility of the
software element to de�ne the operation code for its event�noti�cation message processing
procedure call� and to pass it to the Event Manager at event registration time�

Interpretation We do not know what opCode the DCM Managers will use� but assume that it
enables them to distinguish between ordinary messages and urgent events� even before the callback
function should put messages in a bu�er�

Page ���� Section ����� �Event Manager API�

EventManager��PostEvent
Post the speci�ed event to the home network� Posting an event means notifying all

�target� software elements �i�e�� those including the event in their �listen�to� even list�
regardless of their location on the network� Event noti�cation messages are sent by the
Event Manager to all target software elements� The event poster simply sends a message to
an Event Manager indicating its intention to post the speci�ed event� It is the responsibility
of the Event Managers to ensure that all target software elements receive noti�cation�

Page ���� Section ����� �Event Manager Protocol�

When an event is posted globally to all Event Managers in the home network� the following
mechanism is used�
The event poster sends a EventManager��PostEvent message to its local Event Manager

requesting the event to be posted on its behalf� The message contains the SEID of the
event poster� the EventID of the event to be posted� whether the event is to be delivered
locally or globally� and possibly additional information about the event�
The local Event Manager checks if any software element residing locally have the posted

event in its �listen�to� event list� All target software elements that meet this condition
will get an event noti�cation message from this Event Manager� The message contains the
operation code selected by the target software� the SEID of event poster� the EventID of
the posted event and possibly additional information about the event� The target software
element� upon receiving the noti�cation message� will presumably respond to the event�

Interpretation All of the messages are sent through the Messaging System�

B Excerpts from the IEEE ���� Standard

The following parts of text are quoted from ���� and ����� Most of the quotes are followed by our
interpretation�

B� Excerpts from the IEEE ���� Standard �	

��
���

�� Page ���� Section �����

Serial Bus control request �SB CONTROL�request�
This service shall provide the following actions�

� Present Status� The Serial Bus management layer shall return status to the applica�
tion via the Serial Bus control con�rmation service�

��
���

�� Page ���� Section �����

Serial Bus control con	rmation �SB CONTROL�con	rmation�
This service shall communicate the following parameters after a control request of

Present Status�

� Bus Manager ID� The ��bit physical ID of the bus manager� If no bus manager is
active� this parameter shall have a value of �F��� This parameter is available only if
the node is bus�manager or isochronous�resource�manager capable�

Interpretation If an application �the HAVi ��
� Communication Media Manager for instance�
wants to know the network con�guration� it is likely that the SB CONTROL�request service is used
to ask for �Present Status�� and a SB CONTROL�con�rmation with the �Bus Manager ID� is received�
The Bus Manager is supposed to have a TOPOLOGY MAP register which can be read through an
asynchronous �transaction layer� READ request�

��
���

�� Page ���� Section �����

Serial Bus event indication
BUS EVENT with values

� BUS RESET START� A bus reset has started

� BUS RESET COMPLETE� A bus reset process has completed� In the cable environ�
ment� this is indicated by the �rst subaction gap after the bus reset has started�

Interpretation It is not stated explicitly� but we expect from this text that these events are issued
by the serial bus management layer each time a bus reset process starts or is completed� and that
these events are caught by the HAVi ��
� Communication Media Manager�

��
���

�� Page ���� Section �������

A node that is capable of becoming the bus manager shall

b� Implement the SPEED MAP and TOPOLOGY MAP registers

��
���

�� Page ��
� Section �����

Bus con	guration procedures
When a bus reset occurs� all asynchronous and isochronous tra�c on the Serial Bus

ceases� Asynchronous may resume as soon as the self�identify process that follows a bus
reset has completed� Previously established isochronous data streams� either talker or
listener� are to resume as soon as possible after the self�identify process completes� In
general� the roles of cycle master� isochronous resource manager� and bus manager shall
be redetermined before new allocation of isochronous resources can be performed and
before the new topology and speed maps can be made available�

C� The input �les for Spin ��

Interpretation So messages through the HAVi Messaging System cannot be sent from one device
to another while a bus reset is taking place� Sending may proceed as soon as the self�identify process
is completed� The new GUIDList which must come from the topology map can actually be obtained
only after the new cycle master� isochronous resource manager and bus manager have been elected�

��
���

�� Page ��
� Annex H��

Bus con	guration timeline
�see Figure H��� At point B� the following are true�

� bus manager has made the TOPOLOGY MAP registers available

Interpretation So it takes at most ��� �s after completion of the self�identify process to enable
the reading of GUIDList�

��
�a March ��� �

�� Page ��� Section �����

Arbitrated �short� bus reset
The last phase� self�identify� requires approximately one microsecond per node or about

�� �s worst case when there are �� nodes� Tree identify is also quite rapid and takes less
than �� �s� The longest phase is bus reset and it lasts about ��� �s while the BUS RESET
signal is propagated�
The reason for the long duration of BUS RESET is that a transmitting node is unable

to detect this arbitration line state� It is only after packet transmission is complete that
the node will observe the reset� Hence BUS RESET must be asserted longer than the
longest possible packet transmission� This guarantees the success of bus reset regardless
of the bus activity in progress�

Interpretation So it takes less than ��� �s after the start of the bus reset period for all devices to
notice that a bus reset has started� After sending the bus reset signal for ��� �s� all nodes propagate
the idle signal for another ��� �s� Based on these numbers� we get a best�case bus reset phase duration
of ��� �s and a worst�case bus reset phase duration of � ��� �s�

C The input �les for Spin

C�� Promela model for � DCM Managers with asynchronous communica�
tion ��nal leader�

The Promela model of the leader election protocol with � DCM Managers� asynchronous communica�
tion between the DCM Managers� and tailored to verify �nal leader properties�
For an explanation of the following code� we refer to Section ����

� �� ��

� � PROMELA SPECIFICATION �

� � �

� � file � leader�election�spin �

� � author � Judi Romijn �judi�cwi�nl� �

� � creation date � May
� ���� �

� � last modified � May ��� ���� �

� �� ��

	
�
 �� ����CONSTANTS� SHORTHANDS��� ��

C� The input �les for Spin ��

�� �define maxHost � �� maximum nr of host nodes �each has unique ID� ��

�� �define maxMessages �

��
�� �� ����PROPERTY DEFS��� ��

��
��
�� �� ����TYPE DEFS��� ��

��
�	 mtype � �power�change� bus�reset� DMInitRequest� DMInitReply �

�

�� typedef FieldHost � �� information about a host node ��

�� bool rec�req� �� did I receive a request already� ��

�� ��

�� typedef Field � �� general information about a host node ��

�� bool up� �� is it powered up� ��

�� ��

�� typedef Field� � �� for all CMMs ��

�� bool delivery� �� whether a bus reset event should be delivered ��

�	 ��

�
 typedef Array �

�� Field network�maxHost �

�� bool fleader� �� final leader� ��

�� byte Leader� �� Leader id ��

�� bool UrlCapable� �� Am I in UrlCapable mode� �constant

� ��

�� �

��
�� �� ����CHANNELS�� ��

��
�	 chan chanUpDown�maxHost � �� of � mtype � �� synchronous
 ��

�
 chan chanCMM�maxHost � �� of � mtype � �� synchronous
 ��

�� chan chanDM�maxHost � �maxMessages of � mtype� byte �

��
�� �� ����GLOBAL VARIABLES�� ��

��
�� �� semaphor variables ��

�� show bool BusResetPeriod��� �� are we in a bus�reset period� ��

�� show Field� BusResetDelivery�maxHost � �� bus�reset events to be delivered� ��

��
�	 show Field Global�maxHost � �� !up" info per host node ��

�
 show Array Local�maxHost � �� as Global� but one whole array per host ��

��
�� �� scratch variables that are referenced within atomic sequences only ��

�� hidden byte k�

�� mtype m� �� ERRORS if hidden
 ��

��
�� �� ����PROCESS DEFINITIONS��� ��

��
��
�	 �� ����PROCESS Bus�Reset��� ��

�
 proctype Bus�Reset��

�� �

�� byte j��� �� for running through array ��

��
�� do

�� �� d�step

C� The input �les for Spin ��

�� � BusResetPeriod � �� �� start of a bus�reset period ��

�� j���

�� do

�	 �� �j#maxHost� �$

�
 if

�� �� �Global�j �up� �$ BusResetDelivery�j �delivery���

�� �� start one more bus�reset delivery cycle ��

�� �� �
Global�j �up� �$ skip�

�� fi�

�� j���

�� �� �j$�maxHost� �$ break�

�� od�

�� j��� �� change network topology ��

�	 ��

�
 do �� decide new power status per host node ��

�� �� atomic��j#maxHost� �$

�� if

�� �� Global�j �up �
Global�j �up� �� come up�go down ��

�� chanUpDown�j
power�change�

�� �� skip� �� stay up�down ��

�� fi�

�� j���

�� �

�	
	
 �� atomic��j$�maxHost� �$

	� BusResetPeriod � �� �� now GUIDlist is stable again ��

	� j���

	� break�

	� �

	� od�

	� od

	� �

	�
		
�

 �� ����PROCESS CMM��� ��

�
� proctype CMM�byte Id�

�
� �

�
� downCMM�

�
� � ����

�
� � unless �atomic�chanCMM�Id �power�change�

�
� goto upCMM���

�
� ��

�
� upCMM�

�
	 � do

��
 �� atomic

��� � �BusResetDelivery�Id �delivery� �$

��� BusResetDelivery�Id �delivery � ��

��� chanCMM�Id
bus�reset�

��� �

��� od�

��� � unless �atomic�chanCMM�Id �power�change�

��� BusResetDelivery�Id �delivery � ��

��� goto downCMM���

��	 ��

��

C� The input �les for Spin ��

��� �

���
���
��� �� ����PROCESS DCM�Manager��� ��

��� proctype DCM�Manager�byte Id�

��� � byte j � ��

���
��� FieldHost InfoHost �maxHost � �� all info per host node ��

��	
��
 �� the following is invalid because of array reference ��

��� �� xr chanDM�Id � to support partial order reduction ��

���
��� down�DM�

��� � ���� �� unexecutable� forces to wait ��

��� � unless � atomic� chanUpDown�Id �power�change�

��� Local�Id �network�Id �up � Global�Id �up�

��� chanCMM�Id
power�change�

��� goto leader�election�DM ��

��	 ��

��

��� leader�election�DM� �� first part of leader election ��

��� � d�step �� GetGUIDList � AsyncRead ��

��� � if

��� �� �
BusResetPeriod� �$ �� as soon as allowed ��

��� j��� �� copy GUIDlist to local var ��

��� do

��� ���j#maxHost� �$ Local�Id �network�j �up � Global�j �up�

��� j���

��	 ���j$�maxHost� �$ break�

��
 od�

��� j���

��� fi�

��� ��

��� d�step �� compute initial leader ��

��� � j���

��� do

��� ���j#maxHost %% Local�Id �network�j �up���� �$ ��found one
 ��

��� break�

��	 ���j#maxHost %% Local�Id �network�j �up���� �$ j��� �� not yet ��

��
 ���j$�maxHost� �$ break� �� no candidate left ��

��� od�

��� Local�Id �Leader � j� �� maxHost if no init Leader candidate ��

��� j���

��� ��

��� atomic �� am I leader or not� ��

��� � if

��� �� �Local�Id �Leader �� Id� �$

��� goto init�leader�DM�

��	 �� �Local�Id �Leader
� Id� �$ goto init�follower�DM�

��
 fi�

��� ��

���
��� init�follower�DM�

��� � atomic

��� � �
BusResetPeriod %% Global�Local�Id �Leader �up� �$

C� The input �les for Spin ��

��� chanDM�Local�Id �Leader
DMInitRequest�Id�� �� send until ��

��� ��

��� goto init�follower�DM�

��	 � unless �atomic

��
 � chanDM�Id �m�k� �$

��� if

��� �� �m��DMInitReply� �$ �� declaration recvd ��

��� Local�Id �Leader � k�

��� �� �m
�DMInitReply� �$ �� unexpected message� ignore ��

��� goto init�follower�DM�

��� fi�

��� ��

��� ��

��	 atomic� if

�	
 �� �Local�Id �Leader��Id � �$ Local�Id �fleader � ��

�	� goto final�leader�DM�

�	� �� �Local�Id �Leader
�Id� �$ goto final�follower�DM�

�	� fi�

�	� ��

�	�
�	� init�leader�DM� �� copy info from local DM and compute ��host % up� ��

�	� atomic

�	� � j���

�		 k���

�

 do

�
� �� �j#maxHost� �$

�
� InfoHost�j �rec�req � ��

�
� k � �Local�Id �network�j �up��� �$ k�� � k��

�
� j���

�
� �� �j$�maxHost� �$ break�

�
� od�

�
� j � k�

�
� ��

�
	 do �� then wait for mes DMInitRequest from all up DMs ��

��
 �� atomic

��� � �j$�� �$

��� chanDM�Id �m�k� �$

��� if

��� �� �m��DMInitRequest� �$ �� expected message ��

��� if

��� �� �Local�Id �network�k �up %%
InfoHost�k �rec�req� �$

��� InfoHost�k �rec�req � ��

��� j���

��	 �� �
Local�Id �network�k �up �� InfoHost�k �rec�req� �$ skip�

��
 fi�

��� �� �m
� DMInitRequest� �$ skip �� ignore unexp mes ��

��� fi�

��� ��

��� �� atomic� �j���� �$ �� got mes from all DMs except myself ��

��� break ��

��� od�

��� atomic �� search for final leader� up and UrlCapable ��

��� � j � ��

��	 do

��
 �� �j#maxHost %% Local�Id �network�j �up %% Local�j �UrlCapable� �$

C� The input �les for Spin ��

��� break� �� found
 ��

��� �� �j��maxHost� �$ break� �� no candidate left ��

��� �� �j#maxHost %% �
Local�Id �network�j �up ��
Local�j �UrlCapable�� �$

��� j��� �� not yet ��

��� od�

��� Local�Id �Leader � j� �� maxHost if no candidate �no DM UrlCapable� ��

��� j���

��� ��

��	 d�step� if

��
 �� �Local�Id �Leader$�maxHost� �$ �� all DM"s not UrlCapable ��

��� Local�Id �Leader � Id� �� anyone can be leader� me ��

��� �� �Local�Id �Leader#maxHost� �$ skip�

��� fi�

��� j�� ��

��� do

��� �� atomic

��� � �j#maxHost %% j
�Local�Id �Leader

��� %% j
�Id %% Local�Id �network�j �up

��	 %%
BusResetPeriod %% Global�j �up� �$

��
 chanDM�j
DMInitReply�Local�Id �Leader��

��� ��

��� j���

��� �� d�step� �j��Local�Id �Leader �� j��Id� �$ j��� �

��� �� atomic� �j��maxHost� �$ j��� break� �

��� �� d�step� �j#maxHost %%
Local�Id �network�j �up� �$ j��� �

��� od�

��� if �� done
 ��

��� �� atomic� �Local�Id �Leader
� Id �� Leader informed last ��

��	 %%
BusResetPeriod

��
 %% Global�Local�Id �Leader �up� �$

��� chanDM�Local�Id �Leader
DMInitReply�Local�Id �Leader��

��� ��

��� goto final�follower�i�DM�

��� �� atomic� �Local�Id �Leader �� Id� �$

��� Local�Id �fleader � ��

��� goto final�leader�i�DM�

��� ��

��� fi�

��	
��
 final�follower�DM�

��� do

��� �� chanDM�Id �m�k��

��� od�

���
��� final�follower�i�DM�

��� do

��� �� atomic� chanDM�Id �m�j� �$

��� if

��	 �� �m��DMInitRequest� �$ �� never unexpected mes ��

��
 atomic�

��� �
BusResetPeriod %% Global�j �up� �$

��� chanDM�j
DMInitReply�Local�Id �Leader����

��� j���

��� �� �m
� DMInitRequest� �$ skip �� ignore unexp mes ��

��� fi�

C� The input �les for Spin ��

��� �

��� od�

���
��	 final�leader�DM�

�	
 do

�	� �� chanDM�Id �m�k��

�	� od�

�	�
�	� final�leader�i�DM�

�	� do

�	� �� atomic� chanDM�Id �m�j� �$

�	� if

�	� �� �m��DMInitRequest� �$ �� never unexpected mes ��

�		 atomic�

�

 �
BusResetPeriod %% Global�j �up� �$

�
� chanDM�j
DMInitReply�Id����

�
� j���

�
� �� �m
� DMInitRequest� �$ skip �� ignore unexp mes ��

�
� fi�

�
� �

�
� od�

�
�
�
� � unless

�
	 � if

��
 �� atomic� chanCMM�Id �bus�reset�

��� Local�Id �Leader��� �� clear scratch�non�hidden vars ��

��� Local�Id �fleader � �� �� new leader to be elected ��

��� j���

��� do

��� �� �j#maxHost� �$ InfoHost�j �rec�req��� �� clear InfoHost ��

��� Local�Id �network�j �up��� �� clear Local ��

��� j���

��� �� �j$�maxHost� �$ j���break�

��	 od�

��
 do �� empty the queue ��

��� �� �chanDM�Id ��m�k� � �$ chanDM�Id �m�k��

��� �� else �$ break�

��� od�

��� goto leader�election�DM ��

��� �� atomic� chanUpDown�Id �power�change�

��� Local�Id �network�Id �up � Global�Id �up�

��� Local�Id �fleader � �� �� new leader to be elected ��

��� Local�Id �Leader��� �� clear scratch�non�hidden vars ��

��	 j���

��
 do

��� �� �j#maxHost� �$ InfoHost�j �rec�req��� �� clear InfoHost ��

��� Local�Id �network�j �up��� �� clear Local ��

��� j���

��� �� �j$�maxHost� �$ j���break�

��� od�

��� do �� empty the queue ��

��� �� �chanDM�Id ��m�k� � �$ chanDM�Id �m�k��

��� �� else �$ break�

��	 od�

��
 chanCMM�Id
power�change�

C� The input �les for Spin ��

��� goto down�DM ��

��� fi�

��� � �� end unless ��

��� �

���
���
��� �� ����INIT PROCESS�� ��

��� init�

��	 �� byte j� ��

��

���
��� atomic� run Assertion���

��� run Bus�Reset���

��� �� run copy of DCM�Manager for each ID ��

��� if

��� �� Local�� �UrlCapable � �� �� not in UrlCapable mode ��

��� �� Local�� �UrlCapable � �� �� in UrlCapable mode ��

��� fi�

��	 if

��
 �� Local�� �UrlCapable � �� �� not in UrlCapable mode ��

��� �� Local�� �UrlCapable � �� �� in UrlCapable mode ��

��� fi�

��� if

��� �� Local�� �UrlCapable � �� �� not in UrlCapable mode ��

��� �� Local�� �UrlCapable � �� �� in UrlCapable mode ��

��� fi�

��� run CMM����

��� run DCM�Manager����

��	 run CMM����

��
 run DCM�Manager����

��� run CMM����

��� run DCM�Manager����

��� ��

���
��� �

���

C�� Promela model for � DCM Managers with asynchronous communica�
tion �leader�

The Promela model of the leader election protocol with � DCM Managers� asynchronous communica�
tion between the DCM Managers� and tailored to verify general leader properties�
The di�erences with the model tailored to verify �nal leader properties is the moment at which the

leader of a DCM Manager variable is set to true� In the former model this was only after becoming
the �nal leader� and hence the name of the variable was fleader� In this model� any initial or �nal
leadership is reason to set the variable leader to true�
We now list the di�erence between this model ��� and the model in Appendix C�� ����

��c��

bool fleader� �� final leader� ��

���

$ bool leader� �� leader� ��

�
�c�
�

�� �Local�Id �Leader �� Id� �$

���

C� The input �les for Spin �

$ �� �Local�Id �Leader �� Id� �$ Local�Id �leader � ��

���c���

�� �Local�Id �Leader��Id � �$ Local�Id �fleader � ��

���

$ �� �Local�Id �Leader��Id � �$ Local�Id �leader � ��

���c�������

�� �Local�Id �Leader#maxHost� �$ skip�

���

$ �� �Local�Id �Leader#maxHost %% Id��Local�Id �Leader� �$ skip�

$ �� �Local�Id �Leader#maxHost %% Id
�Local�Id �Leader� �$

$ Local�Id �leader � ��

�
�d�

Local�Id �fleader � ��

���c���

Local�Id �fleader � �� �� new leader to be elected ��

���

$ Local�Id �leader � �� �� new leader to be elected ��

���c���

Local�Id �fleader � �� �� new leader to be elected ��

���

$ Local�Id �leader � �� �� new leader to be elected ��

C�� Promela model for � DCM Managers with asynchronous communica�
tion �end states�

The Promela model of the leader election protocol with � DCM Managers� asynchronous communi�
cation between the DCM Managers� tailored to verify �nal leader properties and with a restricted
number of bus reset periods�
The di�erences with the model tailored to verify �nal leader properties is the that there are maxi�

mally two bus reset periods� This makes the behaviour of the model �nite and allows us to search for
invalid end states�
We now list the di�erence between this model ��� and the model in Appendix C�� ����

�a
�

$ byte HowManyBusResets��� �� for verification purposes ��

c
��
�

� BusResetPeriod � �� �� start of a bus�reset period ��

���

$ � �HowManyBusResets$�� �$�� only a limited number of bus reset periods ��

$ HowManyBusResets���

$ BusResetPeriod � �� �� start of a bus�reset period ��

�
c������

od

���

$ �� �HowManyBusResets���� �$ break�

$ od�

$

�������c�������

� ����

� unless �atomic�chanCMM�Id �power�change�

���

$ � �skip�

$ end�cmm��

$ ����

$ unless �atomic�chanCMM�Id �power�change�

C� The input �les for Spin �	

���c���

��

���

$ ���

���c��
����

� do

���

$ � �skip�

$ end�cmm��

$ do

������
c�������

od�

� unless �atomic�chanCMM�Id �power�change�

���

$ od�

$ unless �atomic�chanCMM�Id �power�change�

���c���

��

���

$ ���

�������c������

� ���� �� unexecutable� forces to wait ��

� unless � atomic� chanUpDown�Id �power�change�

���

$ � skip�

$ end�dcm��

$ ����� �� unexecutable� forces to wait ��

$ unless � atomic� chanUpDown�Id �power�change�

���a���

$ ��

�������c�������

goto final�leader�DM�

�� �Local�Id �Leader
�Id� �$ goto final�follower�DM�

���

$ goto end�final�leader�DM�

$ �� �Local�Id �Leader
�Id� �$ goto end�final�follower�DM�

�
�c���

goto final�follower�i�DM�

���

$ goto end�final�follower�i�DM�

�

c���

goto final�leader�i�DM�

���

$ goto end�final�leader�i�DM�

���c���

final�follower�DM�

���

$ end�final�follower�DM�

���c���

final�follower�i�DM�

���

$ end�final�follower�i�DM�

���c���

final�leader�DM�

���

C� The input �les for Spin ��

$ end�final�leader�DM�

���c��

final�leader�i�DM�

���

$ end�final�leader�i�DM�

�������c�
�

atomic� run Assertion���

run Bus�Reset���

���

$ atomic� run Bus�Reset���

C�	 Promela model for � DCM Managers with synchronous communica�
tion

The Promela model of the leader election protocol with � DCMManagers� synchronous communication
between the DCM Managers and tailored to verify �nal leader properties can be obtained from the
model in Appendix C�� with the following UNIX diff code� The other models with synchronous
communication are obtained similarly from the models in Appendices C�� and C����

��d��

�define maxMessages �

��c��

chan chanDM�maxHost � �maxMessages of � mtype� byte �

���

$ chan chanDM�maxHost � �� of � mtype� byte � �� synchronous
 ��

��d�

#

�������d���

do �� empty the queue ��

�� �chanDM�Id ��m�k� � �$ chanDM�Id �m�k��

�� else �$ break�

od�

��
����d���

do �� empty the queue ��

�� �chanDM�Id ��m�k� � �$ chanDM�Id �m�k��

�� else �$ break�

od�

���d���

#

C�
 Promela assertions for � DCM Managers

The properties described in these assertions are explained informally in Section ���� ���� and ���� All
assertions are the same for synchronous or asynchronous communication between the DCM Managers�

Promela assertion� At most one leader

�� ����TO BE VERIFIED�� ��

�� !there is at most one leader"

��

proctype Assertion��

�

assert�

 � �
BusResetPeriod�

C� The input �les for Spin ��

%% �
BusResetDelivery�� �delivery�

%% �
BusResetDelivery�� �delivery�

%% �
BusResetDelivery�� �delivery�

%% � �Local�� �leader %% Local�� �leader�

���Local�� �leader %% Local�� �leader�

���Local�� �leader %% Local�� �leader�

�

�

��

�

Promela assertion� Best 	nal leader

�� ����TO BE VERIFIED�� ��

�� !if a UrlCapable dcm is up� the final leader is

always in UrlCapable mode"

��

proctype Assertion��

�

assert�

 � �
BusResetPeriod�

%% �
BusResetDelivery�� �delivery�

%% �
BusResetDelivery�� �delivery�

%% �
BusResetDelivery�� �delivery�

%% � � �Local�� �fleader %%
Local�� �UrlCapable�

%%� �Global�� �up %% Local�� �UrlCapable�

���Global�� �up %% Local�� �UrlCapable���

��� � �Local�� �fleader %%
Local�� �UrlCapable�

%%� �Global�� �up %% Local�� �UrlCapable�

���Global�� �up %% Local�� �UrlCapable���

��� �Local�� �fleader %%
Local�� �UrlCapable�

%%� �Global�� �up %% Local�� �UrlCapable�

���Global�� �up %% Local�� �UrlCapable����

�

�

��

�

Promela assertion� Same 	nal leader

�� ����TO BE VERIFIED�� ��

�� !if there is a final leader� then everyone agrees on who this is"

��

proctype Assertion��

�

assert�

 � �
BusResetPeriod�

%% �
BusResetDelivery�� �delivery�

%% �
BusResetDelivery�� �delivery�

%% �
BusResetDelivery�� �delivery�

%% � � Local�� �fleader

���Local�� �fleader �� Local�� �fleader�

D� The input �les for C�sar�Ald�ebaran and Xtl ��

�

%%� � Global�� �up

%% Global�� �up

%%�Local�� �Leader
�Local�� �Leader��

��� Global�� �up

%% Global�� �up

%%�Local�� �Leader
�Local�� �Leader��

��� Global�� �up

%% Global�� �up

%%�Local�� �Leader
�Local�� �Leader��

�

�

�

��

�

D The input �les for C	sar
Ald�ebaran and Xtl

D�� ACT�ONE naturals library for � DCM Managers

The library MY�NATURALS�lib contains the naturals modulo �� with the � and � operators� and some boolean
operators�

� type My�Natural is Boolean

� sorts Nat

� opns � ��
 constructor ���

� � ��
 constructor ���

� � ��
 constructor ���

� � ��
 constructor �� � �$ Nat

� ��� �

� ��� � Nat� Nat �$ Nat

	 ���� �

�
 �#$� �

�� �#� �

�� �#�� �

�� �$� �

�� �$�� � Nat� Nat �$ Bool

�� eqns

�� forall m� n � Nat

�� ofsort Nat �� � � � or � � � reaches � again ��

�� m � � � m�

�	 � � m � m�

�
 � � � � ��

�� � � � � ��

�� � � � � ��

�� � � � � ��

�� �� � � � � �� ��

�� �� � � � � �� ��

�� � � � � ��

�� �� � � � � �� ��

�� �� � � � �
� ��

�	 ofsort Nat �� I do not want to give equations for m�n with m#n
 ��

�
 m � � � m�

�� � � � � ��

D� The input �les for C�sar�Ald�ebaran and Xtl ��

�� � � � � ��

�� � � � � ��

�� � � � � ��

�� � � � � ��

�� � � � � ��

�� ofsort Bool

�� � �� � � true�

�	 � �� � � true�

�
 � �� � � true�

�� � �� � � true�

�� � �� � � false�

�� � �� � � false�

�� � �� � � false�

�� � �� � � false�

�� � �� � � false�

�� � �� � � false�

�� � �� � � false�

�	 � �� � � false�

�
 � �� � � false�

�� � �� � � false�

�� � �� � � false�

�� � �� � � false�

�� ofsort Bool

�� m #$ n � not �m �� n��

�� ofsort Bool

�� m # � � false�

�� � # � � true�

�	 � # � � true�

�
 � # � � true�

�� � # � � false�

�� � # � � true�

�� � # � � true�

�� � # � � false�

�� � # � � false�

�� � # � � true�

�� � # � � false�

�� � # � � false�

�	 � # � � false�

�
 ofsort Bool

�� m #� n � �m # n� or �m �� n��

�� ofsort Bool

�� m $� n � not �m # n��

�� ofsort Bool

�� m $ n � not �m #� n��

�� endtype

D�� ACT�ONE data part for � DCM Managers with asynchronous com�
munication

The following data part is tailored towards the situation of three DCMManagers in a setting with asynchronous
communication between the DCM Managers
through a messaging system��

However� the data parts for two DCM Managers� or for a setting with synchronous communication are very
similar to this particular listing�

� library MY�NATURAL endlib

� library X�BOOLEAN endlib

D� The input �les for C�sar�Ald�ebaran and Xtl ��

�
� type Message is BOOLEAN� MY�NATURAL

� sorts Message�� Message�� MesFrame

� opns

� init�leader ��
 constructor ���

� final�leader ��
 constructor ���

	 bus�reset�start ��
 constructor ���

�
 bus�reset�end ��
 constructor ���

�� bus�reset�event ��
 constructor ���

�� power�change ��
 constructor ���

�� GUID�list ��
 constructor ���

�� empty ��
 constructor �� � �$ Message�

��
�� DMInitRequest ��
 constructor ���

�� DMInitReply ��
 constructor �� � �$ Message�

��
�	 ���� � Message�� Message� �$ Bool

�
 �#$� � Message�� Message� �$ Bool

��
�� consm ��
 constructor �� � Message�� Nat� Bool �$ MesFrame

�� mes � MesFrame �$ Message�

�� id � MesFrame �$ Nat

�� UrlCapable � MesFrame �$ Bool

��
�� eqns forall m�m��m�� Message�� n�Nat� b�Bool

��
�	 ofsort Message�

�
 mes�consm�m�n�b�� � m

�� ofsort Nat

�� id�consm�m�n�b�� � n

�� ofsort Bool

�� UrlCapable�consm�m�n�b�� � b�

�� DMInitRequest �� DMInitRequest � true�

�� DMInitReply �� DMInitReply � true�

�� DMInitReply �� DMInitRequest � false�

�� DMInitRequest �� DMInitReply � false�

�	 m� #$ m� � not�m� �� m��

�
 endtype

��
�� type MessageList is Message

�� sorts Buffer

�� opns

�� emptyb ��
 constructor �� � �$ Buffer

�� addb ��
 constructor �� � MesFrame� Buffer �$ Buffer

�� headb � Buffer �$ MesFrame

�� tailb � Buffer �$ Buffer

�	
�
 eqns forall l � Buffer�

�� e � MesFrame

��
�� ofsort MesFrame

�� headb�addb�e�l�� � e

��
�� ofsort Buffer

�� tailb�emptyb� � emptyb�

D� The input �les for C�sar�Ald�ebaran and Xtl ��

�� tailb�addb�e�l�� � l

�	
�
 endtype

��
�� type EnrichedMessageList is MessageList

�� opns

�� append� MesFrame� Buffer �$ Buffer

�� length� Buffer �$ Nat

�� MaxBuf� �$ Nat

�� eqns forall m�m��m�� MesFrame� buf�Buffer

�� ofsort Buffer

�	 append�m�emptyb� � addb�m�emptyb��

�
 append�m��addb�m��buf�� � addb�m��append�m��buf��

�� ofsort Nat

�� length�emptyb� � ��

�� length�addb�m�buf��� � � length�buf��

�� MaxBuf � �

�� endtype

��
�� type Node is BOOLEAN� MY�NATURAL

�� sorts Node

�	 opns

�
 consn ��
 constructor �� � Bool �$ Node

�� up � Node �$ Bool

�� count�up � Node �$ Nat

��
�� eqns forall n�Node� b��b��Bool

�� ofsort Bool

�� up�consn�b��� � b��

�� ofsort Nat

�� up�n� �$ count�up�n� � ��

�	 not�up�n�� �$ count�up�n� � ��

	

	� endtype

	�
	�
	� type NodeTuple is Node

	� sorts Network

	� opns

	� consnet ��
 constructor �� � Node� Node� Node �$ Network

	� firstn � Network �$ Node

		 secondn � Network �$ Node

�

 thirdn � Network �$ Node

�
�
�
� eqns forall l � Network�

�
� n��n��n� � Node

�
�
�
� ofsort Node

�
� firstn�consnet�n��n��n��� � n��

�
� secondn�consnet�n��n��n��� � n��

�
� thirdn�consnet�n��n��n��� � n��

�
	
��

��� endtype

���

D� The input �les for C�sar�Ald�ebaran and Xtl ��

��� type EnrichedNodeTuple is NodeTuple

��� opns

��� nr�uphosts � Network �$ Nat

��� flip � Nat� Network �$ Network

��� i�leader� Network �$ Nat

��� eqns forall n��n��n��n��n��n
� Node

��	 ofsort Network

��
 flip���consnet�n��n��n���

��� � consnet�consn�not�up�n�����n��n���

��� flip���consnet�n��n��n���

��� � consnet�n��consn�not�up�n�����n���

��� flip���consnet�n��n��n���

��� � consnet�n��n��consn�not�up�n������

��� ofsort Nat

��� nr�uphosts�consnet�n��n��n���

��� � count�up�n�� � �count�up�n�� � count�up�n����

��	 up�n�� �$ i�leader�consnet�n��n��n��� � ��

��
 not�up�n��� and up�n�� �$ i�leader�consnet�n��n��n��� � ��

��� not�up�n��� and �not�up�n��� and up�n��� �$

��� i�leader�consnet�n��n��n��� � ��

��� not�up�n��� and �not�up�n��� and not�up�n���� �$

��� i�leader�consnet�n��n��n��� � ��

��� endtype

���
��� type Host is BOOLEAN� MY�NATURAL

��� sorts Host

��	 opns

��
 consh ��
 constructor �� � Nat� Bool� Bool �$ Host

��� id � Host �$ Nat

��� UrlCapable � Host �$ Bool

��� rec�req � Host �$ Bool

���
��� eqns forall n�Nat� b��Bool� b��Bool

��� ofsort Nat

��� id�consh�n�b��b��� � n

��� ofsort Bool

��	 UrlCapable�consh�n�b��b��� � b��

��
 rec�req�consh�n�b��b��� � b�

��� endtype

���
��� type HostList is Host

��� sorts Hosts

��� opns

��� emptyh ��
 constructor �� � �$ Hosts

��� addh ��
 constructor �� � Host� Hosts �$ Hosts

��� headh � Hosts �$ Host

��	 tailh � Hosts �$ Hosts

��

��� eqns forall l � Hosts�

��� e � Host

���
��� ofsort Host

��� headh�addh�e�l�� � e

���
��� ofsort Hosts

D� The input �les for C�sar�Ald�ebaran and Xtl ��

��� tailh�emptyh� � emptyh�

��	 tailh�addh�e�l�� � l

��

��� endtype

���
��� type EnrichedHostList is HostList� EnrichedNodeTuple

��� opns

��� ����� Hosts� Hosts �$ Bool

��� �#$�� Hosts� Hosts �$ Bool

��� init�hosts� Network �$ Hosts

��� chge�rec� Nat� Bool� Hosts �$ Hosts

��	 rec� Nat� Hosts �$ Bool

��
 f�leader� Nat� Hosts �$ Nat

��� eqns forall host�host��host�� Host� hosts�hosts��hosts�� Hosts�

��� n��n��n��Node� n�Nat� b�Bool

��� ofsort Bool

��� emptyh �� emptyh � true�

��� addh�host�hosts� �� emptyh � false�

��� emptyh �� addh�host�hosts� � false�

��� addh�host��hosts�� �� addh�host��hosts��

��� � ��id�host����id�host��� and ��UrlCapable�host�� iff UrlCapable�host���

��	 and ��rec�req�host�� iff rec�req�host��� and �hosts���hosts������

�	
 hosts� #$ hosts� � not�hosts� �� hosts���

�	� ofsort Hosts

�	� not�up�n��� and �not�up�n��� and not�up�n��� � �$

�	� init�hosts�consnet�n��n��n���

�	� � emptyh�

�	� not�up�n��� and �not�up�n��� and up�n�� � �$

�	� init�hosts�consnet�n��n��n���

�	� � addh�consh���false�false��emptyh��

�	� not�up�n��� and �up�n�� and not�up�n��� � �$

�		 init�hosts�consnet�n��n��n���

�

 � addh�consh���false�false��emptyh��

�
� up�n�� and �not�up�n��� and not�up�n��� � �$

�
� init�hosts�consnet�n��n��n���

�
� � addh�consh���false�false��emptyh��

�
� not�up�n��� and �up�n�� and up�n�� � �$

�
� init�hosts�consnet�n��n��n���

�
� � addh�consh���false�false��

�
� addh�consh���false�false��emptyh���

�
� up�n�� and �not�up�n��� and up�n�� � �$

�
	 init�hosts�consnet�n��n��n���

��
 � addh�consh���false�false��

��� addh�consh���false�false��emptyh���

��� up�n�� and �up�n�� and not�up�n��� � �$

��� init�hosts�consnet�n��n��n���

��� � addh�consh���false�false��

��� addh�consh���false�false��emptyh���

��� up�n�� and �up�n�� and up�n�� � �$

��� init�hosts�consnet�n��n��n���

��� � addh�consh���false�false��

��	 addh�consh���false�false��

��
 addh�consh���false�false��emptyh����

��� chge�rec�n�b�emptyh� � emptyh�

��� �n #$ id�host�� �$

D� The input �les for C�sar�Ald�ebaran and Xtl �

��� chge�rec�n�b�addh�host�hosts�� � addh�host�chge�rec�n�b�hosts���

��� �n �� id�host�� �$

��� chge�rec�n�b�addh�host�hosts�� � addh�consh�n�b�true��hosts�

��� ofsort Bool

��� rec�n�emptyh� � true�

��� �n#$id�host�� �$

��	 rec�n�addh�host�hosts�� � rec�n�hosts��

��
 �n��id�host�� �$

��� rec�n�addh�host�hosts�� � rec�req�host�

��� ofsort Nat

��� f�leader�n�emptyh� � n�

��� not�UrlCapable�host�� �$

��� f�leader�n�addh�host�hosts�� � f�leader�n�hosts��

��� UrlCapable�host� �$

��� f�leader�n�addh�host�hosts�� � id�host�

��� endtype

��	

D�� Lotos behaviour part for � DCM Managers with asynchronous com�
munication

� specification leader�election

� �ginfo� gUpDown� gBusReset� gDMin� gDMout� gEvent

� � noexit

�
� behaviour

�
� LE � ginfo� gUpDown� gBusReset� gDMin� gDMout� gEvent

� � consnet�consn�false�� consn�false�� consn�false�� � �� all dcms down ��

	
�
 where

��
�� process LE � gInfo� gUpDown� gBusReset� gDMin� gDMout� gEvent

�� � net�Network �

�� � noexit ��

��
�� � BusReset�gUpDown�gBusReset�gEvent �net�

�� �

��
�	 ��gUpDown� gBusReset �

�

�� � � � DCM�Manager�gInfo�gUpDown�gDMin�gDMout�gEvent

�� ���true�

�� �

�� DCM�Manager�gInfo�gUpDown�gDMin�gDMout�gEvent

�� ���false� �

�� ���

�� � DCM�Manager�gInfo�gUpDown�gDMin�gDMout�gEvent

�� ���true�

�	 �

�
 DCM�Manager�gInfo�gUpDown�gDMin�gDMout�gEvent

�� ���false� �

�� ���

�� � DCM�Manager�gInfo�gUpDown�gDMin�gDMout�gEvent

�� ���true�

D� The input �les for C�sar�Ald�ebaran and Xtl �	

�� �

�� DCM�Manager�gInfo�gUpDown�gDMin�gDMout�gEvent

�� ���false� �

�� �

�	 ��gInfo�gUpDown�gDMin�gDMout �

�
 � � CMM�gInfo�gUpDown�gBusReset ���

�� ��gBusReset �

�� CMM�gInfo�gUpDown�gBusReset ���

�� ��gBusReset �

�� CMM�gInfo�gUpDown�gBusReset ���

�� �

�� ��gUpDown�gBusReset �

�� � MS�gUpDown�gBusReset�gDMout�gDMin ��� �� DM"s out is MS"s in and vv ��

�� ��gBusReset �

�	 MS�gUpDown�gBusReset�gDMout�gDMin ��� �� DM"s out is MS"s in and vv ��

�
 ��gBusReset �

�� MS�gUpDown�gBusReset�gDMout�gDMin ��� �� DM"s out is MS"s in and vv ��

�� �

�� �

�� �

��
�� where

��
�� process BusReset � gUpDown� gBusReset � gEvent

�	 � net� Network �

�

�� � noexit ��

��
�� gBusReset
 bus�reset�start

�� � BusReset��gUpDown�gBusReset�gEvent

�� �net���

��
�� where

��
�	 process BusReset� � gUpDown� gBusReset� gEvent

�
 �net� Network� j�Nat�

��
�� � noexit ��

��
�� � �j���

�� �$ � gBusReset
 bus�reset�end
 net

�� � BusReset�gUpDown�gBusReset�gEvent �net�

�� �

�� �

�	 �

�
 � �j#$�

�� �$ � � gUpDown
 j
 power�change

�� � BusReset��gUpDown�gBusReset�gEvent

�� �flip�j�net��j���

�� �

�� �

�� � i

�� � BusReset��gUpDown�gBusReset�gEvent

�� �net�j���

�	 �

D� The input �les for C�sar�Ald�ebaran and Xtl ��

	
 �

	� �

	� endproc �� BusReset� ��

	�
	� endproc �� BusReset ��

	�
	� process FlushBusReset�gBusReset

	� � noexit ��

	�
		 � gBusReset
 bus�reset�start

�

 � FlushBusReset�gBusReset �

�
� �

�
� � choice b��b��b��Bool

�
� � � gBusReset
 bus�reset�end
 consnet�consn�b���consn�b���consn�b���

�
� � FlushBusReset�gBusReset � �

�
�
�
� endproc �� FlushBusReset ��

�
�
�
� process CMM� gInfo� gUpDown� gBusReset

�
	 � Id� Nat �

��
 � noexit ��

���
��� CMMDown�gInfo�gUpDown�gBusReset �Id�

���
��� where

���
��� process CMMDown� gInfo� gUpDown� gBusReset

��� � Id� Nat �

��� � noexit ��

��	
��
 FlushBusReset�gBusReset

��� �$ � gUpDown
 Id
 power�change

��� � � choice b��b��b��Bool

��� � gBusReset
 bus�reset�end
 consnet�consn�b���consn�b���consn�b���

��� � CMMUp�gInfo�gUpDown�gBusReset

��� �Id�consnet�consn�b���consn�b���consn�b���� � �

��� endproc �� CMMDown ��

���
��� process CMMUp� gInfo� gUpDown� gBusReset

��	 � Id� Nat � net� Network �

��
 � noexit ��

���
��� CMMReady�gInfo�gUpDown�gBusReset �Id�net�

��� �$ � gUpDown
 Id
 power�change

��� � CMMDown�gInfo�gUpDown�gBusReset �Id� �

���
��� where

��� process CMMReady� gInfo� gUpDown� gBusReset

��� � Id� Nat � net� Network �

��	 � noexit ��

��

��� � gInfo
 Id
 GUID�list
 net

��� � CMMReady�gInfo�gUpDown�gBusReset �Id�net� �

��� �

��� � gBusReset
 bus�reset�start

D� The input �les for C�sar�Ald�ebaran and Xtl ��

��� � CMMDeliver�gInfo�gUpDown�gBusReset �Id� �

���
��� endproc �� CMMReady ��

���
��	 process CMMDeliver� gInfo� gUpDown� gBusReset

��
 � Id� Nat �

��� � noexit ��

���
��� � gInfo
 Id
 bus�reset�event

��� � � choice b��b��b��Bool

��� � �gBusReset
 bus�reset�end
 consnet�consn�b���consn�b���consn�b���

��� � CMMReady�gInfo�gUpDown�gBusReset

��� �Id�consnet�consn�b���consn�b���consn�b�������

��� �

��	 � choice b��b��b��Bool

��
 � �gBusReset
 bus�reset�end
 consnet�consn�b���consn�b���consn�b���

��� � CMMDeliver� �gInfo�gUpDown�gBusReset

��� �Id�consnet�consn�b���consn�b���consn�b����

��� �

��� �

��� endproc �� CMMDeliver ��

���
��� process CMMDeliver�� gInfo� gUpDown� gBusReset

��� � Id� Nat � net� Network �

��	 � noexit ��

��

��� � gInfo
 Id
 GUID�list
 net

��� � CMMDeliver��gInfo�gUpDown�gBusReset �Id�net� �

��� �

��� � gInfo
 Id
 bus�reset�event

��� � CMMReady�gInfo�gUpDown�gBusReset �Id�net� �

��� �

��� � gBusReset
 bus�reset�start

��� � CMMDeliver�gInfo�gUpDown�gBusReset �Id� �

��	 endproc �� CMMDeliver� ��

��

��� endproc �� CMMUp ��

���
��� endproc �� CMM ��

���
��� process MS� gUpDown� gBusReset� gin� gout

��� � Id� Nat �

��� � noexit ��

���
��	 MSDown�gUpDown�gBusReset�gin�gout �Id�

�	

�	� where

�	�
�	� process MSDown� gUpDown� gBusReset� gin� gout

�	� � Id� Nat �

�	� � noexit ��

�	�
�	� FlushBusReset�gBusReset

�	� �$ � gUpDown
 Id
 power�change

�		 � MsUp�gUpDown�gBusReset�gin�gout �Id�emptyb� �

D� The input �les for C�sar�Ald�ebaran and Xtl ��

�

�
� endproc �� MSDown ��

�
�
�
� process MSUp� gUpDown� gBusReset� gin� gout

�
� � Id� Nat� buf� Buffer �

�
� � noexit ��

�
�
�
� MSSuspend�gUpDown�gBusReset�gin�gout �Id�buf�

�
� �$ gUpDown
 Id
 power�change

�
	 � MSDown�gUpDown�gBusReset�gin�gout �Id�

��

��� where

���
��� process MSSuspend� gUpDown� gBusReset� gin� gout

��� � Id� Nat� buf� Buffer �

��� � noexit ��

���
��� � gin
 Id
 empty

��� � MSSuspend�gUpDown�gBusReset�gin�gout �Id�emptyb� �

��	 �

��
 � �length�buf�$�

��� �$ � gout
 Id
 headb�buf�

��� � MSSuspend�gUpDown�gBusReset�gin�gout �Id�tailb�buf�� � �

��� �

��� � choice b��b��b��Bool

��� � �gBusReset
 bus�reset�end
 consnet�consn�b���consn�b���consn�b���

��� � MSReady�gUpDown�gBusReset�gin�gout �Id�buf�� �

���
��� endproc �� MSSuspend ��

��	
��
 process MSReady� gUpDown� gBusReset� gin� gout

��� � Id� Nat� buf� Buffer �

��� � noexit ��

���
��� � �length�buf�#maxBuf

��� �$ � choice m�Message��j�Nat�b�Bool

��� � gin
 Id
 consm�m�j�b�

��� � MSReady�gUpDown�gBusReset�gin�gout

��� �Id�append�consm�m�j�b��buf�� � �

��	 �

��
 � gin
 Id
 empty

��� � MSReady�gUpDown�gBusReset�gin�gout �Id�emptyb� �

��� �

��� � �length�buf�$�

��� �$ � gout
 Id
 headb�buf�

��� � MSReady�gUpDown�gBusReset�gin�gout �Id�tailb�buf�� � �

��� �

��� � gBusReset
 bus�reset�start

��� � MSSuspend�gUpDown�gBusReset�gin�gout �Id�buf� �

��	 endproc �� MSReady ��

��

��� endproc �� MSUp ��

���
��� endproc �� MS ��

���

D� The input �les for C�sar�Ald�ebaran and Xtl ��

��� process DCM�Manager� ginfo� gUpDown� gDMin� gDMout� gEvent

��� � Id� Nat � UrlCapable� Bool �

���
��� � noexit ��

��	
��
 downDM�ginfo�gUpDown�gDMin�gDMout�gEvent �Id�UrlCapable�

���
��� where

���
��� process downDM� ginfo� gUpDown� gDMin� gDMout� gEvent

��� � Id� Nat � UrlCapable� Bool �

��� � noexit ��

���
��� stop

��	 �$ �gUpDown
 Id
 power�change �� Disrupt

 ��

��
 � leDM�ginfo�gUpDown�gDMin�gDMout�gEvent

��� �Id�UrlCapable� �

���
��� endproc �� downDM ��

���
��� process leDM� ginfo� gUpDown� gDMin� gDMout� gEvent

��� � Id� Nat � UrlCapable� Bool �

��� � noexit ��

���
��	 � choice b��b��b��Bool

��
 � gInfo
 Id
 GUID�list
 consnet�consn�b���consn�b���consn�b���

��� � � �i�leader�consnet�consn�b���consn�b���consn�b������Id

��� �$ gEvent
 init�leader
 Id

��� � ilDM�gDMin�gDMout�gEvent

��� �Id�UrlCapable�consnet�consn�b���consn�b���consn�b����

��� �

��� �i�leader�consnet�consn�b���consn�b���consn�b����#$Id

��� �$ ifDM�gDMin�gDMout�gEvent

��� �Id�UrlCapable�consnet�consn�b���consn�b���consn�b����

��	 i�leader�consnet�consn�b���consn�b���consn�b�����

�	
 �

�	� �

�	� �$ � � gInfo
 Id
 bus�reset�event �� Disrupt

 ��

�	� � � gDMout
 Id
 empty

�	� � leDM�ginfo�gUpDown�gDMin�gDMout�gEvent �Id�UrlCapable��

�	� �

�	� � gUpDown
 Id
 power�change

�	� � downDM�ginfo�gUpDown�gDMin�gDMout�gEvent �Id�UrlCapable��

�	� �

�		 �

�

 � gUpDown
 Id
 power�change

�
� � downDM�ginfo�gUpDown�gDMin�gDMout�gEvent �Id�UrlCapable��

�
� �

�
� endproc �� leDM ��

�
�
�
� process ifDM� gDMin� gDMout� gEvent

�
� � Id� Nat � UrlCapable� Bool � net� Network � leader� Nat �

�
� � noexit ��

�
�
�
	 DeclareCapability� gDMin� gDMout� gEvent �Id�UrlCapable�leader�

D� The input �les for C�sar�Ald�ebaran and Xtl ��

��

��� �$ � choice j�Nat� b�Bool

��� � gDMin
 Id
 consm�DMInitReply�j�b�

��� � � �j��Id

��� �$ gEvent
 final�leader
 Id
 UrlCapable

��� � flDM�gDMin�gDMout�gEvent

��� �Id�UrlCapable�net�

��� �

��� �j#$Id

��	 �$ ffDM�gDMin�gDMout�gEvent

��
 �Id�UrlCapable�net�j�

��� �

��� �

���
��� where

��� process DeclareCapability� gDMin� gDMout� gEvent

��� � Id�Nat � UrlCapable� Bool � leader� Nat �

��� � noexit ��

��� �gDMout
 leader
 consm�DMInitRequest�Id�UrlCapable�

��	 � DeclareCapability�gDMin�gDMout�gEvent �Id�UrlCapable�leader��

��
 �

��� �choice j�Nat� b�Bool

��� � gDMin
 Id
 consm�DMInitRequest�j�b�

��� � DeclareCapability�gDMin�gDMout�gEvent �Id�UrlCapable�leader��

���
��� endproc �� DeclareCapability ��

��� endproc �� ifDM ��

���
��� process ilDM� gDMin� gDMout� gEvent

��	 � Id� Nat � UrlCapable� Bool � net� Network �

��
 � noexit ��

���
��� Elect�gDMin�gDMout�gEvent

��� �Id�UrlCapable�net�init�hosts�net��nr�uphosts�net��

���
��� where

��� process Elect� gDMin� gDMout� gEvent

��� � Id� Nat � UrlCapable� Bool � net� Network �

��� hosts� Hosts� nr� Nat�

��	 � noexit ��

��
 ��nr���

��� �$ DeclareLeader�gDMin�gDMout�gEvent

��� �Id�UrlCapable�net�hosts�f�leader�Id�chge�rec�Id�UrlCapable�hosts����

��� �

��� ��nr$�

��� �$ � choice m�Message��j�Nat�b�Bool

��� � gDMin
 Id
 consm�m�j�b�

��� � � ��m��DMInitRequest and not�rec�j�hosts��

��� �$ Elect�gDMin�gDMout�gEvent

��	 �Id�UrlCapable�net�chge�rec�j�b�hosts��nr����

��
 �

��� ��m#$DMInitRequest or rec�j�hosts�

��� �$ Elect�gDMin�gDMout�gEvent

��� �Id�UrlCapable�net�hosts�nr��

��� �

D� The input �les for C�sar�Ald�ebaran and Xtl ��

��� ��

��� endproc �� Elect ��

���
��� process DeclareLeader� gDMin� gDMout� gEvent

��	 � Id� Nat � UrlCapable� Bool � net� Network �

��
 hosts� hosts � leader� Nat �

��� � noexit ��

��� ��hosts��emptyh

��� �$ � �leader��Id

��� �$ �gEvent
 final�leader
 Id
 UrlCapable

��� � fliDM�gDMin�gDMout�gEvent

��� �Id�UrlCapable�net��

��� �

��� �leader#$Id

��	 �$ �gDMout
 leader
 consm�DMInitReply�leader�false�

��
 � ffiDM�gDMin�gDMout�gEvent

��� �Id�UrlCapable�net�leader��

��� ��

��� �

��� ��hosts#$emptyh and ��id�headh�hosts����Id�or�id�headh�hosts����leader��

��� �$ DeclareLeader�gDMin�gDMout�gEvent

��� �Id�UrlCapable�net�tailh�hosts��leader��

��� �

��� ��hosts#$emptyh and ��id�headh�hosts��#$Id�and�id�headh�hosts��#$leader��

��	 �$ �gDMout
 id�headh�hosts��
 consm�DMInitReply�leader�false�

�	
 � DeclareLeader�gDMin�gDMout�gEvent

�	� �Id�UrlCapable�net�tailh�hosts��leader���

�	� endproc �� DeclareLeader ��

�	�
�	� endproc �� ilDM ��

�	�
�	� process ffDM� gDMin� gDMout� gEvent

�	� � Id� Nat � UrlCapable� Bool � net� Network � leader� Nat �

�	� � noexit ��

�		
�

 choice m�Message��j�Nat�b�Bool

�
� � gDMin
 Id
 consm�m�j�b�

�
� � ffDM�gDMin�gDMout�gEvent �Id�UrlCapable�net�leader�

�
�
�
� endproc �� flDM ��

�
�
�
� process ffiDM� gDMin� gDMout� gEvent

�
� � Id� Nat � UrlCapable� Bool � net� Network � leader� Nat �

�
� � noexit ��

�
	
��
 � choice m�Message��j�Nat�b�Bool

��� � gDMin
 Id
 consm�m�j�b�

��� � � ��m��DMInitRequest

��� �$ �gDMout
 j
 consm�DMInitReply�leader�false�

��� � ffiDM�gDMin�gDMout�gEvent

��� �Id�UrlCapable�net�leader���

��� �

��� ��m#$DMInitRequest

��� �$ ffiDM�gDMin�gDMout�gEvent

��	 �Id�UrlCapable�net�leader��

D� The input �les for C�sar�Ald�ebaran and Xtl ��

��
 �

��� �

���
��� endproc �� ffiDM ��

���
��� process flDM� gDMin� gDMout� gEvent

��� � Id� Nat � UrlCapable� Bool � net� Network �

��� � noexit ��

���
��	 choice m�Message��j�Nat�b�Bool

��
 � gDMin
 Id
 consm�m�j�b�

��� � flDM�gDMin�gDMout�gEvent �Id�UrlCapable�net�

���
��� endproc �� flDM ��

���
��� process fliDM� gDMin� gDMout� gEvent

��� � Id� Nat � UrlCapable� Bool � net� Network �

��� � noexit ��

���
��	 � choice m�Message��j�Nat�b�Bool

��
 � gDMin
 Id
 consm�m�j�b�

��� � � ��m��DMInitRequest

��� �$ �gDMout
 j
 consm�DMInitReply�Id�false�

��� � fliDM�gDMin�gDMout�gEvent

��� �Id�UrlCapable�net���

��� �

��� ��m#$DMInitRequest

��� �$ fliDM�gDMin�gDMout�gEvent

��� �Id�UrlCapable�net��

��	 �

��
 �

���
��� endproc �� fliDM ��

���
��� endproc �� DCM�Manager ��

���
��� endproc �� LE ��

���
��� endspec �� leader�election ��

D�	 ACTL properties for � DCM Managers with asynchronous communi�
cation

The properties described in these formulas are explained informally in Section ���� ���� ���� and ����

ACTL property� At most one leader

���

�� Libraries used ��

library actl�xtl end�library

���

�� Basic predicates over actions ��

D� The input �les for C�sar�Ald�ebaran and Xtl ��

let

BusResetStart � labelset � EVAL�A� GBUSRESET
	BUS�RESET�START	 ��

BusResetEnd � labelset � EVAL�A� GBUSRESET
	BUS�RESET�END	 � ��

BusResetEvent � labelset � EVAL�A� GINFO �
	BUS�RESET�EVENT	 ��

InitLeader � labelset � EVAL�A� GEVENT
	INIT�LEADER	 � ��

FinalLeader � labelset � EVAL�A� GEVENT
	FINAL�LEADER	 � � �

in let

InitOrFinalLeader � labelset � InitLeader or FinalLeader�

Ignore� � labelset � �not�BusResetEvent or BusResetStart

or Initleader or FinalLeader���

Ignore� � labelset � �not�BusResetStart or BusResetEvent��

in

���

�� Safety properties ��

print �	 Safety properties�	� fby

�� If more than one DCM Manager becomes initial or final leader�

then a busreset event must be pending ��

PRINT�FORM �	&tProperty &n

If more than one DCM Manager becomes initial or final leader�&n

then a bus reset event must be pending � &n	�

Box� BusResetEnd�

AG�A� Ignore��

Box� InitLeader�

AG�A� Ignore��

Box� Initleader�

EU�A�B� true�

Ignore��

BusResetEvent�

true

�

�

�

�

�

�

and

Box� BusResetEnd�

AG�A� Ignore��

Box� Finalleader�

AG�A� Ignore��

Box� InitOrFinalLeader�

EU�A�B� true�

Ignore��

BusResetEvent�

true

�

D� The input �les for C�sar�Ald�ebaran and Xtl �

�

�

�

�

�

�

nop

end�let

end�let

ACTL property� Best 	nal leader

���

�� Libraries used ��

library actl�xtl end�library

���

�� Basic predicates over actions ��

let

ReqUrlCapable � labelset �

EVAL�A � GDMIN � �m�string

where

�m�	CONSM �DMINITREQUEST� �� TRUE�	�

or

�m�	CONSM �DMINITREQUEST� �� TRUE�	�

or

�m�	CONSM �DMINITREQUEST� �� TRUE�	�

�

or

EVAL�A � GDMOUT � �m�string

where

�m�	CONSM �DMINITREQUEST� �� TRUE�	�

or

�m�	CONSM �DMINITREQUEST� �� TRUE�	�

or

�m�	CONSM �DMINITREQUEST� �� TRUE�	�

��

BusResetStart � labelset � EVAL�A� GBUSRESET
	BUS�RESET�START	 ��

BusResetEnd � labelset � EVAL�A� GBUSRESET
	BUS�RESET�END	 � ��

BusResetEvent � labelset � EVAL�A� GINFO �
	BUS�RESET�EVENT	 ��

FinalLeader � labelset � EVAL�A� GEVENT
	FINAL�LEADER	 � � ��

FLNotUrlCapable � labelset � EVAL�A� GEVENT
	FINAL�LEADER	 � �b�boolean

where not�b� �

in let

Ignore� � labelset � �not�BusResetEvent or BusResetStart or BusResetEnd

or FinalLeader���

Ignore� � labelset � �not�BusResetStart or BusResetEvent��

D� The input �les for C�sar�Ald�ebaran and Xtl �	

in

���

�� Safety properties ��

print �	 Safety properties�	� fby

�� If a DCM Manager becomes final leader in not UrlCapable mode�

and there were InitRequests with UrlCapable�true

then a busreset event must be pending ��

PRINT�FORM �	&tProperty &n

If a DCM Manager becomes final leader in not UrlCapable mode� &n

and there were InitRequests with UrlCapable�true &n

then a bus reset event must be pending � 	�

Box� ReqUrlCapable�

AG�A� Ignore��

Box� FLNotUrlCapable�

EU�A�B� true�

Ignore��

BusResetEvent�

true

�

�

�

�

�

nop

end�let

end�let

ACTL property� Same 	nal leader

���

�� Libraries used ��

library actl�xtl end�library

���

�� Maximum number of DCM Managers ��

def N �� � integer � � end�def

���

�� Basic predicates over actions ��

macro InitReplj �j� �

if �j���

then � EVAL�A � GDMOUT � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

D� The input �les for C�sar�Ald�ebaran and Xtl ��

� or

� EVAL�A � GDMIN � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

�

else�if �j���

then � EVAL�A � GDMOUT � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

� or

� EVAL�A � GDMIN � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

�

else �� �j��� ��

� EVAL�A � GDMOUT � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

� or

� EVAL�A � GDMIN � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

�

end�if

end�macro

macro InitReplnotj �j� �

if �j���

then � EVAL�A � GDMOUT � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

or

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

� or

� EVAL�A � GDMIN � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

or

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

�

else�if �j���

then � EVAL�A � GDMOUT � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

or

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

� or

� EVAL�A � GDMIN � � m�string

D� The input �les for C�sar�Ald�ebaran and Xtl ��

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

or

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

�

else �� �j��� ��

� EVAL�A � GDMOUT � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

or

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

� or

� EVAL�A � GDMIN � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

or

�m�	CONSM �DMINITREPLY� �� FALSE�	�

�

�

end�if

end�macro

macro FinalLeaderj �j� � EVAL�A� GEVENT
	FINAL�LEADER	 �n�integer �

where �n�j��

end�macro

macro FinalLeadernotj �j� � EVAL�A� GEVENT
	FINAL�LEADER	 �n�integer �

where �n#$j��

end�macro

macro IRorFLj�j� � InitReplj�j� or FinalLeaderj�j� end�macro

macro IRorFLnotj�j� � InitReplnotj�j� or FinalLeadernotj�j� end�macro

let

InitReply � labelset

� EVAL�A � GDMOUT � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

or

�m�	CONSM �DMINITREPLY� �� FALSE�	�

or

�m�	CONSM �DMINITREPLY� �� FALSE�	�

or

�m�	CONSM �DMINITREPLY� �� TRUE�	�

or

�m�	CONSM �DMINITREPLY� �� TRUE�	�

or

�m�	CONSM �DMINITREPLY� �� TRUE�	�

�

or

EVAL�A � GDMIN � � m�string

where

�m�	CONSM �DMINITREPLY� �� FALSE�	�

or

�m�	CONSM �DMINITREPLY� �� FALSE�	�

D� The input �les for C�sar�Ald�ebaran and Xtl ��

or

�m�	CONSM �DMINITREPLY� �� FALSE�	�

or

�m�	CONSM �DMINITREPLY� �� TRUE�	�

or

�m�	CONSM �DMINITREPLY� �� TRUE�	�

or

�m�	CONSM �DMINITREPLY� �� TRUE�	�

��

BusResetStart � labelset � EVAL�A �GBUSRESET
	BUS�RESET�START	��

BusResetEnd � labelset � EVAL�A �GBUSRESET
	BUS�RESET�END	 ���

BusResetEvent � labelset � EVAL�A �GINFO �
	BUS�RESET�EVENT	 ��

FinalLeader � labelset � EVAL�A �GEVENT
	FINAL�LEADER	 � ��

in let

Ignore� � labelset � not� BusResetEvent or BusResetStart or BusResetEnd

or InitReply or FinalLeader ��

Ignore� � labelset � not� BusResetEvent or BusResetStart or BusResetEnd �

in

���

�� Safety properties ��

print �	&n Safety properties�&n&n	� fby

PRINT�FORM �	&tProperty &n

If init replies�leader events carry a different Leader Id&n

then a bus reset event must be pending �&n 	�

forall j� integer among �� ��� N� in

Box� IRorFLj�j��

AG�A� Ignore��

Box� IRorFLnotj�j��

EU�A�B� true�

Ignore��

BusResetEvent�

true

�

�

�

�

end�forall

�

nop

end�let

end�let

ACTL property� Eventually 	nal leader

���

�� Libraries used ��

library actl�xtl end�library

D� The input �les for C�sar�Ald�ebaran and Xtl ��

���

�� Basic predicates over actions ��

let

FinalLeader � labelset � EVAL�A �GEVENT
	FINAL�LEADER	 � ���

BusResetStart � labelset � EVAL�A �GBUSRESET
	BUS�RESET�START	��

InfoGUIDlist � labelset � EVAL�A �GINFO �
	GUID�LIST	 ��

in let

Ignore � labelset � not�BusResetStart or FinalLeader�

in

���

�� Liveness properties ��

print �	 Liveness properties�&n&n	� fby

�� AlwaysFinalLeaderIfOneDMUpAndNotBusResetStart ��

print �	&tProperty !Always Final Leader If One DM Up And Not BusResetStart" � 	� fby

PRINT�FORM�

Box� InfoGUIDlist�

EU�A�B� true�

Ignore�

FinalLeader�

true

�

�

�

nop

end�let

end�let

D�
 Lotos behaviour for � DCM Managers with synchronous communica�
tion

This Lotos behaviour model uses the library listed in Appendix D��� and a data part very similar to the listing
in Appendix D��
it can be obtained from the latter by deleting the MesFrame and Buffer de�nitions��

� specification leader�election

� �gInfo� gUpDown� gBusReset� gDM� gEvent

� � noexit

�
� behaviour

�
� LE � gInfo� gUpDown� gBusReset� gDM� gEvent

� � consnet�consn�false�� consn�false�� consn�false�� � �� all dcms down ��

	
�
 where

��
�� process LE � gInfo� gUpDown� gBusReset� gDM� gEvent

D� The input �les for C�sar�Ald�ebaran and Xtl ��

�� � net�Network �

�� � noexit ��

��
�� � BusReset�gUpDown�gBusReset�gEvent �net�

�� �

��
�	 ��gUpDown� gBusReset �

�

�� � � � � DCM�Manager�gInfo�gUpDown�gDM�gEvent

�� ���true�

�� �

�� DCM�Manager�gInfo�gUpDown�gDM�gEvent

�� ���false� �

�� ���

�� OtherCommunications�gDM ��� �

�� ��gDM �

�	 � � DCM�Manager�gInfo�gUpDown�gDM�gEvent

�
 ���true�

�� �

�� DCM�Manager�gInfo�gUpDown�gDM�gEvent

�� ���false� �

�� ���

�� OtherCommunications�gDM ��� �

�� ��gDM �

�� � � DCM�Manager�gInfo�gUpDown�gDM�gEvent

�� ���true�

�	 �

�
 DCM�Manager�gInfo�gUpDown�gDM�gEvent

�� ���false� �

�� ���

�� OtherCommunications�gDM ��� �

�� �

�� ��gInfo�gUpDown �

�� � � CMM�gInfo�gUpDown�gBusReset ���

�� ��gBusReset �

�� CMM�gInfo�gUpDown�gBusReset ���

�	 ��gBusReset �

�
 CMM�gInfo�gUpDown�gBusReset ���

�� �

�� �

�� �

��
�� where

��
�� process BusReset � gUpDown� gBusReset � gEvent

�� � net� Network �

�	
�
 � noexit ��

��
�� gBusReset
 bus�reset�start

�� � BusReset��gUpDown�gBusReset�gEvent

�� �net���

��
�� where

��

D� The input �les for C�sar�Ald�ebaran and Xtl ��

�� process BusReset� � gUpDown� gBusReset� gEvent

�	 �net� Network� j�Nat�

�

�� � noexit ��

��
�� � �j���

�� �$ � gBusReset
 bus�reset�end
 net

�� � BusReset�gUpDown�gBusReset�gEvent �net�

�� �

�� �

�� �

�	 � �j#$�

�
 �$ � � gUpDown
 j
 power�change

�� � BusReset��gUpDown�gBusReset�gEvent

�� �flip�j�net��j���

�� �

�� �

�� � i

�� � BusReset��gUpDown�gBusReset�gEvent

�� �net�j���

�� �

�	 �

	
 �

	� endproc �� BusReset� ��

	�
	� endproc �� BusReset ��

	�
	� process FlushBusReset�gBusReset

	� � noexit ��

	�
	� � gBusReset
 bus�reset�start

		 � FlushBusReset�gBusReset �

�

 �

�
� � choice b��b��b��Bool

�
� � � gBusReset
 bus�reset�end
 consnet�consn�b���consn�b���consn�b���

�
� � FlushBusReset�gBusReset � �

�
�
�
� endproc �� FlushBusReset ��

�
�
�
� process CMM� gInfo� gUpDown� gBusReset

�
� � Id� Nat �

�
	 � noexit ��

��

��� CMMDown�gInfo�gUpDown�gBusReset �Id�

���
��� where

���
��� process CMMDown� gInfo� gUpDown� gBusReset

��� � Id� Nat �

��� � noexit ��

���
��	 FlushBusReset�gBusReset

��
 �$ � gUpDown
 Id
 power�change

��� � � choice b��b��b��Bool

��� � gBusReset
 bus�reset�end
 consnet�consn�b���consn�b���consn�b���

D� The input �les for C�sar�Ald�ebaran and Xtl ��

��� � CMMUp�gInfo�gUpDown�gBusReset

��� �Id�consnet�consn�b���consn�b���consn�b���� � �

��� endproc �� CMMDown ��

���
��� process CMMUp� gInfo� gUpDown� gBusReset

��� � Id� Nat � net� Network �

��	 � noexit ��

��

��� CMMReady�gInfo�gUpDown�gBusReset �Id�net�

��� �$ � gUpDown
 Id
 power�change

��� � CMMDown�gInfo�gUpDown�gBusReset �Id� �

���
��� where

��� process CMMReady� gInfo� gUpDown� gBusReset

��� � Id� Nat � net� Network �

��� � noexit ��

��	
��
 � gInfo
 Id
 GUID�list
 net

��� � CMMReady�gInfo�gUpDown�gBusReset �Id�net� �

��� �

��� � gBusReset
 bus�reset�start

��� � CMMDeliver�gInfo�gUpDown�gBusReset �Id� �

���
��� endproc �� CMMReady ��

���
��� process CMMDeliver� gInfo� gUpDown� gBusReset

��	 � Id� Nat �

��
 � noexit ��

���
��� � gInfo
 Id
 bus�reset�event

��� � � choice b��b��b��Bool

��� � �gBusReset
 bus�reset�end
 consnet�consn�b���consn�b���consn�b���

��� � CMMReady�gInfo�gUpDown�gBusReset

��� �Id�consnet�consn�b���consn�b���consn�b�������

��� �

��� � choice b��b��b��Bool

��	 � �gBusReset
 bus�reset�end
 consnet�consn�b���consn�b���consn�b���

��
 � CMMDeliver� �gInfo�gUpDown�gBusReset

��� �Id�consnet�consn�b���consn�b���consn�b����

��� �

��� �

��� endproc �� CMMDeliver ��

���
��� process CMMDeliver�� gInfo� gUpDown� gBusReset

��� � Id� Nat � net� Network �

��� � noexit ��

��	
��
 � gInfo
 Id
 GUID�list
 net

��� � CMMDeliver��gInfo�gUpDown�gBusReset �Id�net� �

��� �

��� � gInfo
 Id
 bus�reset�event

��� � CMMReady�gInfo�gUpDown�gBusReset �Id�net� �

��� �

��� � gBusReset
 bus�reset�start

��� � CMMDeliver�gInfo�gUpDown�gBusReset �Id� �

D� The input �les for C�sar�Ald�ebaran and Xtl ��

��� endproc �� CMMDeliver� ��

��	
��
 endproc �� CMMUp ��

���
��� endproc �� CMM ��

���
��� process OtherCommunications� gDM

��� � Id� Nat �

��� � noexit ��

���
��� � gDM � j�Nat � k�Nat
 DMInitRequest � b�Bool

��	 ��j#$Id� and �j#$�� and �k#$Id� and �k#$��

�	
 � OtherCommunications �gDM �Id��

�	� �

�	� � gDM � j�Nat � k�Nat
 DMInitReply � l�Nat

�	� ��j#$Id� and �j#$�� and �k#$Id� and �k#$�� and �l#$��

�	� � OtherCommunications �gDM �Id��

�	�
�	� endproc �� OtherCommunications ��

�	�
�	� process DCM�Manager� gInfo� gUpDown� gDM� gEvent

�		 � Id� Nat � UrlCapable� Bool �

�

 � noexit ��

�
�
�
� downDM�gInfo�gUpDown�gDM�gEvent �Id�UrlCapable�

�
�
�
� where

�
�
�
� process downDM� gInfo� gUpDown� gDM� gEvent

�
� � Id� Nat � UrlCapable� Bool �

�
� � noexit ��

�
	
��
 stop

��� �$ �gUpDown
 Id
 power�change �� Disrupt

 ��

��� � leDM�gInfo�gUpDown�gDM�gEvent

��� �Id�UrlCapable� �

���
��� endproc �� downDM ��

���
��� process leDM� gInfo� gUpDown� gDM� gEvent

��� � Id� Nat � UrlCapable� Bool �

��	 � noexit ��

��

��� � choice b��b��b��Bool

��� � let net�Network�consnet�consn�b���consn�b���consn�b���

��� in � gInfo
 Id
 GUID�list
 net

��� � � �i�leader�net���Id

��� �$ gEvent
 init�leader
 Id

��� � ilDM�gDM�gEvent �Id�UrlCapable�net�

��� �

��� �i�leader�net�#$Id

��	 �$ ifDM�gDM�gEvent

��
 �Id�UrlCapable�net�i�leader�net��

��� �

��� �

D� The input �les for C�sar�Ald�ebaran and Xtl �

��� �

��� �$ � � gInfo
 Id
 bus�reset�event �� Disrupt

 ��

��� � leDM�gInfo�gUpDown�gDM�gEvent �Id�UrlCapable��

��� �

��� � gUpDown
 Id
 power�change

��� � downDM�gInfo�gUpDown�gDM�gEvent �Id�UrlCapable��

��	 �

��
 endproc �� leDM ��

���
��� process ifDM� gDM� gEvent

��� � Id� Nat � UrlCapable� Bool � net� Network � leader� Nat �

��� � noexit ��

���
��� DeclareCapability� gDM� gEvent �Id�UrlCapable�leader�

���
��� �$ � gDM
 Id
 leader
 DMInitReply � j�Nat�j#$�

��	 � � �j��Id

��
 �$ � gEvent
 final�leader
 Id
 UrlCapable

��� � flDM�gDM�gEvent �Id�UrlCapable�net� �

��� �

��� �j#$Id

��� �$ ffDM�gDM�gEvent �Id�UrlCapable�net�j�

��� �

��� �

���
��� where

��	 process DeclareCapability� gDM� gEvent

��
 � Id�Nat � UrlCapable� Bool � leader� Nat �

��� � noexit ��

���
��� � gDM
 leader
 Id
 DMInitRequest
 UrlCapable

��� � DeclareCapability�gDM�gEvent �Id�UrlCapable�leader��

��� �

��� � gDM
 Id � k�Nat
 DMInitRequest � b�Bool

��� ��k#$Id� and �k#$��

��� � DeclareCapability�gDM�gEvent �Id�UrlCapable�leader��

��	
��
 endproc �� DeclareCapability ��

��� endproc �� ifDM ��

���
��� process ilDM� gDM� gEvent

��� � Id� Nat � UrlCapable� Bool � net� Network �

��� � noexit ��

���
��� Elect�gDM�gEvent

��� �Id�UrlCapable�net�init�hosts�net��nr�uphosts�net��

��	
��
 where

��� process Elect� gDM� gEvent

��� � Id� Nat � UrlCapable� Bool � net� Network �

��� hosts� Hosts� nr� Nat�

��� � noexit ��

��� ��nr���

��� �$ DeclareLeader�gDM�gEvent

��� �Id�UrlCapable�net�hosts�f�leader�Id�chge�rec�Id�UrlCapable�hosts����

D� The input �les for C�sar�Ald�ebaran and Xtl �	

��� �

��	 ��nr$�

�	
 �$ � gDM
 Id � j�Nat
 DMInitRequest � b�Bool

�	� ��j#$Id� and �j#$��

�	� � � �not�rec�j�hosts��

�	� �$ Elect�gDM�gEvent

�	� �Id�UrlCapable�net�chge�rec�j�b�hosts��nr���

�	� �

�	� �rec�j�hosts�

�	� �$ Elect�gDM�gEvent

�	� �Id�UrlCapable�net�hosts�nr�

�		 �

�

 �

�
� �

�
� �

�
� � gDM
 Id � k�Nat
 DMInitReply � l�Nat

�
� ��k#$Id� and �k#$�� and �l#$��

�
� � Elect�gDM�gEvent �Id�UrlCapable�net�hosts�nr��

�
� endproc �� Elect ��

�
�
�
� process DeclareLeader� gDM� gEvent

�
	 � Id� Nat � UrlCapable� Bool � net� Network �

��
 hosts� hosts � leader� Nat �

��� � noexit ��

��� ��hosts��emptyh

��� �$ � �leader��Id

��� �$ �gEvent
 final�leader
 Id
 UrlCapable

��� � fliDM�gDM�gEvent

��� �Id�UrlCapable�net��

��� �

��� �leader#$Id

��	 �$ �gDM
 leader
 Id
 DMInitReply
 leader

��
 � ffiDM�gDM�gEvent

��� �Id�UrlCapable�net�leader��

��� ��

��� �

��� ��hosts#$emptyh and ��id�headh�hosts����Id�or�id�headh�hosts����leader��

��� �$ DeclareLeader�gDM�gEvent

��� �Id�UrlCapable�net�tailh�hosts��leader��

��� �

��� ��hosts#$emptyh and ��id�headh�hosts��#$Id�and�id�headh�hosts��#$leader��

��	 �$ �gDM
 id�headh�hosts��
 Id
 DMInitReply
 leader

��
 � DeclareLeader�gDM�gEvent

��� �Id�UrlCapable�net�tailh�hosts��leader���

��� endproc �� DeclareLeader ��

���
��� endproc �� ilDM ��

���
��� process ffDM� gDM� gEvent

��� � Id� Nat � UrlCapable� Bool � net� Network � leader� Nat �

��� � noexit ��

��	
��
 � gDM
 Id � k�Nat
 DMInitRequest � b�Bool

��� ��k#$Id� and �k#$��

��� � ffDM�gDM�gEvent �Id�UrlCapable�net�leader��

D� The input �les for C�sar�Ald�ebaran and Xtl ��

��� �

��� � gDM
 Id � k�Nat
 DMInitReply � l�Nat

��� ��k#$Id� and �k#$�� and �l#$��

��� � ffDM�gDM�gEvent �Id�UrlCapable�net�leader��

���
��� endproc �� flDM ��

��	
��
 process ffiDM� gDM� gEvent

��� � Id� Nat � UrlCapable� Bool � net� Network � leader� Nat �

��� � noexit ��

���
��� � gDM
 Id � j�Nat
 DMInitRequest � b�Bool

��� �j#$Id and �j#$��

��� � � gDM
 j
 Id
 DMInitReply
 leader

��� � ffiDM�gDM�gEvent �Id�UrlCapable�net�leader���

��� �

��	 � gDM
 Id � k�Nat
 DMInitReply � l�Nat

��
 ��k#$Id� and �k#$�� and �l#$��

��� � ffiDM�gDM�gEvent �Id�UrlCapable�net�leader��

���
��� endproc �� ffiDM ��

���
��� process flDM� gDM� gEvent

��� � Id� Nat � UrlCapable� Bool � net� Network �

��� � noexit ��

���
��	 � gDM
 Id � k�Nat
 DMInitRequest � b�Bool

��
 ��k#$Id� and �k#$��

��� � flDM�gDM�gEvent �Id�UrlCapable�net��

��� �

��� � gDM
 Id � k�Nat
 DMInitReply � l�Nat

��� ��k#$Id� and �k#$�� and �l#$��

��� � flDM�gDM�gEvent �Id�UrlCapable�net��

���
��� endproc �� flDM ��

���
��	 process fliDM� gDM� gEvent

��
 � Id� Nat � UrlCapable� Bool � net� Network �

��� � noexit ��

���
��� � gDM
 Id � j�Nat
 DMInitRequest � b�Bool

��� �j#$Id and�j#$��

��� � � gDM
 j
Id
 DMInitReply
 Id

��� � fliDM�gDM�gEvent �Id�UrlCapable�net���

��� �

��� � gDM
 Id � k�Nat
 DMInitReply � l�Nat

��	 ��k#$Id� and �k#$�� and �l#$��

�	
 � fliDM�gDM�gEvent �Id�UrlCapable�net��

�	�
�	� endproc �� fliDM ��

�	�
�	� endproc �� DCM�Manager ��

�	�
�	� endproc �� LE ��

�	�

D� The input �les for C�sar�Ald�ebaran and Xtl ��

�	� endspec �� leader�election ��

D�� ACTL properties for � DCM Managers with synchronous communi�
cation

The properties described in these formulas are explained informally in Section ���� ���� ���� and ����

ACTL property� At most one leader

���

�� Libraries used ��

library actl�xtl end�library

���

�� Basic predicates over actions ��

let

BusResetStart � labelset � EVAL�A� GBUSRESET
	BUS�RESET�START	 ��

BusResetEnd � labelset � EVAL�A� GBUSRESET
	BUS�RESET�END	 � ��

BusResetEvent � labelset � EVAL�A� GINFO �
	BUS�RESET�EVENT	 ��

InitLeader � labelset � EVAL�A� GEVENT
	INIT�LEADER	 � ��

FinalLeader � labelset � EVAL�A� GEVENT
	FINAL�LEADER	 � � �

in let

InitOrFinalLeader � labelset � InitLeader or FinalLeader�

Ignore� � labelset � �not�BusResetEvent or BusResetStart

or Initleader or FinalLeader���

Ignore� � labelset � �not�BusResetStart or BusResetEvent��

in

���

�� Safety properties ��

print �	 Safety properties�	� fby

�� If more than one DCM Manager becomes initial or final leader�

then a busreset event must be pending ��

PRINT�FORM �	&tProperty &n

If more than one DCM Manager becomes initial or final leader�&n

then a bus reset event must be pending � &n	�

Box� BusResetEnd�

AG�A� Ignore��

Box� InitLeader�

AG�A� Ignore��

Box� Initleader�

EU�A�B� true�

Ignore��

BusResetEvent�

true

D� The input �les for C�sar�Ald�ebaran and Xtl ��

�

�

�

�

�

�

and

Box� BusResetEnd�

AG�A� Ignore��

Box� Finalleader�

AG�A� Ignore��

Box� InitOrFinalLeader�

EU�A�B� true�

Ignore��

BusResetEvent�

true

�

�

�

�

�

�

�

nop

end�let

end�let

ACTL property� Best 	nal leader

���

�� Libraries used ��

library actl�xtl end�library

���

�� Basic predicates over actions ��

let

ReqUrlCapable � labelset �

EVAL�A � GDM � �
	DMINITREQUEST	 �b�boolean

where �b� ��

BusResetStart � labelset � EVAL�A� GBUSRESET
	BUS�RESET�START	 ��

BusResetEnd � labelset � EVAL�A� GBUSRESET
	BUS�RESET�END	 � ��

BusResetEvent � labelset � EVAL�A� GINFO �
	BUS�RESET�EVENT	 ��

FinalLeader � labelset � EVAL�A� GEVENT
	FINAL�LEADER	 � � ��

FLNotUrlCapable � labelset � EVAL�A� GEVENT
	FINAL�LEADER	 � �b�boolean

where not�b� �

in let

Ignore� � labelset � �not�BusResetEvent or BusResetStart or BusResetEnd

or FinalLeader���

D� The input �les for C�sar�Ald�ebaran and Xtl ��

Ignore� � labelset � �not�BusResetStart or BusResetEvent��

in

���

�� Safety properties ��

print �	 Safety properties�	� fby

�� If a DCM Manager becomes final leader in not UrlCapable mode�

and there were InitRequests with UrlCapable�true

then a busreset event must be pending ��

PRINT�FORM �	&tProperty &n

If a DCM Manager becomes final leader in not UrlCapable mode� &n

and there were InitRequests with UrlCapable�true &n

then a bus reset event must be pending � 	�

Box� ReqUrlCapable�

AG�A� Ignore��

Box� FLNotUrlCapable�

EU�A�B� true�

Ignore��

BusResetEvent�

true

�

�

�

�

�

nop

end�let

end�let

ACTL property� Same 	nal leader

���

�� Libraries used ��

library actl�xtl end�library

���

�� Maximum number of DCM Managers ��

def N �� � integer � � end�def

���

�� Basic predicates over actions ��

macro InitReplyj �j� � EVAL�A � GDM � �
	DMINITREPLY	 �n�integer

where �n�j��

end�macro

macro InitReplynotj �j� � EVAL�A � GDM � �
	DMINITREPLY	 �n�integer

D� The input �les for C�sar�Ald�ebaran and Xtl ��

where �n#$j��

end�macro

macro FinalLeaderj �j� � EVAL�A� GEVENT
	FINAL�LEADER	 �n�integer �

where �n�j��

end�macro

macro FinalLeadernotj �j� � EVAL�A� GEVENT
	FINAL�LEADER	 �n�integer �

where �n#$j��

end�macro

macro IRorFLj�j� � InitReplyj�j� or FinalLeaderj�j� end�macro

macro IRorFLnotj�j� � InitReplynotj�j� or FinalLeadernotj�j� end�macro

let

InitReply � labelset � EVAL�A �GDM � �
	DMINITREPLY	 ���

BusResetStart � labelset � EVAL�A �GBUSRESET
	BUS�RESET�START	��

BusResetEnd � labelset � EVAL�A �GBUSRESET
	BUS�RESET�END	 ���

BusResetEvent � labelset � EVAL�A �GINFO �
	BUS�RESET�EVENT	 ��

FinalLeader � labelset � EVAL�A �GEVENT
	FINAL�LEADER	 � ��

in let

Ignore� � labelset � not� BusResetEvent or BusResetStart or BusResetEnd

or InitReply or FinalLeader ��

Ignore� � labelset � not� BusResetEvent or BusResetStart or BusResetEnd �

in

���

�� Safety properties ��

print �	&n Safety properties�&n&n	� fby

�� Between bus resets� at most � leader ��

PRINT�FORM �	&tProperty &n

Between BusReset Periods all init replies�leader events carry&n

the same Leader Id �&n 	�

forall j� integer among �� ��� N� in

Box� IRorFLj�j��

AG�A� Ignore��

Box�IRorFLnotj�j��

EU�A�B� true�

Ignore��

BusResetEvent�

true

�

�

�

�

end�forall

�

nop

end�let

end�let

D� The input �les for C�sar�Ald�ebaran and Xtl ��

ACTL property� Eventually 	nal leader

���

�� Libraries used ��

library actl�xtl end�library

���

�� Basic predicates over actions ��

let

FinalLeader � labelset � EVAL�A �GEVENT
	FINAL�LEADER	 � ���

BusResetStart � labelset � EVAL�A �GBUSRESET
	BUS�RESET�START	��

InfoGUIDlist � labelset � EVAL�A �GINFO �
	GUID�LIST	 ��

in let

Ignore � labelset � not�BusResetStart or FinalLeader�

in

���

�� Liveness properties ��

print �	 Liveness properties�&n&n	� fby

�� AlwaysFinalLeaderIfOneDMUpAndNotBusResetStart ��

print �	&tProperty !Always Final Leader If One DM Up And Not BusResetStart" � 	� fby

PRINT�FORM�

Box� InfoGUIDlist�

EU�A�B� true�

Ignore�

FinalLeader�

true

�

�

�

nop

end�let

end�let

