
IS
S

N
 0

24
9-

63
99

IS
R

N
 IN

R
IA

/R
R

--
42

22
--

F
R

+
E

N
G

ap por t

de r ech er ch e

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Specification and Verification of a
Dynamic Reconfiguration Protocol for

Agent-Based Applications

Manuel Aguilar Cornejo — Hubert Garavel — Radu Mateescu — No¨el de Palma

N° 4222

Juillet 2001

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38330 Montbonnot-St-Martin (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Specification and Verification of a

Dynamic Reconfiguration Protocol for

Agent-Based Applications

Manuel Aguilar Cornejo∗ , Hubert Garavel† , Radu Mateescu‡ ,

Noël de Palma§

Thème 1 — Réseaux et systèmes
Projet VASY

Rapport de recherche n
�

4222 — Juillet 2001 — 32 pages

Abstract: Dynamic reconfiguration increases the availability of distributed applications
by allowing them to evolve at run-time. This report deals with the formal specification
and model-checking verification of a dynamic reconfiguration protocol used in industrial
agent-based applications. Starting from a reference implementation in Java, we produced a
specification of the protocol using the Formal Description Technique Lotos. We also spec-
ified a set of temporal logic formulas characterizing the correct behaviour of each protocol
primitive. Finally, we studied various finite state configurations of the protocol, on which
we verified these requirements using the Cadp protocol engineering tool set.

Key-words: compositional verification, distributed application, dynamic reconfiguration,
Lotos, mobile agent, model-checking, specification, temporal logic

A short version of this report is available as “Specification and Verification of a Dynamic Reconfigura-
tion Protocol for Agent-Based Applications”, in Aleksander Laurentowski, editor, Proceedings of the Third
IFIP WG 6.1 International Working Conference on Distributed Applications and Interoperable Systems
DAIS’2001 (Krakow, Poland), September 17–19, 2001.

∗ Manuel.Aguilar@imag.fr
† Hubert.Garavel@inria.fr
‡ Radu.Mateescu@inria.fr
§ Noel.De-Palma@inria.fr

Spécification et vérification d’un protocole de

reconfiguration dynamique d’applications

à base d’agents mobiles

Résumé : La reconfiguration dynamique augmente la disponibilité des applications
réparties en leur permettant d’évoluer pendant l’exécution. Ce rapport concerne la
spécification formelle et la vérification énumérative d’un protocole de reconfiguration dy-
namique utilisé dans des applications industrielles à base d’agents mobiles. Sur la base
d’une implémentation de référence en Java, nous avons produit une spécification du proto-
cole en utilisant la technique de description formelle Lotos. Nous avons également spécifié
un ensemble de formules de logique temporelle caractérisant le comportement correct de
chaque primitive du protocole. Finalement, nous avons étudié différentes configurations du
protocole ayant un nombre fini d’états, sur lesquelles nous avons vérifié ces formules au
moyen de la bôıte à outils Cadp pour l’ingénierie des protocoles.

Mots-clés : agent mobile, application distribuée, logique temporelle, Lotos, reconfigu-
ration dynamique, spécification, vérification énumérative, vérification compositionnelle

Specification and Verification of a Dynamic Reconfiguration Protocol 3

1 Introduction

As computing resources become decentralized, the development of distributed applications
receives increasing attention from the software engineering community. These applications
are often complex and must satisfy strong reliability and availability constraints. To avoid
stopping an entire distributed application for maintenance operations (e.g., repair, upgrade,
etc.), it is essential to provide mechanisms allowing distributed applications to be recon-
figured at run-time. Such mechanisms should ensure a proper functioning of the appli-
cation regardless of run-time changes (e.g., creation or deletion of agents, replacement of
agents, migration of agents across execution sites, modification of communication routes,
etc). Moreover, these mechanisms should not induce heavy penalties on applications during
maintenance operations.

Dynamic reconfiguration has been studied and implemented in various middlewares,
such as Conic [KM89], Argus [BD93], and Polylith [Pur94]. In some approaches, e.g.,
Polylith, dynamic reconfiguration is part of the applications developed on top of the mid-
dleware, thus transferring to application developers the responsibility to ensure consistency
after reconfiguration. In other approaches, e.g., Conic and Argus, the middleware is ex-
tended with (application-independent) dynamic reconfiguration features.

This report studies the protocol for dynamic reconfiguration of agent-based applications
defined in [PBR99], which follows the latter approach. This protocol has been implemented
in the middleware platform Aaa (Agents Anytime Anywhere) [BPF+99, PBF+00], which
allows a flexible, scalable, and reliable development of distributed applications. The protocol
has been experimented on several industrial applications developed in cooperation with
Bull, and especially on an application for managing a set of network firewalls [PBF+00].
In this application (included in Bull’s NetWall security product), each firewall produces
a log file of audit information; agents are used to manage logged information, to provide
filtering functionalities that can be added and customized lately according to customer
requirements, to correlate and coordinate multiple firewalls, and to deploy a set of log
management applications over the firewalls.

As this dynamic reconfiguration protocol is non-trivial, it was suitable to ensure its
correctness using formal methods, and especially to establish that reconfiguration preserves
the consistency of the application. Starting from the informal description of the protocol
given in [PBR99] and a Java implementation that was already in use, we produced a formal
specification of the protocol using the Iso Formal Description Technique Lotos [ISO88]. We
then identified a set of safety and liveness properties characterizing the desired behaviour of
each reconfiguration primitive of the protocol. To verify whether these correctness properties
hold for the Lotos specification, we used the model-checking approach [CGP00]; verification
was carried out using Cadp [FGK+96], a protocol engineering tool set providing state-of-
the-art compilation, simulation, and verification functionalities.

This report is organized as follows. Section 2 presents the Aaa agent-based middleware
and its dynamic reconfiguration protocol. Section 3 describes the Lotos specification of the
protocol. Section 4 reports about the verification process performed using Cadp. Section 5

RR n
�

4222

4 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

discusses the results and gives directions for future work. The complete Lotos specification
of the protocol is given in Annex A.

2 The dynamic reconfiguration protocol

In this section, we first introduce the Aaa distributed agent model. Then, we state the
dynamic reconfiguration problem and present the principles of the reconfiguration protocol
under study.

2.1 The AAA distributed agent model

In the Aaa model [BPF+99], the basic software elements are agents executing concur-
rently on several sites. Each agent has only one execution flow (single-thread). Agents
are connected by communication channels, i.e., unidirectional point-to-point links. Agents
can synchronize and communicate only by sending or receiving messages on communication
channels, which play the role of references to other agents.

Agents behave according to an event-reaction scheme: when receiving an event on a
communication channel, an agent executes the appropriate reaction, i.e., a piece of code
that may update the agent state and/or send messages to other agents (including the agent
itself).

The Aaa infrastructure ensures that agents and communications satisfy certain proper-
ties [BPF+99] listed in the table below. The dynamic reconfiguration protocol relies upon
some of these properties, and especially the causality property (also called causal order-
ing) [RST91, LBBK01].

Agent properties

Persistency Agent lifetime is not bounded to the duration of execution (however,
this does not ensure consistent state retrieval after failures).

Atomicity Upon receipt of an event, the reaction of an agent is either fully
executed or not executed at all.

Configurability Agent attributes and references to other agents can be changed at
run-time by a third party (e.g., an administrator).

Communication properties

Asynchrony No assumption is made on transmission speed, allowing applications
to be designed and implemented in a time-independent manner.

Reliability Message delivery is guaranteed in spite of network failures or system
crashes and without any involvement from the application.

Causality Messages are delivered in the same order as they are sent.

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 5

2.2 Dynamic reconfiguration

Dynamic reconfiguration of an agent-based application encompasses (at least) four possible
changes in the structure of the application at run-time: architectural changes (creation or
deletion of agents, modification of communication routes), migration changes (modification
of the placement of agents on execution sites), agent implementation changes , and agent
interface changes. The dynamic reconfiguration protocol under study takes into account
only the first two aspects.

Figure 1 shows an example of application reconfiguration involving the migration of an
agent across two sites. This example will be used throughout this section.

site 1 site 2

Before reconfiguration

A1 A2 A3

After reconfiguration

A2 A3

site 3 site 2site 1

A1

Figure 1: Migration of agent A2 from site 2 to site 3

Dynamic reconfiguration must preserve consistency [KM90]: after reconfiguration, the
application should be able to resume its execution from its global state prior to reconfigu-
ration. Figure 2 shows an inconsistency that may occur during the reconfiguration depicted
on Figure 1: message m3 is lost because while it was in transit, its destination (agent A2)
has migrated from site 2 to site 3.

m3

?
m4

m5

m2

m1

A1 at site 1

A2 at site 2

A2 at site 3

A3 at site 2

migration of A2

Figure 2: Inconsistency arising from migration of A2 from site 2 to site 3

To avoid inconsistencies, three issues must be taken into account:

� Agent naming: references to migrating agents must be properly updated (e.g., assum-
ing that agent names include site information, the reference to agent A2 used by agent
A1 when sending message m3 may become outdated after A2 has moved from site 2
to site 3).

RR n
�

4222

6 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

� Agent states: after an agent has been reconfigured, it must be able to resume its
actual computation from its former state (e.g., agent A2 must resume its computation
on site 3 from its state on site 2 prior to migration).

� Communication channels: messages in transit during a reconfiguration must be pre-
served and properly redirected to their destination agents after reconfiguration (e.g.,
message m3 should reach A2 after A2 has migrated to site 3).

2.3 Principles of the protocol

To ensure consistency in presence of agent migration, different approaches have been pro-
posed, such as checkpointing [LS92] (which performs a rollback of the application to its
last consistent state, on which reconfiguration is performed), forwarding techniques [PM83]
(which temporarily replace a migrating agent by a forwarder responsible for redirecting
incoming messages to the new location of the agent), and transparent protocols for location-
independent communication [SWP98] (which avoid reference updates between agents by
preserving agent names).

Checkpointing techniques require the additional cost of maintaining consistent dis-
tributed snapshots of the application (i.e., the agent states and the messages in transit)
and of rollbacking. Forwarding techniques induce residual dependencies that may affect ap-
plication reliability (e.g., in case of a forwarder failure). The Aaa agent-based middleware
does not provide location-independent communications, but rather reliable communication
and agent management primitives.

For these reasons, the dynamic reconfiguration protocol described in [PBR99] does not
rely on these techniques. It is derived from the protocol used in Conic, but improved
to take advantage of the properties (event-reaction model, asynchrony, persistency) guar-
anteed by the Aaa middleware. The protocol associates to each application a particular
agent, named configurator, which is responsible for handling all reconfiguration commands.
The configurator maintains a view of the application configuration (placement of agents on
sites and communication routes between agents), determines if a reconfiguration command
can be performed, executes the corresponding actions, and updates the configuration view
accordingly. Unlike a forwarder, the configurator can handle more complex reconfiguration
primitives, such as code replacement and agent deletion.

The communication infrastructure provided by the Aaa model can be seen as a logical
bus that carries all messages between application agents and/or the configurator. Each agent
is referenced by an address 〈a, s〉, where s is the identifier of the current site of the agent and
a is the local identifier of the agent on site s. When an agent moves across different sites,
its address must be updated appropriately (note that the local identifier may also change
when the agent migrates to another site).

The following reconfiguration primitives are supported by the protocol: ADD (addition
of a new agent to the application), DELETE (removal of an agent from the application),
MOVE (migration of an agent to another site), BIND and REBIND (creation and modification
of a communication channel between two agents). The implementation of the REBIND,

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 7

MOVE, and DELETE primitives must avoid inconsistencies. Intuitively, when an agent is under
reconfiguration, its execution must be suspended; in the event-reaction model, this can be
obtained by ensuring that the agent receives no more events during its reconfiguration. The
preconditions for a safe execution of the reconfiguration primitives can be summarized as
follows: all communication channels involved must be empty (i.e., must not contain any
message in transit) before reconfiguration can occur.

The dynamic reconfiguration protocol implementing these primitives can be defined using
a notion of abstract state for application agents. At any time, an agent can be in one of the
three abstract states listed in the table below.

State Meaning

Active The agent can execute normally and communicate with other agents ac-
cording to the event-reaction model.

Passive The agent can react to events but cannot send any event to other agents;
all events that it must send are delayed until its reactivation.

Frozen The agent does not receive any event anymore; all agents having a reference
towards it are passive and the corresponding channels are empty.

During the execution of reconfiguration commands, the configurator forces certain agents
into appropriate abstract states in order to preserve consistency. Roughly speaking, to
reconfigure an agent A or one of its outgoing channels, the configurator implements the
following protocol:

1. Compute the Change Passive Set, noted cps(A), which contains all the agents having
a communication channel directed to A: these agents must be made passive in order to
freeze A. For the REBIND primitive, cps(A) is empty, but A itself must be made passive.

2. Passivate all agents in cps(A). So doing, all agents with references to A are becoming
passive and all communication channels directed to A are progressively flushed. When this
is complete, agent A is frozen (except in the case of REBIND, where A is made passive, but
not frozen).

3. Send the reconfiguration command to A. The causal ordering property ensures that
this command will only be received when A is frozen (although the configurator never knows
exactly when A is frozen).

4. Activate all agents in cps(A). Agents in cps(A) that have received messages while
they were passive must react to these messages as soon as they are reactivated. In the case
of REBIND, agent A is reactivated when it receives the REBIND command.

3 Formal specification

In this section we give a brief overview of Lotos and then we detail the specification of the
dynamic reconfiguration protocol.

RR n
�

4222

8 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

3.1 Overview of LOTOS

Lotos (Language Of Temporal Ordering Specification) [ISO88] is a Formal Description Tech-
nique standardized by Iso for specifying communication protocols and distributed systems.
Its design was motivated by the need for a language with a high abstraction level and strong
mathematical basis, which could be used for the description and analysis of complex systems.
Lotos consists of two “orthogonal” sub-languages:

The data part is based on the well-known theory of algebraic abstract data types, more
specifically on the ActOne specification language [dMRV92]. A data type is described
by its sorts and operations, which are specified using algebraic equations.

The behaviour part is based on process algebras, combining the best features of
Ccs [Mil89] and Csp [Hoa85]. A concurrent system is usually described as a collection
of parallel processes interacting by rendezvous. Each process behaviour is specified us-
ing an algebra of operators (see the table below). Processes can manipulate data values
and exchange them at interaction points called gates.

Behaviour Operator Intuitive Meaning

stop Do nothing.
G !V ?X:S ; B Interact on gate G, sending value V and receiving in variable X

a value of sort S, then execute B.
B1 [] B2 Execute either B1 or B2.
[E] -> B If E is true then execute B, else do nothing.
B1 |[G1, ..., Gn]| B2 Execute B1 and B2 in parallel with synchronization on gates

G1, ..., Gn.
B1 ||| B2 Execute B1 and B2 in parallel without synchronization.
exit Terminate successfully.
B1 >> B2 Execute B1 followed by B2 when B1 terminates.
P [G1, ..., Gn] (V1, ..., Vn) Call process P with gate parameters G1, ..., Gn and value pa-

rameters V1, ..., Vn.

3.2 Architecture of the protocol

The architecture of the Lotos specification (see Figure 3) consists of a configurator agent
and n application agents. All agents are modelled as Lotos processes, which execute concur-
rently and communicate through a software bus (an abstraction of the Aaa infrastructure),
which is also modeled by a Lotos process. Agents can send and receive messages (events)
via the gates SEND and RECV, respectively. The Bus process acts as an unbounded buffer
(initially empty) accepting messages on gate SEND and delivering them on gate RECV.

Dynamic agent creation is modelled in a finite manner by considering a fixed set of Agent
processes that initially are all “dead” (an auxiliary abstract state, noted DEAD, meaning that
the agent is not part of the application) and will be progressively added to the application.

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 9

...Agent 1 Agent 2

View

Bus

Agent n
Configurator

RECV

RECV RECV RECV

SEND SEND SEND SEND

Figure 3: Architecture of the dynamic reconfiguration protocol

3.3 Configurator agent

The configurator agent is responsible for keeping track of the application configuration and
for executing the reconfiguration commands coming from some external user. Since we seek
to study a general behaviour of the protocol, we do not specify a particular user, letting the
configurator behave as if it would receive an infinite sequence of arbitrary reconfiguration
commands.

The Configurator process has two parameters: the application configuration C (initially
empty) and the address set R of agents currently in the DEAD state. The configuration C is
modelled as a list of tuples 〈〈a, s〉 , A〉, where 〈a, s〉 is the address of an agent present in
the application and A is the set of agent addresses towards which the agent has a reference
(output channels). The Configurator process has a cyclic behaviour: it chooses a recon-
figuration command non-deterministically, executes the appropriate operations, and calls
itself recursively with an updated configuration. In the following example, we only detail
the MOVE primitive, the other reconfiguration primitives being specified similarly.

process Configurator [SEND, RECV] (C:Config, R:AddrSet) : noexit :=

(* ... other reconfiguration primitives *)

(choice A:Addr, S:SiteId []

[(A isin C) and (getsite (A) ne S)] ->

(let A2:Addr = newaddr (S, C) in

Passivate [SEND, RECV] (cps (A, C)) >>

SEND !A !confaddr !MOVE !A2 !dummy;

RECV !confaddr !A2 !ACK !dummy !dummy;

Activate [SEND, RECV] (A, A2, cps (A, C)) >>

Configurator [SEND, RECV]

(setaddr (A, A2, setchan (cps (A, C), A, A2, C)), R)

)

)

endproc

The address A of the agent to be moved and its destination site identifier S are chosen
non-deterministically. The agents in the set cps(A) are made passive by calling the auxiliary
process Passivate. Then, a MOVE command is sent to agent A, which must respond with

RR n
�

4222

10 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

an acknowledgement upon completion of its migration to site S. The agents in cps(A) are
then reactivated by calling the auxiliary process Activate, which also notifies them with the
new address A2 of agent A. Finally, the Configurator calls itself recursively with a modified
configuration obtained from C by updating the address of agent A and the output channels
of the agents in cps(A).

3.4 Application agents

Application agents execute the code of the application according to the event-reaction model
and must also react to the reconfiguration commands sent by the configurator agent. Since
we focus on the reconfiguration protocol itself rather than on the agent-based applications
built upon it, we consider only one application-level message (called SERVICE) sent between
agents.

The Agent process has four parameters: its current abstract state S, its current address A,
the set R of agent addresses (output channels) towards which it has a reference and a boolean
B indicating whether a message was received while it was passive (this may occur during the
migration of another agent towards which the current agent has an output channel). The
Agent process has a cyclic behaviour: it receives an event, executes the corresponding reac-
tion according to its current abstract state S, and calls itself recursively with the parameters
updated appropriately. In the following example, we only detail the reaction of an agent to
the MOVE command, the other reconfiguration commands being specified similarly.

process Agent [SEND, RECV] (S:State, A:Addr, R:AddrSet, B:Bool):noexit:=

(* ... other reconfiguration commands *)

[S eq ACTIVE] ->

RECV !A !confaddr !MOVE ?A2:Addr !dummy;

SEND !confaddr !A2 !ACK !dummy !dummy;

Agent [SEND, RECV] (S, A2, R, B)

[]

[S eq PASSIVE] ->

RECV !A !confaddr !MOVE ?A2:Addr !dummy;

([B] ->

(choice A3:Addr [] [A3 isin replace (A, A2, R)] ->

SEND !A3 !A !SERVICE !dummy !dummy;

SEND !confaddr !A2 !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A2, replace (A, A2, R), false)

)

[]

[not (B)] -> SEND !confaddr !A2 !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A2, replace (A, A2, R), false)

)

endproc

The migration is specified simply by changing the agent address. If the agent is active,
it simply sends an acknowledgement with its new address A2 back to the configurator, and

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 11

then calls itself recursively with an updated address. If the agent is passive (this can happen
only if it has an output channel directed to itself), it first reacts to the events received from
other agents while it was passive, then sends an acknowledgement to the configurator, and
finally becomes active, updating its address and its output channels.

4 Model-checking verification

To analyze the behaviour of the dynamic reconfiguration protocol, we used the Cadp tool
set, which we briefly present. We then express the correctness properties of the protocol
and give experimental results regarding model-checking verification.

4.1 Overview of the CADP tool set

Cadp (Cæsar/Aldébaran Development Package) [FGK+96] is a state-of-the-art tool set
dedicated to the verification of communication protocols and distributed systems. Cadp

offers an integrated set of functionalities ranging from interactive simulation to exhaustive,
model-based verification. In this case-study, we used the following tools of Cadp:

CAESAR.ADT [Gar89] and CAESAR [GS90] are compilers for the data part and
the control part of Lotos specifications, respectively. They can be used to translate a
Lotos specification into a Labelled Transition System (Lts), i.e., a state-transition graph
modelling exhaustively the behaviour of the specification. Each Lts transition is labelled
with an action resulting from synchronization on a gate, possibly with communication of
data values.

EVALUATOR 3.0 [MS00] is an on-the-fly model-checker for temporal logic formulas
over Ltss. The logic considered is an extension of the alternation-free µ-calculus [EL86] with
action predicates and regular expressions. The tool also provides diagnostics (examples and
counterexamples) explaining the truth value of the formulas.

BCG MIN is a tool for minimizing Ltss according to various equivalence relations,
such as strong bisimulation, observational or branching equivalence, etc.

SVL 2.0 [GL01] is a tool for compositional and on-the-fly verification based on the ap-
proach proposed in [KM97]. Compositional verification is a mean to avoid state explosion in
model-checking by dividing a concurrent system into its parallel components (e.g., the con-
figurator agent, application agents, and the bus), generating (modulo some abstractions) the
Lts corresponding to each component, minimizing each Lts and recombining the minimized
Ltss to obtain the whole system.

4.2 Correctness properties

To express the correct behaviour of the dynamic reconfiguration protocol, we expressed a
set of relevant properties about its behaviour. Two main classes of properties are usually
considered for distributed systems: safety properties, stating that “something bad never

RR n
�

4222

12 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

happens”, and liveness properties, stating that “something good eventually happens” dur-
ing the execution of the system. For the dynamic reconfiguration protocol under study, we
identified, together with the developers of the Aaa middleware, 10 safety and liveness prop-
erties characterizing either the global behaviour of the protocol or the particular behaviour
of each reconfiguration primitive. These properties are shown in the table below (the S and
L superscripts indicate safety and liveness, respectively).

No. Correctness Property

P L
1 There is no deadlock in the specification.

P L
2 Every reconfiguration command is eventually followed by an acknowledgement.

P S

3 There is a strict alternation between commands and acknowledgements.
P L

4 Every command sent to the bus is eventually delivered to its receiver.
P S

5 Initially, no event can be sent before at least one agent has been created.
P S

6 Initially, no application event can be sent before the underlying channel has
been created.

P L

7 Every event sent to a migrating agent will be delivered properly.
P S

8 After a move command has been sent, the target agent cannot receive any event
until it completes its migration.

P S
9 Every event sent to a channel being rebound will be delivered before the rebind

completes.
P S

10 An agent that has been removed from the application cannot execute anymore.

Then, we expressed these properties in regular alternation-free µ-calculus, the temporal
logic accepted by the Evaluator 3.0 model-checker. This logic allows to succinctly encode
safety properties by using regular modalities of the form [R] F, which state the absence of
“bad” execution sequences characterized by a regular expression R. For instance, property
P3 is encoded by the formula [T∗.SEND CMD1.(¬SEND ACK)∗.SEND CMD2]F, where the action
predicates SEND CMD1, SEND CMD2, and SEND ACK denote the emission of two reconfiguration
commands and of an acknowledgement, respectively.

4.3 Verification results

As model-checking verification is only applicable to finite-state models (of tractable size),
we considered several instances of the protocol involving a finite number of agents, sites, and
reconfiguration commands. The experimental results regarding Lts generation are shown
in the table below. For each instance, the table gives the Lts size (number of states and
transitions) and the time required for its generation using Cadp. All experiments have been
performed on a 500 MHz Pentium II machine with 768 Mbytes of memory.

As expected, the Lts size increases rapidly with the number of agents present in the
instance, because the number of possible application configurations is exponential in the
number of agents. Using the Evaluator 3.0 model-checker, we verified that all temporal
properties given in Section 4.2 are valid on each instance considered. The average verification
time of a property over an Lts was about one minute.

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 13

Agents Sites Commands States Trans. Time

2 2 ADD, BIND, REBIND 77 84 9”
2 2 ADD, DELETE, BIND, REBIND 4 424 5 832 43”
2 2 ADD, BIND, REBIND, MOVE 599 474 832 864 4’25”
3 1 ADD, DELETE 493 639 15”
3 1 ADD, BIND 3 391 5 031 32”
3 1 ADD, BIND, REBIND 590 119 935 397 5’13”
3 1 ADD, BIND, MOVE 646 592 917 796 5’46”

5 Conclusion and future work

In this report, we used the Iso language Lotos [ISO88] and the Cadp verification tool
set [FGK+96] to analyse a protocol for dynamic reconfiguration proposed in [PBR99] and
used in the Aaa platform [BPF+99].

The Lotos specification developed (about 900 lines) provides a non-ambiguous descrip-
tion of the protocol and a basis for future development and experimentation of new re-
configuration primitives. Using model-checking and temporal logic, we were able to verify
the correct functioning of the protocol on various configurations involving several agents,
sites, and reconfiguration primitives. This experiment increased the confidence in the cor-
rectness of the protocol and demonstrated the usefulness of formal methods for agent-based
applications.

Three future research directions are of interest. Firstly, to improve scalability, the pro-
tocol could be extended to use a distributed configurator instead of the current central-
ized solution. Secondly, the validation activity could be continued on larger configurations
of the protocol and more detailed specification of the Aaa communication infrastructure.
Thirdly, one could investigate the generation of test suites for the Java implementation of
the protocol, by using the Tgv tool [FJJ+96] recently integrated in Cadp, which allows to
automatically derive test suites from user-defined test purposes.

Acknowledgments

We are grateful to Frédéric Lang for his careful reading and valuable comments on this report,
and for his assistance in using the Svl tool. The first author was partially supported by
Conacyt-Sfere and Uam Iztapalapa, Mexico.

A The LOTOS specification of the protocol

This annex contains the complete Lotos specification of the dynamic reconfiguration pro-
tocol (data part and behaviour part).

RR n
�

4222

14 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

A.1 Data part

library BOOLEAN, NATURAL endlib

(***

* Agent identifier

***)

type AgentIdentifier is Boolean

sorts

AgentId

opns

agent1 (*! constructor *), agent2 (*! constructor *),

agent3 (*! constructor *), aconf (*! constructor *) :-> AgentId

eq, _ne_, _lt_ : AgentId, AgentId -> Bool

succ : AgentId -> AgentId

dummyagent :-> AgentId

eqns

forall P1, P2:AgentId

ofsort Bool

P1 eq P1 = true;

P1 eq P2 = false;

ofsort Bool

P1 ne P2 = not (P1 eq P2);

ofsort Bool

agent1 lt agent2 = true;

agent1 lt agent3 = true;

agent1 lt aconf = true;

agent2 lt agent3 = true;

agent2 lt aconf = true;

agent3 lt aconf = true;

P1 lt P2 = false;

ofsort AgentId

succ (agent1) = agent2;

succ (agent2) = agent3;

succ (agent3) = aconf;

succ (aconf) = agent1;

ofsort AgentId

dummyagent = agent1;

endtype

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 15

(***

* Site identifier

***)

type SiteIdentifier is Boolean

sorts

SiteId

opns

site1 (*! constructor *), site2 (*! constructor *) :-> SiteId

eq, _ne_, _lt_ : SiteId, SiteId -> Bool

dummysite :-> SiteId

eqns

forall S1, S2:SiteId

ofsort Bool

S1 eq S1 = true;

S1 eq S2 = false;

ofsort Bool

S1 ne S2 = not (S1 eq S2);

ofsort Bool

site1 lt site2 = true;

S1 lt S2 = false;

ofsort SiteId

dummysite = site1;

endtype

(***

* Agent address

***)

type AgentAddress is AgentIdentifier, SiteIdentifier

sorts

Addr

opns

@ (*! constructor *) : AgentId, SiteId -> Addr

getsite : Addr -> SiteId

eq, _ne_, _lt_ : Addr, Addr -> Bool

confaddr :-> Addr

dummy :-> Addr

RR n
�

4222

16 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

eqns

forall P, P1, P2:AgentId, S, S1, S2:SiteId, A1, A2:Addr

ofsort SiteId

getsite (P@S) = S;

ofsort Bool

(P1@S1) eq (P2@S2) = (P1 eq P2) and (S1 eq S2);

ofsort Bool

A1 ne A2 = not (A1 eq A2);

ofsort Bool

(P1@S1) lt (P2@S2) = (P1 lt P2) or ((P1 eq P2) and (S1 lt S2));

ofsort Addr

confaddr = aconf@dummysite;

ofsort Addr

dummy = dummyagent@dummysite;

endtype

(***

* Set of agent addresses

***)

type AgentAddressSet is Natural, AgentAddress

sorts

AddrSet

opns

{} (*! constructor *) :-> AddrSet

+ (*! constructor *) : Addr, AddrSet -> AddrSet

insert : Addr, AddrSet -> AddrSet

remove : Addr, AddrSet -> AddrSet

replace : Addr, Addr, AddrSet -> AddrSet

empty : AddrSet -> Bool

isin, _notin_ : Addr, AddrSet -> Bool

subset : AddrSet, AddrSet -> Bool

eq, _ne_, _lt_ : AddrSet, AddrSet -> Bool

card : AddrSet -> Nat

pick : AddrSet -> Addr

eqns

forall A, A1, A2:Addr, R, R1, R2:AddrSet

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 17

ofsort AddrSet

(* assert: elements are unique and sorted in increasing order *)

insert (A, {}) = A + {};

insert (A, A + R) = A + R;

A lt A1 => insert (A, A1 + R1) = A + (A1 + R1);

insert (A, A1 + R1) = A1 + insert (A, R1);

ofsort AddrSet

remove (A, {}) = {};

remove (A, A + R) = R;

remove (A, A1 + R1) = A1 + remove (A, R1);

ofsort AddrSet

replace (A1, A2, R) = insert (A2, remove (A1, R));

ofsort Bool

empty ({}) = true;

empty (A + R) = false;

ofsort Bool

A isin {} = false;

A isin (A1 + R1) = (A eq A1) or (A isin R1);

ofsort Bool

A notin R = not (A isin R);

ofsort Bool

{} subset R = true;

(A1 + R1) subset R2 = (A1 isin R2) and (R1 subset R2);

ofsort Bool

R1 eq R2 = (R1 subset R2) and (R2 subset R1);

ofsort Bool

R1 ne R2 = not (R1 eq R2);

ofsort Bool

(* assert: elements are unique and sorted in increasing order *)

{} lt (A + R) = true;

(A1 + R1) lt (A2 + R2) = (A1 lt A2) or ((A1 eq A2) and (R1 lt R2));

R1 lt R2 = false;

ofsort Nat

card ({}) = 0;

card (A + R) = 1 + card (R);

RR n
�

4222

18 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

ofsort Addr

(* assert: set not empty *)

pick (A + R) = A;

endtype

(***

* Reconfiguration and application commands

***)

type Command is Boolean

sorts

Cmd

opns

ACTIVATE (*! constructor *), ACK (*! constructor *),

ADD (*! constructor *), BIND (*! constructor *),

DELETE (*! constructor *), FLUSH (*! constructor *),

MOVE (*! constructor *), PASSIVATE (*! constructor *),

REBIND (*! constructor *), SERVICE (*! constructor *) :-> Cmd

eq, _ne_ : Cmd, Cmd -> Bool

eqns

forall D1, D2:Cmd

ofsort Bool

D1 eq D1 = true;

D1 eq D2 = false;

ofsort Bool

D1 ne D2 = not (D1 eq D2);

endtype

(***

* Abstract states of an agent

***)

type AbstractAgentState is Boolean

sorts

State

opns

ACTIVE (*! constructor *),

DEAD (*! constructor *),

PASSIVE (*! constructor *) :-> State

eq, _ne_ : State, State -> Bool

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 19

eqns

forall T1, T2:State

ofsort Bool

T1 eq T1 = true;

T1 eq T2 = false;

ofsort Bool

T1 ne T2 = not (T1 eq T2);

endtype

(***

* Configuration of an agent (address, set of "output" agents)

***)

type AgentConfiguration is AgentAddressSet

sorts

AgentConfig

opns

& (*! constructor *) : Addr, AddrSet -> AgentConfig

eq, _ne_, _lt_ : AgentConfig, AgentConfig -> Bool

eqns

forall C1, C2:AgentConfig, R1, R2:AddrSet, A1, A2:Addr

ofsort Bool

(A1 & R1) eq (A2 & R2) = (A1 eq A2) and (R1 eq R2);

ofsort Bool

C1 ne C2 = not (C1 eq C2);

ofsort Bool

(A1 & R1) lt (A2 & R2) = (A1 lt A2) or ((A1 eq A2) and (R1 lt R2));

endtype

(***

* Configuration of an application (list of agent configurations)

***)

type Configuration is AgentConfiguration

sorts

Config

RR n
�

4222

20 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

opns

nil (*! constructor *) :-> Config

. (*! constructor *) : AgentConfig, Config -> Config

insert : AgentConfig, Config -> Config

delete : Addr, Config -> Config

remove : Addr, Config -> Config

getchan : Addr, Config -> AddrSet

addchan : Addr, Addr, Config -> Config

setchan : Addr, Addr, Addr, Config -> Config

setchan : AddrSet, Addr, Addr, Config -> Config

setaddr : Addr, Addr, Config -> Config

cps : Addr, Config -> AddrSet

isin, _notin_ : Addr, Config -> Bool

newaddr : SiteId, Config -> Addr

newaddr2 : AgentId, SiteId, Config -> Addr

eqns

forall C, C1:AgentConfig, C1_Cn, C2_Cn:Config, A, A1, A2, A3:Addr,

R, R1:AddrSet, P:AgentId, S:SiteId

ofsort Config

(* assert: elements are unique and sorted in increasing order *)

insert (C, nil) = C.nil;

insert (C, C.C2_Cn) = C.C2_Cn;

C lt C1 => insert (C, C1.C2_Cn) = C.(C1.C2_Cn);

insert (C, C1.C2_Cn) = C1.insert (C, C2_Cn);

ofsort Config

delete (A, nil) = nil;

delete (A, (A & R).C2_Cn) = delete (A, C2_Cn);

delete (A, (A1 & R1).C2_Cn) = (A1 & remove (A, R1)).delete (A, C2_Cn);

ofsort Config

remove (A, nil) = nil;

remove (A, (A & R).C2_Cn) = C2_Cn;

remove (A, C1.C2_Cn) = C1.remove (A, C2_Cn);

ofsort AddrSet

(* assert: A is in the configuration *)

getchan (A, (A & R).C2_Cn) = R;

getchan (A, C1.C2_Cn) = getchan (A, C2_Cn);

ofsort Config

(* assert: A1 isin C1_Cn *)

addchan (A1, A2, C1_Cn) =

insert (A1 & insert (A2, getchan (A1, C1_Cn)), remove (A1, C1_Cn));

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 21

ofsort Config

(* assert: A1 isin C1_Cn *)

setchan (A1, A2, A3, C1_Cn) =

insert (A1 & insert (A3, remove (A2, getchan (A1, C1_Cn))),

remove (A1, C1_Cn));

ofsort Config

(* assert: each address in the set isin C1_Cn *)

setchan ({}, A2, A3, C1_Cn) = C1_Cn;

setchan (A + R, A2, A3, C1_Cn) =

setchan (A, A2, A3, setchan (R, A2, A3, C1_Cn));

ofsort Config

(* assert: A1 isin C1_Cn *)

setaddr (A1, A2, C1_Cn) =

insert (A2 & getchan (A1, C1_Cn), remove (A1, C1_Cn));

ofsort AddrSet

cps (A, nil) = {};

A isin R1 => cps (A, (A1 & R1).C2_Cn) = insert (A1, cps (A, C2_Cn));

cps (A, C1.C2_Cn) = cps (A, C2_Cn);

ofsort Bool

A isin nil = false;

A isin ((A1 & R1).C2_Cn) = (A eq A1) or (A isin C2_Cn);

ofsort Bool

A notin C1_Cn = not (A isin C1_Cn);

ofsort Addr

(* iterate on all agent identifiers until get a new address *)

newaddr (S, C1_Cn) = newaddr2 (agent1, S, C1_Cn);

ofsort Addr

(P@S) isin C1_Cn =>

newaddr2 (P, S, C1_Cn) = newaddr2 (succ (P), S, C1_Cn);

newaddr2 (P, S, C1_Cn) = P@S;

endtype

(***

* Messages between agents

***)

type Message is Command, AgentAddressSet

sorts

Msg

RR n
�

4222

22 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

opns

message (*! constructor *) :

Addr, (* address of the receiver agent *)

Addr, (* address of the sender agent *)

Cmd, (* reconfiguration command *)

Addr, (* first agent address sent *)

Addr (* second agent address sent *)

-> Msg

getrcv : Msg -> Addr

getsnd : Msg -> Addr

getcmd : Msg -> Cmd

getad1 : Msg -> Addr

getad2 : Msg -> Addr

eqns

forall A1, A2, A3, A4:Addr, D:Cmd

ofsort Addr

getrcv (message (A1, A2, D, A3, A4)) = A1;

getsnd (message (A1, A2, D, A3, A4)) = A2;

getad1 (message (A1, A2, D, A3, A4)) = A3;

getad2 (message (A1, A2, D, A3, A4)) = A4;

ofsort Cmd

getcmd (message (A1, A2, D, A3, A4)) = D;

endtype

(***

* Buffer (FIFO) of messages

***)

type MessageBuffer is Message

sorts

Buffer

opns

<> (*! constructor *) :-> Buffer

+ (*! constructor *) : Buffer, Msg -> Buffer

head : Buffer -> Msg

tail : Buffer -> Buffer

empty : Buffer -> Bool

length : Buffer -> Nat

eqns

forall M:Msg, B:Buffer

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 23

ofsort Msg

(* assert: queue not empty *)

head (<> + M) = M;

head (B + M) = head (B);

ofsort Buffer

(* assert: queue not empty *)

tail (<> + M) = <>;

tail (B + M) = tail (B) + M;

ofsort Bool

empty (<>) = true;

empty (B + M) = false;

ofsort Nat

length (<>) = 0;

length (B + M) = 1 + length (B);

endtype

RR n
�

4222

24 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

A.2 Behaviour part

specification RECONFIGURATION_PROTOCOL [SEND, RECV, INBUS, OUTBUS] : noexit

library DATA endlib

(***

* Architecture of the protocol

***)

behaviour

(

Agent [INBUS, OUTBUS] (DEAD, agent1@site1, {}, false)

|||

Agent [INBUS, OUTBUS] (DEAD, agent2@site1, {}, false)

|||

Agent [INBUS, OUTBUS] (DEAD, agent3@site1, {}, false)

|||

Configurator [INBUS, OUTBUS] (nil, agent1@site1 + (agent2@site1 +

(agent3@site1 + {})))

)

|[INBUS, OUTBUS]|

Bus [INBUS, OUTBUS] (<>)

where

(***

* Configurator agent

***)

process Configurator [SEND, RECV] (C:Config, R:AddrSet) : noexit :=

(* ADD: add a new agent to the application *)

(choice A:Addr [] [(A notin C) and (A isin R)] ->

SEND !A !confaddr !ADD !dummy !dummy;

RECV !confaddr !A !ACK !dummy !dummy;

Configurator [SEND, RECV] (insert (A & {}, C), remove (A, R))

)

[]

(* DELETE: delete an agent from the application *)

(choice A:Addr [] [A isin C] ->

Passivate [SEND, RECV] (cps (A, C)) >>

SEND !A !confaddr !DELETE !dummy !dummy;

RECV !confaddr !A !ACK !dummy !dummy;

Activate [SEND, RECV] (A, A, cps (A, C)) >>

Configurator [SEND, RECV] (delete (A, C), insert (A, R))

)

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 25

[]

(* BIND: add a new output channel to an agent *)

(choice A2:Addr [] [A2 isin C] ->

(choice A3:Addr []

[(A3 isin C) and (A2 ne A3) and not (A3 isin getchan (A2, C))] ->

SEND !A2 !confaddr !BIND !A3 !dummy;

RECV !confaddr !A2 !ACK !dummy !dummy;

SEND !A3 !A2 !SERVICE !dummy !dummy;

Configurator [SEND, RECV] (addchan (A2, A3, C), R)

)

)

[]

(* REBIND: change an existing communication channel *)

(choice A:Addr [] [A isin C] ->

(choice A2:Addr []

[(A2 isin C) and (A2 notin getchan (A, C)) and (A ne A2)] ->

(choice A1:Addr []

[A1 isin getchan (A, C)] ->

SEND !A !confaddr !PASSIVATE !dummy !dummy;

RECV !confaddr !A !ACK !dummy !dummy;

SEND !A1 !confaddr !FLUSH !dummy !dummy;

RECV !confaddr !A1 !ACK !dummy !dummy;

SEND !A !confaddr !REBIND !A1 !A2;

RECV !confaddr !A !ACK !dummy !dummy;

Configurator [SEND, RECV]

(setchan (A, A1, A2, C), R)

)

)

)

[]

(* MOVE: move an agent to another site *)

(choice A:Addr [] [A isin C] ->

(choice S:SiteId []

(let A2:Addr = newaddr (S, C) in

[A2 ne confaddr] ->

(* new valid address *)

Passivate [SEND, RECV] (cps (A, C)) >>

SEND !A !confaddr !MOVE !A2 !dummy;

RECV !confaddr !A2 !ACK !dummy !dummy;

Activate [SEND, RECV] (A, A2, cps (A, C)) >>

Configurator [SEND, RECV] (setaddr (A, A2,

setchan (cps (A, C), A, A2, C)), R)

)

)

)

endproc

RR n
�

4222

26 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

(***

* Auxiliary process for making passive a set of agents

***)

process Passivate [SEND, RECV] (AS:AddrSet) : exit :=

[card (AS) > 0] ->

(let A:Addr = pick (AS) in

SEND !A !confaddr !PASSIVATE !dummy !dummy;

RECV !confaddr !A !ACK !dummy !dummy;

Passivate [SEND, RECV] (remove (A, AS))

)

[]

[card (AS) = 0] ->

exit

endproc

(***

* Auxiliary process for making active a set of agents

***)

process Activate [SEND, RECV] (A1, A2:Addr, AS:AddrSet) : exit :=

[card (AS) > 0] ->

(let A:Addr = pick (AS) in

SEND !A !confaddr !ACTIVATE !A1 !A2;

RECV !confaddr !A !ACK !dummy !dummy;

Activate [SEND, RECV] (A1, A2, remove (A, AS))

)

[]

[card (AS) = 0] ->

exit

endproc

(***

* Application agent

***)

process Agent [SEND, RECV] (S:State, A:Addr, R:AddrSet, B:Bool) : noexit :=

[S eq DEAD] ->

RECV !A !confaddr !ADD !dummy !dummy;

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A, {}, false)

[]

[S eq ACTIVE] ->

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 27

(

(* receive an application event *)

RECV !A ?A1:Addr !SERVICE !dummy !dummy [A ne A1];

(

[not (empty (R))] ->

(choice A2:Addr []

[A2 isin R] ->

(* react to the event *)

SEND !A2 !A !SERVICE !dummy !dummy;

Agent [SEND, RECV] (S, A, R, B)

)

[]

(* silently ignore the event *)

Agent [SEND, RECV] (S, A, R, B)

)

[]

RECV !A !confaddr !BIND ?A2:Addr !dummy [(A ne A2) and (R eq {})];

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (S, A, insert (A2, R), B)

[]

RECV !A !confaddr !PASSIVATE !dummy !dummy;

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (PASSIVE, A, R, B)

[]

RECV !A !confaddr !MOVE ?A2:Addr !dummy;

SEND !confaddr !A2 !ACK !dummy !dummy;

Agent [SEND, RECV] (S, A2, R, B)

[]

RECV !A !confaddr !FLUSH !dummy !dummy;

SEND !confaddr !A !ACK ! dummy !dummy;

Agent [SEND, RECV] (S, A, R, B)

[]

RECV !A !confaddr !DELETE !dummy !dummy;

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (DEAD, A, R, B)

)

[]

[S eq PASSIVE] ->

(

(* receive and store an application event *)

RECV !A ?A1:Addr !SERVICE !dummy !dummy [A ne A1];

Agent [SEND, RECV] (S, A, R, true)

[]

RECV !A !confaddr !ACTIVATE ?A1:Addr ?A2:Addr [(A ne A2) and (A1 eq A2)];

(* agent A1 has been deleted *)

(

RR n
�

4222

28 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

[B] ->

(

(choice A3:Addr []

[A3 isin remove (A1, R)] ->

(* react to the event received when the agent was passive *)

SEND !A3 !A !SERVICE !dummy !dummy;

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A, remove (A1, R), false)

)

[]

(* silently ignore the event *)

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A, remove (A1, R), false)

)

[]

[not (B)] ->

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A, remove (A1, R), false)

)

[]

RECV !A !confaddr !ACTIVATE ?A1:Addr ?A2:Addr [(A ne A2) and (A1 ne A2)];

(

[B and not (empty (R))] ->

(

(choice A3:Addr []

[A3 isin replace (A1, A2, R)] ->

(* react to the event received when the agent was passive *)

SEND !A3 !A !SERVICE !dummy !dummy;

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A, replace (A1, A2, R), false)

)

[]

(* silently ignore the event *)

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A, replace (A1, A2, R), false)

)

[]

[not (B) or empty (R)] ->

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A, replace (A1, A2, R), false)

)

[]

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 29

RECV !A !confaddr !REBIND ?A1:Addr ?A2:Addr [A ne A2];

(

[B and not (empty (R))] ->

(

(choice A3:Addr []

[A3 isin replace (A1, A2, R)] ->

(* react to the event received when the agent was passive *)

SEND !A3 !A !SERVICE !dummy !dummy;

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A, replace (A1, A2, R), false)

)

[]

(* silently ignore the event *)

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A, replace (A1, A2, R), false)

)

[]

[not (B) or empty (R)] ->

SEND !confaddr !A !ACK !dummy !dummy;

Agent [SEND, RECV] (ACTIVE, A, replace (A1, A2, R), false)

)

)

endproc

(***

* Software bus (communication medium)

***)

process Bus [INBUS, OUTBUS] (B:Buffer) : noexit :=

INBUS ?R:Addr ?S:Addr ?D:Cmd ?A1:Addr ?A2:Addr;

Bus [INBUS, OUTBUS] (B + Message (R, S, D, A1, A2))

[]

[not (empty (B))] ->

(let M:Msg = head (B) in

OUTBUS !getrcv (M) !getsnd (M) !getcmd (M) !getad1 (M) !getad2 (M);

Bus [INBUS, OUTBUS] (tail (B))

)

endproc

endspec

RR n
�

4222

30 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

References

[BD93] T. Bloom and M. Day. Reconfiguration and Module Replacement in Argus:
theory and practice. Software Engineering Journal, pages 102–108, March 1993.

[BPF+99] L. Bellissard, N. De Palma, A. Freyssinet, M. Herrmann, and S. Lacourte. An
Agent Platform for Reliable Asynchronous Distributed Programming. In Pro-
ceedings of the Symposium on Reliable Distributed Systems SRDS’99 (Lausanne,
Suisse), October 1999.

[CGP00] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[dMRV92] Jan de Meer, Rudolf Roth, and Son Vuong. Introduction to Algebraic Spec-
ifications Based on the Language ACT ONE. Computer Networks and ISDN
Systems, 23(5):363–392, 1992.

[EL86] E. A. Emerson and C-L. Lei. Efficient Model Checking in Fragments of the
Propositional Mu-Calculus. In Proceedings of the 1st LICS, pages 267–278, 1986.

[FGK+96] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Lau-
rent Mounier, and Mihaela Sighireanu. CADP (CÆSAR/ALDEBARAN Devel-
opment Package): A Protocol Validation and Verification Toolbox. In Rajeev
Alur and Thomas A. Henzinger, editors, Proceedings of the 8th Conference on
Computer-Aided Verification (New Brunswick, New Jersey, USA), volume 1102
of Lecture Notes in Computer Science, pages 437–440. Springer Verlag, August
1996.

[FJJ+96] Jean-Claude Fernandez, Claude Jard, Thierry Jéron, Laurence Nedelka, and
César Viho. Using On-the-Fly Verification Techniques for the Generation of
Test Suites. In R. Alur and T. A. Henzinger, editors, Proceedings of the 8th
International Conference on Computer-Aided Verification (Rutgers University,
New Brunswick, NJ, USA), volume 1102 of Lecture Notes in Computer Science,
pages 348–359. Springer Verlag, August 1996. Also available as INRIA Research
Report RR-2987.

[Gar89] Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong,
editor, Proceedings of the 2nd International Conference on Formal Descrip-
tion Techniques FORTE’89 (Vancouver B.C., Canada), pages 147–162. North-
Holland, December 1989.

[GL01] Hubert Garavel and Frédéric Lang. SVL: a Scripting Language for Compositional
Verification. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and Dan-
hyung Lee, editors, Proceedings of the 21st IFIP WG 6.1 International Confer-
ence on Formal Techniques for Networked and Distributed Systems FORTE’2001
(Cheju Island, Korea), pages 377–392. IFIP, Kluwer Academic Publishers, Au-
gust 2001. Full version available as INRIA Research Report RR-4223.

INRIA

Specification and Verification of a Dynamic Reconfiguration Protocol 31

[GS90] Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS
Specifications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceed-
ings of the 10th International Symposium on Protocol Specification, Testing and
Verification (Ottawa, Canada), pages 379–394. IFIP, North-Holland, June 1990.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[ISO88] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization — Information Processing Systems — Open
Systems Interconnection, Genève, September 1988.

[KM89] J. Kramer and J. Magee. Constructing Distributed Systems in CONIC. IEEE
Transactions on Software Engineering, SE–15(6):663–675, June 1989.

[KM90] J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software Engineering, pages 1293–1306,
November 1990.

[KM97] Jean-Pierre Krimm and Laurent Mounier. Compositional State Space Genera-
tion from LOTOS Programs. In Ed Brinksma, editor, Proceedings of TACAS’97
Tools and Algorithms for the Construction and Analysis of Systems (University
of Twente, Enschede, The Netherlands), volume 1217 of Lecture Notes in Com-
puter Science, Berlin, April 1997. Springer Verlag. Extended version with proofs
available as Research Report VERIMAG RR97-01.

[LBBK01] P. Laumay, E. Bruneton, L. Bellissard, and S. Krakowiak. Preserving Causality
in a Scalable Message-Oriented Middleware. C3DS 3rd Year Report Deliverable,
ESPRIT Long Term Research Project no. 24962, 2001.

[LS92] M. Litzkow and M. Solomon. Supporting Checkpointing and Process Migration
Outside the UNIX Kernel. In Proceedings of the USENIX Winter Conference
(San Francisco, USA), pages 283–290, 1992.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MS00] Radu Mateescu and Mihaela Sighireanu. Efficient On-the-Fly Model-Checking for
Regular Alternation-Free Mu-Calculus. In Stefania Gnesi, Ina Schieferdecker, and
Axel Rennoch, editors, Proceedings of the 5th International Workshop on Formal
Methods for Industrial Critical Systems FMICS’2000 (Berlin, Germany), GMD
Report 91, pages 65–86, Berlin, April 2000. Also available as INRIA Research
Report RR-3899.

[PBF+00] N. De Palma, L. Bellissard, D. Féliot, A. Freyssinet, M. Herrmann, and S. La-
courte. The AAA Agent-based Message Oriented Middleware. C3DS Public
Technical Report Series 30, ESPRIT Long Term Research Project no. 24962,
2000.

RR n
�

4222

32 M. Aguilar Cornejo, H. Garavel, R. Mateescu, N. de Palma

[PBR99] N. De Palma, L. Bellissard, and M. Riveill. Dynamic Reconfiguration of Agent-
Based Applications. In Proceedings of the 3rd European Research Seminar on
Advances in Distributed Systems ERSADS’99 (Madeira Island, Portugal), April
1999.

[PM83] M. L. Powell and B. P. Miller. Process Migration in DEMOS/MP. In Proceedings
of the 6th ACM Symposium on Operating System Principles, pages 110–119,
1983.

[Pur94] J. M. Purtilo. The POLYLITH Software Bus. IEEE Transactions on Program-
ming Languages and Systems, 16(1):151–174, 1994.

[RST91] M. Raynal, A. Schiper, and S. Toueg. The Causal Ordering Abstraction and
a Simple Way to Implement It. Information Processing Letters, 39(6):343–350,
1991.

[SWP98] P. Sewell, P. T. Wojciechowski, and B. C. Pierce. Location-Independent Com-
munication for Mobile Agents: A Two-Level Architecture. In Proceedings of
ICCL’98 (Chicago, USA), volume 1686 of Lecture Notes in Computer Science,
pages 1–31. Springer Verlag, 1998.

INRIA

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route desLucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

