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Abstract

Over the last two decades formal methods have been extended towards performance
and reliability evaluation. This paper tries to provide a rather intuitive explanation
of the basic concepts and features in this area. Instead of striving for mathematical
rigour, the intention is to give an illustrative introduction to the basics of stochastic
models, to stochastic modelling using process algebra, and to model checking as a
technique to analyse stochastic models.

1 Introduction

Modern industrial systems, such as communication networks, transport systems, or man-
ufacturing systems, are more and more operating in a stochastic context: communication
lines can break, buffers can overflow, a lorry with material for a just-in-time production
line might get stuck in a traffic jam. Each of these phenomena is stochastic by nature,
its absence or presence can only be predicted up to some probability. Since these stochas-
tic phenomena have impact on the system under consideration, it is nowadays commonly
agreed that the systems themselves exhibit stochastic behaviour. As a consequence, per-
formance and reliability studies of industrial systems have to take into account that rigid
assessments ("It is impossible that the system fails”) only hold under unrealistic assump-
tions.

The construction and analysis of models suited for performance and reliability studies
of real-world phenomena is a difficult task. To a large extent this problem is attacked using
human intelligence and experience. Due to increasing size and complexity of systems, this
tendency seems even growing: performance as well as reliability modelling becomes a task
dedicated to specialists, in particular for systems exhibiting a high degree of irregularity.
Traditional performance models such as queueing networks lack hierarchical composition
and abstraction means, significantly hampering the modelling of systems that are devel-
oped nowadays. Some notable results and concepts have been developed [8, 36, 37, 38],
but they remain isolated from the system design cycle, due to the lack of a well-founded
theory of hierarchy, composition and abstraction.

On the other hand, for describing the plain functional behaviour of systems various
specification formalisms have been developed that are strongly focussed on modelling sys-
tems in a compositional, hierarchical manner. A prominent example of such specification
formalisms is process algebra [19]. Developed on a strong mathematical basis, process alge-
bra has emerged as an important framework to achieve compositionality. Process algebra



provides a formal apparatus for reasoning about structure and behaviour of systems in a
compositional way.

During the last decade, stochastic process algebra has emerged as a promising way
to carry out compositional performance and reliability modelling, mostly on the basis of
continuous time Markov chains (CTMCs). Following the same philosophy as ordinary
process algebra, the stochastic behaviour of a system is described as the composition of
the stochastic behaviours of its components.

To analyse properties of formally specified models model checking is a very successful
technique to establish the correctness of the model, relative to a given set of temporal logic
properties the model is supposed to satisfy [12, 13]. Using efficient encoding techniques,
model checking has been applied to industrial size designs involving more than 10%° states.

It appears valuable to apply efficient model checking techniques also to performance
and reliability properties of industrial systems. Since performance and reliability models
are stochastic in nature, the properties of interest are stochastic as well, and have to be
described in an appropriate extension of a temporal logic. The model checking algorithm
then involves the calculation (or approximation) of probabilities of certain properties to
hold.

This paper tries to provide a rather intuitive explanation of the basic concepts and
features of stochastic models, of stochastic modelling using process algebra, and of model
checking as a technique to analyse stochastic models. For the sake of being illustrative the
paper tends to treat various fine points much more simplistic than the advanced reader
probably desires.

The paper is organised as follows. Section 2 introduces the basic concepts of stochastic
models. Section 3 exemplifies the use of process algebra for modelling stochastic phe-
nomena by means of a real-world example, and Section 4 describes the model checking
approach to analyse stochastic models. Section 5 concludes the paper. This paper is a
revised version of an invited contribution to the 5th International ERCIM Workshop on
Formal Methods for Industrial Critical Systems (FMICS 2000) [25].

2 Stochastic models

A stochastic model is basically a means to describe the evolution of a real-world phe-
nomenon as time! passes, with a particular emphasis on phenomena with stochastic timing
characteristics. In other words, repeated observations of the same phenomenon can have
varying timing characteristics, but their variation exhibits a specific kind of randomness.

As an example, consider a gambler that throws a die every minute. Observing the
gambler, one might wish to study a phenomenon, such as the time it takes to throw a
[d. Starting the observation at some arbitrary minute, one counts the minutes till the
die shows a [, Obviously, repeated observations will usually lead to different results, at
least if gambling with a fair die. Nevertheless, the variation among these observations
exhibits a specific kind of randomness: The time needed to throw a [ is known to follow
the so-called geometric probability distribution.

Probability distribution. A probability distribution is a function that assigns a prob-
ability (a real value between 0 and 1) to each element of some given set. For instance,
the geometric probability distribution P assigns probabilities to natural numbers. For the

Tt is a bit narrow minded to consider the time domain as the only possible domain of variability.
Spatial Markov processes, for instance, are used to describe the evolution of a phenomenon as its position
in some appropriate space changes, as opposed to the time.



Figure 1: At the door of a gambler

gambler, these numbers enumerate the minutes he is already gambling (remind that he
throws the die once per minute). For some ¢, P(t) is the probability to see the first [ after
t minutes, and is given by:

5

t
P(t) = Pr{see a [ within first ¢ minutes} = 1 — (6) , te{0,1,2,...},

or complementary,
5\ ¢
1— P(t) = Pr{still no £ after ¢ minutes} = <6> , te{0,1,2,...}.

For instance, the probability of not having seen a [ after ¢ = 2 minutes, i.e., after throwing
the die twice, equals 25/36.

To make the example a bit more interesting, assume that the gambler is throwing the
die somewhere outside his office. Before leaving his office he has put a note on the door,
as depicted in Figure 1. In fact, his intention is to return to his office as soon as the die
shows a . Now let us assume that someone arrives at his door, finding the door closed.
How long will he have to wait for the gambler? Probably just a minute, but probably
(more likely) more than a minute, probably (unlikely) more than ten minutes. Since this
experiment is governed by the above geometric distribution, the probability of having
to wait more than a minute is 5/6, the probability of waiting more than ten minutes is
(5/6)1°. Figure 2 depicts these probabilities for the first 15 minutes.
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Figure 2: A geometric probability distribution?: Will the gambler still be absent at time ¢?

2The reader familiar with the standard pictorial representation might be surprised that the plot in



Markov chain. Having explained the gambler’s behaviour, we are now in the position
to specify a stochastic model of his behaviour. It is depicted in Figure 3. As many other
(formal or semi-formal) models, the model is a graph, consisting of states and transitions.
There are two states in this model. One state represents the absence of the gambler, one
represents his presence in the office. The model contains three transitions representing
possible events that might induce a change of state. One transition indicates that every
minute the absent gambler has a 1-out-of-6 chance to return to his office. Another tran-
sition indicates that with probability 5/6 the absent gambler will miss the £, and hence
has to stay absent for at least another minute. In case he is back in his office, the third
transition indicates that he stays there (ad infinitum). The small arrow on top of the left
state indicates the initial state. i.e. the state occupied at time zero.

5/6
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Figure 3: A discrete-time Markov chain describing the gambler’s behaviour

The stochastic model of the gambler’s behaviour is a very simple one. It is a Markov
chain, named after A.A. Markov who studied models of this kind in the beginning of the
last century [34]. More specific, it is a discrete-time Markov chain (DTMC), since state
changes are only possible at discrete points in time: The gambler can return to his office
precisely every minute only. DTMCs restrict the possible time points for state changes to
a discrete subset of dense real time. As in our example, these time points are often (but
not necessarily) equidistant.

Markov chain analysis. For a given stochastic model, such as a Markov chain, there is
usually a variety of interesting properties that one might want to study. Two substantially
different classes of properties can be distinguished. Transient analysis investigates the
evolution of the model up to a given point in time. On the contrary, steady-state analysis
focusses on the long-run average behaviour. It requires that on the long-run initial start-up
effects (the transient phase) do not have a measurable impact.

A trivial steady-state property for the gambler is that with probability zero he will be
absent on the long-run. As an example for a transient property, we have already indicated
that the probability of still being absent after 10 minutes is (5/6)!°. A variant of steady-
state analysis gives us that on average it takes the gambler six minutes to throw a k. So,
the sign on the office door is essentially right, the gambler will be back in six minutes, on
average. (This can also be directly derived from the fact that the expected (or average)
value of a geometric distribution is 1/p where p = 1/6 is the chance of a succesful event.)

Analysis techniques. In practise, three fundamentally different techniques are used to
analyse stochastic models. They differ with respect to accuracy, applicability and com-
putational requirements. Here, we only give a concise subjective summary on differences
and similarities, and refer to Jain’s textbook [33] for a more elaborate discussion.

Figure 2 (and Figure 5) tends to zero for ¢ — oo, instead of tending towards 1. What is depicted is not
the probability distribution P(t) (nor its probability density), but its complement 1 — P(t). This is done
for didactic reasons.



Simulation. The stochastic model is mimicked by a simulator throwing dice and producing
statistics of simulated time spent in states. The fraction of simulated time spent in
a particular state is used as an estimate for the state probability. This technique
is generally applicable, in particular it is suitable also for non-Markov stochastic
models. However, it should be noticed that good accuracy tends to require long
simulation runs, and hence limits applicability in practise: To increase the accuracy
of the simulation by a factor of n, one needs to increase the length of the simulation
runs (and hence the run-time of the simulation) by a factor of n?.

Numerical solution. The transient or steady-state behaviour of a stochastic model is ob-
tained by an exact or approximate numerical algorithm where model parameters are
instantiated with numerical values. This approach gives accurate results in general,
up to numerical precision. Typically the solution time increases logarithmically with
an increase in accuracy. On the other hand, its applicability is restricted to finite
Markov chains (with a few exceptions, see e.g. [22, 32]). Furthermore the number of
states of the model is a limiting factor, because of computational and especially stor-
age requirements. A very readable textbook on numerical solution methods is [41].

Analytical solution. The transient or steady state property of interest is expressed as a
closed formula over the parameters of the model. This is the most simple, accurate
and elegant technique. However, analytical solutions are available only for highly
restricted classes of stochastic models.

Absence of memory. Markov chains are widely used as stochastic models of real-world
phenomena. This is mainly because they possess a distinguishing feature that simplifies
both modelling and analysis. They obey the so called memory-less property: The future
evolution of a Markov chain model is independent of the past, it only depends on the
state currently occupied. This property is best explained in terms of the absent gambler.
The probability that the gambler returns to his office after one minute from now is 1/6,
independent of the fact that someone might be waiting for him in front of his door for
ten minutes (or years) already. This is a direct consequence of the fact that a fair die has
no memory; the die does not change if it has not shown a [ for ages. This should not
be mixed with the fact that the probability of actually having to wait for ten minutes is
low, (5/6)1°. Under the assumption that this unlikely case becomes reality, it still needs
another six minutes waiting time on average, as the sign on the door indicates.

Discrete vs. continuous time. Discrete-time Markov chains are convenient to de-
scribe the stochastic evolution of sequential systems. In each state, the outgoing tran-
sitions define how the probability mass will be spread at the next time instant. Since
DTMCs evolve in a discrete time domain, the flow of probability is not continuous, in-
stead it possesses jumps, and remains unchanged in the time interval between two relevant
time points, such as between t = 2 and ¢ = 3. This is relatively convenient for sequential
systems. But it is not convenient in a concurrent probabilistic setting, for both theoretical
as well as pragmatic reasons.?

As an example, imagine that the gambler’s office door is checked by some customer.
In case he finds the door closed he probabilistically decides to check again after either 24
or 48 seconds. Note that the basic time unit of this DTMC is 24 seconds. For instance,
one might want to study the probability that the customer finds an open door after 72
seconds.

SDTMCs are appropriate for some types of concurrent systems possessing globally synchronising clocks,
such as ATM-switches or certain manufacturing systems.
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Figure 4: A discrete-time Markov chain describing the gambler’s behaviour if observed
every 12 seconds

Without specifying the model in all detail, we are already in the position to understand
the problem: In order to develop a concurrent probabilistic model of both gambler and
customer, we have to relate events that may happen at every 24 seconds to events that
happen may every 60 seconds. One solution is to change the basic time unit of both models
to 12 seconds, the greatest common divisor of their basic time units. In other words, the
gambler’s model is blown up to record in 4 additional states that while being absent, four
times 12 seconds pass till he may throw the die in the last twelve seconds of the minute
(cf. Figure 4).* After a similar change in the customer’s sub-model, one can combine both
models (by essentially taking the cross-product of states and the products of transition
probabilities). To determine the concurrent stochastic behaviour at the next point in
time (i.e. after 12 seconds) one synchronously updates the respective states in the two
sub-models, because state changes now occur exactly at the same time. The probability
for such a joined transition is given by the product of the transition probabilities in the
sub-models.

This strategy has two practical limitations, at least. First, it tends to induce a tremen-
dous blow-up of the size of the model, caused by the number of auxiliary states needed
in general. Second, it fails if there is no greatest common divisor, for instance if the cus-
tomer shows up every 7 seconds, or if time points are not equidistant. As a consequence,
virtually all stochastic models of concurrent systems are developed in a continuous time
domain, including models of modern computer systems (even though each component of
such a system can be considered as working in discrete time, changing state according to
fixed frequency clock ticks).

Continuous-time Markov chains. Continuous-time Markov chains (CTMCs) are
Markov chains interpreted over continuous time, in contrast to DTMCs. They are widely
used to model the stochastic behaviour of concurrent real-world phenomena, due to their
mathematical simplicity, paired with modelling convenience.

How does the continuous-time variant of the gambler look like? In a continuous time
setting, the absent gambler is able to return to his office at arbitrary time points. Still we
may assume that he has a 1-out-of-6 chance to return within the first minute, and so on.
Under these assumptions, we get the following probability distribution:

Pr{still no 2 after ¢ minutes} = (5/6)", te R,

What is this? It perfectly resembles the geometric distribution appearing in the discrete
time case, but it is different. The difference is that the domain of this function is the

4Note that this change encodes some kind of memory in an otherwise memory-less model: A sequence
of states is used to keep track of the time already spent in the original state.



non-negative real line, instead of the natural numbers. In other words, the above function
assigns a probability to all time points one may think of, instead of only to each minute.
Hence, there is now a non-zero probability of returning within the first second already,
namely 1 — (5/6)%/%0. Instead of being a geometric distribution, this function belongs to
the class of so-called (negative) exponential probability distributions, because (5/6)" can
be rewritten to e ™, with A = In6 — In5 ~ 0.18232. The value \ is a parameter of the
distribution, usually called 'rate’. For ¢t < 15, the probabilities determined by this expo-
nential probability distribution are depicted (by the dark plot) in Figure 5. The expected
value of an exponential distribution (i.e. the average duration) is 1/A, the reciprocal value
of the rate. So, the (continuously gambling) gambler returns after 5.48 minutes on average,
not after six minutes.’
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Figure 5: A negative exponential probability distribution with A = In6 — In5: Will the
gambler still be absent at time ¢7

A continuous-time Markov chain model of this absent gambler is depicted in Figure 6.
It consists of two states, and one transition. The transition represents that the gambler
can return to his office with rate A. The gambler stays absent as long as needed to throw
a [l According to the value of A the probability mass flows from state to state as time
passes, that is, a fraction of 1 — e* = 1/6 of the probability mass flows from the left state
to the right state per minute.5

A
D N

Figure 6: A continuous-time Markov chain describing the gambler’s behaviour

Though the above example shows one of the simplest CTMCs one can think of, it
exhibits all relevant ingredients: states and transitions, the latter labelled with rates
of exponential distributions. It is worth to note that — in correspondence to geometric

®Remark that since the probability mass is flowing continuously, a sixth of the mass leaks prior to
the first minute tick. Hence, to some extent the probability mass flows earlier than in the discrete-time
case, where a sixth of the probability mass jumps a bit later, at each minute tick. As a consequence, the
average time needed for the continuously gambling gambler is slightly smaller than 6 minutes. To obtain
an average duration of 6 minutes, one has to adjust A to 1/6.

5Since the gambler continuously tries to return to his office, there is no need to record by an explicit
(looping) transition that he might fail for some (continuous) time. For CTMCs, this fact is implicit, while
in the DTMC scenario it is not.



distributions — exponential distributions are memory-less: The future evolution of a CTMC
model is independent of the past, it only depends on the state currently occupied. In terms
of the gambler, the probability that the absent gambler returns to his office within the
next minute is 1/6, independent of the fact he might have been absent for ages already.

Figure 5 allows us to illustrate the memory-less property in a pictorial way [1]. Consider
the case that the gambler is still gambling after minute 10. We obtain the probability that
he will still be gambling at time 10 4 ¢ by stretching the tail of the distribution (from
time 10 to oco) upwards in such a way that it reaches probability 1 for minute 10, i.e.
t = 0. As a matter of fact, this stretching returns precisely the original distribution, as
indicated by the light-grey plot in Figure 5, except that it is shifted by 10 minutes. The
same graphical illustration holds for the geometric distribution, but for no other discrete
or continuous distribution, because the exponential (resp. geometric) distribution is the
only memory-less continuous (resp. discrete) distribution.

From a pragmatic point of view, the memory-less property is rather convenient. It
simplifies analysis, but it also simplifies modelling. In particular, it fits well to concurrent
stochastic phenomena: If two sub-models, both described in terms of CTMCs, are to
be considered concurrently, one can simply interleave their evolution: If one sub-model
changes from one state to another, the other sub-model is not affected. The fact that the
latter has been staying in some state for some time (the time it took the former sub-model
to change state) does not need to be recorded somehow, because it does not alter the
future behaviour of the latter sub-model, due to the memory-less property.

Anyway, it should be clearly stated that absence of memory is an assumption that is
by far not always justified when modelling real-world phenomena.” On the other hand,
exponential distributions are the most appropriate guesses if only expected values are
known. This is because among all distributions with a given expected value, the exponen-
tial distribution maximises entropy [23, 39]. Actually, in performance engineering practise
one hardly has measurement data at hand that allows one to determine more than an
expected value.

3 Formal specification of continuous-time Markov chains

In this section we illustrate the use of formal methods to model a specific aspect of a real-
world example as a CTMC. Several formal notations exist that map on CTMCs, among
them stochastic Petri nets and stochastic process algebra. Here we restrict ourselves to
illustrate the use of process algebra; an introduction to the Petri net based approach can
be found for instance in [1]. As opposed to standard Petri nets, process algebra allows one
to compose models out of smaller sub-models, by means of general composition operators
such as parallel composition and choice [19], and also more specific constructs, such as
exception handling [21]. We will make use of these operators to model a simplified view
on the performance and reliability of the Hubble space telescope.

The Hubble Space Telescope. The Hubble space telescope (HST) [40] is an orbiting
astronomical observatory operating from the near-infrared into the ultraviolet (cf. Fig-
ure 7). Launched in 1990 and scheduled to operate through 2010, the HST carries a
variety of instruments producing imaging, spectrographic, astrometric, and photometric
data.

"It is possible to incorporate a notion of memory into the model, similar to what we have used to realise
synchronisation of DTMCs (cf. footnote 4). In this way, general non-exponential probability distributions
(so-called phase-type distributions) can be represented. The price to pay for this is usually a blow up of
the model.
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Figure 7: The Hubble space telescope [40].

The HST was first conceived in the 1940’s. It was designed and built in the 1970’s
and 1980’s, aiming at a life span of 15 years with on-orbit servicing taking place on 3 year
intervals. The HST programme is a cooperation of the National Aeronautics and Space
Administration(NASA) and the European Space Agency (ESA).®

Since the telescope has been launched in April 1990, three servicing missions were
carried out: in December 1993, in February 1997, and in December 1999. During the last
mission the stabilising unit of the HST was repaired. This was necessary, since severe
problems with the reliability of the gyroscopes contained therein had forced the HST to
turn into a sleep mode.

The gyroscopes are part of HST pointing system. They provide a frame of reference
to determine where it is pointing and how that pointing changes as the telescope moves
across the sky. They report any small movements of the spacecraft to the HST pointing
and control system. The computers then command the spinning reaction wheels to keep
the spacecraft stable or moving at the desired rate in order to avoid that the telescope
pointing device staggers. This is of particular importance to avoid that pictures taken by
the telescope are blurred. The gyroscopes work by comparing the HST motion relative to
the axes of the spinning masses inside the gyroscopes.

The HST has a total of six gyroscopes, grouped into three fine guidance sensors. They
are arranged in such a way that any three gyroscopes can keep the HST operating with full
accuracy. Two fine guidance sensors had been replaced already during the first servicing
mission in 1993. Till the end of the second servicing mission in 1997, all six gyroscopes
were working normally, but then one after the other failed. Starting from January 1999
the HST had been operating with only 3 functional gyroscopes. As a consequence of a
fourth gyroscope failure on November 13, 1999, HST turned itself into a sleep mode and
the science program was suspended. Without operational gyroscope the telescope would
have run the risk to crash. In December 1999, a space shuttle mission was sent to the
HST to replace (among others) the complete stabilising unit. This mission was successful.

8Originally, the HST was designed to be returned to earth via the space shuttle every 5 years with
on-orbit servicing every 2.5 years as well. This concept was later dropped as it was felt there was a too
great risk of contamination and structural load to make the concept sound.



In order to judge whether the problems of the HST could have been expected before-
hand, one might want to study the reliability of the stabilising unit by means of an abstract
stochastic model. Here we construct a simple Markov chain model of the gyroscopes, and
of their controller. The model is a toy example, developed to give a flavour of Markov
chain modelling with process algebra. The model is developed in the algebra of interactive
Markov chains (IMC) [24, 27], an orthogonal extension of both CTMCs and basic process
algebra.

Basic processes. Each gyroscope might FAIL after an exponentially distributed amount
of time (it is known that exponential distributions fit relatively well to failures of technical
equipment). The failure rate A is the same for all gyroscopes. A GYRO specification is
as follows:

GYRO = (\). FAIL. STOP

This specification corresponds to a graphical representation depicted in Figure 8. Apart
from a transition labelled A representing the delay prior to failure, there is a second kind
of transition, indicated by a dotted arrow labelled FAIL. In abstract terms, this transition
represents the potential of interaction, i.e. of synchronising with a partner transition (la-
belled with the same name) in a different sub-model. The potential of interaction between
sub-models is one of the well-known features offered by a process algebraic approach [7, 35].

ﬂ FAIL
Gerationgh—————s(( Yurriiasiv »Gerted)

Figure 8: A simple interactive Markov chain describing the gyroscope’s behaviour

Parallel composition. Six of these gyroscopes coexist independently in the stabilising
unit, together with a controller that keeps track of the status of each gyroscope, by means
of synchronisation on FAIL. This is realised using the operator |[FAIL]| for synchronisation,
and ||| to denote independent parallelism (among the gyroscopes):

STABILISER = CONTROLLER
|[FAIL]|
(GYROJ||GYRO|||GYROJ||GYRO|||GYRO|||GYRO)

The controller counts the number of failures, and mechanically turns the telescope into
sleep mode in case four gyroscopes have failed. To turn into sleep mode requires some
time. For the moment we just assume an exponential distribution with rate p. We will
explain shortly how to deal with other distributions. After turning on the sleep mode,
the controller notifies the base station by means of a SLEEP signal. In the meantime,
further gyroscope failures might occur. If the last gyroscope fails, a CRASH is assumed to
be inevitable. The graphical representation of the controller is depicted in Figure 9.

CONTROLLER = FAIL. FAIL. FAIL. FAIL.
((u). sLEEP. STOP |[|| FAIL. FAIL. CRASH. STOP))
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Figure 9: An interactive Markov chain describing the controller

To complete the picture, we consider the stabilising unit of the HST in the context of the
base station. The base station listens to the SLEEP notification and reacts accordingly:
launch a space shuttle mission to repair — and then restart — the telescope.

BASE = SLEEP. PREPARE. LAUNCH. REPAIR. RESTART. BASE

Exception handling. The complete specification consists of the STABILISER and
the BASE station synchronising on SLEEP. Two events may alter the functioning of the
system. If a CRASH occurs, the whole system is extinguished, but if the shuttle mission
manages to repair the stabilising unit in time, the whole system will be restarted anew.”

HST = try { STABILISER |[sLEEP]| BASE }
catch RESTART { HST }
catch CRASH { STOP }

Time constraints. Of course, preparing the shuttle mission takes time, and one might
wish to incorporate the expected (random) delay in the model. To do so, we can use a
constraint-oriented style, as advocated in [42]. This style allows one to add constraints on
the timing of certain sequences of interactions, such as between PREPARE and LAUNCH by
means of a dedicated operator, defined in [27]. For instance,

on PREPARE delay LAUNCH by (v). STOP
i HST

adds an exponentially distributed delay with rate 1 between PREPARE and
LAUNCH. Semantically speaking, this will have the same effect as specifying
BASE = SLEEP. PREPARE. (V). LAUNCH. REPAIR. RESTART. BASE, but it is much more
modular and flexible, in particular because it can be used to impose very general time
constraints, instead of only exponentially distributed ones, see [27]. In short, one can
insert an arbitrary (phase-type distributed) delay between PREPARE and LAUNCH, by re-
placing (v). STOP in the above expression by some appropriate term (in fact, an encoding
of the distribution as a CTMC).

For the sake of the presentation we do not add further time constraints, even though a
realistic model would at least impose some nontrivial delay between LAUNCH and REPAIR,
(as well as a non-exponential delay to set up the SLEEP mode.)



Figure 10: A continuous-time Markov chain corresponding to the stochastic behaviour of
the telescope

Extracting the Markov chain. The complete HST specification gives rise to a
stochastic model, a CTMC depicted in Figure 10. It is obtained from the specification
by applying the formal semantics of the process algebra, and compressing the model by
means of an appropriate weak bisimulation afterwards.!® The states are labelled from left
to right with the number of gyroscopes that are currently operational, except if the system
is sleeping, or crashed.

Remark that in this CTMC the failure rate A appears weighted with different mul-
tiplying factors. The intuitive reason is that if six gyroscopes are operational, the time
to the first failure is six times smaller than if only one gyroscope is left. This increased
failure rate for multiple identical components is correctly derived by the formal approach
outlined above. The necessary compression algorithm is implemented in [9].

4 Performance and reliability via model checking

In this section we illustrate the use of model checking to analyse performance and reliability
properties of CTMC models. We discuss the main ingredients of this approach, and apply
model checking to the simple Hubble space telescope example of Section 3.

Temporal logic. The model checking approach relies on the use of temporal logic for
specifying properties one is interested in. For this purpose temporal logic provides means
to specify undesired (or — dually — desired) evolutions. Typical specifications of proper-
ties are ’something undesired never happens’ or ’eventually a desired state is
reached’. A temporal logic specification is usually considered in the context of a given
model (provided by some process algebraic specification, for instance). The mechanic ver-
ification whether a model satisfies a temporal logic specification is called model checking.
It is worth to mention that basic temporal logic does not allow one to reason about delays
and time points (although the name might suggest the converse). It is 'temporal’ in the
sense that it allows one to refer to the ordering of events as the model evolves in time.

Temporal logics for Markov chains. In the context of Markov chain models, the
temporal logic approach turns into a probabilistic temporal one. It is not sufficient to
decide whether ’eventually a desired state is reached’. Instead the probability of

®The semantics of this exception handling is defined in [17].

10As explained in [27], constructing the Markov chain requires to internalise all possible interactions
beforehand. This is necessary but not always sufficient to extract a CTMC, since interactive Markov
chains are strictly more expressive than CTMCs (because of the absence on non-determinism in CTMCs).



eventually reaching a desired state is much more interesting. For the gambler example
in Figure 3 the standard interpretation of eventually the gambler will be present’
would return false, because it is in principle possible to stay absent ad infinitum. However,
this evolution is extremely unlikely, it has probability zero. So, a quantitative interpreta-
tion of temporal logic is needed, quantifying the likelihood of satisfying a given property.
This allows one to specify properties such as ’a desired state is eventually reached
with at least probability 0.95°.

Moreover, since the evolution of a Markov chain model in time is measurable (in the
true sense of the word), it is possible to reason about time instances within the temporal
logic. Timed properties such as ’with at most probability 0.2 the gambler will
still be absent after 10 minutes’ are possible.

Continuous stochastic logic. The continuous stochastic logic (CSL), first proposed in
[2] and further refined in [3, 5] provides means to reason about continuous-time Markov
chain models. It is a branching time logic based on CTL [11] with dedicated means
to specify time intervals, and to quantify probability. As explained in Section 2, there
are two substantially different classes of properties of a CTMC: transient and steady-
state properties. Therefore, CSL provides two complementary means to quantify the
probability mass: a steady-state operator S, to quantify the long-run likelihood, and a
transient probability operator P.

For instance, a steady-state property S<,(®) is true if the long-run likelihood of prop-
erty @ is at most p.!! ® can be a basic property (usually called atomic proposition) valid
(or invalid) in some state. It can also be an arbitrary nested property of the logic. The
transient probability operator is used to quantify the likelihood of evolving in a specified
way, from a given state and a given time point on. For example P<,(X ®) is true in a
state if the probability of moving (in one step) to a state where ® holds is at most p.
Apart from X @, there can be various other arguments for the operator P, such as

e O & quantifies the probability for evolving in such a way that eventually a ®-state
is reached.

o OO & characterizes the amount of probability for reaching a ®-state within ¢ time
units.

e & U Py characterizes the amount of probability for evolving only along ®;-states
until a ®o-state is reached.

o &, UMl &, quantifies the probability for evolving only along ®;-states until a ®o-
state is reached, under the additional constraint that ®; holds at least up to time
t1, and @5 holds at time ¢, the latest.

Model checking CSL. Model checking a CTMC with respect to a given CSL property
involves various algorithms. Since the details are not of vital importance for a proper
understanding of the approach — at least relative to the logical means to specify properties
— we only give a concise overview of the ingredients.

As in other model checking strategies, a couple of graph algorithms are used. In
addition, algorithms to quantify the probability mass of satisfying the above criteria are
needed. In principle, these probabilities could be derived using simulation, numerical
solution, or sometimes via analytical solutions. Since numerical solution of CTMCs is
well-studied and generally applicable, it seems wise to use numerical solution methods

Hnstead of ’<’ one may use arbitrary comparison operators, or specify intervals of probabilities instead.



to model check CSL properties [5]. In this way, model checking involves matrix-vector
multiplications (for X), solutions of linear systems of equations (for ¢, U and for S), and
solutions of systems of Volterra integral equations (for U ["']). Linear systems of equations
can be solved iteratively by standard numerical methods [41]. Systems of integral equations
can be solved either by piecewise integration after discretisation, or they can be reduced
to standard transient analysis [3]. A prototypical model checker for CSL, E— MC?, is
available [28]. We shall make use of E - MC? to investigate properties of the Hubble space
telescope.

Properties of the telescope model. CSL provides a rich framework to study perfor-
mance and reliability properties of the HST. Here we consider a few illustrative cases. In
order to allow the calculation of numerical values, we first need to fix the model param-
eters A, u, and v of the CTMC in Figure 10. Assuming a basic time unit of one year,
we set A = 0.1, i.e., we assume that each gyroscope has an average lifetime of 10 years.
(Remind that 1/\ gives the average duration of an exponential distribution with rate \.)
To turn on the sleep mode may require a hundredth of a year (a bit more than three days
and a half) on average, hence we set . = 100. Further assuming that preparing the repair
mission will take about two months, we set v = 6. Unless otherwise stated we consider
the validity of CSL properties in the initial state, i.e. the state labelled 6 in Figure 10.
The state labels appearing in this figure serve as atomic state propositions for the logic.

First, let us look into long-run averages. An interesting property, often called availabil-
ity, is the probability that the system will be available — i.e. neither crashed nor sleeping —
on the long-run average. In CSL we assure an availability higher than p by specifying

Ssp(— (sleep V crash) ).

None of the states of the HST satisfies this property (whatever the value of p may be). This
should not be surprising, because the telescope is not constructed for the long run. In fact,
the availability of the telescope is zero, because on the long run, the modelled telescope
will crash, all the probability mass will eventually be accumulated in the crash-state (cf.
Figure 10).12

While checking standard availability does not make much sense for the HST, the in-
stantaneous availability is of interest. Instantaneous availability is a typical transient
property, it is the probability that the system is operational at a given time point ¢. This
time point could for instance be given by the need to observe a rare astronomic event.
Assuming that an interesting comet passes the telescope in five years, we specify

P>0.05(0P )= (sleep V crash))

in order to assure that with at least probability 0.95 the telescope is neither sleeping nor
crashed then. (Note that the time interval [¢,¢] denotes just a single time point.) We
compute a probability of more than 0.98 of satisfying this property, hence it is satisfied.
In the same vain, we may wonder about the probability to obtain blurred data at that
time from the telescope, because less than three gyroscopes are operational, but sleep
mode is not yet turned on. This is a very unlikely situation, and one might accept at most
a probability of 107%. One way of characterising the relevant states is to isolate those

12Generally speaking, steady-state properties provide very useful insight in the model, in particular for
the widespread class of models where the probability mass can flow forever without gradually leaking into
some sink (so to speak), or where more than one sink exists. Each of these sinks may in general consist of
a set of mutually reachable states.



(non-sleep) state that (with positive probability) can turn on the sleep mode in the next
step. This gives us
P§1076(<>[5’5} (= sleep A Pso(X sleep) ),

a property that is not satisfied, because the probability of being in the specified states
after 5 years is about 107°.

Another quantity of interest is the time until first sleep, i.e. the time span before the
(fully operational) telescope has to be put into sleep mode for the first time. In reality,
this happened within 2.7 years: All gyroscopes were operational at the end of the second
servicing mission in early 1997, and the sleep mode was turned on in November 1999. We
require a less than 10 % chance of such a first sleep within 2.7 years by specifying the

property
[0,2.7]

Poo1( —sleepU sleep).

It turns out that this property is valid; E— MC? computes that the probability of a first
sleep within 2.7 years amounts to about 0.03. A related question is whether it was likely
not to witness any gyroscope failure within the four years between the first (1993) and
the second servicing mission (1997). We answer this question by checking whether the
probability to leave state 6 within 4 years is between, say, 0.3 and 0.7. (Notice that
leaving state 6 corresponds to a gyroscope failure).

P0.3,0,7] (04 6)

In fact, this property is invalid, because the probability of a gyroscope failure within 4
years is approximately 0.9, thus exceeding the upper bound 0.7.

As a last example property, be reminded that the HST is planned to stay on orbit
through 2010. Hence, it seems worth to study whether a crash before reaching the year
2010 can hardly be expected. To do so, we check a property saying that there is at most
a 1% chance that the system will crash within the next 10 years (given that the system
was reset to state ¢ in late 1999):

P<o.01 (0[0’10] crash).

This property is satisfied, the probability of crashing within 10 years is calculated by
E+— MC? to be 0.00036. Remind that the model is a toy example, and that its timing
parameters are not claimed to reflect reality.

5 Concluding remarks

In this paper, we have tried to give an illustrative introduction to the basics of stochastic
models, to stochastic modelling using process algebra, and to model checking as a technique
to analyse stochastic models.

A few questions have not been addressed to a satisfactory extent. In particular we have
skipped the discussion how to label states of a CTMC generated from a process algebra
in such a way that these labels can be used in temporal logic property specifications. One
solution to this problem is to move from a state-based logic towards a transition-based
formalism [29]. As a further direction of research, we have extended CSL to so-called
Markov reward models, where states are parametrized with costs. This extension allows
one to specify a broad set of performability properties [4].

Another important issue for industrial strength formal analysis is the availability of
tool support. Currently, prototypical tool support is available for both the stochastic



modelling and the analysis phase: A couple of prototypes exist that allow a process alge-
braic modelling of CTMCs [6, 10, 26]. So far, performance models with up to 107 states
have been modelled and analysed compositionally [27]. A prototypical model checker for
Markov chains, E —MC?, is available [28], it has been used to check the above CSL proper-
ties of the Hubble space telescope. More effort is nevertheless needed to enhance modelling
and analysis convenience. In addition, it seems favourable to link stochastic features to
existing modelling and analysis tools that provide an open and extensible architecture.
We are currently making efforts to incorporate stochastic modelling and analysis features
into the CADP toolset [9, 20, 18].

Markov chain models have been the clear focus of this paper. Their memory-less
property considerably simplifies both modelling and analysis, but the property also implies
that some real-world phenomena can only roughly be approximated with Markov chains.
Hence, there is a need to extend the framework sketched in this paper beyond Markov
models. The work of D’Argenio et al. [15, 16, 17] develops a process algebra to specify
non-Markov performance and reliability models in an elegant way. So, the benefits of a
process algebraic formalism extend to performance and reliability modelling in general.
Anyhow, the analysis of such models needs further investigations. First results in this
direction, however, indicate that numerical solution methods are impractical in general
[30]. We are currently developing an open analysis environment for such specifications,
linking to UPPAAL [31] for real-time model checking and to MOBIUS [14] for discrete event
simulation and numerical analysis.

Acknowledgements. Pedro R. D’Argenio, Boudewijn Haverkort and Joost-Pieter Ka-
toen have provided very valuable comments on an earlier version of this paper.
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