Communicating automata



Communicating Automata (CA)

e Simple formalism to describe asynchronous
concurrent systems

e Shows some of the basic concepts of this course:

System description using an automaton
Decomposition into communicating automata
automata product (parallelisation)

automata synchronisation

construction of the state graph
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A coffee machine automaton

1. Wait for a coin
2. Brew a cup of coffee
3. Give it to the user

makingCoffee

1nit

coffee

coffeeReady
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Decomposing the coffee machine

Coin subsystem . brew
- Accepts a coin it Q coin
- Orders to brew a coffee

Brewing subsystem - Q coffee
- Waits for a command brew

- Makes coffee

e How do we put these pieces together?

o Will the composition have the same
behavior?
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Labelled Transition Systems (LTS)

AnLTSisa4-ple M=(S A T s,)
e S5: Set of states, A4: Set of actions

e T cSxAxS: Labelled transition relation
- If (s a s’)e T, wesimply write s—a— s’
e 5,: Initial state
S = {waitCoin, makingCoftee, coffeeReady}

- @ A = {coin, brew, coffee}
mi
T ={(w, coin, m),
ffee (m, brew, c),
¢, cotfee, w
Cotensy > e

coffeeReady . )
Sy, = waitCoin
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LTS product (1/3)

« We have the LTSs of two systems
- M; =(5,A4;,T;, 819)
- M, =(5,,45,T;,52)

« We want the LTS of a system M that is composed
of M,and M,

e M,and M, evolve independently, in parallel

We can define a product of LTSs: M=M,® M,
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LTS product (2/3)

Example: one system can

only do a, the other can init | s10 ) init > 520
only do b.

The product should be a b
able to do:

e g, then b
OO,
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LTS product (3/3)

e States: Product of 5, S,
e Actions: Union of 4,, A4,
e Initial state: (s, 55,)

e Transitions?

s1 5 8
(81,82) = (51, 52)
S9 o> b
(81,82) = (s1,85)

Inference rules

if all premises (above
the line) are true,
the conclusion
(below the line) must
also be true
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What about communication?

« What we have seen is pure interleaving
- The two components just alternate their execution

e But components often communicate

- Let’s go back at the coffee machine example

- brew represents a communication between the two
automata: they should do brew together

o brew

1nit : cl
coin

o coffee

init bl
brew
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Synchronisation

e Let us introduce a set L of synchronising actions

e Extend ® to ®;
- E.g., for our coffee machine, L = { brew }
- When M,, M, can both do i € L, they evolve together
- When L = : pure interleaving

s1—=s, pugl s9 s, pwélL
(81782) i> (8,1782) (81782) i> (8178/2)
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Composing the coffee machine

Wait a minute...

This automaton does not
have the same behaviour
as the original

- After brewing a coffee,
it can accept a coin
before giving the coffee
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Exercise

o Compute the following product

e b @ e
b

s1 st udlL sa s udlL
C
(s1,82) L (s1,82) (s1,82) = (s1,85)
@ s1 s, sa s, pel

(s1,82) = (s, )
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O

Solution
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Behavioural Equivalences

Weaker than LTS equivalence: some automata are
different, but have the same behaviour

e Example:
init—b()?a
1nit
d

e Both can only do an ~ sequence of a
« We need to formalise this notion
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Strong bisimulation (1/2)

A binary relation between states
Binary relation = Set of pairs

When do states p and g have the same behaviour?
- They can do the same actions

- When they do an action, they must reach states with
the same behaviour (recursive!)
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Strong bisimulation

Ris a strong bisimulation if V (p,q) € R:
1. f p—a— p'then3qg st.g—a— g and (p, g) €R
2. If g—a— g then3dp' s.t p—a— p' and (p, g) €R

p, gare strongly bisimilar (p ~ g) if there exists a
strong bisimulation R such that (p, g) € R

Two LTSs with initial states s,,, s,, are strongly
b]S]m]lar ]f 510 "’520
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Example (1/3)

e Prove that s, ~ ¢,

P
C

(o
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Example (2/3)

Prove that s, ~ ¢,

Deadlocked states are bisimilar: s, ~¢,, s, ~ t;
S] ~ t], SZ ~ t’]
Sop~ 1ty

R={(50,tp).(51,t1), (51,t"1), (52t2), (S2,t3) }
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Example (3/3)

e These automata are not bisimilar

e Look at s,, t;, and ¢,’
e This is equivalence checking, can be automated
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Exercise

e Are these LTSs bisimilar? (s, ~¢,?)
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Solution

e Are these LTSs bisimilar? (s, ~¢,?) Yes

- Dashed lines represent the bisimulation relation
- Self-transitions may be confusing...

Modelling and Verification

21



LTS minimization

For every LTS M we can construct an M’ that

- Is strongly bisimilar to M
- Has a minimal number of states/transitions

M’is known as the minimal representative of M
M’can be computed automatically, given M

Example:

is the minimal
t c representative of
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Internal actions and hiding

e Internal (or invisible) action
- traditionally written J, or 7 (tau)
- Automata cannot synchronise on it
o Often, we want to check the equivalence of a
specification S and an implementation P
- But Pmay contain actions that are irrelevant to S.
- Strong bisimulation does not work
e Solution:
- In P, rename those irrelevant actions to 7 (hiding)
- Define an equivalence that “ignores” internal actions
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Branching bisimulation

e For non-t actions, same as strong bisimulation
o “Collapse” sequences of t actions

- ///Q @
~ / -
\

~

~
\\ Soas
~

:\\\

e You can also minimize an LTS up to branching
bisimulation

7/
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Rendezvous

When two (or more!) CA synchronize, we say that
they perform a rendezvous. Two “styles”:

o Symmetrical (shown earlier)
- No such distinction
- Rendezvous on the same action
- Easy to extend to many CA (multi-party rendezvous)

e Asymmetrical
- Distinguish between input and output actions
- Rendezvous on input/output pairs
- Typically results in an internal action
- Typical syntax: @2—aor 7a—/aor a? —a!
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Drawbacks

e Risk of state space explosion with ®
- Size of S; x S, = (Size of §,) x (Size of S))
- Minimization can help with that

 No modelling of data

- Scenario: an automaton sends
an int to another

- Automata need a different
action for each int

- Receiver needs a different
state for each int

e Too low-level for human use

init
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