
Communicating automata



Communicating Automata (CA)

• Simple formalism to describe asynchronous
concurrent systems

• Shows some of the basic concepts of this course:
– System description using an automaton
– Decomposition into communicating automata
– automata product (parallelisation)
– automata synchronisation
– construction of the state graph
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A coffee machine automaton

1. Wait for a coin
2. Brew a cup of coffee
3. Give it to the user
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Decomposing the coffee machine

Coin subsystem
– Accepts a coin
– Orders to brew a coffee

Brewing subsystem
– Waits for a command
– Makes coffee

• How do we put these pieces together?
• Will the composition have the same

behavior?
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Labelled Transition Systems (LTS)

An LTS is a 4-ple M	=	á S,	A,	T,	s0	ñ
• S	: Set of states, A	: Set of actions
• T Í S	´ A	´ S	: Labelled transition relation

– If (s,	a,	s') Î T , we simply write s —a	→ s'
• s0 : Initial state
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S =	{waitCoin,	makingCoffee,	coffeeReady}
A	=	{coin,	brew,	coffee}

T	=	{(w,	coin,	m),	
(m,	brew,	c),	
(c,	coffee,	w)}
s0 =	waitCoin
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LTS product (1/3)

• We have the LTSs of two systems
– M1 =	á S1	,	A1	,	T1	,	s10		ñ
– M2 =	á S2	,	A2	,	T2		,	s20		ñ

• We want the LTS of a system M that is composed
of M1 and M2

• M1 and M2 evolve independently, in parallel

We can define a product of LTSs: M	=	M1ÄM2
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LTS product (2/3)

Example: one system can 
only do a, the other can 
only do b.

The product should be 
able to do:
• a, then b
• b, then a
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LTS product (3/3)

• States: Product of S1	,	S2
• Actions: Union of A1	,	A2
• Initial state: (s10	,	s20	)
• Transitions?
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Inference rules
if all premises (above
the line) are true, 
the conclusion
(below the line) must 
also be true
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What about communication?

• What we have seen is pure interleaving
– The two components just alternate their execution

• But components often communicate
– Let’s go back at the coffee machine example
– brew		represents a communication between the two 

automata: they should do brew		together
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Synchronisation

• Let us introduce a set L of synchronising actions
• Extend Ä to	ÄL

– E.g., for our coffee machine, L	=	{	brew }
– When M1	,	M2 can both do µ Î L, they evolve together
– When L	=	Æ : pure interleaving
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Composing the coffee machine

Wait a minute…
This automaton does not
have the same behaviour
as the original

– After brewing a coffee, 
it can accept a coin 
before giving the coffee
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Exercise

• Compute the following product
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Solution
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s0, t0 s0, t1

s1, t0 s1, t1

s2, t0 s2, t1 s2, t2

s3, t0 s3, t1 s3, t2
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Behavioural Equivalences

Weaker than LTS equivalence: some automata are 
different, but have the same behaviour
• Example:

• Both can only do an ∞ sequence of a
• We need to formalise this notion
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Strong bisimulation (1/2)

A binary relation between states 
Binary relation = Set of pairs
When do states p and q have the same behaviour?

– They can do the same actions 
– When they do an action, they must reach states with 

the same behaviour (recursive!)
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Strong bisimulation

R is a strong bisimulation if " (p,	q)	Î R :
1. If p	—a→ p' then $q' s.t.	q	—a→ q' and (p',	q')	Î R
2. If q	—a→ q' then $p' s.t p—a→ p' and (p',	q')	Î R

p,	q are strongly bisimilar (p	~	q) if there exists a 
strong bisimulation R such that (p,	q)	Î R

Two LTSs with initial states s10	,	s20 are strongly
bisimilar if s10	 ~	s20
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Example (1/3)

• Prove that s0~	t0
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Example (2/3)

• Prove that s0~	t0

• Deadlocked states are bisimilar: s2~	t2 ,	s2~	t3
• s1~	t1 ,	s1~	t’1
• s0~	t0
• R =	{	(s0	,t0	),(s1	,t1	),	(s1	,t’1	),	(s2,t2),	(s2	,t3)	}
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Example (3/3)

• These automata are not bisimilar

• Look at s1, t1, and t1’
• This is equivalence checking, can be automated
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Exercise

• Are these LTSs bisimilar? (s0~	t0 ?)
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Solution

• Are these LTSs bisimilar? (s0~	t0 ?) Yes
– Dashed lines represent the bisimulation relation
– Self–transitions may be confusing…
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LTS minimization

• For every LTS M we can construct an M’ that
– Is strongly bisimilar to M
– Has a minimal number of states/transitions

• M’	is known as the minimal representative of M
• M’	can be computed automatically, given M
• Example:
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Internal actions and hiding

• Internal (or invisible) action
– traditionally written i, or t (tau)
– Automata cannot synchronise on it

• Often, we want to check the equivalence of a 
specification S and an implementation P
– But P may contain actions that are irrelevant to S.
– Strong bisimulation does not work 

• Solution:
– In P, rename those irrelevant actions to i		(hiding) 
– Define an equivalence that “ignores” internal actions
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Branching bisimulation

• For non-t actions, same as strong bisimulation
• “Collapse” sequences of t actions

• You can also minimize an LTS up to branching 
bisimulation
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Rendezvous

When two (or more!) CA synchronize, we say that
they perform a rendezvous. Two “styles”:
• Symmetrical (shown earlier)

– No such distinction
– Rendezvous on the same action
– Easy to extend to many CA (multi-party rendezvous)

• Asymmetrical
– Distinguish between input and output actions
– Rendezvous on input/output pairs
– Typically results in an internal action
– Typical syntax: ’a	— a or ?a	— !a or a?	— a!
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Drawbacks

• Risk of state space explosion with Ä
– Size of S1 × S2 =	(Size of S1) × (Size of S2)
– Minimization can help with that
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• No modelling of data
– Scenario: an automaton sends 

an int to another
– Automata need a different 

action for each int
– Receiver needs a different 

state for each int

• Too low-level for human use


