Process algebras
Representing concurrent systems

- LTSs have a strong mathematical foundation (needed to apply formal methods)

- But they are harder to manipulate directly (e.g., via drawing graphs) the bigger they become
 - Imagine having to code a large software project using flowcharts instead of programming languages...

- Process algebras = formal languages for structured textual description of concurrent systems
Process algebras: common elements

• A process is made of elementary actions

• Smaller processes can be composed to create larger ones, by means of specific operators

• Typically, those operators need to describe:
 - Sequencing (a system does a, then b, then ...)
 - Choice (a system may do a, or b, or ...)
 - Parallel composition (a system does a and b in parallel)
CCS: Actions

CCS = Calculus of communicating systems

Intuitively, given a set of channel names A:

- CCS processes can perform input/output actions on that channel
 - Input: a, output: \bar{a}, where $a \in A$
 - We say that a, \bar{a} are complementary

- They may **synchronise** on complementary actions

- They can perform an **invisible action** (denoted τ)
 - Synchronisation on τ is not allowed
CCS: Processes

- Grammar:
 - $P, Q ::= \text{nil}$ (idle process)
 - $\mu.P$ (action prefix) [μ is an action]
 - $P + Q$ (choice)
 - $P | Q$ (parallel composition)
 - $P \setminus a$ (restriction) [a is a visible action]
 - $P [a/b]$ (relabelling) [a,b are actions]
 - K (named process invocation)
Structural operational semantics

- A CCS process is just a term (a piece of text)
- We must give a **rigorous meaning** to every term
- One possible approach: **operational semantics**
 - Define an **LTS** for every CCS term
 - Each state in the LTS is a CCS term
 - States are linked by labelled transitions
 - The set of transitions is defined via **inference rules**
- If rules are based on the syntax of the language, we have a **structural operational semantics (SOS)**
CCS: Idle process

- The idle process \texttt{nil} (or \texttt{0}) cannot do anything
- Its LTS is a single state with \textcolor{red}{no transitions}
- Thus, there are \textcolor{red}{no} SOS rules associated to \texttt{nil}
CCS: action prefix

- $\mu.P$ performs μ and continues as P
- μ can be either:
 - A channel name a
 - A co-name \bar{a}
 - The invisible action τ
- We will assume that $\bar{a} = a$
- Semantics of $\mu.P$:

\[
\begin{array}{c}
\mu \ P \rightarrow P \\
\hline
\mu. P \xrightarrow{\mu} P
\end{array}
\]

- No premises = this rule always holds
CCS: choice

- $P + Q$ behaves **either** as P or as Q
- If P can perform an action and become P', then $P + Q$ may also do that (same for Q, Q')

\[
\frac{P \xrightarrow{\mu} P'}{P + Q \xrightarrow{\mu} P'} \quad \frac{Q \xrightarrow{\mu} Q'}{P + Q \xrightarrow{\mu} Q'}
\]
CCS: Parallel composition

- $P \mid Q$ executes P and Q in parallel
- Furthermore, if P can perform an action named a and Q can perform its complement \bar{a}, then a rendezvous may happen
- The result is an invisible action τ
 (= only binary rendezvous)

\[
\begin{align*}
 P \xrightarrow{\mu} P' & \quad P \mid Q \xrightarrow{\mu} P' \mid Q \\
 Q \xrightarrow{\mu} Q' & \quad P \mid Q \xrightarrow{\mu} P \mid Q' \\
 P \xrightarrow{\alpha} P' \quad Q \xrightarrow{\bar{a}} Q' & \quad P \mid Q \xrightarrow{\tau} P' \mid Q'
\end{align*}
\]
Exercise

Draw the LTS corresponding to the CCS term

\[(a.b.nil \mid c.nil)\]
Solution

Draw the LTS corresponding to the CCS term

\((a.b.nil \mid c.nil)\)

\[
\begin{array}{c}
\text{a.b.nil | c.nil} \\
\downarrow c \\
\text{a.b.nil | nil}
\end{array}
\quad
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\quad
\begin{array}{c}
\text{b.nil | c.nil} \\
\downarrow c \\
\text{b.nil | nil}
\end{array}
\quad
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\quad
\begin{array}{c}
\text{nil | c.nil} \\
\downarrow c \\
\text{nil | nil}
\end{array}
\]
Exercise

Draw the LTS corresponding to the CCS term

\((a.nil \mid \bar{a}.nil)\)
Solution

Draw the LTS corresponding to the CCS term $(a.nil \parallel \bar{a}.nil)$

![Diagram showing the LTS corresponding to the CCS term $(a.nil \parallel \bar{a}.nil)$]
CCS: restriction

- P \(\setminus a \) can perform the same transitions as P, except those labelled \(a \) (or \(\bar{a} \))
- Useful to force synchronisation:
 - \((a.\text{nil} \mid \bar{a}.\text{nil}) \) can perform \(a, \bar{a}, \) and \(\tau \)
 - \((a.\text{nil} \mid \bar{a}.\text{nil}) \setminus a \) can only perform \(\tau \)
 - \(\tau \) cannot be restricted
- P \(\setminus \{a, b, c, \ldots\} \) is the same as P \(\setminus a \setminus b \setminus c \setminus \ldots \)

\[
P \xrightarrow{\mu} P' \quad \mu \neq a \quad \mu \neq \bar{a}
\]

\[
P \setminus a \xrightarrow{\mu} P' \setminus a
\]
CCS: relabelling (1/2)

- $P[a/b]$ behaves exactly like P, except that it performs a (or \bar{a}) whenever P would do b (or \bar{b})
 - Actions can be relabelled to τ (hiding)
 - τ cannot be relabelled
 - You cannot relabel a and \bar{a} to different actions

- Multiple relabellings: $P[a/b, c/d, ...]$

- a/b actually represents a relabelling function, i.e., a function from actions to actions that satisfies the description above
CCS: relabelling (2/2)

- Properties of a relabelling function f:
 - $f(\tau) = \tau$ (the internal action is not renamed)
 - $f(\bar{x}) = \overline{f(x)}$ for all visible actions (co-name relations are preserved)

- a/b is the function f such that
 - $f(b) = a$, $f(\bar{b}) = \bar{a}$
 - $f(x) = x$ for all other actions x

\[
P \xrightarrow{\mu} P' \quad \Rightarrow \quad P[f] \xrightarrow{f(\mu)} P'[f]
\]
CCS: named process invocation

- A named process is a CCS term P that is given a name K. We write $K \triangleq P$, “K is defined as P”
- CCS terms can contain names: they are equivalent to their definitions
 - E.g. if $K \triangleq c.\text{nil}$, then $a.b.K = a.b.c.\text{nil}$
- This allows recursion e.g., $K \triangleq a.b.K$
 - $K = a.b.a.b.a.b. ...$

\[
P \xrightarrow{\mu} P' \quad K \triangleq P
\]

\[
\frac{P \xrightarrow{\mu} P'}{K \xrightarrow{\mu} P'}
\]
CCS: conclusions

• The above rules are enough to formally describe the behaviour of any CCS term

• With this formal semantics, we can prove that two processes are bisimilar (equivalence checking)
 - http://caal.cs.aau.dk/ (CAAL: online automated tool)
Other process algebras

- Value-passing CCS
- CSP (Communicating Sequential Processes)
- ACP (Algebra of Communicating Processes)
- LOTOS (Language of Temporal Ordering Specifications)
- LNT (LOTOS New Technology), etc.

- They introduce operators and constructs that make it easier to specify complex systems