Timed automata
Limitation with LTSs

- They allow to express sequences of actions, choices, loops, and concurrency
- But they cannot model time and time-dependent constraints
- Time is essential in many real-world scenarios
 - Railway systems, e.g.: a crossing barrier takes x seconds to get lowered, and must be lowered y seconds before the train arrives
 - Embedded controllers, e.g.: a safety system in a power plant must react within x seconds
- Idea: extend LTSs by adding time
Timed LTS (TLTS)

A TLTS is a 6-ple \(\langle S, A, \Delta, T, \Theta, s_0 \rangle \)

- \(S \): States, \(A \): Actions, \(T \subseteq S \times A \times S \): Labelled transition relation, \(s_0 \): Initial state (like LTS)

- \(\Delta \): Time domain
 - Usually, \(\Delta = \mathbb{R}^{\geq 0} \) (real numbers \(\geq 0 \))

- \(\Theta \subseteq S \times \Delta \times S \): Timed transition relation
 - \(s \longrightarrow t \rightarrow s' \): From state \(s \), the system can reach state \(s' \) by waiting for a time \(t \)
TLTS: Constraints on \(\Box \)

We need to introduce these constraints so that the TLTS “makes sense” (i.e., it respects our intuitions about time)

- **Time determinism**
 - If \(s \rightarrow t \rightarrow s' \) and \(s \rightarrow t \rightarrow s'' \) then \(s' = s'' \)
 - Waiting cannot lead to different states

- **Time additivity**
 - If \(s \rightarrow t_1 \rightarrow s' \) and \(s' \rightarrow t_2 \rightarrow s'' \) then \(s \rightarrow (t_1 + t_2) \rightarrow s'' \)
 - Waiting \(t_1 \) and then \(t_2 \) is the same as waiting \((t_1 + t_2) \)
Representation of TLTSs (1/2)

• We were able to represent LTSs as graphs with labelled edges. We cannot give a similar, graphical representation of TLTS

• Let’s try anyway…

• Example: double click in a GUI
 - At time $t = 0$, user clicks the mouse button.
 - If user clicks the button again while $t \leq 0.2s$, the computer registers a double click
 - Otherwise, the computer registers a single click
The user can do the 2nd click at any moment in that 0.2 seconds timespan

\(\emptyset \) and \(S \) will have an infinite (non-countable) number of elements!
Timed automata

• A “compact” formalism to describe TLTSs

• Communicating automata + clocks
 - Clocks = variables whose values increase continuously
 - The values of all clocks increase at the same speed
 - Can be tested: is the value of $c \ (\leq, \geq, =, \neq)$ some value?
 - Can be reset to 0

• Software support: Uppaal www.uppaal.org
TA example: double click

- ? and ! denote input and output actions
- \(x \) is a clock
 - 1st click resets \(x \) (\(x := 0 \))
 - If a 2nd click happens while \(x \leq 0.2 \), a double click is registered
 - Otherwise, a single click is registered
- (\(\bigcirc \) : initial state)
Clock conditions (1/2)

- Guards (Attached to transitions)
 - The transition is enabled iff. the guard is satisfied

- Invariants (Attached to states)
 - The invariant is true as long as the system stays in that state
 - Example: this TA outputs “hello” before $x > 5$

![Diagram](image)
Clock conditions (2/2)

- A condition can be:
 - A comparison of the value of a clock x with a constant c
 - A comparison of $(x - x')$ with c
 - A negation (NOT) of a condition, or a conjunction (AND) or disjunction (OR) of conditions

$\Psi ::= x \text{ op } c \mid x - x' \text{ op } c \mid \neg \Psi \mid \Psi \land \Psi \mid \Psi \lor \Psi$

$\text{op ::= } < \mid > \mid \leq \mid \geq \mid = \mid \neq$
TA: Definition

A TA is a 6-ple \(\langle S, A, X, T, Inv, s_0 \rangle \)
- \(S \): States, \(A \): Actions, \(s_0 \): Initial state (like LTS)
- \(X \): Set of clocks
- \(T \): Transition relation: set of 6-ples \((s, a, g, r, s') \)
 - \(s, s' \): source and target states
 - \(a \in A \): action
 - \(g \in \Psi \): a guard over clocks
 - \(r \subseteq X \): a subset of clocks that will be reset
- \(Inv : S \rightarrow \Psi \) maps each state to an invariant
- All sets are finite
Exercise: Communication medium with timeout

Complete the following CA to make a TA such that:

- Action RCV can occur between 1 and 4 TU after action SND
- If action RCV has not occurred after 4 TU, then action TIMEOUT occurs within 1 TU
Solution

Complete the following CA to make a TA such that:

- Action RCV can occur between 1 and 4 TU after action SND
- If action RCV has not occurred after 4 TU, then action TIMEOUT occurs within 1 TU
Exercise

Complete the following CA to make a TA such that:

- Action B occurs between 2 and 4 TU after action A
- Action C occurs at least 4 TU after action A and at least 1 TU after action B

Hint: use two clocks
Complete the following CA to make a TA such that:

- Action B occurs between 2 and 4 TU after action A
- Action C occurs at least 4 TU after action A and at least 1 TU after action B

Hint: use two clocks
Semantics of TA (1/2)

• General idea: associate a TLTS to every TA
 \[\text{TA} = \langle S, A, X, T, \text{Inv}, s_0 \rangle \]
 \[\text{TLTS} = \langle S \times V, A, \mathbb{R}^{\geq 0}, T', \Theta, (s_0, v_0) \rangle \]

• States of TLTS = (States of TA) × (clock valuation)
 - A valuation \(v : X \rightarrow \mathbb{R}^{\geq 0} \) is a function that assigns a value to every clock. \(V \) is the set of all valuations
 - \(v_0 \) is the valuation such that all clocks are set to 0.
 - \(v + t \ (t \in \mathbb{R}^{\geq 0}) \) is the valuation \(v' \) where all values in \(v \) are increased by \(t \) time units: \(\forall x \in X. \ v'(x) = v(x) + t \)

• Initial state of TLTS: \((s_0, v_0) \)
Semantics of TA (2/2)

• \(T' \) (discrete transitions): \((s, v) \rightarrow a \rightarrow (s', v')\) iff.
 - TA contains a transition \((s, a, g, r, s')\)
 - Valuation \(v\) satisfies the guard \(g\)
 - All clocks in \(r\) are reset to 0 in \(v'\), while all other clocks have the same value in \(v\) and \(v'\)
 - \(v'\) satisfies the invariant \(Inv(s')\)

• \(\Theta \) (timed transitions): \((s, v) \rightarrow t \rightarrow (s, v+t)\) iff.
 all valuations between \(v\) and \(v+t\) satisfy \(Inv(s)\)
 - \(\forall dt \in [0, t] . \ v+dt \models Inv(s)\)
Timelock

- May arise from using invariants incorrectly
- Example:

 - What happens when \(x = 3 \)?
 - Clock \(x \) is never reset: time stops
 - Unacceptable! Either reset \(x \), or add other edges/states describing what happens when \(x = 3 \)
 - Can be detected automatically via verification
Critical paths and Zeno effect

• Example:

![Diagram showing a critical path example]

• Critical path: infinite actions in zero time
 - \((s, \emptyset) \rightarrow a \rightarrow (s, \emptyset) \rightarrow a \rightarrow (s, \emptyset) \rightarrow a \rightarrow ...\)

• Zeno effect: infinite actions in finite time
 - \((s, \emptyset) \rightarrow a \rightarrow (s, \emptyset) \rightarrow 1/2 \rightarrow (s, \emptyset) \rightarrow a \rightarrow (s, \emptyset) \rightarrow 1/4 \rightarrow ...\)
 - Will perform an infinity of \(a\) actions in 1 time unit

• These kinds of paths are generally allowed, but it’s good to prove that time passes (there are paths that are not critical/Zeno)
Time progress

- For some time interval t and some n, every state of the TLTS admits at least one path of length $\leq n$ such that at least t time units pass.
- The system may still contain critical/Zeno paths.
- Example:
 - “aaa...” path is critical
 - “bc” path takes at least 1 time unit
Parallel composition of TA (1/2)

- Same idea as with CA: we want to decompose complex (timed) systems into small components
- Again, rendez-vous on pairs of actions according to a synchronization set L
 - Symmetrical (same actions)
 - Asymmetrical (input/output pairs) (e.g., Uppaal)
- But we also have to take into account:
 - Guards
 - Resets
 - Invariants
Parallel composition of TA (2/2)

• $\text{TA}_1 = \langle S_1, A_1, X_1, T_1, \text{Inv}_1, s_{01} \rangle$,
• $\text{TA}_2 = \langle S_2, A_2, X_2, T_2, \text{Inv}_2, s_{02} \rangle$ with $X_1 \cap X_2 = \emptyset$
• $L \subseteq A_1 \cap A_2$ (synchronization actions)

Then,

$\text{TA}_1 \otimes_L \text{TA}_2 = \langle S_1 \times S_2, A_1 \cup A_2, X_1 \cup X_2, T, \text{Inv}, (s_{01}, s_{02}) \rangle$

• $\text{Inv}(s_1, s_2) = \text{Inv}_1 (s_1) \land \text{Inv}_2 (s_2)$

• T:

 $s_1 \xrightarrow{g,a,r} s'_1 \quad a \notin L$

 $s_2 \xrightarrow{g,a,r} s'_2 \quad a \notin L$

 $(s_1, s_2) \xrightarrow{g,a,r} (s'_1, s'_2)$

 $s_1 \xrightarrow{g_1,a,r_1} s'_1$

 $s_2 \xrightarrow{g_2,a,r_2} s'_2 \quad a \in L$

 $(s_1, s_2) \xrightarrow{(g_1 \land g_2), a, (r_1 \cup r_2)} (s'_1, s'_2)$
Exercise

\[\text{TA}_1 \otimes \text{TA}_2 = \langle S_1 \times S_2, A_1 \cup A_2, X_1 \cup X_2, T, \text{Inv}, (s_{01}, s_{02}) \rangle \]

- \(\text{Inv}(s_1, s_2) = \text{Inv}_1(s_1) \land \text{Inv}_2(s_2) \)

- \(T: \)

\[
\begin{align*}
&\begin{array}{c}
\text{s}_1 & \xrightarrow{g, a, r} & \text{s}'_1 \\
(\text{s}_1, \text{s}_2) & \xrightarrow{g, a, r} & (\text{s}'_1, \text{s}_2)
\end{array} \quad \begin{array}{c}
\text{s}_2 & \xrightarrow{g, a, r} & \text{s}'_2 \\
(\text{s}_1, \text{s}_2) & \xrightarrow{g, a, r} & (\text{s}_1, \text{s}'_2)
\end{array} \\
&\begin{array}{c}
\text{s}_1 & \xrightarrow{g_1, a, r_1} & \text{s}'_1 \\
\text{s}_2 & \xrightarrow{g_2, a, r_2} & \text{s}'_2 \\
(\text{s}_1, \text{s}_2) & \xrightarrow{(g_1 \land g_2), a, (r_1 \cup r_2)} & (\text{s}'_1, \text{s}'_2)
\end{array}
\end{align*}
\]
Solution

send, idle
\(x \leq 6\)

[send, idle]
\[x \geq 4\] SND [h := 0; x := 0]

[h > 4] TIMEOUT

[h ≥ 1 \& h ≤ 4] RCV

send, sent
\(h \leq 5 \& x \leq 6\)
Conclusions

• TA allow to describe systems where time matters
• This introduces additional complexities
 - Underlying model (TLTS) has uncountably ∞ states and transitions
 - Timelocks, critical paths, Zeno effect...
• We can compose TAs via a product \otimes
• Automated tools can verify several aspects related to TA correctness