Exercises:
Communicating automata

Timed automata
Process Algebras (CCS)

CA: Exercise

e Are these LTSs bisimilar? (s, ~¢,?)

Modelling and Verification

CA: Exercise

e Are sO and t0 strongly bisimilar? (s, ~ ¢,?)

Modelling and Verification 4

TA: Worker and Hammer, part 1

W starts in state rest
- Initially, the worker is idle

From rest, W can do start! and go to state work
- The worker picks up a hammer and starts working

From work, W can do done! and go to rest
- The worker has done some work and needs to rest

Time constraints:

- The worker cannot work for more than 60 TU
- The worker cannot work for less than 10 TU

Modelling and Verification

TA: Worker and Hammer, part 2

H starts in state free

- initially, the hammer is not being used

From free, H can do start? and go to state busy
- A worker picks up the hammer and starts using it

From busy, H can do hit! and go to busy
- The hammer is being used to hit nails

From busy, H can do done? And go to free
- The worker has put the hammer down

Time constraints:
- At least 1 TU between two hit! actions
- done? may only happen at least 5 TU after start?

Modelling and Verification

Exercise

Describe a vending machine V such that:

- Initially, V accepts a coin, which may be either a nickel
or a dime

- After receiving any coin, V makes a cup of coffee or tea
After making the cup, V gives it to the user

Then, it terminates

Actions: { nickel, dime, makeC, makeT, giveC, giveT }

e Write the LTS describing V’s behaviour
e Can you write it as a CCS process?

Modelling and Verification 10

A brief tour of CAAL (1/2)

You can use to view the LTS of a CCS process.
Type this into “Edit”, then go to “Explore”

agent V1 =
nickel.('makeC.'giveC.0 + 'makeT.'giveT.0)
+ dime. ('makeC. 'giveC.0 + 'makeT.'giveT.0) ;
agent V2 = (NickelOrDime | MakeCup) \ {done};
agent NickelOrDime = nickel.'done.@® + dime. 'done.Q;
agent MakeCup = done.('makeC.'giveC.0 + 'makeT.'giveT.0);

e V1 iS VCCS; V2 iS V,CCS

Modelling and Verification 13

http://caal.cs.aau.dk/

A brief tour of CAAL (2/2)

e Syntax:
- CAAL uses 0 for the nil process, tau for t
- Apostrophe for co-names (e.g., ‘done = done)

- Process names: 1st letter must be Uppercase
- Channel names: 1st letter must be lowercase

e CAAL can also check (strong/weak) bisimulation
- Weak bisim. = a variant of branching bisimulation

e Go to “Verify”, then “Add property”

- Select Equivalence/Preorder checking
- Choose which equivalence to check

Modelling and Verification

14

Exercise (1/2)

A computer scientist publishes a paper, then offers a
coin, then drinks coffee, then starts over:

CS = pub.coin.cof fee.CS
A coffee machine receives a coin, then offers a
coffee, then starts over:
CM = coin.coffee.CM

e Draw the LTS for the system
P £ (CM|CS)\ {coin, cof fee}

e (Is it branching bisimilar to S 2 pub.S?)

Modelling and Verification 15

Exercise (2/2)

CS = pub.coin.cof fee.CS
CM = coin.coffee.CM

LTSof P £ (CM | CS) \ {coin,cof fee} ?
e (Is P branching bisimilar to S 2 pub.S?)

U
PiP’/.t;ta uza P->P K=£P

LP5p P\aS>P\a K5 p
u u 7l

PP 05Q P3P @Sq

U U / T ,

PIQ=P'IQ PIQ=PIQ" PIQSP|Q

Modelling and Verification

16

Exercise: Barrier synchronization

e Write a CCS process such that

- It performs 3 actions (say, a b ¢) in any order (in
parallel)

- After all 3 actions have been performed, it performs
another action (say, d) and terminates

e Hint: you will need to introduce new actions and
force synchronization on them

Modelling and Verification

18

