
Exercises:
Communicating automata

Timed automata
Process Algebras (CCS)

CA: Exercise

• Are these LTSs bisimilar? (s0~	t0 ?)

Modelling and Verification 2

p

s1

s0a
a

p

t1

t2

t0

a
p

CA: Exercise

• Are s0 and t0 strongly bisimilar? (s0~	t0 ?)

Modelling and Verification 4

TA: Worker and Hammer, part 1

• W starts in state rest
– Initially, the worker is idle

• From rest, W can do start! and go to state work
– The worker picks up a hammer and starts working

• From work, W can do done! and go to rest
– The worker has done some work and needs to rest

• Time constraints:
– The worker cannot work for more than 60 TU

– The worker cannot work for less than 10 TU

Modelling and Verification 6

TA: Worker and Hammer, part 2

• H starts in state free
– initially, the hammer is not being used

• From free, H can do start? and go to state busy
– A worker picks up the hammer and starts using it

• From busy, H can do hit! and go to busy
– The hammer is being used to hit nails

• From busy, H can do done? And go to free
– The worker has put the hammer down

• Time constraints:
– At least 1 TU between two hit! actions

– done? may only happen at least 5 TU after start?
Modelling and Verification 7

Exercise

Describe a vending machine V such that:
– Initially, V accepts a coin, which may be either a nickel

or a dime

– After receiving any coin, V makes a cup of coffee or tea

– After making the cup, V gives it to the user

– Then, it terminates

– Actions: { nickel, dime, makeC, makeT, giveC, giveT }

• Write the LTS describing V’s behaviour
• Can you write it as a CCS process?

Modelling and Verification 10

A brief tour of CAAL (1/2)

You can use CAAL to view the LTS of a CCS process.
Type this into “Edit”, then go to “Explore”

agent V1 =
nickel.('makeC.'giveC.0 + 'makeT.'giveT.0)

+ dime.('makeC.'giveC.0 + 'makeT.'giveT.0) ;
agent V2 = (NickelOrDime | MakeCup) \ {done};
agent NickelOrDime = nickel.'done.0 + dime.'done.0;
agent MakeCup = done.('makeC.'giveC.0 + 'makeT.'giveT.0);

• V1 is VCCS; V2 is V’CCS

Modelling and Verification 13

http://caal.cs.aau.dk/

A brief tour of CAAL (2/2)

• Syntax:
– CAAL uses 0 for the nil process, tau for τ
– Apostrophe for co-names (e.g., ‘done = 4;!%)
– Process names: 1st letter must be Uppercase

– Channel names: 1st letter must be lowercase

• CAAL can also check (strong/weak) bisimulation
– Weak bisim. = a variant of branching bisimulation

• Go to “Verify”, then “Add property”
– Select Equivalence/Preorder checking

– Choose which equivalence to check

Modelling and Verification 14

Exercise (1/2)

A computer scientist publishes a paper, then offers a
coin, then drinks coffee, then starts over:

4< ≜ 65=.):(;.):??++ . 4<

A coffee machine receives a coin, then offers a
coffee, then starts over:

42 ≜):(; .):??++ . 42

• Draw the LTS for the system
@ ≜ (42 | 4<) ∖ {):(;,):??++}

• (Is it branching bisimilar to < ≜ 65=. < ?)

Modelling and Verification 15

Exercise (2/2)

4< ≜ 65=.):(;.):??++ . 4<

42 ≜):(; .):??++ . 42

LTS of @ ≜ (42 | 4<) ∖ {):(;,):??++} ?
• (Is P branching bisimilar to < ≜ 65=. < ?)

Modelling and Verification 16

@→
!
@"

@| F→
!
@"|F

F→
!
F"

@| F→
!
@|F′

@→
#
@" F→

$#
F"

@| F→
%
@"|F′

Exercise: Barrier synchronization

• Write a CCS process such that
– It performs 3 actions (say, a b c) in any order (in

parallel)

– After all 3 actions have been performed, it performs
another action (say, d) and terminates

• Hint: you will need to introduce new actions and
force synchronization on them

Modelling and Verification 18

