Exercises:
Temporal logic
Test synthesis

Exercise

o Satisfaction of HML formulas:
- [[true]] =S, [[false]] = @

- [[=o]l =S\ [lo]]

= [[o1 A 02]] = [[@1]] N [[02]]

= o1 v @]l = [le1]] v [92]]
- [[{a) o]l ={seS[Is". s-a>s'As e [[¢]]}

- [[[a]o]l={seS|Vs.s-a>s"=5s"€[[¢o]]}

o Show that (o)p; v{a)e,=(a)(@1V @,)
- l.e., they are satisfied by the same subset of S

Modelling and Verification

Exercise

Check the following properties on the LTS below.
1. s E{a)true S

s k [b]false
s E (a)[b]false : y
s F (a)({a)true A (b)true) a 51 s
s k a[a][b] false / \
a b
S3 S

Modelling and Verification

g1 s WD

Exercise

Given the LTS below, compute the following sets:
1. [[(a)true |]

2. || (a)true A [b]false]
3. [| [a]|b]false |]

P1

Modelling and Verification

P3

Branching bisimulation

A branching bisimulation is a relation R such that, if

(r,s) ERand r 5 1 for some action, then either:

e u=7and (r',s) ERor

: T T U
e There is some s’ such that s — ...» s’ = s’ and

(r,s’) €ER,(r',s") €R.

e The same must hold for s (if s 5 , then either...)

e Note that two states that are strongly bisimilar are
always branching bisimilar

Modelling and Verification 7

Exercise

Are s,, t, branching bisimilar?

A B
Mll Sg ——=81 —= 59 MQZ

\61/

Modelling and Verification 8

Exercise

Are s,, t, branching bisimilar?

M1: 0—>81—>82 MQZtO

\>< _/t

53_>34

Modelling and Verification

10

Exercise

» Check i;ioco s; for the following IOLTSs

Modelling and Verification 12

Addendum: why i, ioco s,?

e In iy, after Za, two things may happen:
- Ix
- Quiescence

e Ins,, after 7a, two things may happen:
- Ix
- Internal action, then quiescence
 We are talking about input-output conformance

- The T action is not visible
- Thus, for s,, after 7a we see !x or quiescence
- Therefore, i, ioco s,

Modelling and Verification

14

Lab session:
CADP and TESTOR

Overview of JardJeron05 (1/2)

Example from the first paper about the TGV tool
- C. Jard and T. Jéron, “TGV: theory, principles and

algorithms,” Int. J. Softw. Tools Technol. Transf. 7.

First let’s take a look at the specification
e All files are in ~/Desktop/TESTOR/demo
e Open jard jeron 05 spec.lnt

e Generate and view its LTS

e Take a look at jard jeron ©5.i0

Modelling and Verification

17

Overview of JardJeron05 (2/2)

Left: LTS of
jard_jeron 05 spec.lnt

jard_jeron 05.10:
input
A
B

C

(X, Y, and Z are outputs)

Modelling and Verification

JardJeron05: Test Purpose (1/2)

Take a look at jard jeron 05 purpose.lnt

1. What behaviour will be tested by this purpose?
2. What will happen if a Z output is observed?

Modelling and Verification

19

JardJeron05: Test Purpose (2/2)

Take a look at jard jeron 05 purpose.lnt

1. What behaviour will be tested by this purpose?
An output action !Y followed by an output action !Z

2. What will happen if a !Z output is observed?
The behaviour after !Z is ignhored (TESTOR_REFUSE)

Modelling and Verification 20

JardJeron05: Systems under test

e You have 3 files jard_jeron_ 05 sut<n>.aut
-n=1, 2, 3
- Ignore the other SUTs

e They are in aut (automaton) format

- Take a look at them (with a text editor, or via cat)
- Can you guess how the aut format works?

e You can turn them into BCG thanks to bcg io:
bcg io jard jeron_ 05 sutl.aut .bcg

Modelling and Verification

21

Intermezzo: the AUT format

o First line: description of the LTS

- des (<initial-state>, <number-of-transitions>,
<number-of-states>)

e All other lines: labelled transitions
- (<from-state>, <label>, <to-state>)

e This format predates BCG and has been largely
supplanted by it

- Pros: intuitive, can be read/written via a text editor
- Cons: inefficient for large LTSs

Modelling and Verification 22

On-the-fly testing of JardJeron05 (1/3)

« First, perform these 3 commands once:

- 1lnt.open jard jeron 05 purpose.lnt generator -
rename tgv.rename tp.bcg

- mkfifo sut.input
- mkfifo sut.output
« Then, for each sut.bcg, perform these 2 commands:

bcg execute -io sut.io sut.bcg > sut.output <
sut.input &

testor -interactive -io sut.io tp.bcg < sut.output
2> sut.input

e Write down the result

Modelling and Verification 23

On-the-fly testing of JardJeron05 (2/3)

« What did we do?

- Generate the BCG of our test purpose (-rename needed
for compatibility)

- bcg _execute .. &e : run our SUT in the background

- testor -interactive: compute and run the CTG for
our test purpose

- We connected the output of the SUT to the input of the
CTG (and vice versa) via named pipes (sut.output and
sut.input)

e You should get these results:

- SUT1 and SUT3: Pass

- SUT2: Inconclusive

Modelling and Verification 24

On-the-fly testing of JardJeron05 (3/3)

o Graphical representation of our testing setup:

bcg execute

(running the SUT)

sut.output >
< sut.input

testor
(running the CTG)

e More information about named pipes:

Modelling and Verification

25

https://www.linuxjournal.com/article/2156
https://en.wikipedia.org/wiki/Named_pipe

Final remarks: nondeterministic SUTs

e If your SUT is nondeterministic, different runs may
produce different results

- Typically, this is fine (you want to explore different
behaviours)

- But sometimes you may not want it (e.g., you may want
to reproduce a failure)

e You can force bcg _execute to always perform the
same execution, by adding -seed <n»
- n is a number >=0

Modelling and Verification 26

