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What is concurrency? 

 A branch of computer science 
 Several actors (or subsystems, machines, computers, 
processors, components, processes, threads…) 

Each actor behaves individually 
A common task to accomplish by all actors 
(often:) Shared resources between actors 
Co-operation between actors (accomplish the common task) 
Competition between actors (access the shared resources) 

 Specific problems 
 Corpus of mathematical results (‘Concurrency 
theory’) 
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Concurrency is everywhere 

 In computer hardware: 
in processors, fast memories, buses, embedded devices, etc. 
from the lowest levels (gates, netlists) 
to the highest levels (supercomputers) 
 

 In computer software: 
multi-user, multi-task operating systems 
parallel programming (threads, processes) 
 

 In networking and distributed systems: 
computer networks, Internet, GSM 
aerospace, trains, power grids, etc. 
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Concurrency is difficult 

 Faster but more difficult than sequential computing 
 
 Frequent errors 

Deadlocks 
Race conditions 
Loss of global consistency 
 

 Additional reasons for complexity 
Communication may fail (e.g., unreliable network) 
Some actors may fail (e.g., node crash) 
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Strategies to handle concurrency 

 1. Don’t use it 
    Avoid concurrency as much as possible 
 
 2. Only use ‘easiest’ forms of concurrency 

Pipelining (actors organized along a simple flow of data) 
Synchronous computing (actors scheduled by a central clock) 
 

 3. When concurrency is absolutely needed: 
    Learn how to master it 
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A brief history of concurrency 
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 Concurrency in computing: since the 60s 
hardware design 
software and system design 

 
 Before: concurrency studied in other contexts 

coordination of humans acting together (work, dance, music) 
coordination of machines (e.g., trains) 
 

 In computing, concurrency has no linear history 
no continuous progress 
past knowledge is often forgotten 
major scientific/technical regressions 



Concurrency in hardware design (1/3) 
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 Initially, asynchronous logics 
the first hardware designs were asynchronous (in the 60s) 
but too difficult at that time 

 Then, advent of synchronous logics 
all parts of the circuit scheduled by a clock 
a proper methodology for designing reliable complex circuits 
today: most ASICs and CAD tools are synchronous 

 Today, synchronous logics faces limitations 
problems scaling up to high frequencies and complex VLSI 
energy (clocks waste energy), secrecy (EM radiations) 

Asychronous logics is back! 



Concurrency in hardware design (2/3) 

 In the first computers, a single CPU did everything 
 Then, advent of multiprocessing (60s and 70s) 

asymmetric: dedicated processors (I/O, arithmetic, graphics, crypto) 
symmetric: multiple identical CPUs 
shared memories, caches 
parallel computing 

 Progressive merge with telecommunications/networking  
client/server applications 
distributed systems 
networks of workstations (NoW) 
clusters, grids 
Web services 
supercomputing, high-performance computing 
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Concurrency in hardware design (3/3) 
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Lot of concurrency inside CPUs: 
 Pipelining 
 Multi-level caching 
 Branch prediction 

 
Moore law coming to an end: 

 Clock frequency cannot increase any more 
 Sequential processors reached performance peak 
 Next step: multi-core (‘many-core’) processors 

 



Concurrency in software design (1/3) 

 Goal: How to program parallel computers? 
 
 Low-level (hardware-oriented) approaches 

shared memory / shared variables 
study of problems: e.g., race conditions, deadlocks 
 

 Higher-level (language-oriented) approaches 
Petri nets (1962) 
Simula (1967): multiple actors and coroutines 
Algol 68 (1968):  begin A , B end 
PL/1 (1973): multitasking 
Unix Bourne shell (1977): operators & (concurrent) and | (pipeline) 
(concurrency much less easier in today’s mainstream languages!) 
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Concurrency in software design (2/3) 
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 In the 70s 
deep studies to understand concurrency issues 
new language features for safer concurrent programming 
(semaphores, critical sections, monitors, rendezvous, etc.) 

 

 In the 80s 
Pascal and C take off: no support for concurrency 
yet, Ada and Erlang have built-in concurrency 
automated verification techniques for concurrent problems 
(protocol engineering, state exploration, model checking) 
theoretical advances (process calculi, process algebra) 



Concurrency in software design (3/3) 
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 In the 90s 
C++: no support at all for concurrency 
Java: a major regression to low-level programming 
ignores all lessons in designing better concurrent languages 
strong criticisms: Per Brinch Hansen, William Pugh 
UML: an imprecise model of concurrency 
silent progress in parallel compilers 

 In the 2000s 
significant progress in analyzing concurrent systems with: 

probabilistic behaviours 
(hard or soft) real-time aspects 



Concurrency today 
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Concurrent machines at hand 

 For long, concurrent machines were rare: 
Reserved to big military or civil projects 
Sometimes available in research labs 

 
 Now, they are available to the masses: 

Your laptop is probably dual-core or quad-core 
Machines with 24 cores already exist 
Clusters and grids accessible from the desktop 

 
 Concurrency is now a major concern in industry 
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Impact on software (1/2) 
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 Most existing software  
was designed for sequential machines (e.g., Wintel) 
is not ready for concurrency 

 
 Major revisions will be needed for: 

exploiting multi-core machines 
exploiting cloud computing resources 
developing reliable concurrent systems and programs 

 
 



Impact on software (2/2) 
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 Mainstream programming languages are not ready: 
C and C++: nothing for concurrency 
Java: a catastrophe 
Ada and Erlang: barely used 

 
New software must be developed to help designing 
and verifying 

asynchronous circuits / architectures 
concurrent software programs 

 



Goals of the block course 
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Three goals 

 Get acquainted with concurrency 
Recognize concurrent problems where they are 
Learn vocabulary and key concepts 
 

 Learn various languages for concurrency 
Process calculi 
Automata-based languages 
Semantic concepts: SOS, LTS, etc. 

 

 Experiment with state-of-the-art tools 
a ‘Matlab reflex’ for concurrency 
Tools from Grenoble, Oxford, and Saarland 
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Key concepts of concurrency 
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Interleaving 

 Several actors have to execute actions 
independently 
 A global observer sees ‘diamonds’ of actions 
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State explosion – combinatorial explosion 
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 A consequence of interleaving  
 

 The number of states is exponential in the number 
of concurrent actors: 

two actors: planary diamonds 
three actors: cubes 
N actors: hypercube with N dimensions 
 

 State explosion is a major problem for verification 
techniques based on exhaustive state explorations 



Processes vs Threads 

Two main approaches to communication between actors 
shared memory (e.g., blackboards) 
message passing (e.g. e-mail) 

 
 Shared memory  → actors are called ‘threads’ 

Close to hardware and usually efficient 
Multiple incompatible semantics (Posix, etc.) 
Often dependent on hardware ⇒ portability problems 
Low-level ⇒ makes proofs and automated reasoning difficult 

 
 Message passing → actors are called ‘processes’ 

Higher abstraction level, more suitable for formal analysis 
Can model hardware, software, and networking problems 
Perhaps less efficient to implement (?) 
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Nondeterminism 
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 A concept borrowed from particle physics 
 

 The future evolution of a concurrent program cannot 
be predicted, even if one fully knows its past history 
and its current state 

Each actor evolves at its own speed 
Some algorithms are intrinsically nondeterministic 

 
 A major difference wrt sequential programming 

 
 Nondeterminism makes life much harder: 

each state may have several possible futures 
execution runs / tests are not reproducible 



Race conditions 

 Nondeterministic behaviour arising from threads 
accessing a common resource (shared variable) 
 
 Example: 2 threads and 1 shared variable X 
Initially: X = 0 

thread 1:  X := X + 1 
thread 2:  if X = 0 then X := 2 * X + 1 
(hypothesis: testing X and assiging X are two different steps) 

Finally: X = 1, 2, or 3 depending on relative execution speeds 
 

Race condition also exists with electronic signals 
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 Approaches proposed to avoid race conditions: 
while an actor is accessing shared resources, block other actors 
other actors have to wait until the first actor has finished 

 
Test-and-set instructions 

simplest form, implemented as microprocessor instructions 
    example: if X = 0 then X := 1 (single, atomic instruction) 
 
Locks 

one thread becomes ‘owner’ for a limited time (aquire/release) 
examples: semaphores, object locks in Java 

 
Critical sections 

piece of code to be executed atomically 
example: critical_begin if X = 0 then X := 2 * X + 1 critical_end 
examples: monitors, conditional critical sections, etc. 
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 Improper use of critical sections / locks / etc. 
 Each actor is waiting to access shared resources 
blocked by other 
 Example: the dining philosophers problem  

rule: each philosopher needs two forks 
if each philosophers starts by taking the left 
fork, then everyone is blocked 
various solutions exist  (see Wikipedia) 



Local deadlocks and livelocks 
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 A deadlock is a global problem: everyone is blocked 
there are similar related issues 

 
 Local deadlocks: 

starvation: one or several actors are blocked 
coalitions: certain actors join forces to prevent others from 
accessing shared resources 

 

 Livelocks: 
similar to deadlocks, except that actors are not blocked but 
are constantly active without being productive 



Rendezvous 
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 High-level alternative to shared variables and locks 
 Principle: 

two (or more) actors decide to meet at a given point RV 
the first actor arrived at RV waits for the others (and so on) 
when all actors are ready, they can exchange data 
after the rendezvous, each actor restarts independently 

 Combines in a single mechanism 
Synchronization between actors 
Communication by messages 

 Clean semantics preserving modularity 



Message queues 
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 Rendezvous is ‘synchronous’: 
all actors have to be there simultaneously 
not to be confused with synchronous computing (clocks) 

 Alternative approach: 
an actor S sends a message M to another actor R 
M is put in a message queue (e.g., FIFO queue) 
S is not blocked and continues its execution after sending M 
some time later, R checks the queue and reads M 

 Popular model, but theoretical problems 
queue is finite: overflow issues (M discarded or S blocked) 
queue is infinite: S can continuously fill in the queue  
 



Structure of the block course 
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Six lectures 

September 
 1. Introduction 
 2. Process calculi (LOTOS) 
 3. Next-generation formal methods (LOTOS NT) 
 4. Pi-calculus and mobility 
 

October 
 5. Probabilistic systems (PRISM) 
 6. Stochastic and timed systems (MODEST) 
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Four projects (lab exercises) 
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September: 
 Project #1. LOTOS and LOTOS NT 
 Project #2. PIC (pi-calculus) 

deadline is October 1st (12:00) 
 
October: 

 Project #3. PRISM 
 Project #4. MODEST 

deadline is October 12 (12:00) 



Some challenges 

 Challenges are small exercises (< 1 hour) to be 
done after each lecture before the next one 
 
 ‘Without such exercises, your students will attend 
the lectures and wait until the end of September to 
undertake their projects; suddenly, they will realize 
that they have to produce something, that they are 
late, and they will start panicking.’ 
        (a respected German professor) 
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Starting up 

 Get from the CMS the document entitled: 
How to install the software tools needed for the course? 
 
 The ‘official’ solution is strongly advised 

Install Virtual Box 4.1.22 on your machine 
Install the AppliedConcurrencyTheory virtual machine 
Request your CADP license to register your software 
 

Test if the tools are properly installed: 
Type the shell command:  bcg_edit $CADP/demos/demo_13/A1.bcg 
Save the drawing as a PostScript file 
Email this file to Alexander (agrafbrill@depend.cs.uni-saarland.de) 
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A few references 

 Wikipedia: 
Usually informative and well-done 
Read more about the terms mentioned in this lecture: 
asynchronous circuit, nondeterminism, semaphore, deadlock, etc. 

 
 Critical assessment of concurrency in C/C++ 

Hans-J. Boehm. Threads Cannot Be Implemented As a Library. PLDI 
2005. http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf  

 

 Critical assessment of concurrency in Java 
Per Brinch-Hansen. Java’s insecure parallelism. 1999. 
http://brinch-hansen.net/papers/1999b.pdf 
J. Manson , W. Pugh, S. V. Adve. The Java memory model. POPL 
2005 http://www.cs.umd.edu/~pugh/java/memoryModel/  
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