
Hubert Garavel
Alexander Graf-Brill

Applied Concurrency Theory
Lecture 3 : Next generation

process calculi

Beyond classical process calculi -
E-LOTOS and LOTOS NT

2

Lecture 3

E(nhanced)-LOTOS

Lecture 3

3

 Early 90s:
great academic expectations in LOTOS
but disapointing industrial feedback: steep learning curve
and lack of trained designers/engineers
could LOTOS be made more ‘acceptable’ by industry?

 Between 1992 and 2001
ISO/IEC standardization work to ‘enhance’ LOTOS
modest repairs as well as ambitious new features (real-time)
converged to E-LOTOS international standard (ISO 15437)
much too complex
never implemented (?)

LOTOS NT (or LNT)

Lecture 3

4

Motivation at INRIA Grenoble:
LOTOS is expressive and adapted to study concurrency
it is well-equiped with tools (that took decades to build)
E-LOTOS has failed its initial expectations
persistent need of a better language for concurrency
what can be saved from LOTOS and E-LOTOS?

 LOTOS NT (or LNT, NT = New Technology)
dialect of E-LOTOS developed at INRIA since 1995
inspired by our participation to ISO committee on E-LOTOS

LOTOS NT history and tools

Lecture 3

5

 First implementation: LOTOS NT → C
TRAIAN compiler (1998-2008)
alas: wrong compiler construction technology
only the data types are compiled
internally used to build compilers and translators (a dozen)

 Second implementation: LOTOS NT → LOTOS
goal: reuse of existing LOTOS tools at minimal cost
development of LNT2LOTOS / LNT / LPP (2005-now)
progressively built with funding of Bull
successfully used at Bull, CEA/Leti, STMicroelectronics
since Jan 1st 2010, we replaced LOTOS with LOTOS NT

LOTOS NT as a pivot language

Lecture 3

6

SystemC
TLM

AADL

LOTOS

Fiacre LOTOS NT FSP BIP 1

SAM EB3 WSDL-BPEL

EXP

CHP

π-calculus SDL

Open/Cæsar

Lexical/syntactic elements of LOTOS NT

Lecture 3

7

 1. Unify the data types and the process parts
 2. Break away from the ‘algebraic mania’

computer scientists are not mathematicians ⇒
specifications do not need to be algebraic terms
n-ary operators become possible (e.g., n-ary parallel)
imperative programming constructs are back (if, case, while)
Ada-like bracketed syntax (if … end if) avoids ambiguities

 Also:
case-sensitive identifiers, with additional constraints:
either ‘X’ or ‘x’, but not both in the same scope
(LOTOS is case-insensitive: ‘X’ and ‘x’ are the same)
two types of comments: Pascal-like (* … *) or Ada-like -- … \n

Lecture 3

8

LOTOS NT modules

LOTOS NT modules

Lecture 3

9

 Compilation unit, containing
types
functions
channels (= gate types)
processes

 One module = one file (of the same name)
no modules nested within modules

 Modules can import other modules
 Principal module containing the root process (called
“MAIN” by default)
 Case insensitive module names, but

all modules in the same directory
no two files differing only by case

Example of LOTOS NT modules

Lecture 3

10

module PLAYER is

 ... file “PLAYER.lnt”

end module

module Team (PLAYER) is

 ... file “TEAM.lnt”

end module

or (one of):
• “Team.lnt”
• “team.lnt”
• “TeAm.lnt”
• …

list of imported
modules

Lecture 3

11

LOTOS NT types

Overview

Lecture 3

12

Inductive types
set of constructors with named and typed parameters
special cases: enumerations, records, unions, trees, etc.
shorthand notations for arrays, (sorted) lists, and sets
subtypes: range types and predicate types
automatic definition of standard functions:
"==", "<=", "<", ">=", ">" , field selectors and updaters
pragmas to control the generated names in C and LOTOS

Notations for constants (C-like syntax):
natural numbers: 123, 0xAD, 0o746, 0b1011
integer numbers: -421, -0xFD, -0o76, -0b110
floating point numbers: 0.5, 2E-3, 10.
characters: 'a', '0', '\n' , '\\', '\‘'
character strings: “hello world”, “hi!\n”

Examples of LOTOS NT types (1)

Lecture 3

13

Enumerated type
type Weekday is (* LOTOS-style comment *)
 Mon, Tue, Wed, Thu, Fri, Sat, Sun
end type

Record type

type Date is -- ADA-style comment (to the end of the line)
 date (day: Nat, weekday: Weekday, month: Nat, year: Nat)
end type

Inductive Type

type Nat_Tree is
 leaf (value: Nat),
 node (left: Nat_Tree, right: Nat_Tree)
end type

Examples of LOTOS NT types (2)

Lecture 3

14

Shorthand notation
type Nat_List is type Nat_List is
 list of Nat nil,
end type cons (head: Nat, tail:Nat_List)
 end type

Automatic definition of standard functions

type Num is
 one, two, three
 with "==", "<=", "<", ">=", ">“
end type
type Date is
 date (d: Nat, wd: Weekday, month: Nat, year: Nat)
 with "get", "set" -- for selectors X.D, ... and updaters X.{D => E}
end type

instead of

Examples of LOTOS NT types (3)

Lecture 3

15

One-dimensional array
type Vector is
 array [0 .. 3] of Int
end type

Two-dimensional array

type Matrix is -- square-matrix
 array [0 .. 3] of Vector
end type

Array of records

type Date_Array is
 array [0 .. 1] of DATE
end type

Examples of LOTOS NT types (4)

Lecture 3

16

Range types (intervals)
type Index is
 range 0 .. 5 of Nat
 with “==“, “!=“
end type

Predicate subtypes
type EVEN is
 n: NAT where n mod 2 == 0
end type
type PID is
 i: Index where i != 0
end type

further automatically
definable functions:
functions:
first, last, card

Lecture 3

17

LOTOS NT functions

Overview

Lecture 3

18

An imperative-like syntax (with assignments)
But a strictly functional semantics (no side effects)
Ensured by type checking and initialization analysis
Expressions are much richer than in LOTOS:

Local variable declarations and assignments: “var”
Sequential composition: “;”
Breakable loops: “while” and “for”
Conditionals: “If-then-else”
Pattern matching: “case”
(Uncatchable) exceptions: “raise”

Three parameter passing modes:
“in” (call by value)
“out” and “inout” (call by reference)

Function overloading
Support for external functions (LOTOS and C)

call syntax requires
“eval” keyword

Examples of LNT functions (1)

Lecture 3

19

Constants
function pi: Real is
 return 3.14159265
end function

Field accesses

function get_weekday (d: Date): Weekday is
 return d.wd

end function
function set_weekday (inout d: Date, newd: Weekday) is

 d := d.{wd => newd}
end function

Examples of LNT functions (2)

Lecture 3

20

Access to the first element of a list L
function get_head (L: Nat_List) : Nat raises Empty_List: none is
 case L in var head: Nat in
 nil -> raise Empty_List
 | cons (head, any Nat_List) -> return head
 end case
end function

Update of element (i,j) of a matrix M

function update (inout M: Matrix, i, j: Nat, new_e: Nat) is
 var v: Vector in
 v := M[i];
 v[j] := new_e;
 M[i] := v
 end var
end function

Examples of LNT functions (3)

Lecture 3

21

 function reset_diagonal_elements (M: Matrix) : Matrix is
 var
 result: Matrix,
 i: Nat
 in
 result := M;
 for i := 0 while i < 3 by i := i + 1 loop
 eval update (!?result, i, i, 0)
 end loop;
 return result
 end var
end function

Lecture 3

22

LOTOS NT channels

Channels (or: gate typing)

Lecture 3

23

 In LOTOS, gates are untyped:
allowed: G !0 ; G !true; G !cons (A, nil) !false; stop
allowed: G !true; B1 || G ?X:nat; B2

typing errors are not caught statically and cause deadlock at run-time

 LOTOS NT enables ‘channels’ (i.e. gate types)
Gates must be declared with a channel
Channels can be overloaded (different type tuples for the
same gate)

 There is a predefined channel ‘any’ (untyped) for backward
compatibility with LOTOS (not recommended)
Gate typing is implemented by generating extra LOTOS code
that will not type check if there is a gate type error

Examples of channels

Lecture 3

24

 channel None is
 ()
 end channel

 channel BoolChannel is

 (Bool)
end channel

 channel C2 is

 (Pid, Bool),
 (Signal, Nat, Nat)
end channel

Lecture 3

25

LOTOS NT processes

Overview

Lecture 3

26

Processes are a superset of functions (except return):
symmetric sequential composition
variable assignment, “if-then-else”, “case”, “loop”, etc.

Additional operators:
communication: rendezvous with value communication
parallel composition: “par”
gate hiding: “hide”
nondeterministic choice: “select”
“disrupt”, etc.

Static semantics constraints
variable initialization
typed channels (with polymorphism and “any” type)

LOTOS style
(see next slide)

Example of LOTOS process

Lecture 3

27

type option is none, some (x: Nat) end type
channel option_channel is (o: Option) end channel
channel nat_channel is (n: Nat) end channel

process FILTER [GET: option_channel, PUT: nat_channel] (b: Nat) is
 var opt: Option in
 loop L in
 GET (?opt) ;
 case opt in var x: Nat in
 none -> null
 | some (x) where x > b -> PUT (x)
 end case
 end loop
 end var
end process

FILTER (b) GET PUT

Rendezvous in LOTOS NT

Lecture 3

28

 Similar to LOTOS rendezvous, with extensions
 Features kept from LOTOS:

multiple offers exchanged during the same rendezvous
arbitrary combination of inputs/outputs
G !1 ?X:NAT !true
value matching
G !V1 || G !V2

value generation / constraint solving
G ?X1:S1 [V1] || G ?X2:S2 [V2]

New features in LOTOS NT
pattern matching in offers (richer patterns)
polymorphic gate typing (channels)

Sequential composition revisited

Lecture 3

29

In CCS, CSP, LOTOS, sequential composition is
asymmetric (‘action-prefix’ operator)

syntax is G O1, …, On [V0] ; B0
left-hand side: gate, offers, optional guard
right-hand side: behaviour expression

 Drawbacks:
this is different from all classical algorithmic languages
one cannot write (B1 [] B2) ; B3 nor (B1 || B2) ; B3
action prefix makes sub-term sharing difficult (B3 duplicated)
a symmetric operator is needed too: ‘exit’ and ‘>> accept’
‘>>’ introduces a τ-transition (increases LTS size and no neutral
element for sequential composition)
flow of variables becomes ugly: complexifies the syntax with
‘accept’ and func clauses

In LOTOS NT: one single symmetric operator (noted ‘;’)

Parallel composition revisited

Lecture 3

30

 Forget about binary parallel operators
 Think n-ary! Think graphically!
 Easy mapping from box diagrams to LOTOS NT

A B

C

D

x z

y

t

 par
 x, y -> A
 ||
 x, z -> B
 ||
 z, t -> C
 ||
 y, z, t -> D
 end par

Lecture 3

31

Quick translation guide from
LOTOS to LOTOS NT

Translation guidelines (1/6)

Lecture 3

32

 Operator
translates to ‘stop’ as well in LOTOS NT
there are much less stop’s in real programs than in tutorials!

 Operator
translates to ‘i ; B0’ as well in LOTOS NT
key difference: (i ; B0) in LOTOS and (i) ; (B0) in LOTOS NT

 Operator
translates to G (O1, …, On) where V0 ; B0 -- where V0 is optional
!V translates to V -- keeping ! is possible but not advised
?X:S translates to ?X -- X must be declared before with ‘var’

Translation guidelines (2/6)

Lecture 3

33

 Operator
translates to ‘select B1 [] B2 end select’
if more than 2 branches Bi, group them in the same ‘select’

Operator with

translates to ‘par … end par’
if only two operands:
 B1 ||| B2 translates to ‘par B1 || B2 end par’ and
 B1 |[G1, …, Gn]| B2 to ‘par G1, …, Gn in B1 || B2 end par’
if more than two operands Bi, draw the connection network
to propose an readable solution, avoiding useless nested par’s

Translation guidelines (3/6)

Lecture 3

34

 Operator
translates to ‘hide G0:C0, …, Gn:Cn in B0 end hide’
gate declarations must be typed with channels

 Operator
translates to ‘if V0 then B0 else stop end if’
‘else stop’ must be present!
when an ‘else’ is missing, it is replaced with ‘else null’ to be
compatible with classical sequential languages; but here, we
want guarded commands and ‘else null’ would not be correct
usually, there are several [Vi] -> Bi as branches of a [] choice:
if the Vi are exclusive and exhaustive, ‘else stop’ not needed

Translation guidelines (4/6)

Lecture 3

35

Operator
translates to: X0 := V0; … ; Xn := Vn ; B0

variables X0, …, Xn must have be declared before using ‘var’

 Operator
translates to: X0 := any S0; … ; Xn := any Sn ; B0

variables X0, …, Xn must have be declared before using ‘var’

 Operator
translates to: disrupt B1 by B2 end disrupt

Translation guidelines (5/6)

Lecture 3

36

 Operator
translates to nothing (continuations are implicit in LOTOS NT)
or to ‘null’ (if necessary to have an explicitly empty branch,
for instance in a `case’)
exit (V) should translate into some ‘X := V’
exit (any S) should translate into some ‘X := any S’
‘exit’ and ‘>>’ operators must be translated together to
assign the right variables X

 Operator
translates to ‘B1 ; B2’ (or to ‘B1 ; i ; B2’ if one wishes to
preserve the τ-transition created by ‘>>’ in LOTOS)

Translation guidelines (6/6)

Lecture 3

37

 Process call

where

many LOTOS processes are just there to encode iteration: replace
these auxiliary processes with loops (possibly ‘while’ or ‘for’ loops)
do not forget channels when declaring gates
functionality func was related to sequential composition; if it is
‘noexit’ or ‘exit’ (without arg.) it does not need to be translated
but functionality ‘exit (S0, …, Sn)’ usually requires to add a list of
‘out’ variables X0:S0, …, Xn:Sn to process P

Lecture 3

38

A few last details

Checking of semantic constraints

Lecture 3

39

Semantic checks performed on LOTOS NT code
Correct declaration (variables, gates)
Correct initialization (variables / parameters)
Non-ambiguous overloading
Breaks inside matching loops
Path constraints (e.g., presence of a return)
Parameters usage

Semantic checks performed on LOTOS and C code
Type constraints (expressions and gates)
Availability of used types, functions, and processes
Exhaustiveness of case statements
Availability of external code (LOTOS, C)
Range/overflow checks for numbers

What is missing from LOTOS NT?

Lecture 3

40

 Module interfaces
currently, all objects declared in a module are exported

 Declarative properties
assertions, pre- and post-conditions in functions, processes

 Exception catching
 Real-time (i.e., delays, deadlines, etc.)

E-LOTOS supports quantitative time
LOTOS does not impossible ⇒ to have time in LOTOS NT

 The ‘var … end var’ construct is not fancy

Today’s challenge
41

Lecture 3

1) The ‘Hello, world!’ program

Lecture 3

42

 Write a small LOTOS NT program named ‘hello.lnt’
that displays the string “Hello, world!” on a gate
named G. This gate can be untyped or, better,
typed with a channel of strings.
 (note: this example may be given somewhere in
the LOTOS NT reference manual)
 Generate the corresponding LTS

$ lnt.open hello.lnt generator hello.lnt

 Check the LTS by drawing it
$ bcg_edit hello.bcg

2) Concurrent hellos

Lecture 3

43

Modify this program so that the ‘Hello, world!’
action is put in parallel with another process that
emits, in two successive steps, the strings “Heil dir,
Sonne!” and “Heil dir, Licht!” on another gate H.

 Generate the corresponding LTS

 Display it and send the PostScript file to Alexander

References
44

Lecture 3

LOTOS NT definition

D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F.
Lang, Ch. McKinty, V. Powazny, W. Serwe, G.
Smeding. Reference Manual of the LOTOS NT to
LOTOS Translator (Version 5.5). Technical report,
INRIA/VASY, Nov. 2011

http://vasy.inria.fr/publications/Champelovier-
Clerc-Garavel-et-al-10.html

45

Lecture 3

http://vasy.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
http://vasy.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html

Erratum

 In "Reference Manual of the LOTOS NT to LOTOS
Translator (Version 5.5)", page 97, B.6.14 Parallel
composition: the definition of sync_sets(a) in the
first case should be {{1..m}} and not {1..m}

 Issue found by Alexander Graf-Brill

 Students discovering and reporting mistakes or
ambiguities in the reference manual or problems in
the tools will get a bonus!

46

Lecture 3

	Applied Concurrency Theory�Lecture 3 : Next generation process calculi
	Beyond classical process calculi -�E-LOTOS and LOTOS NT
	E(nhanced)-LOTOS
	LOTOS NT (or LNT)
	LOTOS NT history and tools
	LOTOS NT as a pivot language
	Lexical/syntactic elements of LOTOS NT
	LOTOS NT modules
	LOTOS NT modules
	Example of LOTOS NT modules
	LOTOS NT types
	Overview
	Examples of LOTOS NT types (1)
	Examples of LOTOS NT types (2)
	Examples of LOTOS NT types (3)
	Examples of LOTOS NT types (4)
	LOTOS NT functions
	Overview
	Examples of LNT functions (1)
	Examples of LNT functions (2)
	Examples of LNT functions (3)
	LOTOS NT channels
	Channels (or: gate typing)
	Examples of channels
	LOTOS NT processes
	Overview
	Example of LOTOS process
	Rendezvous in LOTOS NT
	Sequential composition revisited
	Parallel composition revisited
	Quick translation guide from�LOTOS to LOTOS NT
	Translation guidelines (1/6)
	Translation guidelines (2/6)
	Translation guidelines (3/6)
	Translation guidelines (4/6)
	Translation guidelines (5/6)
	Translation guidelines (6/6)
	A few last details
	Checking of semantic constraints
	What is missing from LOTOS NT?
	Today’s challenge
	1) The ‘Hello, world!’ program
	2) Concurrent hellos
	References
	LOTOS NT definition
	Erratum

