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probabilistic choice 
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Example 1: a lossy transmission channel 

 
process P = SEND; (tau; RECEIVE; P [] tau; LOSS; P) 

SEND 

tau tau 

RECEIVE LOSS 

nondeterministic choice 
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Nondeterminism is not optimal here… 

All branches have the same probability (or, more 
precisely, have an unspecified probability) 

yet, in practice, we know that losses are not frequent 

 
Because this probability is unspecified, no numerical 
estimation can be done by tools 
 
Solution: switch to a probabilistic model, with 
explicitly specified probabilities 
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Lossy channel (probabilistic version) 

process P = SEND; (0.9; RECEIVE; P [] 0.1; LOSS; P) 

SEND 

0,9 0,1 

RECEIVE LOSS 

probabilistic choice 
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 In the lossy channel example, probabilities will enable 
to compute useful data (e.g., the average percentage 
of messages lost on a long period). 
 
 More generally, there are useful algorithms relying on 
random behaviour 
See Wikipedia:  Randomized algorithm 
Other examples (taken from the PRISM tool library): 

Randomised consensus 
Self-stabilising algorithms 
Bluetooth device discovery 
Crowds anonymity protocol 
Contract signing protocols 
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Randomized algorithms 



Discrete-time Markov chains 
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The simplest model 

 DTMC (Discrete-time Markov chains)   [Andrei Markov, 1906] 

A finite (or infinite) automaton 
infinite DTMC are mathematically well-defined 
but software tools mostly deal with finite-state DTMCS 

Each transition T is labelled with its probability to be 
fired  

probability 0: firing T is impossible 
probability 1: firing T is mandatory 

Constraint:  
for each state S, the sum of probabilities attached to the 
transitions leaving S must be equal to 1 
if sum less than 1, one sometimes assumes that one remains in S for 
the remaining probability 
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Example 2: the coin and the dice (1/2) 

Problem raised by D. E. Knuth and A. C. Yao: 
 
[KY76] The complexity of nonuniform random 
number generation. In J. F. Traub, editor, 
Algorithms and Complexity: New Directions and 
Recent Results, Academic Press, New York, 1976  
 
 How to simulate a dice with 6 faces by 
using only a coin? 

assuming that all coin tossing experiments are independent  
and that the coin is fair, i.e., heads and tails have the same 
probability (50%-50%) 
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Example 2: the coin and the dice (2/2) 

initial state : 0 
 
heads = follow upper arrow 
 
tails = follow lower arrow 
 
one remains forever  
in red states 

1 

1 

1 

1 

1 

1 
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How to prove that 
each red state is 
eventually reached 
with probability 1/6? 



Matrix representation of a DTMC 

If the DTMC is finite with N states, then it can be 
represented by an N x N transition matrix 
(or one-step matrix, or Markov matrix) 
 

Element (i, j) of the matrix is the probability attached 
to the transition from state i to state j    (i : raw, j : column) 
 

The sum of the elements on each line of the matrix 
must always be egal to 1 
 

If it is not the case, one might have forgotten the 
‘looping’ transition that permits to remain in the same 
state (e.g., as with the red states of Example 2) 
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How does a DTMC work? 

Standard automaton: 
An automaton evolves (its state changes) at discrete instants 
At each instant, the automaton is in one and only one state 
 

DTMC: 
A DTMC evolves (its state changes) at discrete instants 
At each instant, the DTMC can be in one or several states, but with 
smaller probabilities than 1 
 

Physical metaphor:  
automaton: the current state is a particle that cannot be divided 
DTMC: the current state is a wave that splits and flows into several 
states 
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Example 

A 

B 

C D 

(SEND) 1 

0,9 0,1 

1 (RECEIVE) 
(LOSS) 1 

Instant 1 : DTMC is in state A at 100% 
 
Instant 2 : DTMC is in state B at 100% 
 
Instant 3 : DTMC is in state C at 10% and/or D at 90% 
 
Instant 4 : DTMC is in state A at 100%,   etc. 
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Probability vectors 

If the DTMC has N states, a probability vector at a 
given time instant is a vector V with N elements: 

 p1 
p2 
… 
pN 

V =  ( ) 
    where pi is the probability to be in the i-th 

state at this time instant. 
               A probability vector generalizes the notion of 
current state; for an ordinary automaton, one pi 
would be 1 and all others would be 0. 
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where   p1 + p2 + … + pn = 1 



Evolution of probabilities as time passes 

  If V is the probability vector describing the DTMC 
at a given time instant, the probability vector V’ 
at the next time instant after a transition is given 
by the following equation 

   V' = t V . M         (and not V' = M.V !) 
   where M is the transition matrix of the DTMC 

 

 

 ( ) = (    ) a.p1 + d.p2  + g. p3 
b.p1 + e.p2  + h. p3 
c.p1 + f.p2  + i. p3 

a b c   
d e f 
g h i 

( p1 p2 p3 ) 
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t V = ( p1 p2 … pN )       t V : transposed vector  
  



Steady-state probabilities (1/3) 

As time passes, the probability vector V evolves 
(‘transient probabilities’) 

 
Can one predict what will happen on the long run?  
(i.e., the limit of V when times tends to infinity) 

 
 Stationary (or steady-state) behaviour: 

there is an initial transient phase, 
on the long run, an equilibrium is reached 
probabilities are distributed among states and do not 
change (or converge to a limit) as time is passing 
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 If such an equilibrium exists, the steady-state 
probability vector V should satisfy the following 
equation: 
  tV . M = V         (V is a left eigenvector of M) 
 

Remarks: 
M is not ‘free’ because the sum of each of its lines must be 1 
(the last column is 1 minus the sum of other columns) 
=> this gives one less equation 
but the sum of all elements of V must be 1 too 
=> this gives one more equation 
So N variables and N equations 
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Steady-state probabilities (2/3) 



Equilibrium equation tV . M = V  
 Does a solution always exist? No 
 If it exists, is it unique? No 
 
 Sufficient conditions exist for a unique solution 

e.g., when matrix M is aperiodic and irreducible 
the coin/dice DTMC does not meet these conditions, but admits a 
unique solution 
 

 In certain cases, the solution does not depend on the 
initial probability vector (‘self-stabilizing’) 

e.g., when matrix M is aperiodic and irreducible 
the coin/dice DTMC solution depends on the initial state! 
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Steady-state probabilities (3/3) 

1 

1 



 Mathematical DTMCs vs Computer-Science DTMCs; 
mathematical definition of DTMCs allows infinite state spaces 
mathematical studies ignore parallel composition of DTMCs 

 
Basis: a sequence of random variables X0, X1, X2, … Xn ... 
that give the current state of the DTMC at instant n 
 Notations: 

prob (Xn = s) : probability that the DTMC is in state s at 
instant n    (i.e., an element of a probability vector) 
prob (Xn = s | Xi )  i<n : conditional probability knowing Xi that 
the DTMC is in state s at instant n 
prob (Xn = s | Xi , Xj)  i<n and j<n : conditional probability 
knowing Xi and  Xj   etc. 
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Mathematical definition of DTMCs 



Markov property 

A DTMC satisfies the ‘Markov property’ 
   prob (Xn+1 = s | X0 , X1 , X2 ,…  Xn) = prob (Xn+1 = s | Xn) 
 

This property expresses that the future (i.e., the next 
state at instant n+1) only depends on the present (i.e., 
the current state at instant n) and not on the past (i.e., 
between instants 0 and n-1) 
Said differently, the present contains all the 
information needed to predict the future and one does 
not need to record the entire history from instant 0 to 
continue evolving 
Automata also have this property: their current state 
encodes all the history needed to take future decisions 
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Markov decision processes 
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 A state-based model 
All the ‘useful’ information is in the states 
No visible information on the transitions (only probabilities) 
This does not fit with the usual models of concurrency 

 How to compose DTMCs in parallel? 
This is mandatory to model concurrent components 
Parallel composition of DTMCs is severely restricted: 
no message-passing communication, only shared variables 

 How to model ‘true’ nondeterminism? 
‘True’ nondeterminism cannot be modelled using DTMCs 
Concurrency introduces nondeterminism (due to interleaving) 
=> parallel composition of DTMCs is not a DTMC 
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Limitations of DTMCs 



 Main goal 
Introduce transitions labelled with action names 
as in the LTS (Labelled Transition Systems) model  
used for CCS, CSP, LOTOS, pi-calculus, etc. 
Keep the possibility of having probabilities on transitions 
Have a meaningful definition of parallel composition 

Different solutions: 
 IPC (Interactive Probabilistic Chains) 
 = LTS with normal transitions and probabilistic transitions 
MDP (Markov Decision Processes) 
 = IPC + alternation of normal and probabilistic transitions 

23 

Lecture 5 

Beyond DTMCs 



 As with IPCs, MDP have 2 kinds of transitions: 
normal transitions:          ‘A’,  ‘GET !2 !false’, τ, etc. 
probabilistic transitions:   0.001,   0.25 

 

 Additional constraints: 
the sum of probabilistic transitions leaving a state must be 1 
(aleady exists in DTMCs and IPCs) 
no choice between a normal and a probabilistic transition 
alternation (stronger constraint): 
on every execution path, normal and probabilistic transitions 
strictly alternate 
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Markov Decision Processes (1/2) 



Consequences of alternation: 
 Graphically: 2 kinds of vertices 

‘states’: before normal transitions 
‘nails’: before probabilistic transitions 

 Mathematically: 2 definitions 
transitions = state —(label)→µ 
µ = probability distribution  
      over states 
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Markov Decision Processes (2/2) 

A 

B 

C 

D 

E 

0.4 

0.3 

0.3 

1 

0.5 

0.5 

1 



 Nondeterminism is allowed in MDP 
 Two causes: 

local nondeterminism: choice between two identical 
transitions leading to different nails 
global nondeterminism: coming from parallel composition 
and interleaving semantics 

 

 Main consequence: 
no unique probability vector as with DTMCs 
one may only compute a [min, max]  
interval of probabilities 
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Nondeterminism in MDP  

s A 

A 1 

1 

after an A-transition, prob (X=s) = 0 or 1 



The PRISM tool 
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 Developed in Oxford (formerly: Birmingham) 
 Web site: http://www.prismmodelchecker.org  
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The PRISM tool 

model properties 

PRISM 

results of the property 
+ probabilities 
+ matrices 
+ statistics 

http://www.prismmodelchecker.org/


The PRISM modelling language 
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PRISM offers a modelling language to describe: 
 

 Sequential modules (~ processes): 
DTMC (Discrete-Time Markov Chains) 
MDP (Markov Decision Processes) 
and also CTMC and PTA (see Lecture 6) 

 
 Parallel composition of modules 
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Motivation 



 Mixed interfaces, which combine: 
action labels (as in process calculi) 
shared variables (as in thread-based programs) 

 Action labels 
permit synchronization between concurrent modules 
no exchange of values (as ! and ? in CSP and LOTOS) 

 State variables 
local: writable by one module, readable by other modules 
global: readable and writable by all modules 
no notion of ‘purely local’ variable (≠ process calculi) 
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Sequential modules from the outside (1/2) 



 Drawback: no syntactic way of declaring interfaces 
no lists of gate and variable parameters as in LOTOS 
one must read and analyze the body of each module! 

 

 Exemple of PRISM module specification: 
     const int N = 10; // constant 
     global X:bool;     // global variable 
     module M 
          Y:[0..N];         // local variable of module M 
           … 
     endmodule 
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Sequential modules from the outside (2/2) 



 In most languages (e.g., LOTOS and LOTOS NT),  
the current state consists of two components: 

a control part: the current program location (i.e., program 
counter in an assembly language) 
a data part: the current values of variables 

 

 In PRISM there is no control part: the current state 
of a module is entirely encoded in its variables 

PRISM follows the idea of ‘guarded commands’ language 
there is one single program location (= single state machine) 
to encode an automaton with N states, one must declare a 
local variable of type [1..N] or [0..N-1] 
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Sequential modules from the inside (1/5) 



 The body of a PRISM module combines 2 operators: 
nondeterministic choice 
probabilistic choice 

 
 It is not a process calculus in the sense that these 
two operators must appear in a precise order and 
cannot be freely combined 

first level, nondeterministic choice 
second level, probabilistic choice 
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Sequential modules from the inside (2/5) 



Nondeterministic choice: 
         [action_label1] boolean_guard1 -> branch1; 
         [action_label2] boolean_guard2 -> branch2; 
         … 
         [action_labeln] boolean_guardn -> branchn; 

(branches are defined below) 
action_labels can be ommitted (e.g., in a DTMC) – taus ? 
guards contain local (and from other modules) and global 
variables 
as in LOTOS, boolean_guard may overlap (=> nondeterminism) 
Caution! in a DTMC, Prism remplaces nondeterminism with an 
equiprobable probabilistic choice (with a warning?) 

 

35 

Lecture 5 

Sequential modules from the inside (3/5) 



 Probabilistic choice (i.e. branches) 
   branch ::= prob1 : update1 

                +  prob2 : update2 

                +  … 
                +  probn : updaten 

the probi may use numbers or constants (defined by const) 
their sum must be 1 
the updatei are assignments to variables, written using a 
strange syntax: 
  (x’= 0)  // parentheses and quote are mandatory 
     (x’=1) & (y’=y+1) // & rather than ; 
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Sequential modules from the inside (4/5) 



PRISM syntax corresponds exactly to MDPs 
in green: states (origin of nondeterministic choices) 
in red: nails (origin of probabilistic choices) 
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Sequential modules from the inside (5/5) 

Source: Wikipedia 

module M 
s : [0..2]; 
[] s=0->(s’=2); 
[] s=0->0.5:(s’=0)+0.5:(s’=2); 
[] s=1->0.7:(s’=0)+0.1:(s’=1)+0.2:(s’=2); 
[] s=1->0.95:(s’=1)+0.05:(s’=2); 
[] s=2->0.4:(s’=0)+0.6:(s’=2); 
[] s=2->0.3:(s’=0)+0.3:(s’=1)+0.4:(s’=2); 
endmodule 



 Explicit parallel composition 
using the three LOTOS parallel composition operators 
|| only synchronizes on common gates: 
in LOTOS, P || Q synchronizes on gates (P) ∪ gates (Q) 
in PRISM,  P || Q synchronizes on gates (P) ∩ gates (Q) 
another difference with LOTOS : shared variables! 
global state = local states of each module + global variables 

 Implicit parallel composition 
just declaring modules together composes them with || 

 Hiding and renaming 
M / {a,b,...} similar to (hide a, b… in M) in LOTOS 
M {a<-b,c<-d,...} similar to process calls in LOTOS 

38 

Lecture 5 

Parallel composition of modules 



The PRISM property 
specification language 
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 The property language is used to ask questions 
about the state space 
 In ‘traditional’ model checkers, these questions 
have a Boolean result: 

can message M (X, Y) be received with X  > Y? 
is each SEND (X) message eventually followed by a RECV(X)? 

 In probabilistic model checkers (such as PRISM), 
the questions may have a Boolean or numerical 
result 

often questions about probabilities 
(but also costs, rewards, elapsed time) 
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Motivation 



 The property language of PRISM is rich (= complex) 
 

 It merges several temporal logics: 
standard temporal logics: LTL 
probabilistic temporal logics: CSL, PCTL, PCTL* 

 

 Depending on the form of the formulas to 
evaluate, different algorithms (‘engines’) are used 
by PRISM (e.g., ‘hybrid’, ‘MTBDD’, ‘sparse’) 

Various restrictions regarding the type of PRISM models, the 
nature of formulas, and the search engine used. 
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Properties in PRISM 



 P>=1 [ F X=0 ] 
With probability 1, eventually variable X becomes null 
 

 P<0.1 [F<=1000 X=0 ] 
With probability less than 0.1, variable X becomes null during 
the first 1000 time units 

 
 S>=0.75 [X=0] 

With (steady-state) probability greater than 75%, variable X is 
null on the long-run 
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Examples of Boolean properties 



 P=? [ F X=0 ] 
Give the probability that variable X becomes null eventually 
 

 P=? [F<=1000 X=0 ] 
Give the probability that variable X becomes null during the 
first 1000 time units 
 

 S=? [X=0] 
Give (steady-state) probability that variable X is null on the 
long-run 

    (see the PRISM manual for many more examples) 
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Example of numerical properties 



Today’s challenge 
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 Type in a file ‘dice.pm’ the PRISM specification of the 
coin/dice example (Example 2 above) 

do not forget the loops on the red states 
pre-check its correctness by launching the command 
    $ prism dice.pm 
 

 Write a file ‘dice.pctl’ containing PCTL formulas to 
check that the steady-state probability of each ‘red’ 
state is 1/6. Check it using PRISM.  
 

 Generate the transition matrix in Matlab format and 
send it with ‘dice.pm’ and ‘dice.pctl’ to Alexander 
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Getting started with PRISM 



References 
46 

Lecture 5 



 PRISM Web site 
http://www.prismmodelchecker.org/  
 

PRISM user manual   (models and properties) 
 (skip directly to Section "The PRISM Language“) 

PDF: 
http://www.prismmodelchecker.org/doc/manual.pdf  
HTML: 
http://www.prismmodelchecker.org/manual/Main/AllOnOnePage 

 
 Brief semantics of the basic PRISM constructs 

http://www.prismmodelchecker.org/doc/semantics.pdf  
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PRISM language and tool 

http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/doc/manual.pdf
http://www.prismmodelchecker.org/manual/Main/AllOnOnePage
http://www.prismmodelchecker.org/doc/semantics.pdf


 Wikipedia: Markov chain 
 
 Wikipedia: Markov decision process 

 
 Real applications of Markov decision processes 

http://www.it.uu.se/edu/course/homepage/aism/st11/MDPA
pplications1.pdf 
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPA
pplications2.pdf 
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPA
pplications3.pdf 
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Markov chains 

http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications1.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications1.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications2.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications2.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications3.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications3.pdf
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