Applied Concurrency Theory
Lecture 5: probabilistic models

Hubert Garavel
Alexander Graf-Brill
Nondeterministic choice - probabilistic choice
Example 1: a lossy transmission channel

process P = SEND; (tau; RECEIVE; P \[\tau\] tau; LOSS; P)
Nondeterminism is not optimal here...

- All branches have the same probability (or, more precisely, have an unspecified probability)
 - yet, in practice, we know that losses are not frequent

- Because this probability is unspecified, no numerical estimation can be done by tools

- Solution: switch to a probabilistic model, with explicitly specified probabilities
process P = SEND; (0.9; RECEIVE; P []) 0.1; LOSS; P)
In the lossy channel example, probabilities will enable to compute useful data (e.g., the average percentage of messages lost on a long period).

More generally, there are useful algorithms relying on random behaviour.

See Wikipedia: Randomized algorithm
Other examples (taken from the PRISM tool library):
- Randomised consensus
- Self-stabilising algorithms
- Bluetooth device discovery
- Crowds anonymity protocol
- Contract signing protocols
Discrete-time Markov chains
The simplest model

- **DTMC (Discrete-time Markov chains)** [Andrei Markov, 1906]
- A finite (or infinite) automaton
 - Infinite DTMC are mathematically well-defined
 - But software tools mostly deal with finite-state DTMCs
- Each transition T is labelled with its probability to be fired
 - Probability 0: firing T is impossible
 - Probability 1: firing T is mandatory
- **Constraint:**
 - For each state S, the sum of probabilities attached to the transitions leaving S must be equal to 1
 - If sum less than 1, one sometimes assumes that one remains in S for the remaining probability
Problem raised by D. E. Knuth and A. C. Yao:

How to simulate a *dice with 6 faces* by using only a *coin*?

- assuming that all coin tossing experiments are independent
- and that the coin is fair, i.e., heads and tails have the same probability (50%-50%)
Example 2: the coin and the dice (2/2)

initial state: 0

heads = follow upper arrow
tails = follow lower arrow

one remains forever in red states

How to prove that each red state is eventually reached with probability 1/6?
If the DTMC is finite with N states, then it can be represented by an $N \times N$ transition matrix (or one-step matrix, or Markov matrix).

Element (i, j) of the matrix is the probability attached to the transition from state i to state j $(i : \text{raw}, j : \text{column})$.

The sum of the elements on each line of the matrix must always be equal to 1.

If it is not the case, one might have forgotten the ‘looping’ transition that permits to remain in the same state (e.g., as with the red states of Example 2).
How does a DTMC work?

- **Standard automaton:**
 - An automaton evolves (its state changes) at discrete instants
 - At each instant, the automaton is in one and only one state

- **DTMC:**
 - A DTMC evolves (its state changes) at discrete instants
 - At each instant, the DTMC can be in one or several states, but with smaller probabilities than 1

- **Physical metaphor:**
 - automaton: the current state is a particle that cannot be divided
 - DTMC: the current state is a wave that splits and flows into several states
Instant 1: DTMC is in state A at 100%

Instant 2: DTMC is in state B at 100%

Instant 3: DTMC is in state C at 10% and/or D at 90%

Instant 4: DTMC is in state A at 100%, etc.
If the DTMC has N states, a probability vector at a given time instant is a vector V with N elements:

$$V = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_N \end{pmatrix}$$

where $p_1 + p_2 + \ldots + p_n = 1$

where p_i is the probability to be in the i-th state at this time instant.

A probability vector generalizes the notion of current state; for an ordinary automaton, one p_i would be 1 and all others would be 0.
Evolution of probabilities as time passes

If V is the probability vector describing the DTMC at a given time instant, the probability vector V’ at the next time instant after a transition is given by the following equation

\[V' = tV \cdot M \]
(\text{and not } V' = M \cdot V !)

where M is the transition matrix of the DTMC

\[tV = \begin{pmatrix} p_1 & p_2 & \ldots & p_N \end{pmatrix} \]
\[tV : \text{transposed vector} \]

\[\begin{pmatrix} p_1 & p_2 & p_3 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} a \cdot p_1 + d \cdot p_2 + g \cdot p_3 \\ b \cdot p_1 + e \cdot p_2 + h \cdot p_3 \\ c \cdot p_1 + f \cdot p_2 + i \cdot p_3 \end{pmatrix} \]
Steady-state probabilities (1/3)

- As time passes, the probability vector V evolves (‘transient probabilities’)

- Can one predict what will happen on the long run? (i.e., the limit of V when times tends to infinity)

- Stationary (or steady-state) behaviour:
 - there is an initial transient phase,
 - on the long run, an equilibrium is reached
 - probabilities are distributed among states and do not change (or converge to a limit) as time is passing
If such an equilibrium exists, the steady-state probability vector V should satisfy the following equation:

$$tV \cdot M = V \quad (V \text{ is a left eigenvector of } M)$$

Remarks:

- M is not ‘free’ because the sum of each of its lines must be 1 (the last column is 1 minus the sum of other columns) => this gives one less equation
- but the sum of all elements of V must be 1 too => this gives one more equation
- So N variables and N equations
Equilibrium equation $tV \cdot M = V$

- Does a solution always exist? No
- If it exists, is it unique? No

Sufficient conditions exist for a unique solution
- e.g., when matrix M is aperiodic and irreducible
- the coin/dice DTMC does not meet these conditions, but admits a unique solution

In certain cases, the solution does not depend on the initial probability vector (‘self-stabilizing’)
- e.g., when matrix M is aperiodic and irreducible
- the coin/dice DTMC solution depends on the initial state!
Mathematical DTMCs vs Computer-Science DTMCs;
- mathematical definition of DTMCs allows infinite state spaces
- mathematical studies ignore parallel composition of DTMCs

Basis: a sequence of random variables $X_0, X_1, X_2, \ldots X_n \ldots$ that give the current state of the DTMC at instant n

Notations:
- $\text{prob} \ (X_n = s)$: probability that the DTMC is in state s at instant n (i.e., an element of a probability vector)
- $\text{prob} \ (X_n = s \mid X_i \) \ i < n$: conditional probability knowing X_i that the DTMC is in state s at instant n
- $\text{prob} \ (X_n = s \mid X_i , X_j \) \ i < n \ and \ j < n$: conditional probability knowing X_i and X_j etc.
A DTMC satisfies the ‘Markov property’
\[\text{prob} \left(X_{n+1} = s \mid X_0, X_1, X_2, \ldots, X_n \right) = \text{prob} \left(X_{n+1} = s \mid X_n \right) \]

This property expresses that the future (i.e., the next state at instant \(n+1 \)) only depends on the present (i.e., the current state at instant \(n \)) and not on the past (i.e., between instants 0 and \(n-1 \))

Said differently, the present contains all the information needed to predict the future and one does not need to record the entire history from instant 0 to continue evolving

Automata also have this property: their current state encodes all the history needed to take future decisions
Markov decision processes
Limitations of DTMCs

- A state-based model
 - All the ‘useful’ information is in the states
 - No visible information on the transitions (only probabilities)
 - This does not fit with the usual models of concurrency

- How to compose DTMCs in parallel?
 - This is mandatory to model concurrent components
 - Parallel composition of DTMCs is severely restricted: no message-passing communication, only shared variables

- How to model ‘true’ nondeterminism?
 - ‘True’ nondeterminism cannot be modelled using DTMCs
 - Concurrency introduces nondeterminism (due to interleaving)
 - => parallel composition of DTMCs is not a DTMC
Main goal

- Introduce transitions labelled with action names as in the LTS (Labelled Transition Systems) model used for CCS, CSP, LOTOS, pi-calculus, etc.
- Keep the possibility of having probabilities on transitions
- Have a meaningful definition of parallel composition

Different solutions:

- **IPC** (Interactive Probabilistic Chains)
 - = LTS with normal transitions and probabilistic transitions
- **MDP** (Markov Decision Processes)
 - = IPC + alternation of normal and probabilistic transitions
As with IPCs, MDP have 2 kinds of transitions:

- probabilistic transitions: 0.001, 0.25

Additional constraints:

- the sum of probabilistic transitions leaving a state must be 1 (already exists in DTMCs and IPCs)
- no choice between a normal and a probabilistic transition
- alternation (stronger constraint): on every execution path, normal and probabilistic transitions strictly alternate
Consequences of alternation:

- **Graphically:** 2 kinds of vertices
 - ‘states’: before normal transitions
 - ‘nails’: before probabilistic transitions

- **Mathematically:** 2 definitions
 - transitions = state → (label) → μ
 - μ = probability distribution over states
Nondeterminism is allowed in MDP

Two causes:
- local nondeterminism: choice between two identical transitions leading to different nails
- global nondeterminism: coming from parallel composition and interleaving semantics

Main consequence:
- no unique probability vector as with DTMCs
- one may only compute a \([\text{min, max}]\) interval of probabilities

After an A-transition, \(\text{prob} (X=s) = 0 \text{ or } 1\)
The PRISM tool
The PRISM tool

- Developed in Oxford (formerly: Birmingham)
- Web site: http://www.prismmodelchecker.org

model \(\rightarrow\) PRISM \(\rightarrow\) properties

results of the property
 + probabilities
 + matrices
 + statistics
The PRISM modelling language
Motivation

PRISM offers a modelling language to describe:

- Sequential modules (~ processes):
 - DTMC (Discrete-Time Markov Chains)
 - MDP (Markov Decision Processes)
 - and also CTMC and PTA (see Lecture 6)

- Parallel composition of modules
Mixed interfaces, which combine:

- action labels (as in process calculi)
- shared variables (as in thread-based programs)

Action labels

- permit synchronization between concurrent modules
- no exchange of values (as ! and ? in CSP and LOTOS)

State variables

- local: writable by one module, readable by other modules
- global: readable and writable by all modules
- no notion of ‘purely local’ variable (≠ process calculi)
Sequential modules from the outside (2/2)

- Drawback: no syntactic way of declaring interfaces
 - no lists of gate and variable parameters as in LOTOS
 - one must read and analyze the body of each module!

- Exemple of PRISM module specification:
  ```prism
cost int N = 10; // constant
global X:bool;     // global variable
module M
  Y:[0..N];         // local variable of module M
  ...
endmodule
```
In most languages (e.g., LOTOS and LOTOS NT), the current state consists of two components:

- a control part: the current program location (i.e., program counter in an assembly language)
- a data part: the current values of variables

In PRISM there is no control part: the current state of a module is entirely encoded in its variables:

- PRISM follows the idea of ‘guarded commands’ language
- there is one single program location (= single state machine)
- to encode an automaton with N states, one must declare a local variable of type [1..N] or [0..N-1]
The body of a PRISM module combines 2 operators:
- nondeterministic choice
- probabilistic choice

It is not a process calculus in the sense that these two operators must appear in a precise order and cannot be freely combined
- first level, nondeterministic choice
- second level, probabilistic choice
Nondeterministic choice:

\[
\begin{align*}
[action_label_1] & \text{ boolean.guard}_1 \rightarrow \text{branch}_1; \\
[action_label_2] & \text{ boolean.guard}_2 \rightarrow \text{branch}_2; \\
\cdots \\
[action_label_n] & \text{ boolean.guard}_n \rightarrow \text{branch}_n;
\end{align*}
\]

- (branches are defined below)
- action_labels can be omitted (e.g., in a DTMC) - taus?
- guards contain local (and from other modules) and global variables
- as in LOTOS, boolean.guard may overlap (\(\Rightarrow\) nondeterminism)
- Caution! in a DTMC, Prism replaces nondeterminism with an equiprobable probabilistic choice (with a warning?)
Probabilistic choice (i.e. branches)

\[
\text{branch ::= } \text{prob}_1 : \text{update}_1 + \text{prob}_2 : \text{update}_2 + \ldots + \text{prob}_n : \text{update}_n
\]

- the prob\(_i\) may use numbers or constants (defined by const)
- their sum must be 1
- the update\(_i\) are assignments to variables, written using a strange syntax:
 \[
 (x' = 0) \quad // \quad \text{parentheses and quote are mandatory}
 \]
 \[
 (x' = 1) \& (y' = y + 1) \quad // \quad \& \quad \text{rather than ;}
 \]
Sequential modules from the inside (5/5)

- **PRISM syntax corresponds exactly to MDPs**
 - in green: states (origin of nondeterministic choices)
 - in red: nails (origin of probabilistic choices)

```
module M
s : [0..2];
[] s=0->(s'=2);
[] s=0->0.5:(s'=0)+0.5:(s'=2);
[] s=1->0.7:(s'=0)+0.1:(s'=1)+0.2:(s'=2);
[] s=1->0.95:(s'=1)+0.05:(s'=2);
[] s=2->0.4:(s'=0)+0.6:(s'=2);
[] s=2->0.3:(s'=0)+0.3:(s'=1)+0.4:(s'=2);
endmodule
```
Parallel composition of modules

■ Explicit parallel composition
 ► using the three LOTOS parallel composition operators
 ► || only synchronizes on common gates:
 in LOTOS, P || Q synchronizes on gates (P) ∪ gates (Q)
 in PRISM, P || Q synchronizes on gates (P) ∩ gates (Q)
 ► another difference with LOTOS: shared variables!
 ► global state = local states of each module + global variables

■ Implicit parallel composition
 ► just declaring modules together composes them with ||

■ Hiding and renaming
 ► M / {a,b,...} similar to (hide a, b... in M) in LOTOS
 ► M {a<-b,c<-d,...} similar to process calls in LOTOS
The PRISM property specification language
The property language is used to ask questions about the state space.

In ‘traditional’ model checkers, these questions have a Boolean result:
- can message $M (X, Y)$ be received with $X > Y$?
- is each SEND (X) message eventually followed by a RECV(X)?

In probabilistic model checkers (such as PRISM), the questions may have a Boolean or numerical result:
- often questions about probabilities
- (but also costs, rewards, elapsed time)
The property language of PRISM is rich (= complex)

It merges several temporal logics:
- standard temporal logics: LTL
- probabilistic temporal logics: CSL, PCTL, PCTL*

Depending on the form of the formulas to evaluate, different algorithms (‘engines’) are used by PRISM (e.g., ‘hybrid’, ‘MTBDD’, ‘sparse’)
- Various restrictions regarding the type of PRISM models, the nature of formulas, and the search engine used.
Examples of Boolean properties

- $P \geq 1 \ [F \ X=0]$
 - With probability 1, eventually variable X becomes null

- $P < 0.1 \ [F \leq 1000 \ X=0]$
 - With probability less than 0.1, variable X becomes null during the first 1000 time units

- $S \geq 0.75 \ [X=0]$
 - With (steady-state) probability greater than 75%, variable X is null on the long-run
Example of numerical properties

- **P=? [F X=0]**
 - Give the probability that variable X becomes null eventually

- **P=? [F<=1000 X=0]**
 - Give the probability that variable X becomes null during the first 1000 time units

- **S=? [X=0]**
 - Give (steady-state) probability that variable X is null on the long-run

(see the PRISM manual for many more examples)
Today’s challenge
Type in a file ‘dice.pm’ the PRISM specification of the coin/dice example (Example 2 above)
 - do not forget the loops on the red states
 - pre-check its correctness by launching the command
 `prism dice.pm`

Write a file ‘dice.pctl’ containing PCTL formulas to check that the steady-state probability of each ‘red’ state is 1/6. Check it using PRISM.

Generate the transition matrix in Matlab format and send it with ‘dice.pm’ and ‘dice.pctl’ to Alexander
References
PRISM language and tool

- **PRISM Web site**

- **PRISM user manual** (models and properties) (skip directly to Section "The PRISM Language")
 - **HTML:** http://www.prismmodelchecker.org/manual/Main/AllOnOnePage

- **Brief semantics of the basic PRISM constructs**
Markov chains

- Wikipedia: Markov chain
- Wikipedia: Markov decision process

Real applications of Markov decision processes

- http://www.it.uu.se/edu/course/homepage/aism/st11/MDPAplications1.pdf
- http://www.it.uu.se/edu/course/homepage/aism/st11/MDPAplications2.pdf
- http://www.it.uu.se/edu/course/homepage/aism/st11/MDPAplications3.pdf