
Hubert Garavel
Alexander Graf-Brill

Applied Concurrency Theory
Lecture 5 : probabilistic models

Nondeterministic choice –
probabilistic choice

2

Lecture 5

Example 1: a lossy transmission channel

process P = SEND; (tau; RECEIVE; P [] tau; LOSS; P)

SEND

tau tau

RECEIVE LOSS

nondeterministic choice

3

Lecture 5

Nondeterminism is not optimal here…

All branches have the same probability (or, more
precisely, have an unspecified probability)

yet, in practice, we know that losses are not frequent

Because this probability is unspecified, no numerical
estimation can be done by tools

Solution: switch to a probabilistic model, with
explicitly specified probabilities

4

Lecture 5

Lossy channel (probabilistic version)

process P = SEND; (0.9; RECEIVE; P [] 0.1; LOSS; P)

SEND

0,9 0,1

RECEIVE LOSS

probabilistic choice

5

Lecture 5

 In the lossy channel example, probabilities will enable
to compute useful data (e.g., the average percentage
of messages lost on a long period).

 More generally, there are useful algorithms relying on
random behaviour
See Wikipedia: Randomized algorithm
Other examples (taken from the PRISM tool library):

Randomised consensus
Self-stabilising algorithms
Bluetooth device discovery
Crowds anonymity protocol
Contract signing protocols

6

Lecture 5

Randomized algorithms

Discrete-time Markov chains
7

Lecture 5

The simplest model

 DTMC (Discrete-time Markov chains) [Andrei Markov, 1906]

A finite (or infinite) automaton
infinite DTMC are mathematically well-defined
but software tools mostly deal with finite-state DTMCS

Each transition T is labelled with its probability to be
fired

probability 0: firing T is impossible
probability 1: firing T is mandatory

Constraint:
for each state S, the sum of probabilities attached to the
transitions leaving S must be equal to 1
if sum less than 1, one sometimes assumes that one remains in S for
the remaining probability

8

Lecture 5

Example 2: the coin and the dice (1/2)

Problem raised by D. E. Knuth and A. C. Yao:

[KY76] The complexity of nonuniform random
number generation. In J. F. Traub, editor,
Algorithms and Complexity: New Directions and
Recent Results, Academic Press, New York, 1976

 How to simulate a dice with 6 faces by
using only a coin?

assuming that all coin tossing experiments are independent
and that the coin is fair, i.e., heads and tails have the same
probability (50%-50%)

9

Lecture 5

Example 2: the coin and the dice (2/2)

initial state : 0

heads = follow upper arrow

tails = follow lower arrow

one remains forever
in red states

1

1

1

1

1

1

10

Lecture 5

How to prove that
each red state is
eventually reached
with probability 1/6?

Matrix representation of a DTMC

If the DTMC is finite with N states, then it can be
represented by an N x N transition matrix
(or one-step matrix, or Markov matrix)

Element (i, j) of the matrix is the probability attached
to the transition from state i to state j (i : raw, j : column)

The sum of the elements on each line of the matrix
must always be egal to 1

If it is not the case, one might have forgotten the
‘looping’ transition that permits to remain in the same
state (e.g., as with the red states of Example 2)

11

Lecture 5

How does a DTMC work?

Standard automaton:
An automaton evolves (its state changes) at discrete instants
At each instant, the automaton is in one and only one state

DTMC:
A DTMC evolves (its state changes) at discrete instants
At each instant, the DTMC can be in one or several states, but with
smaller probabilities than 1

Physical metaphor:
automaton: the current state is a particle that cannot be divided
DTMC: the current state is a wave that splits and flows into several
states

12

Lecture 5

Example

A

B

C D

(SEND) 1

0,9 0,1

1 (RECEIVE)
(LOSS) 1

Instant 1 : DTMC is in state A at 100%

Instant 2 : DTMC is in state B at 100%

Instant 3 : DTMC is in state C at 10% and/or D at 90%

Instant 4 : DTMC is in state A at 100%, etc.

13

Lecture 5

Probability vectors

If the DTMC has N states, a probability vector at a
given time instant is a vector V with N elements:

 p1
p2
…
pN

V = ()
 where pi is the probability to be in the i-th

state at this time instant.
 A probability vector generalizes the notion of
current state; for an ordinary automaton, one pi
would be 1 and all others would be 0.

14

Lecture 5

where p1 + p2 + … + pn = 1

Evolution of probabilities as time passes

 If V is the probability vector describing the DTMC
at a given time instant, the probability vector V’
at the next time instant after a transition is given
by the following equation

 V' = t V . M (and not V' = M.V !)
 where M is the transition matrix of the DTMC

 () = () a.p1 + d.p2 + g. p3
b.p1 + e.p2 + h. p3
c.p1 + f.p2 + i. p3

a b c
d e f
g h i

(p1 p2 p3)

15

Lecture 5

t V = (p1 p2 … pN) t V : transposed vector

Steady-state probabilities (1/3)

As time passes, the probability vector V evolves
(‘transient probabilities’)

Can one predict what will happen on the long run?
(i.e., the limit of V when times tends to infinity)

 Stationary (or steady-state) behaviour:

there is an initial transient phase,
on the long run, an equilibrium is reached
probabilities are distributed among states and do not
change (or converge to a limit) as time is passing

16

Lecture 5

 If such an equilibrium exists, the steady-state
probability vector V should satisfy the following
equation:
 tV . M = V (V is a left eigenvector of M)

Remarks:
M is not ‘free’ because the sum of each of its lines must be 1
(the last column is 1 minus the sum of other columns)
=> this gives one less equation
but the sum of all elements of V must be 1 too
=> this gives one more equation
So N variables and N equations

17

Lecture 5

Steady-state probabilities (2/3)

Equilibrium equation tV . M = V
 Does a solution always exist? No
 If it exists, is it unique? No

 Sufficient conditions exist for a unique solution

e.g., when matrix M is aperiodic and irreducible
the coin/dice DTMC does not meet these conditions, but admits a
unique solution

 In certain cases, the solution does not depend on the
initial probability vector (‘self-stabilizing’)

e.g., when matrix M is aperiodic and irreducible
the coin/dice DTMC solution depends on the initial state!

18

Lecture 5

Steady-state probabilities (3/3)

1

1

 Mathematical DTMCs vs Computer-Science DTMCs;
mathematical definition of DTMCs allows infinite state spaces
mathematical studies ignore parallel composition of DTMCs

Basis: a sequence of random variables X0, X1, X2, … Xn ...
that give the current state of the DTMC at instant n
 Notations:

prob (Xn = s) : probability that the DTMC is in state s at
instant n (i.e., an element of a probability vector)
prob (Xn = s | Xi) i<n : conditional probability knowing Xi that
the DTMC is in state s at instant n
prob (Xn = s | Xi , Xj) i<n and j<n : conditional probability
knowing Xi and Xj etc.

19

Lecture 5

Mathematical definition of DTMCs

Markov property

A DTMC satisfies the ‘Markov property’
 prob (Xn+1 = s | X0 , X1 , X2 ,… Xn) = prob (Xn+1 = s | Xn)

This property expresses that the future (i.e., the next
state at instant n+1) only depends on the present (i.e.,
the current state at instant n) and not on the past (i.e.,
between instants 0 and n-1)
Said differently, the present contains all the
information needed to predict the future and one does
not need to record the entire history from instant 0 to
continue evolving
Automata also have this property: their current state
encodes all the history needed to take future decisions

20

Lecture 5

Markov decision processes
21

Lecture 5

 A state-based model
All the ‘useful’ information is in the states
No visible information on the transitions (only probabilities)
This does not fit with the usual models of concurrency

 How to compose DTMCs in parallel?
This is mandatory to model concurrent components
Parallel composition of DTMCs is severely restricted:
no message-passing communication, only shared variables

 How to model ‘true’ nondeterminism?
‘True’ nondeterminism cannot be modelled using DTMCs
Concurrency introduces nondeterminism (due to interleaving)
=> parallel composition of DTMCs is not a DTMC

22

Lecture 5

Limitations of DTMCs

 Main goal
Introduce transitions labelled with action names
as in the LTS (Labelled Transition Systems) model
used for CCS, CSP, LOTOS, pi-calculus, etc.
Keep the possibility of having probabilities on transitions
Have a meaningful definition of parallel composition

Different solutions:
 IPC (Interactive Probabilistic Chains)
 = LTS with normal transitions and probabilistic transitions
MDP (Markov Decision Processes)
 = IPC + alternation of normal and probabilistic transitions

23

Lecture 5

Beyond DTMCs

 As with IPCs, MDP have 2 kinds of transitions:
normal transitions: ‘A’, ‘GET !2 !false’, τ, etc.
probabilistic transitions: 0.001, 0.25

 Additional constraints:
the sum of probabilistic transitions leaving a state must be 1
(aleady exists in DTMCs and IPCs)
no choice between a normal and a probabilistic transition
alternation (stronger constraint):
on every execution path, normal and probabilistic transitions
strictly alternate

24

Lecture 5

Markov Decision Processes (1/2)

Consequences of alternation:
 Graphically: 2 kinds of vertices

‘states’: before normal transitions
‘nails’: before probabilistic transitions

 Mathematically: 2 definitions
transitions = state —(label)→µ
µ = probability distribution
 over states

25

Lecture 5

Markov Decision Processes (2/2)

A

B

C

D

E

0.4

0.3

0.3

1

0.5

0.5

1

 Nondeterminism is allowed in MDP
 Two causes:

local nondeterminism: choice between two identical
transitions leading to different nails
global nondeterminism: coming from parallel composition
and interleaving semantics

 Main consequence:
no unique probability vector as with DTMCs
one may only compute a [min, max]
interval of probabilities

26

Lecture 5

Nondeterminism in MDP

s A

A 1

1

after an A-transition, prob (X=s) = 0 or 1

The PRISM tool
27

Lecture 5

 Developed in Oxford (formerly: Birmingham)
 Web site: http://www.prismmodelchecker.org

28

Lecture 5

The PRISM tool

model properties

PRISM

results of the property
+ probabilities
+ matrices
+ statistics

http://www.prismmodelchecker.org/

The PRISM modelling language
29

Lecture 5

PRISM offers a modelling language to describe:

 Sequential modules (~ processes):
DTMC (Discrete-Time Markov Chains)
MDP (Markov Decision Processes)
and also CTMC and PTA (see Lecture 6)

 Parallel composition of modules

30

Lecture 5

Motivation

 Mixed interfaces, which combine:
action labels (as in process calculi)
shared variables (as in thread-based programs)

 Action labels
permit synchronization between concurrent modules
no exchange of values (as ! and ? in CSP and LOTOS)

 State variables
local: writable by one module, readable by other modules
global: readable and writable by all modules
no notion of ‘purely local’ variable (≠ process calculi)

31

Lecture 5

Sequential modules from the outside (1/2)

 Drawback: no syntactic way of declaring interfaces
no lists of gate and variable parameters as in LOTOS
one must read and analyze the body of each module!

 Exemple of PRISM module specification:
 const int N = 10; // constant
 global X:bool; // global variable
 module M
 Y:[0..N]; // local variable of module M
 …
 endmodule

32

Lecture 5

Sequential modules from the outside (2/2)

 In most languages (e.g., LOTOS and LOTOS NT),
the current state consists of two components:

a control part: the current program location (i.e., program
counter in an assembly language)
a data part: the current values of variables

 In PRISM there is no control part: the current state
of a module is entirely encoded in its variables

PRISM follows the idea of ‘guarded commands’ language
there is one single program location (= single state machine)
to encode an automaton with N states, one must declare a
local variable of type [1..N] or [0..N-1]

33

Lecture 5

Sequential modules from the inside (1/5)

 The body of a PRISM module combines 2 operators:
nondeterministic choice
probabilistic choice

 It is not a process calculus in the sense that these
two operators must appear in a precise order and
cannot be freely combined

first level, nondeterministic choice
second level, probabilistic choice

34

Lecture 5

Sequential modules from the inside (2/5)

Nondeterministic choice:
 [action_label1] boolean_guard1 -> branch1;
 [action_label2] boolean_guard2 -> branch2;
 …
 [action_labeln] boolean_guardn -> branchn;

(branches are defined below)
action_labels can be ommitted (e.g., in a DTMC) – taus ?
guards contain local (and from other modules) and global
variables
as in LOTOS, boolean_guard may overlap (=> nondeterminism)
Caution! in a DTMC, Prism remplaces nondeterminism with an
equiprobable probabilistic choice (with a warning?)

35

Lecture 5

Sequential modules from the inside (3/5)

 Probabilistic choice (i.e. branches)
 branch ::= prob1 : update1

 + prob2 : update2

 + …
 + probn : updaten

the probi may use numbers or constants (defined by const)
their sum must be 1
the updatei are assignments to variables, written using a
strange syntax:
 (x’= 0) // parentheses and quote are mandatory
 (x’=1) & (y’=y+1) // & rather than ;

36

Lecture 5

Sequential modules from the inside (4/5)

PRISM syntax corresponds exactly to MDPs
in green: states (origin of nondeterministic choices)
in red: nails (origin of probabilistic choices)

37

Lecture 5

Sequential modules from the inside (5/5)

Source: Wikipedia

module M
s : [0..2];
[] s=0->(s’=2);
[] s=0->0.5:(s’=0)+0.5:(s’=2);
[] s=1->0.7:(s’=0)+0.1:(s’=1)+0.2:(s’=2);
[] s=1->0.95:(s’=1)+0.05:(s’=2);
[] s=2->0.4:(s’=0)+0.6:(s’=2);
[] s=2->0.3:(s’=0)+0.3:(s’=1)+0.4:(s’=2);
endmodule

 Explicit parallel composition
using the three LOTOS parallel composition operators
|| only synchronizes on common gates:
in LOTOS, P || Q synchronizes on gates (P) ∪ gates (Q)
in PRISM, P || Q synchronizes on gates (P) ∩ gates (Q)
another difference with LOTOS : shared variables!
global state = local states of each module + global variables

 Implicit parallel composition
just declaring modules together composes them with ||

 Hiding and renaming
M / {a,b,...} similar to (hide a, b… in M) in LOTOS
M {a<-b,c<-d,...} similar to process calls in LOTOS

38

Lecture 5

Parallel composition of modules

The PRISM property
specification language

39

Lecture 5

 The property language is used to ask questions
about the state space
 In ‘traditional’ model checkers, these questions
have a Boolean result:

can message M (X, Y) be received with X > Y?
is each SEND (X) message eventually followed by a RECV(X)?

 In probabilistic model checkers (such as PRISM),
the questions may have a Boolean or numerical
result

often questions about probabilities
(but also costs, rewards, elapsed time)

40

Lecture 5

Motivation

 The property language of PRISM is rich (= complex)

 It merges several temporal logics:
standard temporal logics: LTL
probabilistic temporal logics: CSL, PCTL, PCTL*

 Depending on the form of the formulas to
evaluate, different algorithms (‘engines’) are used
by PRISM (e.g., ‘hybrid’, ‘MTBDD’, ‘sparse’)

Various restrictions regarding the type of PRISM models, the
nature of formulas, and the search engine used.

41

Lecture 5

Properties in PRISM

 P>=1 [F X=0]
With probability 1, eventually variable X becomes null

 P<0.1 [F<=1000 X=0]
With probability less than 0.1, variable X becomes null during
the first 1000 time units

 S>=0.75 [X=0]

With (steady-state) probability greater than 75%, variable X is
null on the long-run

42

Lecture 5

Examples of Boolean properties

 P=? [F X=0]
Give the probability that variable X becomes null eventually

 P=? [F<=1000 X=0]
Give the probability that variable X becomes null during the
first 1000 time units

 S=? [X=0]
Give (steady-state) probability that variable X is null on the
long-run

 (see the PRISM manual for many more examples)

43

Lecture 5

Example of numerical properties

Today’s challenge
44

Lecture 5

 Type in a file ‘dice.pm’ the PRISM specification of the
coin/dice example (Example 2 above)

do not forget the loops on the red states
pre-check its correctness by launching the command
 $ prism dice.pm

 Write a file ‘dice.pctl’ containing PCTL formulas to
check that the steady-state probability of each ‘red’
state is 1/6. Check it using PRISM.

 Generate the transition matrix in Matlab format and
send it with ‘dice.pm’ and ‘dice.pctl’ to Alexander

45

Lecture 5

Getting started with PRISM

References
46

Lecture 5

 PRISM Web site
http://www.prismmodelchecker.org/

PRISM user manual (models and properties)
 (skip directly to Section "The PRISM Language“)

PDF:
http://www.prismmodelchecker.org/doc/manual.pdf
HTML:
http://www.prismmodelchecker.org/manual/Main/AllOnOnePage

 Brief semantics of the basic PRISM constructs

http://www.prismmodelchecker.org/doc/semantics.pdf

47

Lecture 5

PRISM language and tool

http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/doc/manual.pdf
http://www.prismmodelchecker.org/manual/Main/AllOnOnePage
http://www.prismmodelchecker.org/doc/semantics.pdf

 Wikipedia: Markov chain

 Wikipedia: Markov decision process

 Real applications of Markov decision processes

http://www.it.uu.se/edu/course/homepage/aism/st11/MDPA
pplications1.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPA
pplications2.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPA
pplications3.pdf

48

Lecture 5

Markov chains

http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications1.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications1.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications2.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications2.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications3.pdf
http://www.it.uu.se/edu/course/homepage/aism/st11/MDPApplications3.pdf

	Applied Concurrency Theory�Lecture 5 : probabilistic models
	Nondeterministic choice – probabilistic choice
	Example 1: a lossy transmission channel
	Nondeterminism is not optimal here…
	Lossy channel (probabilistic version)
	Randomized algorithms
	Discrete-time Markov chains
	The simplest model
	Example 2: the coin and the dice (1/2)
	Example 2: the coin and the dice (2/2)
	Matrix representation of a DTMC
	How does a DTMC work?
	Example
	Probability vectors
	Evolution of probabilities as time passes
	Steady-state probabilities (1/3)
	Steady-state probabilities (2/3)
	Steady-state probabilities (3/3)
	Mathematical definition of DTMCs
	Markov property
	Markov decision processes
	Limitations of DTMCs
	Beyond DTMCs
	Markov Decision Processes (1/2)
	Markov Decision Processes (2/2)
	Nondeterminism in MDP
	The PRISM tool
	The PRISM tool
	The PRISM modelling language
	Motivation
	Sequential modules from the outside (1/2)
	Sequential modules from the outside (2/2)
	Sequential modules from the inside (1/5)
	Sequential modules from the inside (2/5)
	Sequential modules from the inside (3/5)
	Sequential modules from the inside (4/5)
	Sequential modules from the inside (5/5)
	Parallel composition of modules
	The PRISM property specification language
	Motivation
	Properties in PRISM
	Examples of Boolean properties
	Example of numerical properties
	Today’s challenge
	Getting started with PRISM
	References
	PRISM language and tool
	Markov chains

