
Modeling Multiprocessor Cache Protocol Impact
on MPI Performance

Ghassan Chehaibar*, Meriem Zidouni*†, Radu Mateescu†

*Bull SAS - †INRIA

AINA'09, QuEST Workshop, Bradford, May 26-29, 2009

2 ©Bull, 2009

Motivation

- Bull HPC servers
- MPI library.
- Cache-coherent

distributed shared
memory nodes.

3 ©Bull, 2009

Motivation

- Bull HPC servers
- MPI library.
- Cache-coherent

distributed shared
memory nodes.

Ping-Pong benchmark

Measured latency
not conform to

miss count expectations

?

4 ©Bull, 2009

Motivation

- Bull HPC servers
- MPI library.
- Cache-coherent

distributed shared
memory nodes.

Interaction between benchmark software, cache protocol,
•and architecture topology

Ping-Pong benchmark

Measured latency
not conform to

miss count expectations

Architecture
Software

Cache protocol

Need a method to correctly
•evaluate latency and

•miss count per variable

?

5 ©Bull, 2009

Related work

- Measurement:
- Post hardware development phase.
- Lack of analysis elements without complex instrumentation (like

miss count per variable).

- Simulation environment:
- Complex model construction with libraries and C-code snippets.
- All the more, we consider parallel processes.
- No way to verify correctness of modeling.

- Not aware of an already published work that:
- Allows verifiable modeling interactions of complex aspects like

cache coherence protocol, architecture topology and software
algorithm.

- Provides not only overall performance figures but also analysis
elements.

6 ©Bull, 2009

Using formal methods

- Formal modeling of the functional behavior with
LOTOS.

- Formal verification of model correctness with CADP
toolbox.

- Integration of performance aspects based on
Interactive Markov Chain theory: smooth extension of
LOTOS.

- Generation of a Continuous Time Markov Chain, which
we are confident properly reflects functionality and
performance behaviors.

- Use of numerical analysis algorithms to calculate
relevant performance figures.

7 ©Bull, 2009

System at hand

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

FSS

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

FSS

Architecture

8 ©Bull, 2009

System at hand

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

FSS

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

FSS

Send Receive

Receive Send

Send Receive

P0 P1

Architecture

Ping-Pong benchmark (latency of send;receive)

Mapping

9 ©Bull, 2009

System at hand

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

FSS

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

FSS

Send Receive

Receive Send

Send Receive

P0 P1

Architecture

Ping-Pong benchmark (latency of send;receive)

- Hit/Miss
- Cache state changes
- Data transfer types

Cache coherence protocol

Mapping

10 ©Bull, 2009

State-dependent latency

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

FSS

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

PP P P

NC
MEM

FSS

- Latency of an access: depends on dist(requester, data).
- Data location at a given time: depends on cache protocol

and history execution of parallel processes.

Different types of transfers

Latency of an access depends on
global state of caches in the system

11 ©Bull, 2009

Separation of concerns

Benchmark
algorithm

MPI primitives
algorithms

Benchmark
functional model
(load, store,...)

LOTOS process

Software

12 ©Bull, 2009

Separation of concerns

Benchmark
algorithm

Mapping
onto

architecture

MPI primitives
algorithms

Cache
coherence

protocol

Caches
(Transfer type)

LOTOS process LOTOS process

Benchmark
functional model
(load, store,...)

Software Hardware

13 ©Bull, 2009

Separation of concerns

Benchmark
algorithm

Mapping
onto

architecture

MPI primitives
algorithms

Cache
coherence

protocol

Caches
(Transfer type)

Associates latencies
and transfer phases

Latency insertion
(Latencies of

transfer phases)

LOTOS process LOTOS process LOTOS process

Benchmark
functional model
(load, store,...)

Software HardwareTime extension

14 ©Bull, 2009

Separation of concerns

Benchmark
algorithm

Mapping
onto

architecture

MPI primitives
algorithms

Cache
coherence

protocol

Caches
(Transfer type)

Associates latencies
and transfer phases

Compositional
LOTOS model

LOTOS process LOTOS process LOTOS process

Independent refinement
of each aspect

Latency insertion
(Latencies of

transfer phases)

Benchmark
functional model
(load, store,...)

Software HardwareTime extension

15 ©Bull, 2009

Modeling state-dependent latencies

Caches
(Transfer type)

Latency insertion
(Latencies of

transfer phases)

Benchmark
functional model
(load, store,...)

Synchronization on
immediate action

OP, P, V Transfer(OP, P, V,
 Map, C)

Update_Caches

Phase1
Delay transition

Phase 2
Delay transition

Access_end

16 ©Bull, 2009

Formal verification / Performance analysis

LOTOS model

Same model for functional and performance behavior

Same tool and technique for formal verification
and performance evaluation

17 ©Bull, 2009

Formal verification / Performance analysis

LOTOS model

CADP toolbox
 Equivalence checking
 Property checking

 (temporal logic)
 using Evaluator

Model correctness:
 Benchmark
 Cache protocol
 Lock management

Same model for functional and performance behavior

Same tool and technique for formal verification
and performance evaluation

18 ©Bull, 2009

Formal verification / Performance analysis

LOTOS model

CADP toolbox
 Equivalence checking
 Property checking

 (temporal logic)
 using Evaluator

Model correctness:
 Benchmark
 Cache protocol
 Lock management

CADP toolbox
 LTS generation
 Numerical latencies
 Minimization

Stochastic LTS

Same model for functional and performance behavior

Same tool and technique for formal verification
and performance evaluation

19 ©Bull, 2009

Formal verification / Performance analysis

LOTOS model

CADP toolbox
 Equivalence checking
 Property checking

 (temporal logic)
 using Evaluator

Model correctness:
 Benchmark
 Cache protocol
 Lock management

CADP toolbox
 LTS generation
 Numerical latencies
 Minimization

Stochastic LTS

CADP toolbox
 Numerical analysis

 (BCG_STEADY)
 Steady-state:

 prob. distribution
 throughputs

Performance figures:
 Message latency
 Miss counts

Same model for functional and performance behavior

Same tool and technique for formal verification
and performance evaluation

20 ©Bull, 2009

Computing performance figures

Start

SEN
D

R
EC

EI
VE

Average loop latency =

Message exchange latency

1
throughput Start 

21 ©Bull, 2009

Computing performance figures

Start

SEN
D

R
EC

EI
VE

Start

MISS(V)

MISS(V)MISS(V)

MISS(V)

Average loop latency = Average miss count =

Message exchange latency Miss count during an exchange

1
throughput Start 

throughput MISS V 
throughput Start 

22 ©Bull, 2009

Evaluation results in several configurations
- Mapping of processes onto the architecture → distance.
- Implementation of primitives (1, 2)
- Cache coherence protocol variant: A, B.

23 ©Bull, 2009

Evaluation results in several configurations
- Mapping of processes on the architecture → distance.
- Implementation of primitives (1, 2)
- Cache coherence protocol variant: A, B.

0 1 2
0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

B1
A1
MA1
B2
A2

Distance

La
te

nc
y

(u
s)

Number of cache missesLatency of a message exchange

24 ©Bull, 2009

Evaluation results in several configurations
- Mapping of processes on the architecture → distance.
- Implementation of primitives (1, 2)
- Cache coherence protocol variant: A, B.

0 1 2
0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

B1
A1
MA1
B2
A2

Distance

La
te

nc
y

(u
s)

0 1 2
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Lck-B1
Ptr-B1
Ptr-B2
Ptr-A1
Ptr-A2
Lck-A1
Pkt-B1
Pkt-B2
Pkt-A1-2

Distance

M
is

s
co

un
t

Number of cache missesLatency of a message exchange

25 ©Bull, 2009

Conclusion

- Inexpensive modeling and evaluation:
- Abstract model of a complex system.
- About 2500 lines for modeling and verification.
- LTS size: ~1,5M states. Minimized stochastic LTS: ~4,5K states.
- A few minutes execution time.

- Yet, it has the potential to compare and analyze
benchmark behavior in different configurations.

- Future work:
- Additional performance figures.
- Other MPI primitives.
- Automatic production of LOTOS code.

Thank you

