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Interaction between benchmark software, cache protocol, 
•and architecture topology
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Measured latency
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miss count expectations
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Software
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Need a method to correctly
•evaluate latency and

•miss count per variable
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Related work

- Measurement: 
- Post hardware development phase.
- Lack of analysis elements without complex instrumentation (like 

miss count per variable).

- Simulation environment:
- Complex model construction with libraries and C-code snippets.
- All the more, we consider parallel processes.
- No way to verify correctness of modeling.

- Not aware of an already published work that:
- Allows verifiable modeling interactions of complex aspects like 

cache coherence protocol, architecture topology and software 
algorithm.

- Provides not only overall performance figures but also analysis 
elements.
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Using formal methods

- Formal modeling of the functional behavior with 
LOTOS.

- Formal verification of model correctness with CADP 
toolbox.

- Integration of performance aspects based on 
Interactive Markov Chain theory: smooth extension of 
LOTOS.

- Generation of a Continuous Time Markov Chain, which 
we are confident properly reflects functionality and 
performance behaviors.

- Use of numerical analysis algorithms to calculate 
relevant performance figures.
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State-dependent latency
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- Latency of an access: depends on dist(requester, data).
- Data location at a given time: depends on cache protocol 

and history execution of parallel processes.

Different types of transfers

Latency of an access depends on 
global state of caches in the system
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Modeling state-dependent latencies
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Formal verification / Performance analysis

LOTOS model

Same model for functional and performance behavior

Same tool and technique for formal verification
and performance evaluation
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Formal verification / Performance analysis

LOTOS model

CADP toolbox 
 Equivalence checking
 Property checking 

   (temporal logic)
 using Evaluator

Model correctness:
 Benchmark
 Cache protocol
 Lock management

CADP toolbox 
 LTS generation
 Numerical latencies
 Minimization

Stochastic LTS

CADP toolbox 
 Numerical analysis

   (BCG_STEADY)
 Steady-state:

 prob. distribution
 throughputs

Performance figures:
 Message latency
 Miss counts

Same model for functional and performance behavior

Same tool and technique for formal verification
and performance evaluation
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Computing performance figures
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Computing performance figures
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Evaluation results in several configurations
- Mapping of processes onto the architecture → distance.
- Implementation of primitives (1, 2)
- Cache coherence protocol variant: A, B.
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Conclusion

- Inexpensive modeling and evaluation:
- Abstract model of a complex system.
- About 2500 lines for modeling and verification. 
- LTS size: ~1,5M states. Minimized stochastic LTS: ~4,5K states.
- A few minutes execution time.

- Yet, it has the potential to compare and analyze 
benchmark behavior in different configurations.

- Future work:
- Additional performance figures.
- Other MPI primitives.
- Automatic production of LOTOS code.
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