
Modeling the Raft Distributed Consensus Protocol in LNT

Formal Modeling of
Distributed Systems

Hugues Evrard - Google
MARS’22

Munich, 2 April 2022

whoami

● Hugues (“Hugh”) Evrard

● PhD: Team Convecs, Inria Grenoble, France

● PostDoc: Imperial College London, UK

● GraphicsFuzz startup

● Google (London, now Paris)

Opinions are my own and not the views of my employer

Agenda

● Distributed consensus
● Raft protocol
● Modeling with LNT
● Modeling distributed systems

A crash-proof service

server

service

client

cmd1

cmd2
resp1

[Schneider-90] Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial

resp2

A crash-proof service

server

service

client

cmd1

cmd2
resp1

[Schneider-90] Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial

resp2

crash

A crash-proof service

server

service

server

service

server

service

client

cmd1
cmd2
cmd3

cmd1
cmd2
cmd3

cmd1
cmd2
cmd3

[Schneider-90] Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial

apply the
same cmds list

A crash-proof service

server

service

server

service

server

service

client

crash

cmd1
cmd2
cmd3

cmd1
cmd2
cmd3

cmd1
cmd2
cmd3

msg
lost

[Schneider-90] Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial

agree on
same cmds list ?

Distributed consensus

● Distributed: several nodes
● Nodes may crash
● Nodes communicate via asynchronous messages
● Unreliable channels: messages can be dropped, duplicated, reordered

Consensus: can nodes agree on something?

Distributed consensus

● Distributed: several nodes
● Nodes may crash
● Nodes communicate via asynchronous messages
● Unreliable channels: messages can be dropped, duplicated, reordered

Consensus: can nodes agree on something?

If using a deterministic protocol, then it’s impossible (FLP impossibility)

 [Fischer-Lynch-Paterson-85] Impossibility of distributed consensus with one

faulty process

Distributed consensus: (non-deterministic) protocols

● Paxos: [Lamport-90-98] The Part-Time Parliament
● Rich literature:

○ Multi-Paxos
○ “Paxos made easy”
○ …

● Raft: [Ongaro-Ousterhout-13] In Search of an Understandable Consensus
Algorithm
○ https://raft.github.io/
○ Focus on clarity and understandability
○ Specification in TLA
○ Manual proof

https://raft.github.io/

5.vote?

Raft in a nutshell (1)

● Time divided in terms
● At each term:

○ 1. Leader election: elect one leader among nodes

node1

node2 node3

1.vote?
2.ok

6.no,
already voted!

3.vote?
4.no, I’m candidate myself!

candidate

candidate

Raft in a nutshell (2)

● Time divided in terms
● At each term:

○ 1. Leader election: elect one leader among nodes
○ 2. Append log entries: leader replicates log entries to quorum of followers

node1

node2 node3

leader

cmd1

cmd1

cmd1

cmd2 commit index:
#cmds replicated
to majority of
nodes

cmd2

Raft in a nutshell (2)

● Time divided in terms
● At each term:

○ 1. Leader election: elect one leader among nodes
○ 2. Append log entries: leader replicates log entries to quorum of followers

node1

node2 node3

leader
client

cmd1

cmd3 cmd1

cmd1

cmd2 commit index:
#cmds replicated
to majority of
nodes

cmd3, 2
ok

cmd3, 2 no, 1

cmd3

cmd3

cmd2

Raft in a nutshell (2)

● Time divided in terms
● At each term:

○ 1. Leader election: elect one leader among nodes
○ 2. Append log entries: leader replicates log entries to quorum of followers

node1

node2 node3

leader
client

cmd1

cmd3

resp3

cmd1

cmd1

cmd2 commit index:
#cmds replicated
to majority of
nodes

{}, 3
ok

cmd2, 3 ok, 2

cmd3

cmd3

cmd2 cmd2

Raft in a nutshell (3)

● Time divided in terms
● At each term:

○ 1. Leader election: elect one leader among nodes
○ 2. Append log entries: leader replicates log entries to quorum of followers

● Only the leader interacts with the client
● Any node can timeout and start a new election
● Leader sends heartbeat messages to prevent timeouts

● Used in the industry
○ e.g. Hashicorp’s Consul, etcd (Kubernetes)

Verification? Start with formal model

Formal modeling with LNT: a primer

State space as LTS: Labelled Transition System

module primer is

channel CalcOp is
 (op1, op2, res: nat)
end channel

process Calc [Add, Mul: CalcOp] is
 var op1, op2, res: nat in
 loop
 select
 Add(?op1, ?op2, ?res)
 where res == (op1 + op2)
 [] Mul(?op1, ?op2, ?res)
 where res == (op1 * op2)
 end select
 end loop
 end var
end process

process User [Op: CalcOp] (a, b: nat) is
 var result: nat in
 Op(a, b, ?result)
 end var
end process

process Main [Add, Mul: CalcOp] is
 par
 Add -> User[Add](1, 2)
 ||
 Mul -> User[Mul](3, 4)
 ||
 Add, Mul -> Calc[Add, Mul]
 end par
end process

end module

Calc

User[Add]

User[Mul]

Add

Mul

Modeling Raft in LNT (1): top-level parallel composition

par Send, Recv in
par
 Node
||
 Node
||
 Node
||
 …
end par

||
Network

end par

replicated server nodes

Node NodeNode

Network

Send Recv

Modeling Raft in LNT (2): Network

process Network is
 var bag: MsgSet := {} in
 loop
 select
 Send(?msg);
 bag := insert(msg, bag)
 []
 Send(?msg);
 []
 Recv(msg) where member(msg, bag);
 bag := remove(msg, bag)
 []
 Recv(msg) where member(msg, bag);
 end select
 end loop
 end var
end process

good reception

msg lost (not stored in bag)

transmit, possible reordering

msg duplication: transmit & keep in bag

Modeling Raft in LNT (3): Node with Crash in select
process Node is
 (* init … *)
 loop
 select
 Recv(?msg);
 case msg in
 VoteRequest -> … Send(msg) …
 | AppendEntries -> … Send(msg) …
 end case
 []
 Timeout;
 (* start election or send heartbeat *)
 []
 Client(?cmd) where state == Leader;
 (* add client command in local log *)
 []
 Crash;
 break
 end select
 end loop
end process

Simplified LTS

Event, reaction

process Node is
 (* init … *)
 loop
 select
 Recv(?msg);
 case msg in
 VoteRequest -> … Send(msg) …
 | AppendEntries -> … Send(msg) …
 end case
 []
 Timeout;
 (* start election or send heartbeat *)
 []
 Client(?cmd) where state == Leader;
 (* add client command in local log *)
 []
 Crash;
 break
 end select
 end loop
end process

Modeling Raft in LNT (3): Node with Crash in select

Simplified LTS

Recv Send

Event, reaction

Crash

Cannot crash here?

process Node is
 (* init … *)
 disrupt
 loop
 select
 Recv(?msg);
 case msg in
 VoteRequest -> … Send(msg) …
 | AppendEntries -> … Send(msg) …
 end case
 []
 Timeout;
 (* start election or send heartbeat *)
 []
 …
 end select
 end loop
 by
 Crash
 end disrupt
end process

Recv

Modeling Raft in LNT (4): Node with Crash in disrupt

Simplified LTS

Send

Event, reaction

Crash

Crash

Crash

Issues found in the original TLA specification

● Typo-style error
○ missing apostrophe denoting future state

● Missing node state transition: candidate did not step down
○ Different from the behavior described in plain English in the paper
○ Did not jeopardize the manual proof

● Both have been fixed since.
● Pretty hard to get a spec right!

Modeling distributed systems

LNT / CADP formal development environment
● Writing a formal specification ~= writing a program
● Want a quick feedback loop

○ like REPL or fast edit-compile-run cycles
● LNT + CADP offers:

○ LNT: Mainstream programming language syntax
○ Strong typing, good error messages
○ Very powerful parallel composition and inter-process communication

[Garavel-Serwe-17] The Unheralded Value of the Multiway Rendezvous
○ Fast compile time
○ “assert” keyword to fail early at state-space generation time

■ debug: can still inspect the state space generated so far
○ generate implicit state space

■ manual step-by-step exploration to inspect/debug the spec

Generic models for distributed systems
process Node is
 (* init local state … *)
 disrupt
 loop
 select

 Recv(?msg);
 (* update local state, send messages *)

 []

 LocalEvent; (* e.g. timeout, read sensor, … *)
 (* update local state, send messages *)

 end select
 end loop
 by
 Crash (* local failure *)
 end disrupt
end process

generic skeleton
(like Erlang’s gen_server)

A library of network models

(* Transfer any message immediately *)
process ReliableSynchronousNetwork is
 loop
 Send(?msg);
 Recv(msg)
 end loop
end process

● Network oblivious to protocol details
○ Just transfer messages

● Can write various network semantics
○ synchronous/asynchronous
○ drop message, or not
○ reorder message, or not

● Can switch between network modules
with no change anywhere else in the spec!

Modeling choices
● Want to keep state space size under control
● Model only the necessary, but no less

○ Distributed systems: inter-node communication, outstanding local events
○ Hide the rest as much as feasible

● Some examples in our Raft model:
○ A candidate directly votes for itself, rather than sending itself a vote request
○ Do not respond to stale RPC requests

■ The TLA spec does, to promptly inform a node that it is outdated
○ Append only one entry at a time (i.e. do not batch entries)
○ Force the order in which VoteRequests are broadcasted

■ Rely on network semantics to model reordering

Recv mRecv mRecv m

BarFooRecv m

● Most distributed protocol are robust to message duplication
○ Have idempotent messages
○ Receive it once, then drop duplicates

● Assume this robustness: no need to model message duplication
● This can typically save a lot of state space size!

Possible generic shortcut: duplicated messages

…

Modeling shortcuts: watchout for pitfalls!

● Taking shortcuts in modeling is a very slippery slope!
● It is very easy to make wrong assumptions there

○ Better be safe than sorry!

● You’ve got a verified model, now what?
● Implement. And introduce bugs ☹
● Direct formal-model-to-implementation approaches

○ [Evrard-15] Distributed LNT Compiler: LNT to distributed C with TCP sockets
○ [Wilcox-et-al-15] Verdi: distributed system proof framework, Coq-OCaml
○ [deMoura-et-al-15] Lean: both theorem prover & compiler to Javascript
○ …

● Need good tooling
○ debugger, profiler, package manager, etc

● Wild request: next gen language’s specification is formally defined
○ Avoid/reduce undefined behaviors
○ Sane basis for FM: stop reverse-eng/afterthought FM once the language is out!
○ Also formalize the ISAs (See e.g. Alastair Reid’s work on ARM ISA)

Formal model and implementation: bridging the gap

● You’ve got a verified model, now what?
● Implement. And introduce bugs ☹
● Direct formal-model-to-implementation approaches

○ [Evrard-15] Distributed LNT Compiler: LNT to distributed C with TCP sockets
○ [Wilcox-et-al-15] Verdi: distributed system proof framework, Coq-OCaml
○ [deMoura-et-al-15] Lean: both theorem prover & compiler to Javascript
○ …

● Need good tooling
○ debugger, profiler, package manager, etc

● Wild request: next gen language’s specification is formally defined
○ Avoid/reduce undefined behaviors
○ Sane basis for FM: stop reverse-eng/afterthought FM once the language is out!
○ Also formalize the ISAs (See e.g. Alastair Reid’s work on ARM ISA)

Formal model and implementation: bridging the gap

Quoting https://doc.rust-lang.org/reference/:

Finally, this book is not normative. It may include details that are specific to rustc

itself, and should not be taken as a specification for the Rust language. We

intend to produce such a book someday, and until then, the reference is the closest

thing we have to one.

https://doc.rust-lang.org/reference/

● Modeling Raft in LNT
● Formal modeling of distributed systems in general
● Modeling approaches to keep state space size small

○ Powerful, but watchout for semantics pitfalls!
● Bridge the gap with between formal models and implementation

Conclusion

● Questions?

Thanks!

Formal methods at Google? Some examples:
● pKVM (Android Hypervisor): formal semantics of ARM-v8a, see e.g. Peter Sewell’s recent papers
● OpenTitan: code verified via Dafny https://github.com/lowRISC/opentitan/pull/10143

● BoringSSL has code verified via Fiat (MIT) https://boringssl.googlesource.com/boringssl/+/refs/heads/master/crypto/curve25519/curve25519.c#2015

https://github.com/lowRISC/opentitan/pull/10143
https://boringssl.googlesource.com/boringssl/+/refs/heads/master/crypto/curve25519/curve25519.c#2015

