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1.  CADP in a nutshell 
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CADP 
A modular toolbox for concurrent systems 
Research work at the crossroads between: 

concurrency theory 
formal methods 
computer-aided verification 
compiler construction 

A long-run effort: 
development of CADP started in the mid 80s 
initially: 2 tools 

— CAESAR:          LOTOS  → Petri nets with data → LTSs 
— ALDEBARAN:  minimization and comparison of LTSs modulo bisimulations 

today: 50 tools 
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Main features of CADP 
Formal specification languages 
Verification techniques: 

Model checking (modal μ-calculus) 
Equivalence checking (bisimulations) 
Visual checking (graph drawing) 

     using 
Reachability analysis 
On-the-fly verification 
Compositional verification 
Distributed verification 
Static analysis 

Other features: 
Rapid prototyping 
Step-by-step simulation 
Test-case generation 
Performance evaluation 



MCL (Model Checking Language) 
Transition labels carry data values "SEND !2 !true !3.14"  

The MCL temporal logic handles these values 
 Base = alternation-free modal µ-calculus + 

    fairness PDL-Δ operators to express cyclic behaviour 
 Action formulas: value extraction, value matching 
 Path formulas: if-then-else, case, let, for, while, etc. 
 State formulas: fixed points parameterized with typed 
variables, if-then-else, case, let, quantifiers over finite 
domains 

MCL supported by the EVALUATOR 4.0 model 
checker of CADP 
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LNT (LOTOS New Technology) 

LOTOS NT: 
 a process calculus disguised as an imperative language 

Features: 
 typed variables, explicit assignment, pattern matching 
 symmetric sequential composition (≠ action prefix) 
 usual control structures: if-then-else, case, while, for 
 multiway rendezvous, choice, parallel composition 

Implemented by translation to LOTOS 
7 

E-LOTOS LOTOS LOTOS NT (or LNT) 

1990 1992 2001 2005 now 1984 
ISO/IEC 8807 ISO/IEC 15437 
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Languages connected to CADP 

systemC/TLM 

AADL 

LOTOS 

Fiacre LOTOS NT FSP BIP 1 

SAM EB3 WSDL-BPEL 

Open/Caesar 

EXP 

CHP 

π-calculus SDL 



2.a. Compositionality issues:  
        Types and data structures 
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LOTOS abstract data types 
type SimpleBoolean is 
   sorts Bool 
   opns false : → Bool 
             true : → Bool 
             not : Bool → Bool 
   eqns 
             not (false) = true; 
             not (true) = false; 
endtype 
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based on the 
ACT-ONE 
language 
 
initial algebra 
semantics: 
Σbool = {false, true} 
 
 



LOTOS type imports 

Types can import other types 
 circular dependencies forbidden 
 DAG-like dependencies allowed 
 semantics: union of sorts, operations, and equations 
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type BasicBoolean is 
   sorts Bool 
   opns false : → Bool 
             true : → Bool 
endtype 

type SimpleBoolean is BasicBoolean 
   opns  not : Bool → Bool 
   eqns 
             not (false) = true; 
             not (true) = false; 
endtype 

+ 



Issue #1: Algebra expansion 

 Σbool = {false, true, other, not (other)} 
MyBoolean "corrupts" SimpleBoolean 

 and all types and processes based on SimpleBoolean 
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type SimpleBoolean is 
   sorts Bool 
   opns false : → Bool 
             true : → Bool 
             not : Bool → Bool 
   eqns 
             not (false) = true; 
             not (true) = false; 
endtype 

type MyBoolean is SimpleBoolean 
   opns other: → Bool 
   eqns 
             not (not (other)) = other; 
endtype 

+ 



Issue #2: Algebra collapse 

These equations  imply true = false 
 Σbool = {ω} where ω = true = false = fun (true) = … 
Again, MyBoolean "destroys" SimpleBoolean  

and everything else based on SimpleBoolean 
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type SimpleBoolean is 
   sorts Bool 
   opns false : → Bool 
             true : → Bool 
             not : Bool → Bool 
   eqns 
             not (false) = true; 
             not (true) = false; 
endtype 

type MyBoolean is SimpleBoolean 
   opns fun : Bool → Bool 
   eqns forall x, y : Bool 
             fun (not (x)) = true; 
             fun (x) = fun (y) => x = y; 
endtype 

+ 



A way to avoid these issues 
When implementing LOTOS in CADP: 

 Replace initial algebras with term rewrite systems 
 Separate constructors from defined functions 
 No equation between constructors 
 Decreasing priorities between equations 
 Constructors for sort S defined in the same type as S 
 Equations for function F defined in the same type as F 

When defining E-LOTOS and LOTOS NT: 
 One step further: use a functional language 
 (≈ ML without first-order, OPAL, etc.) 
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Impact on compositionality 
 "Fully flattened" semantics is insecure: 

 Any local change may corrupt the global meaning 
 Not acceptable from an engineering point of view 
 Kind of "butterfly effect" 

 Solution: "frontiers" (inside, outside, interface) 
 Defined things can be used everywhere  
 but can only be modified at controlled locations 

 Many examples: 
 Encapsulation: modules, classes, objects 
 Monitors / rendezvous  rather than shared variables 
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2.b. Compositionality issues:  
        Concurrency I 
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Compositional model generation 
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P1  = || … || || Σ P2 Pn 

Σ' P'1 || … || || P'2 P'n  = 

• only valid if ≈ is a congruence wrt || 
• can/should be applied recursively 

≈ ≈ ≈ ≈ 



Compositional LTS generation using CADP 

Parallel components are (explicit or implicit) LTSs 
This approach is heavily implemented in CADP 

 LTSs are generated from high-level languages 
 BCG_MIN: minimization of LTSs modulo strong or 
branching minimization 
 REDUCTOR: on-the-fly reduction of LTSs modulo 8 
equivalence relations 
 EXP.OPEN: composition of LTSs using many parallel 
composition operators (+ hiding, renaming, cut) 
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Compositional IMC generation using CADP 

Parallel components are IMCs (Interactive Markov 
Chains) 

 normal transitions + stochastic ("rate") transitions 
Parallel composition is similar to interleaving 

 implemented in the EXP.OPEN tool of CADP 
Minimization combines lumpability on Markov 
chains with strong/branching bisimulation on LTSs 

 implemented in the BCG_MIN tool of CADP 
Additional tools: steady-state / transient solvers 
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Garavel-Hermanns, FME 2002 Hermanns, LNCS 2428 

http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://vasy.inria.fr/publications/Garavel-Hermanns-02.html
http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://www.springer.com/computer/swe/book/978-3-540-44261-5


Smart reduction 

 use metrics that suggest a "good" composition order 
 rather than leaving the decision to the user 
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Crouzen-Lang, FASE 2011 

1. Select a subset of the individual processes 

2. Compose this subset in parallel, hiding 
    the internal labels 

3. Minimize the resulting parallel composition 
     modulo some equivalence (congruence) 

Repeat until all individual processes have been composed  

http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://vasy.inria.fr/publications/Crouzen-Lang-11.html
http://vasy.inria.fr/publications/Crouzen-Lang-11.html
http://vasy.inria.fr/publications/Crouzen-Lang-11.html


Smart reduction: Experimental results 

21 

number of 
transitions 



Interfaces and projections (1) 
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P1  = || … || || 

Σ' 

P2 Pn 

Sometimes splitting generates larger LTSs: 

Σ 

P1  = || … || P2 Pn or 

because splitted processes constrained each other 



Interfaces and projections (2) 
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P1 || … || || 

Σ' 

Pi Pn 

Σ 
 = || … || P1 Pi 

or 

Pi+1 || … || 

inter
face 

 ||- 

semi-composition operator  



Interfaces and projections 

Interfaces L 
 Finite-state automata (trace acceptors) 
 Interfaces must be suggested by the user 
 Warning messages if interfaces are too restrictive 

 Semi-composition operator Pi ||- L 
 Not a parallel composition! 
 Pi ||- L  has no more states than Pi  
 Implemented by the PROJECTOR tool of CADP 

A working approach to fight state explosion 
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Graf-Steffen, CAV 1990 Krimm-Mounier, TACAS 1997 

http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-54477-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-54477-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-54477-7
http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://vasy.inria.fr/publications/Krimm-Mounier-97.html
http://vasy.inria.fr/publications/Krimm-Mounier-97.html
http://vasy.inria.fr/publications/Krimm-Mounier-97.html


Automatic generation of interfaces 

Computed for one process P1 wrt to P2 … Pn 

Better reductions than using Krimm-Mounier-97 
Safety minimization and partial order reductions 
can be used: 
Experimental results on large processes 

 Philips' HAVi protocol: 365,923 → 645 states 
 ODP trader:                    1 million states → 256 states 
 Cache coherency:          1 million states → 60 states 
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Lang, FORTE 2006 

http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://vasy.inria.fr/publications/Lang-06.html


The SVL scripting language (1) 

Verification scenarios are complex and repetitive 
Many tools and techniques: 

 enumerative, on-the-fly, compositional, interfaces… 
 verification and performance evaluation 

Many files (and formats) to handle: 
 concurrent descriptions: LOTOS, LOTOS NT, EXP, FSP… 
 explicit and implicit LTSs, CTMCs, DTMCs, IMCs… 
 interfaces, logic formulas, probability vectors… 
 

26 

Garavel-Lang, FORTE 2001 

http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://vasy.inria.fr/publications/Garavel-Lang-01.html


The SVL scripting language (2) 
Many operations to perform: 

 LTS/IMC generation and projection 
 Label hiding, renaming, cut 
 Minimization and comparison modulo equivalences 
 Model checking, deadlock and livelock detection 

SVL:  
 a language to specify scenarios (+ Unix shell) 
 a compiler to execute them 
 provides a unified view of CADP tools 
 implement expert verification strategies 
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2.c. Compositionality issues:  
       Concurrency II 
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Difference between parts I and II 
Part I 

 Only equivalences are considered 
State space reduction must preserve an equivalence 
 Goal: generate a reduced/minimal state space 

Part II 
 A set of logical formula  {ϕ1, ϕ2, …, ϕn}  is considered 
 State space reduction must preserve the truth values 
of these formulas 
 Goal: evaluate these formulas on a reduced/minimal 
state space 
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Decomposition wrt the formula set 

The unique Σ is replaced by several state spaces Σi 

Each Σi is specialized/reduced wrt a given formula ϕi 
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Σ |=   ϕ1, ϕ2, …, ϕn 

Σ1 Σ2 Σn |= ϕ1 |= ϕ2     … |= ϕn 



Approach 1: strong equivalence 

ϕ1, ϕ2, …, ϕn are written in modal µ-calculus 
For each ϕi  one computes a set of actions Ai  
such that:    Σ |= ϕi   ⇔  (hide Ai  in Σ) |= ϕi  

Basically, Ai gathers actions not occurring in ϕi  
Ai  should be as large as possible (maximal hiding) 
to enable the greatest possible reduction 
(hide Ai  in Σ) is reduced wrt strong bisimulation 
before evaluating ϕi (global model checking) or  
on-the-fly while evaluating ϕi (local model checking) 
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Mateescu-Wijs, SPIN 2011 

http://vasy.inria.fr/publications/Mateescu-Wijs-11.html


Approach 2: diverg. branching equiv. 

ϕ1, ϕ2, …, ϕn are written in a subset of the modal 
µ-calculus compatible with divergence-sensitive 
branching bisimulation 
For each ϕi  one computes a set of actions Ai  
such that:    Σ |= ϕi    ⇔  (hide Ai  in Σ) |= ϕi  

(hide Ai  in Σ) is reduced with divergence-sensitive 
branching bisimulation (enabling greater 
reductions than using strong bisimulation)  
or τ-confluence reduction (done on the fly) 

32 

Mateescu-Wijs, SPIN 2011 

http://vasy.inria.fr/publications/Mateescu-Wijs-11.html
http://vasy.inria.fr/publications/Mateescu-Wijs-11.html
http://vasy.inria.fr/publications/Mateescu-Wijs-11.html
http://vasy.inria.fr/publications/Mateescu-Wijs-11.html


Experimental results using CADP 
Using strong bisimulation 

 alternating bit (12 M states, 46 M transitions): 
speedup × 4, memory / 2 
 token ring (53 M states, 214 M transitions):  
 speedup × 2.8, memory / 2.5 

Using divergence-sensitive branching bisimulation 
 Philips BRP (12 M states, 14 M transitions): 
memory / 1.6 

Using τ-confluence reduction 
Erathosthene sieve: speedup × 10 
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Partial model checking  [Andersen, LICS 95] 
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P1 |=  ϕ || … || P2 Pn || 

P1 |=  ϕ || … || P2 Pn // 

quotient of ϕ by P1 
(to be applied recursively)  



Three issues with partial model checking 

The left-hand side should decrease a lot 
 P2 ||… || Pn should be much smaller than P1 ||… || Pn 

 Not necessarily the case if P1 constrains the others 

The right-hand side should not increase too much 
 Quotienting removes modalities, but adds variables 
 Quotiented formulas ϕ // P1 can become very large 
 Simplifications must be applied after quotienting 

It requires a complex software machinery  
 Only a few implementations available 
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Partial model checking using CADP 

Asynchronous, action-based setting 
Concurrent processes P1 ||… || Pn : 

 Networks of LTSs (i.e., the EXP format of CADP) 
 Based on "synchronization vectors" + hiding, renaming 
 Supports the binary and n-ary parallel operators of 
CCS, CSP, LOTOS, LOTOS NT, etc. 

Formulas ϕ : 
 Alternation-free modal µ-calculus 
 + fairness operators of alternation 2 
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Lang-Mateescu, TACAS 2012 

http://hal.inria.fr/hal-00684471/en
http://hal.inria.fr/hal-00684471/en
http://hal.inria.fr/hal-00684471/en
http://hal.inria.fr/hal-00684471/en


Quotienting revisited 
Formula ϕ is encoded as an LTS (formula graph) 

 LTSs are represented using the BCG format of CADP 
 
 
 
Quotient ϕ // P1 is reformulated as a synchronous 
product of 2 LTSs (the formula graph of ϕ and P1) 

 Product can be expressed in the EXP format of CADP 
 It is computed using the EXP.OPEN tool of CADP 
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μ X0 . (<a> true) ∨ (<b> X0 ) 



Post-quotienting simplifications 
Elimination of double negations 
Elimination of useless μ–transitions  

 sufficient conditions are used 
Elimination of ∨‐transitions 

 hiding and reduction modulo  τ*.a equivalence 
Sharing of identical sub‐formulas 

 tagging μ-transitions → strong bisimulation reduction 
Partial evaluation of states 

 detection and propagation of constant sub-formulas 
 using the CADP solver for Boolean Equation Systems 
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Experimental results: SCSI-2 benchmark 
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Experimental results: TFTP benchmark 
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Memory 
 (in kbytes) 

Best ratio 
= 767 

Explosion 



3. Conclusion 
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Conclusion 
Compositionality is essential 

 modular design 
 formal verification                 reusability, scalability 
 performance analysis 

     divide-and-conquer to fight state explosion 
Compositionality has multiple facets 

 data  vs  behaviour 
 action-based  vs  state-based 
 logics  vs  equivalences 
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Compositionality is demanding — it requires: 
 Suitable low-level semantic models 

    ⇒ LTSs, IMCs, etc. 
 Well-chosen behavioural equivalences 

    ⇒ bisimulations: strong, branching, divergence-preserving,   
lumpability on Markov chains 
 Well-chosen logics 

    ⇒ mu-calculus, temporal logics 
    ⇒ adequation results relating logics and equivalences 

 Concurrent languages with a proper semantics 
    ⇒ process calculi and their modern variants (such as LNT) 
    ⇒ congruence results relating parallel composition and 

equivalences 
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Compositionality and CADP 
CADP: 

 A modular toolbox implementing concurrency theory 
 Used for teaching, research, and industrial problems 
 Free for academics 

Compositionality underlies CADP architecture: 
 Many compositional approaches implemented 
 Combinations of existing and new CADP components 
 Mostly in an action-based setting 

Our wish: Compositionality made easy using CADP 
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