25 Years of Compositionality Issues in CADP: An Overview

Hubert Garavel and colleagues Inria Grenoble – LIG and Saarland University (part-time) http://convecs.inria.fr

Outline

- 1. CADP in a nutshell
- 2. Compositionality issues:
 - ▶ 2.a. Types and data structures
 - 2.b. Concurrency I
 - ► 2.c. Concurrency II
- 3. Conclusion

1. CADP in a nutshell

CADP

- A modular toolbox for concurrent systems
- Research work at the crossroads between:
 - concurrency theory
 - formal methods
 - computer-aided verification
 - compiler construction
- A long-run effort:
 - development of CADP started in the mid 80s
 - initially: 2 tools
 - CAESAR: LOTOS \rightarrow Petri nets with data \rightarrow LTSs
 - ALDEBARAN: minimization and comparison of LTSs modulo bisimulations
 - today: 50 tools

Main features of CADP

- Formal specification languages
- Verification techniques:
 - Model checking (modal μ-calculus)
 - Equivalence checking (bisimulations)
 - Visual checking (graph drawing)

using

- Reachability analysis
- On-the-fly verification
- Compositional verification
- Distributed verification
- Static analysis

Other features:

- Rapid prototyping
- Step-by-step simulation
- Test-case generation
- Performance evaluation

MCL (Model Checking Language)

- Transition labels carry data values "SEND !2 !true !3.14"
- The MCL temporal logic handles these values
 - Base = alternation-free modal μ-calculus + fairness PDL-Δ operators to express cyclic behaviour
 - Action formulas: value extraction, value matching
 - Path formulas: if-then-else, case, let, for, while, etc.
 - State formulas: fixed points parameterized with typed variables, if-then-else, case, let, quantifiers over finite domains
- MCL supported by the EVALUATOR 4.0 model checker of CADP

informatics / mather

LNT (LOTOS New Technology)

LOTOS NT:

a process calculus disguised as an imperative language

Features:

- typed variables, explicit assignment, pattern matching
- ► symmetric sequential composition (≠ action prefix)
- usual control structures: if-then-else, case, while, for
- multiway rendezvous, choice, parallel composition
- Implemented by translation to LOTOS

Languages connected to CADP

VASY 8

2.a. Compositionality issues: Types and data structures

LOTOS abstract data types

type SimpleBoolean is sorts **Bool opns** false : \rightarrow **Bool** true : \rightarrow Bool $not: Bool \rightarrow Bool$ eqns not (false) = true; not (true) = false; endtype

 based on the ACT-ONE language

initial algebra
 semantics:
 Σ_{bool} = {false, true}

LOTOS type imports

type SimpleBoolean is BasicBoolean
opns not : Bool → Bool
eqns
not (false) = true;
not (true) = false;
endtype

- Types can import other types
 - circular dependencies forbidden
 - DAG-like dependencies allowed
 - semantics: union of sorts, operations, and equations

Issue #1: Algebra expansion

type SimpleBoolean is								
sorts Bool								
opns false : \rightarrow Bool								
true : \rightarrow Bool								
not : Bool \rightarrow Bool								
eqns								
not (false) = true;								
not (true) = false;								
endtype								

type MyBoolean is SimpleBoolean
opns other: → Bool
eqns
not (not (other)) = other;
endtype

Σ_{bool} = {false, true, other, not (other)}
 MyBoolean "corrupts" SimpleBoolean
 and all types and processes based on SimpleBoolean

Informatics mathematics

+

Issue #2: Algebra collapse

type SimpleBoolean is								
sorts Bool								
opns false : \rightarrow Bool								
true : \rightarrow Bool								
not : Bool \rightarrow Bool								
eqns								
not (false) = true;								
not (true) = false;								
endtype								

type MyBoolean is SimpleBoolean opns fun : Bool \rightarrow Bool eqns forall x, y : Bool fun (not (x)) = true; fun (x) = fun (y) => x = y; endtype

These equations imply true = false

+

Σ_{bool} = { ω } where ω = true = false = fun (true) = ...

Again, MyBoolean "destroys" SimpleBoolean

and everything else based on SimpleBoolean

A way to avoid these issues

When implementing LOTOS in CADP:

- Replace initial algebras with term rewrite systems
- Separate constructors from defined functions
- No equation between constructors
- Decreasing priorities between equations
- Constructors for sort S defined in the same type as S
- Equations for function F defined in the same type as F
- When defining E-LOTOS and LOTOS NT:
 - One step further: use a functional language (~ ML without first-order, OPAL, etc.)

Impact on compositionality

- "Fully flattened" semantics is insecure:
 - Any local change may corrupt the global meaning
 - Not acceptable from an engineering point of view
 - Kind of "butterfly effect"
- Solution: "frontiers" (inside, outside, interface)
 - Defined things can be used everywhere
 - but can only be modified at controlled locations
 - Many examples:
 - Encapsulation: modules, classes, objects
 - Monitors / rendezvous rather than shared variables

2.b. Compositionality issues: Concurrency I

Compositional model generation

- only valid if \approx is a congruence wrt ||
- can/should be applied recursively

Compositional LTS generation using CADP

- Parallel components are (explicit or implicit) LTSs
- This approach is heavily implemented in CADP
 - LTSs are generated from high-level languages
 - BCG_MIN: minimization of LTSs modulo strong or branching minimization
 - REDUCTOR: on-the-fly reduction of LTSs modulo 8 equivalence relations
 - EXP.OPEN: composition of LTSs using many parallel composition operators (+ hiding, renaming, cut)

Compositional IMC generation using CADP

Hermanns, LNCS 2428

Garavel-Hermanns, FME 2002

- Parallel components are IMCs (Interactive Markov Chains)
 - normal transitions + stochastic ("rate") transitions
- Parallel composition is similar to interleaving
 - implemented in the EXP.OPEN tool of CADP
- Minimization combines lumpability on Markov chains with strong/branching bisimulation on LTSs
 - implemented in the BCG_MIN tool of CADP
- Additional tools: steady-state / transient solvers

Smart reduction

Crouzen-Lang, FASE 2011

- use metrics that suggest a "good" composition order
- rather than leaving the decision to the user
- 1. Select a subset of the individual processes
- 2. Compose this subset in parallel, hiding the internal labels
- 3. Minimize the resulting parallel composition modulo some equivalence (congruence)

Repeat until all individual processes have been composed

Smart reduction: Experimental results

number of transitions

Experiment	Node	Root leaf	Smart (HM)	$\operatorname{Smart}(\operatorname{IM})$	Smart (CM)
ABP 1	380	328	210	104	104
ABP 2	2,540	2,200	1,354	504	504
Cache	1,925	1,925	1,848	1,925	1,925
CFS	2, 193, 750	486,990	1,366,968	96,040,412	5, 113, 256
DES	22,544	3,508	3,508	14,205	14,205
DFT CAS	95, 392	99,133	336	346	346
DFT HCPS	4,730	79,509	425	435	435
DFT IL	29,808	316	2,658	1,456	2,658
DFT MDCS	635, 235	117,772	536	5,305	346
DFT NDPS	17,011	1,857	393	449	346
DLE 1	15,234	7,660	7,709	10,424	9,883
DLE 2	8,169	2,809	2,150	1,852	2,150
DLE 3	253,272	217,800	181, 320	231,616	175,072
DLE 4	33,920	29,584	25,008	8,896	26,864
DLE 5	1,796,616	1,796,616	1,403,936	1,716,136	1,433,640
DLE 6	35,328	35,328	5,328	5,328	5, 328
DLE 7	612, 637	486,491	369,810	583,289	577,775
HAVi async	145, 321	22,703	21,645	21,862	21,809
HAVi sync	19,339	5,021	4,743	4,743	4,743
NFP	199,728	1,986,768	104,960	89,696	89,696
ODP	158,318	158,318	87,936	39,841	87,936
RelRel 1	28,068	9,228	9,282	5,574	5 , 574
RelRel 2	11, 610, 235	${f 5, 341, 821}$	${f 5, 341, 821}$	${f 5, 341, 821}$	${f 5, 341, 821}$
SD 1	21,870	3,482	19,679	4,690	19,679
SD 2	6,561	11,997	3,624	2,297	3,192
SD 3	1,944	32,168	1,380	896	1,164
SD 4	$\overline{633,130}$	1,208,592	975,872	789,886	975, 872
TN	54,906,000	746,880	69, 547, 712	749, 312	709 , 504

Sometimes splitting generates larger LTSs:

because splitted processes constrained each other

Interfaces and projections (2)

Interfaces and projections

Graf-Steffen, CAV 1990 Krimm-Mounier, TACAS 1997

Interfaces L

- Finite-state automata (trace acceptors)
- Interfaces must be suggested by the user
- Warning messages if interfaces are too restrictive
- Semi-composition operator P_i | | L
 - Not a parallel composition!
 - P_i | L has no more states than P_i
 - Implemented by the PROJECTOR tool of CADP
- A working approach to fight state explosion

Automatic generation of interfaces

- Computed for one process P_1 wrt to P_2 ... P_n
- Better reductions than using Krimm-Mounier-97
- Safety minimization and partial order reductions can be used:
- Experimental results on large processes
 - ▶ Philips' HAVi protocol: $365,923 \rightarrow 645$ states
 - ODP trader: 1 million states \rightarrow 256 states
 - Cache coherency:

Lang, FORTE 2006

1 million states \rightarrow 60 states

The SVL scripting language (1) Garavel-Lang, FORTE 2001

- Verification scenarios are complex and repetitiveMany tools and techniques:
 - enumerative, on-the-fly, compositional, interfaces...
 - verification and performance evaluation
- Many files (and formats) to handle:
 - concurrent descriptions: LOTOS, LOTOS NT, EXP, FSP...
 - explicit and implicit LTSs, CTMCs, DTMCs, IMCs...
 - interfaces, logic formulas, probability vectors...

The SVL scripting language (2)

Many operations to perform:

- LTS/IMC generation and projection
- Label hiding, renaming, cut
- Minimization and comparison modulo equivalences
- Model checking, deadlock and livelock detection

SVL:

- a language to specify scenarios (+ Unix shell)
- a compiler to execute them
- provides a unified view of CADP tools
- implement expert verification strategies

2.c. Compositionality issues: Concurrency II

Difference between parts I and II

Part I

- Only equivalences are considered
- State space reduction must preserve an equivalence
- Goal: generate a reduced/minimal state space
- Part II
 - A set of logical formula $\{\phi_1, \phi_2, ..., \phi_n\}$ is considered
 - State space reduction must preserve the truth values of these formulas
 - Goal: evaluate these formulas on a reduced/minimal state space

informatics / mathematics

Decomposition wrt the formula set

Σ |= $φ_1, φ_2, ..., φ_n$

The unique Σ is replaced by several state spaces Σ_i Each Σ_i is specialized/reduced wrt a given formula ϕ_i

$$\Sigma_1 |= \varphi_1 \quad \Sigma_2 |= \varphi_2 \quad \dots \quad \Sigma_n |= \varphi_n$$

Approach 1: strong equivalence

Mateescu-Wijs, SPIN 2011

- $\phi_1, \phi_2, ..., \phi_n$ are written in modal μ -calculus
- For each $φ_i$ one computes a set of actions A_i such that: $Σ |= φ_i \iff$ (hide A_i in $Σ) |= φ_i$
- Basically, Ai gathers actions not occurring in ϕ_i
- A_i should be as large as possible (maximal hiding) to enable the greatest possible reduction
- (hide A_i in Σ) is reduced wrt strong bisimulation before evaluating φ_i (global model checking) or on-the-fly while evaluating φ_i (local model checking)

Approach 2: diverg. branching equiv. Mateescu-Wijs, SPIN 2011

- φ₁, φ₂, ..., φ_n are written in a subset of the modal μ-calculus compatible with divergence-sensitive branching bisimulation
- For each $φ_i$ one computes a set of actions A_i such that: $Σ | = φ_i \iff$ (hide A_i in Σ) $| = φ_i$
- (hide A_i in Σ) is reduced with divergence-sensitive branching bisimulation (enabling greater reductions than using strong bisimulation) or τ-confluence reduction (done on the fly)

Experimental results using CADP

Using strong bisimulation

- alternating bit (12 M states, 46 M transitions): speedup × 4, memory / 2
- token ring (53 M states, 214 M transitions): speedup × 2.8, memory / 2.5
- Using divergence-sensitive branching bisimulation
 - Philips BRP (12 M states, 14 M transitions): memory / 1.6
- Using τ-confluence reduction
 - Erathosthene sieve: speedup × 10

Partial model checking [Andersen, LICS 95]

(to be applied recursively)

Three issues with partial model checking

The left-hand side should decrease a lot

- \triangleright P₂ ||... || P_n should be much smaller than P₁ ||... || P_n
- Not necessarily the case if P₁ constrains the others

The right-hand side should not increase too much

- Quotienting removes modalities, but adds variables
- > Quotiented formulas ϕ // P₁ can become very large
- Simplifications must be applied after quotienting

It requires a complex software machinery

Only a few implementations available

Partial model checking using CADP

Lang-Mateescu, TACAS 2012

- Asynchronous, action-based setting
- Concurrent processes P₁ ||... || P_n:
 - Networks of LTSs (i.e., the EXP format of CADP)
 - Based on "synchronization vectors" + hiding, renaming
 - Supports the binary and n-ary parallel operators of CCS, CSP, LOTOS, LOTOS NT, etc.

Formulas φ :

- Alternation-free modal μ-calculus
- + fairness operators of alternation 2

Quotienting revisited

- Formula φ is encoded as an LTS (formula graph)
 - LTSs are represented using the BCG format of CADP

 μX^{0} . (<a> true) \vee (X^{0})

- Quotient φ // P₁ is reformulated as a synchronous product of 2 LTSs (the formula graph of φ and P₁)
 - Product can be expressed in the EXP format of CADP
 - It is computed using the EXP.OPEN tool of CADP

Post-quotienting simplifications

- Elimination of double negations
- Elimination of useless μ–transitions
 - sufficient conditions are used
- Elimination of V-transitions
 - **•** hiding and reduction modulo τ^* .a equivalence
- Sharing of identical sub-formulas
 - \blacktriangleright tagging $\mu\text{-transitions} \rightarrow$ strong bisimulation reduction
- Partial evaluation of states
 - detection and propagation of constant sub-formulas
 - using the CADP solver for Boolean Equation Systems

Experimental results: SCSI-2 benchmark

Number of disks	3	4	5	6		
Product LTS size (states)	56,168	1,384,021	32,003,282	708, 174, 559		
Product LTS size (transitions)	154,748	4,499,237	2,992,012,087			
Generation time (seconds)	1	17	31,193			
Memory peak (MB)	66	6 66 680 17,				
	On-the-fly model checking					
Verification time (seconds)	1	17	1,273	47,532		
Memory peak (MB)	66	95	1,705	39,236		
	Partial model checking					
Verification time (seconds)	19	61	759	24,276		
Memory peak (MB)	66	66 1,00		16,239		
Largest formula graph (states)	22,171	253,723	2,773,147	29,367,067		
Largest formula graph (transitions)	198,467	3,023,449	45,639,547	710, 452, 069		

Experimental results: TFTP benchmark

		Scena 1 06	$\begin{array}{c} r_{10} A \\ 2 \ k_{2} \end{array}$	Scenario B		Scenario C		Scenario D		Scenario E		
	Prop	1,90	Dmc	flv	pmc	- 35,02 - flv	pmc	40, 80	pmc	19,40 flv	pmc	
	<u>110p</u>	100	1 6	80	Г 6	2.047	24	2 251	1 27	1 520	1 92	
Memory	A01 402	207	6	09	6	2,947 3 156	24	3,331 3,631	21	1,530 1.612	23	
/*** [.]	A03	182	6	80	6	2.737	6	3,001 3,162	6	1,012 1.386	6	
(in Kbytes)	A04	199	6	89	6	2,947	6	3,351	29	1,530	7	
	A05	10	6	7	6	7	6	7	6	10	10	
	A06	187	6	85	6	2,808	6	3,249	7	1,428	6	
	A07	187	6	85	6	2,808	6	3,249	6	1,428	6	
	A08	186	6	80	6	2,745	6	3,170	6	1,390	6	
	A09a							3,290	28	1,488	6	
	A09b					2,955	6					
	A10					3,354	6			1,674	6	
	A11					3,206	6	4,444	7	1,711	6	
	A12 412					620	*	133	*	101	*	Explosion
	A13	267	6			2 0 0 0	0.2	4,499	*	2,094	15	
	A14 A15	207	0	118	15	5.900	40	156	+	$\frac{2,107}{1,524}$	10 50	
	A16			110	10	021	*	100	*	1, 524		
	A17					667	*	569	2.702	100	0	
Best ratio	A18			85	6	476	11	255	6	1,391	6	
	A19			207	6	6,352	90	8,753	13	3,104	55	
= /6/	A20	31	9			837	21			261	25	
	A21	374	Ô			4,958	25			2,817	25	
	A22			35	7			427	1,271	191	650	
	A23			170	6			6,909	9	3,039	40	
	A24	41	9			427	1,786					
	A25	391	6			5,480	40				16	I. Contraction of the second se
	A26	195	6			2,857	15			1,477	10	
	A27	228	6	100	0	3,534	6	4 0.00	-	1,871	6	
	A28			102	6	3,654	22	4,032	6	1,821	6	

3. Conclusion

Conclusion

Compositionality is essential

- modular design
- formal verification
- performance analysis

reusability, scalability

divide-and-conquer to fight state explosion

Compositionality has multiple facets

- data vs behaviour
- action-based vs state-based
- logics vs equivalences

Compositionality is demanding — it requires:

- Suitable low-level semantic models
 - \Rightarrow LTSs, IMCs, etc.
- Well-chosen behavioural equivalences

⇒ bisimulations: strong, branching, divergence-preserving, lumpability on Markov chains

- Well-chosen logics
 - \Rightarrow mu-calculus, temporal logics
 - \Rightarrow adequation results relating logics and equivalences
- Concurrent languages with a proper semantics

informatics mathematics

 \Rightarrow process calculi and their modern variants (such as LNT)

 \Rightarrow congruence results relating parallel composition and equivalences

Compositionality and CADP

CADP:

- A modular toolbox implementing concurrency theory
- Used for teaching, research, and industrial problems
- Free for academics
- Compositionality underlies CADP architecture:
 - Many compositional approaches implemented
 - Combinations of existing and new CADP components
 - Mostly in an action-based setting
- Our wish: Compositionality made easy using CADP