
25 Years of Compositionality
Issues in CADP: An Overview

Hubert Garavel and colleagues

Inria Grenoble – LIG
and Saarland University (part-time)

http://convecs.inria.fr

http://convecs.inria.fr/

Outline

1. CADP in a nutshell
2. Compositionality issues:

 2.a. Types and data structures
 2.b. Concurrency I
 2.c. Concurrency II

3. Conclusion

2

1. CADP in a nutshell

3

VASY 4

CADP
A modular toolbox for concurrent systems
Research work at the crossroads between:

concurrency theory
formal methods
computer-aided verification
compiler construction

A long-run effort:
development of CADP started in the mid 80s
initially: 2 tools

— CAESAR: LOTOS → Petri nets with data → LTSs
— ALDEBARAN: minimization and comparison of LTSs modulo bisimulations

today: 50 tools

VASY 5

Main features of CADP
Formal specification languages
Verification techniques:

Model checking (modal μ-calculus)
Equivalence checking (bisimulations)
Visual checking (graph drawing)

 using
Reachability analysis
On-the-fly verification
Compositional verification
Distributed verification
Static analysis

Other features:
Rapid prototyping
Step-by-step simulation
Test-case generation
Performance evaluation

MCL (Model Checking Language)
Transition labels carry data values "SEND !2 !true !3.14"

The MCL temporal logic handles these values
 Base = alternation-free modal µ-calculus +

 fairness PDL-Δ operators to express cyclic behaviour
 Action formulas: value extraction, value matching
 Path formulas: if-then-else, case, let, for, while, etc.
 State formulas: fixed points parameterized with typed
variables, if-then-else, case, let, quantifiers over finite
domains

MCL supported by the EVALUATOR 4.0 model
checker of CADP

 6

LNT (LOTOS New Technology)

LOTOS NT:
 a process calculus disguised as an imperative language

Features:
 typed variables, explicit assignment, pattern matching
 symmetric sequential composition (≠ action prefix)
 usual control structures: if-then-else, case, while, for
 multiway rendezvous, choice, parallel composition

Implemented by translation to LOTOS
7

E-LOTOS LOTOS LOTOS NT (or LNT)

1990 1992 2001 2005 now 1984
ISO/IEC 8807 ISO/IEC 15437

VASY 8

Languages connected to CADP

systemC/TLM

AADL

LOTOS

Fiacre LOTOS NT FSP BIP 1

SAM EB3 WSDL-BPEL

Open/Caesar

EXP

CHP

π-calculus SDL

2.a. Compositionality issues:
 Types and data structures

9

LOTOS abstract data types
type SimpleBoolean is
 sorts Bool
 opns false : → Bool
 true : → Bool
 not : Bool → Bool
 eqns
 not (false) = true;
 not (true) = false;
endtype

10

based on the
ACT-ONE
language

initial algebra
semantics:
Σbool = {false, true}

LOTOS type imports

Types can import other types
 circular dependencies forbidden
 DAG-like dependencies allowed
 semantics: union of sorts, operations, and equations

11

type BasicBoolean is
 sorts Bool
 opns false : → Bool
 true : → Bool
endtype

type SimpleBoolean is BasicBoolean
 opns not : Bool → Bool
 eqns
 not (false) = true;
 not (true) = false;
endtype

+

Issue #1: Algebra expansion

 Σbool = {false, true, other, not (other)}
MyBoolean "corrupts" SimpleBoolean

 and all types and processes based on SimpleBoolean

 12

type SimpleBoolean is
 sorts Bool
 opns false : → Bool
 true : → Bool
 not : Bool → Bool
 eqns
 not (false) = true;
 not (true) = false;
endtype

type MyBoolean is SimpleBoolean
 opns other: → Bool
 eqns
 not (not (other)) = other;
endtype

+

Issue #2: Algebra collapse

These equations imply true = false
 Σbool = {ω} where ω = true = false = fun (true) = …
Again, MyBoolean "destroys" SimpleBoolean

and everything else based on SimpleBoolean
 13

type SimpleBoolean is
 sorts Bool
 opns false : → Bool
 true : → Bool
 not : Bool → Bool
 eqns
 not (false) = true;
 not (true) = false;
endtype

type MyBoolean is SimpleBoolean
 opns fun : Bool → Bool
 eqns forall x, y : Bool
 fun (not (x)) = true;
 fun (x) = fun (y) => x = y;
endtype

+

A way to avoid these issues
When implementing LOTOS in CADP:

 Replace initial algebras with term rewrite systems
 Separate constructors from defined functions
 No equation between constructors
 Decreasing priorities between equations
 Constructors for sort S defined in the same type as S
 Equations for function F defined in the same type as F

When defining E-LOTOS and LOTOS NT:
 One step further: use a functional language
 (≈ ML without first-order, OPAL, etc.)

14

Impact on compositionality
 "Fully flattened" semantics is insecure:

 Any local change may corrupt the global meaning
 Not acceptable from an engineering point of view
 Kind of "butterfly effect"

 Solution: "frontiers" (inside, outside, interface)
 Defined things can be used everywhere
 but can only be modified at controlled locations

 Many examples:
 Encapsulation: modules, classes, objects
 Monitors / rendezvous rather than shared variables

15

2.b. Compositionality issues:
 Concurrency I

16

Compositional model generation

17

P1 = || … || || Σ P2 Pn

Σ' P'1 || … || || P'2 P'n =

• only valid if ≈ is a congruence wrt ||
• can/should be applied recursively

≈ ≈ ≈ ≈

Compositional LTS generation using CADP

Parallel components are (explicit or implicit) LTSs
This approach is heavily implemented in CADP

 LTSs are generated from high-level languages
 BCG_MIN: minimization of LTSs modulo strong or
branching minimization
 REDUCTOR: on-the-fly reduction of LTSs modulo 8
equivalence relations
 EXP.OPEN: composition of LTSs using many parallel
composition operators (+ hiding, renaming, cut)

18

Compositional IMC generation using CADP

Parallel components are IMCs (Interactive Markov
Chains)

 normal transitions + stochastic ("rate") transitions
Parallel composition is similar to interleaving

 implemented in the EXP.OPEN tool of CADP
Minimization combines lumpability on Markov
chains with strong/branching bisimulation on LTSs

 implemented in the BCG_MIN tool of CADP
Additional tools: steady-state / transient solvers

 19

Garavel-Hermanns, FME 2002 Hermanns, LNCS 2428

http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://vasy.inria.fr/publications/Garavel-Hermanns-02.html
http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://www.springer.com/computer/swe/book/978-3-540-44261-5

Smart reduction

 use metrics that suggest a "good" composition order
 rather than leaving the decision to the user

20

Crouzen-Lang, FASE 2011

1. Select a subset of the individual processes

2. Compose this subset in parallel, hiding
 the internal labels

3. Minimize the resulting parallel composition
 modulo some equivalence (congruence)

Repeat until all individual processes have been composed

http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://vasy.inria.fr/publications/Crouzen-Lang-11.html
http://vasy.inria.fr/publications/Crouzen-Lang-11.html
http://vasy.inria.fr/publications/Crouzen-Lang-11.html

Smart reduction: Experimental results

21

number of
transitions

Interfaces and projections (1)

22

P1 = || … || ||

Σ'

P2 Pn

Sometimes splitting generates larger LTSs:

Σ

P1 = || … || P2 Pn or

because splitted processes constrained each other

Interfaces and projections (2)

23

P1 || … || ||

Σ'

Pi Pn

Σ
 = || … || P1 Pi

or

Pi+1 || … ||

inter
face

 ||-

semi-composition operator

Interfaces and projections

Interfaces L
 Finite-state automata (trace acceptors)
 Interfaces must be suggested by the user
 Warning messages if interfaces are too restrictive

 Semi-composition operator Pi ||- L
 Not a parallel composition!
 Pi ||- L has no more states than Pi
 Implemented by the PROJECTOR tool of CADP

A working approach to fight state explosion
24

Graf-Steffen, CAV 1990 Krimm-Mounier, TACAS 1997

http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-54477-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-54477-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-54477-7
http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://vasy.inria.fr/publications/Krimm-Mounier-97.html
http://vasy.inria.fr/publications/Krimm-Mounier-97.html
http://vasy.inria.fr/publications/Krimm-Mounier-97.html

Automatic generation of interfaces

Computed for one process P1 wrt to P2 … Pn

Better reductions than using Krimm-Mounier-97
Safety minimization and partial order reductions
can be used:
Experimental results on large processes

 Philips' HAVi protocol: 365,923 → 645 states
 ODP trader: 1 million states → 256 states
 Cache coherency: 1 million states → 60 states

25

Lang, FORTE 2006

http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://vasy.inria.fr/publications/Lang-06.html

The SVL scripting language (1)

Verification scenarios are complex and repetitive
Many tools and techniques:

 enumerative, on-the-fly, compositional, interfaces…
 verification and performance evaluation

Many files (and formats) to handle:
 concurrent descriptions: LOTOS, LOTOS NT, EXP, FSP…
 explicit and implicit LTSs, CTMCs, DTMCs, IMCs…
 interfaces, logic formulas, probability vectors…

26

Garavel-Lang, FORTE 2001

http://cadp.inria.fr/publications/Garavel-Lang-01.html
http://vasy.inria.fr/publications/Garavel-Lang-01.html

The SVL scripting language (2)
Many operations to perform:

 LTS/IMC generation and projection
 Label hiding, renaming, cut
 Minimization and comparison modulo equivalences
 Model checking, deadlock and livelock detection

SVL:
 a language to specify scenarios (+ Unix shell)
 a compiler to execute them
 provides a unified view of CADP tools
 implement expert verification strategies

 27

2.c. Compositionality issues:
 Concurrency II

28

Difference between parts I and II
Part I

 Only equivalences are considered
State space reduction must preserve an equivalence
 Goal: generate a reduced/minimal state space

Part II
 A set of logical formula {ϕ1, ϕ2, …, ϕn} is considered
 State space reduction must preserve the truth values
of these formulas
 Goal: evaluate these formulas on a reduced/minimal
state space

29

Decomposition wrt the formula set

The unique Σ is replaced by several state spaces Σi

Each Σi is specialized/reduced wrt a given formula ϕi

30

Σ |= ϕ1, ϕ2, …, ϕn

Σ1 Σ2 Σn |= ϕ1 |= ϕ2 … |= ϕn

Approach 1: strong equivalence

ϕ1, ϕ2, …, ϕn are written in modal µ-calculus
For each ϕi one computes a set of actions Ai
such that: Σ |= ϕi ⇔ (hide Ai in Σ) |= ϕi

Basically, Ai gathers actions not occurring in ϕi
Ai should be as large as possible (maximal hiding)
to enable the greatest possible reduction
(hide Ai in Σ) is reduced wrt strong bisimulation
before evaluating ϕi (global model checking) or
on-the-fly while evaluating ϕi (local model checking)

31

Mateescu-Wijs, SPIN 2011

http://vasy.inria.fr/publications/Mateescu-Wijs-11.html

Approach 2: diverg. branching equiv.

ϕ1, ϕ2, …, ϕn are written in a subset of the modal
µ-calculus compatible with divergence-sensitive
branching bisimulation
For each ϕi one computes a set of actions Ai
such that: Σ |= ϕi ⇔ (hide Ai in Σ) |= ϕi

(hide Ai in Σ) is reduced with divergence-sensitive
branching bisimulation (enabling greater
reductions than using strong bisimulation)
or τ-confluence reduction (done on the fly)

32

Mateescu-Wijs, SPIN 2011

http://vasy.inria.fr/publications/Mateescu-Wijs-11.html
http://vasy.inria.fr/publications/Mateescu-Wijs-11.html
http://vasy.inria.fr/publications/Mateescu-Wijs-11.html
http://vasy.inria.fr/publications/Mateescu-Wijs-11.html

Experimental results using CADP
Using strong bisimulation

 alternating bit (12 M states, 46 M transitions):
speedup × 4, memory / 2
 token ring (53 M states, 214 M transitions):
 speedup × 2.8, memory / 2.5

Using divergence-sensitive branching bisimulation
 Philips BRP (12 M states, 14 M transitions):
memory / 1.6

Using τ-confluence reduction
Erathosthene sieve: speedup × 10

33

Partial model checking [Andersen, LICS 95]

34

P1 |= ϕ || … || P2 Pn ||

P1 |= ϕ || … || P2 Pn //

quotient of ϕ by P1
(to be applied recursively)

Three issues with partial model checking

The left-hand side should decrease a lot
 P2 ||… || Pn should be much smaller than P1 ||… || Pn

 Not necessarily the case if P1 constrains the others

The right-hand side should not increase too much
 Quotienting removes modalities, but adds variables
 Quotiented formulas ϕ // P1 can become very large
 Simplifications must be applied after quotienting

It requires a complex software machinery
 Only a few implementations available

35

Partial model checking using CADP

Asynchronous, action-based setting
Concurrent processes P1 ||… || Pn :

 Networks of LTSs (i.e., the EXP format of CADP)
 Based on "synchronization vectors" + hiding, renaming
 Supports the binary and n-ary parallel operators of
CCS, CSP, LOTOS, LOTOS NT, etc.

Formulas ϕ :
 Alternation-free modal µ-calculus
 + fairness operators of alternation 2

36

Lang-Mateescu, TACAS 2012

http://hal.inria.fr/hal-00684471/en
http://hal.inria.fr/hal-00684471/en
http://hal.inria.fr/hal-00684471/en
http://hal.inria.fr/hal-00684471/en

Quotienting revisited
Formula ϕ is encoded as an LTS (formula graph)

 LTSs are represented using the BCG format of CADP

Quotient ϕ // P1 is reformulated as a synchronous
product of 2 LTSs (the formula graph of ϕ and P1)

 Product can be expressed in the EXP format of CADP
 It is computed using the EXP.OPEN tool of CADP

37

μ X0 . (<a> true) ∨ (X0)

Post-quotienting simplifications
Elimination of double negations
Elimination of useless μ–transitions

 sufficient conditions are used
Elimination of ∨‐transitions

 hiding and reduction modulo τ*.a equivalence
Sharing of identical sub‐formulas

 tagging μ-transitions → strong bisimulation reduction
Partial evaluation of states

 detection and propagation of constant sub-formulas
 using the CADP solver for Boolean Equation Systems

38

Experimental results: SCSI-2 benchmark

39

Experimental results: TFTP benchmark

40

Memory
 (in kbytes)

Best ratio
= 767

Explosion

3. Conclusion

41

Conclusion
Compositionality is essential

 modular design
 formal verification reusability, scalability
 performance analysis

 divide-and-conquer to fight state explosion
Compositionality has multiple facets

 data vs behaviour
 action-based vs state-based
 logics vs equivalences

42

Compositionality is demanding — it requires:
 Suitable low-level semantic models

 ⇒ LTSs, IMCs, etc.
 Well-chosen behavioural equivalences

 ⇒ bisimulations: strong, branching, divergence-preserving,
lumpability on Markov chains
 Well-chosen logics

 ⇒ mu-calculus, temporal logics
 ⇒ adequation results relating logics and equivalences

 Concurrent languages with a proper semantics
 ⇒ process calculi and their modern variants (such as LNT)
 ⇒ congruence results relating parallel composition and

equivalences

 43

Compositionality and CADP
CADP:

 A modular toolbox implementing concurrency theory
 Used for teaching, research, and industrial problems
 Free for academics

Compositionality underlies CADP architecture:
 Many compositional approaches implemented
 Combinations of existing and new CADP components
 Mostly in an action-based setting

Our wish: Compositionality made easy using CADP

44

	25 Years of Compositionality Issues in CADP: An Overview
	Outline
	1. CADP in a nutshell
	CADP
	Main features of CADP
	MCL (Model Checking Language)
	LNT (LOTOS New Technology)
	Languages connected to CADP
	2.a. Compositionality issues: � Types and data structures
	LOTOS abstract data types
	LOTOS type imports
	Issue #1: Algebra expansion
	Issue #2: Algebra collapse
	A way to avoid these issues
	Impact on compositionality
	2.b. Compositionality issues: � Concurrency I
	Compositional model generation
	Compositional LTS generation using CADP
	Compositional IMC generation using CADP
	Smart reduction
	Smart reduction: Experimental results
	Interfaces and projections (1)
	Interfaces and projections (2)
	Interfaces and projections
	Automatic generation of interfaces
	The SVL scripting language (1)
	The SVL scripting language (2)
	2.c. Compositionality issues: � Concurrency II
	Difference between parts I and II
	Decomposition wrt the formula set
	Approach 1: strong equivalence
	Approach 2: diverg. branching equiv.
	Experimental results using CADP
	Partial model checking [Andersen, LICS 95]
	Three issues with partial model checking
	Partial model checking using CADP
	Quotienting revisited
	Post-quotienting simplifications
	Experimental results: SCSI-2 benchmark
	Experimental results: TFTP benchmark
	3. Conclusion
	Conclusion
	Diapositive numéro 43
	Compositionality and CADP

