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Introduction

Algebraic data types exist in LOTOS (and SDL).

How can they be handled?

Various attitudes:

indifference: restriction to “basic LOoT0S”

subversion: importation of external types or replace-
ment with concrete data type definitions

interpretation: term rewriting techniques, possibly
with resolution or narrowing

compilation: translation into an imperative language

(LISP, C, Ada...)



Subset of LOTOS accepted

Constructors must be identified explicitly:

type Boolean is

sort
Bool
opns
true (*! constructor *),
false (*! constructor *) : -> Bool}

The form of equations is restricted:

1. The left-hand side of each equation has the form
F(W,...,V,), where F is a non-constructor

2. Terms Vi,...,V, may only contain constructors
and variables

3. Any variable occurring on the right-hand side must
also occur on the left-hand side

F(X) =Y +1 isrejected

4. Any variable occurring in a premiss must also occur
on the left-hand side

Y#0=> F(X) =1 is rejected



Chosen rewrite strategy

1. orientation of equations (from left to right)

2. special rewrite strategy combining:

e call by value, or functional evaluation

“when several terms can be rewritten, innermost
ones are rewritten first”
p=

“all the sub-terms of a term are rewritten before
the term itself”

e decreasing priority between equations

“when several equation simultaneously apply, the
first one is selected”

e this strategy is not completely deterministic

e confluence is not always a desirable property
Example :

X equal X = true
X equal Y = false



Source language: semantics

e 7 : terms without variables

e V(X) : terms without non-constructors

e ) : terms without variables nor non-constructors
e eqns [F] : list of equations associated to F

e X : set of substitutions from V(X) to V

“rewr [T]” evaluates the term 7" belonging to 7 and
returns a value belonging to V (ou “.L” if the equations
do not specify how T has to be evaluated).

(Fi € {1,...,n}) rewr [T;] = L
rewr [C(Ty,...,T,)] = L

(Vie{1,...,n}) rewr [T;] # L
rewr [C(Ty,...,T,)] = C(rewr [T1],. . ., rewr [T,])

(Fi e {1,...,n}) rewr [T;] = L
rewr [F(T1,...,T,)] = L

(Vi € {1,...,n}) rewr [T}] # L
rewr [F(T1,...,T,)] =
apply [Fl[rewr [T1],. .., rewr [T,]][eqns [F]]




Source language: semantics

“apply [F|[vi,...,vn][En,. .., Ep)” computes the value
returned by the non-constructor F' applied to the list
of actual parameter vy,...,v, belonging to V, where
Ei, ..., Eyis the list of equations associated to F

apply [Fl[vi,...,v][ @] = L

Eyo=FW,...,V3) =T
(Jo € X) (Vie{1,...,n}) o(V;) =,
apply [Fl[vi,...,va][En,. .., Ep] = rewr [o(T)]

FE,:=PFP, and ... and P, => F(%,,V;@) =T
(Vje{l,....m}) P, u=T{ =T§
(o€ X) (Vie{l,...,n})o(Vi))=v;
(Vi € {1,...,m}) rewr [o(T})] = rewr [o(T3)]
apply [Fl[v1,...,v)[En, ..., Ep) = rewr [o(T)]

in any other case

apply [F[v1,...,vn)[EL, ..., Ep] =
apply [Fl[vi,...,v][Ea,..., Ep]




Verifications for sorts and constructors

1. detection of sorts without constructors
— considered as external sorts

2. detection of improductive sorts

sort S7
constructor 1: Fj : bool, Sy — 5
constructor 2: Fy : S7 — 5}

sort SQ
constructor: F3: S;,nat — Sy

3. the constructors of an external sort must be exter-
nal

4. the constructors of a non-external sort must not be
external

5. new constructors cannot be added to a renamed
sort

6. the constructors of a given sort S should be de-
clared in the same type as S (modularity)



Verifications for non-constructors

. detection of non-constructeurs without equations
—> considered as external functions

.an external operation (constructor or non-
constructor) must not have associated equations

. the equations associated to a given non-constructor
F' should occur in the type where F' is declared
(modularity)

. new equations cannot be added to a renamed non-
constructor

. left-hand sides of equations are made linear:
P = F(X,C(X),...) =T
is replaced with:
Pand (X = X') => F(X,C(X"),..) =T

where X' is a new variable of the same sort as X



The CESAR.ADT compiler
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Compiling sorts and non-constructors

For each (non-external) sort .S, one must produce:

e 3 type |TYPEg

e a comparison function [CMPg : § X S — bool

e an iteration macro [ITRg

e a printing procedure |[PRTg : file X S

e For each constructor C : 51,...,5, — S
one must produce:

— a function [FUNC¢o : S1,...,5, — S

FUNCc(v1,...,vn) = C(v1,...,vp)

— a test predicate |TEST¢ : S — bool

v has the form C(vy,...,v,) <= TEST¢(v) = true

— n selection functions |SELL : S — S;|(1 << n)

v has the form C(vy,...,v,) = SELL(v) = v;
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General sort implementations

Principle 1: The implementation of a given sort only
depends on the profile of its constructors

Principle 2: Any sort can be implemented using only
pointers and discriminated unions

Example:

sorts
History
cons
NoTReqs : -> History
Append : TSP, History -> History

Context-free definition of History terms:

<History> ::= NoTReqs | Append (<TSP>, <History>)

Representation by a linked list:

Append (t1, Append (t2, Append (t3, NoTReqs)))
Append Append Append NoTRegs

0 e N 0 e




Optimized sort implementations

Special case 1:

sort ADDR
constructor 1: FIRST :—— ADDR
constructor 2: NEXT : ADDR — ADDR

—> implemented using an integer type

Special case 2:

sort SIGNAL
constructor 1: SIGHUP :— SIGNAL
constructor 2: SIGINT :— SIGNAL
constructor 3: SIGQUIT :— SIGNAL
constructor 4: SIGILL :— SIGNAL

—> implemented using an enumerated type (2 bits)

Special case 3:

sort TIMEVAL
constructor: TIME : SEC, USEC — TIMEVAL

—> implemented using a record type

11
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Optimizations

1. Using the minimal number of bits

Boolean — 1 bit
Bit — 1 bit
Octet — 8 bits

2. Permutation of record fields

Random ordering

Optimal ordering

Octet Octet NaturalNumber
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Compiling non-constructors and equations

source language (LOTOS)
(declarative)

:
target language (C)
(imperative)

Objectif : compiling instead of interpreting

Several algorithms for pattern-matching compiling:
e [Augustsson, 1985]

o [Wadler, 1987]

e [Kaplan, 1987]

e [Schncebelen, 1988]
e [Pettersson, 1992]
e [Puel-Suarez, 1993]

Chosen algorithm: [Schnoebelen, 1988]
e orthogonal to the implementation of sorts

e compiles a function on a given domain
e handles conditional equations

e handles non-free constructors



Target language: syntax

Terminal symbols:
e C : constructor

e ' : non-constructor
e m : integer

Non-terminal symbols:
e [ : instruction

e [/ . expression

I ::= return E
| if E then [ else I,
| error

E = $m

apply C,E,, ..., E,
apply F,FE,..., E,
E1 and E2

E1 - E2

test C, £

select C,m, E

14

The body of each generated function is an instruction
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Target language: semantics

Notations:
e F': non-constructor considered

e L: list of actual parameters supplied to F’
e [: instruction occurring in the body of F

e /. expression occurring in the body of F

Two mutually recursive functions:

o “ezec [I][L]” executes instruction I and returns its
result

o “eval [E][L]” evaluates expression E and returns
its value

Rule for “return”:

ezec [return E][L]| = eval [E][L]

Rules for “if”:
eval [E|[L] = true
exzec [if E then I else L][L] = ezec [[1][L]

eval [E|[L] = false
ezec [if E then I; else L))|[L] = exec [I5][L]
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Target language: semantics

Rule for “error”:

exec [error|[L] = L

Rule for “$”:

eval [$m][T1,...,Tn] = Tn

Rules for “apply” (case of a constructor):

(Fe € {1,...,n}) eval [E}][L] = L
eval [apply C, Ey,...,E)][L] = L

(Vi€ {1,...,n}) eval [Ej][L] # L
eval [apply C, Ey, ..., Ep|[L] =
C(eval [E4][L], ..., eval [E,][L])

Rules for “apply” (case of a non-constructor):

(Fi € {1,...,n}) eval [Ej][L] = L
eval [apply F, Fy,...,E,][L] = L

(Vi € {1,...,n}) eval [Ej][L] # L
body of function F' is instruction I
eval [apply F, En, ..., E,][L] =
exec [I|[eval [Er][L],..., eval [E,][L]]
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Target language: semantics

Rules for “and”:
(eval [E7][L] = 1) V (ewval [Ex][L] = 1)
eval [Ey and Ey|[L] = L

(eval [En][L] # L) A (eval [Es][L] # L)
eval [En and Ey|[L] = (eval [E1][L] A eval [Es][L])
Rules for “=":
(eval [E4][L] = L) V (ewal [E5][L] = 1)
eval [Ey = Ep][L] = L

(eval [En][L] # L) A (eval [Es][L] # 1)
eval [E; = Ey][L] = (eval [E1][L] = eval [Es][L])
Rules for “test”:
eval [Eg|[L] = L
eval [test C, Ey|[L] = L

eval [Ep)[L] has the form C'(T1,...,T,)
eval [test C, Ey|[L] = (C = C")

Rules for “select”:

eval [Eo)[L] = L
eval [select C,m, Eo|[L] = L

eval [Eo)[L] has the form C(Ty,...,T,)
eval [select C, m, Fy|[L] = T,




Compiling non-constructors: examples

implies : bool X bool — bool
X implies Y = not (X) or Y
apply or, (apply not, $1), $2

not : bool — bool
not (true) = false
not (false) = true
if (test true, $1)
then return (apply true)
else return (apply false)

and : bool X bool — bool
X and true = X

X and false = false

if (test true, $2)

then return $1

else return (apply false)

18



Compiling non-constructors: examples

+ : nat X nat — nat
M+0=M
M + succ (N) = suce (M) + N
if (test 0, $2)
then return $1
else return (apply +, (apply succ, $1),
(select succ,1, $2))

19

= :nat X nat — nat

M-0=M
succ (M) - succ (N)

=
=

if (test 0, $2)
then return $1
else if (test succ, $1)
then return (apply -, (select succ,1, $1),
(select succ,1,$2))
else error

max : nat X nat — nat

M>N =>max (M,N) =M
max (M,N) = N

if ((apply >,$1,$2) = true)

then return $1

else return $2
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Compiling non-constructors: examples

eq : nat X nat — bool

0 eq 0 = true
0 eq succ (N) = false
succ (M) eq 0 = false
succ (M) eq succ (N) = M eq N

if (test 0, $1)
then if (test 0, $2)
then return (apply true)
else return (apply false)
else if (test 0, $2)
then return (apply false)
else return (apply eq, (select succ,1,$1),
(select succ, 1, $2)

equal : nat X nat — bool
M equal M = true

M equal N = false

if ($1 = $2)

then return (apply true)
else return (apply false)
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Optimisations

Constant detection
Functions are replaced with once-computed variables
nat n3 = succ (succ (succ (0)));

“Simple functions” detection
Functions are replaced with macro-definitions
#define implies(P, Q) (not (P) or (Q))

Test reduction
Short-circuits are used: &&, ||, ?:

if P then if Q then X else Y else Y
if (P && Q) then X else Y

Redundant code elimination
“goto” instructions are introduced for factorizing code



Applications
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ATP : compiler for a timed process algebra

MAA : cryptographic signature algorithm [ISO 8731]
VTT : transit node
OTS : OSI transport service [ISO 8072]

XTL : compiler for an extended temporal logic
FWC : Airbus A320 flight warning computer

Source LOTOS programs

lines | Kbytes | types | sorts | cons | n-cons | eqns
ATP | 376] 12.638] 12] 12] 30 73] 81
MAA | 1126| 34.178 10 10| 16 184| 167
VTT | 1130| 39.444 17 16| 39 111 345
OTS | 1802| 72.170 40| 32| 87 245| 338
XTL | 3100(147.345 24| 15| 135 271 761
FWC | 13524|580.119| 145| 139| 515 786 | 1432

Code generated by C£ESAR.ADT 4.1 on a SUN 4/40

time |lines (C) | Kbytes (C) | Kbytes (obj)
ATP | 4.5 2294 90.165 49.992
MAA| 9.1 2041 110.878 40.960
VIT| 7.7 3202 161.159 57.940
OTS 19 5252 251.407 72.144
XTL | 32 8386 463.823 221.944
FWC| 179 21502, 1074.158 320.468




A self-compiling compiler

"T" diagrams [Bratman, 1961]

source

impl

target

Second pass of boostrap

Lotos C
Lotos
First pass of bootstrap ==
Lotos C| v [|Lotos C
Lotosl Lotos C
| (tmp
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The CAESAR and CAESAR.ADT compilers
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The EUCALYPTUS consortium

In Europe
e INRIA project SPECTRE / VERIMAG

supported by the Commission of the European Communities.
e University of Liege
supported by the Commission of the European Communities.
In Canada
e University of Montréal

supported by the IDACOM-NSERC-CWARC Industrial Re-

search Chair on Communications Protocols at the University
of Montreal.

e University of Ottawa

supported by the Telecommunications Research Institute of

Ontario (TRIO).
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The EUCALYPTUS toolset architecture
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Fenhanced” LOTOS program >

¥

@TOS pro@

standard LOTOS program

Ceexplicit” LTS > Cimplicit” LTS

requirements

symbolic simulation
goal-oriented execution

exhaustive verification (non-symbolic) simulation
on-the-fly verification (guided) execution
BDD-based verification partial verification

execution sequences

trace analysis
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Conclusion

e pragmatic restrictions on the source language:

— orientation of equations
— explicit indication of constructors
— no equations between constructors

e efficient implementation for sorts and constructors:

— general representation scheme
— ad hoc optimizations for common cases

e efficient implementation for non-constructors:

— pattern-matching compiling algorithm
— many optimizations

e a workable compiler, CESAR.ADT:

— fast and robust

— static semantics verifications

— debugging features (debug, trace)

— importation of external sorts and operations



Current research directions

Support for parameterized types:
e new verifications needed

e adapt “flattening” to constructors

New optimizations for sorts:
e recognition of lists, binary trees, etc.

e garbage-collection

New optimisations for non-constructors:
e reduction of nested tests

e recursion elimination

28
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