Overview of the CAESAR.ADT
abstract data type compiler

Hubert Garavel
Christian Bard (1988)
Philippe Turlier (1991-1992)
Radu Mateescu (1993)
Mihaela Sighireanu (1994)

INRIA projet SPECTRE — VERIMAG
Miniparc-ZIRST

rue Lavoisier

38330 MONTBONNOT ST MARTIN
FRANCE

Plan

1. An “operational” subset of ACTONE

2. Verifications performed by the compiler

3. Translation of sorts and constructors

4. Translation of non-constructors and equations

5. Applications

6. Conclusion

Introduction

Algebraic data types exist in LOTOS (and SDL).

How can they be handled?

Various attitudes:

indifference: restriction to “basic LOoT0S”

subversion: importation of external types or replace-
ment with concrete data type definitions

interpretation: term rewriting techniques, possibly
with resolution or narrowing

compilation: translation into an imperative language

(LISP, C, Ada...)

Subset of LOTOS accepted

Constructors must be identified explicitly:

type Boolean is

sort
Bool
opns
true (*! constructor *),
false (*! constructor *) : -> Bool}

The form of equations is restricted:

1. The left-hand side of each equation has the form
F(W,...,V,), where F is a non-constructor

2. Terms Vi,...,V, may only contain constructors
and variables

3. Any variable occurring on the right-hand side must
also occur on the left-hand side

F(X) =Y +1 isrejected

4. Any variable occurring in a premiss must also occur
on the left-hand side

Y#0=> F(X) =1 is rejected

Chosen rewrite strategy

1. orientation of equations (from left to right)

2. special rewrite strategy combining:

e call by value, or functional evaluation

“when several terms can be rewritten, innermost
ones are rewritten first”
p=

“all the sub-terms of a term are rewritten before
the term itself”

e decreasing priority between equations

“when several equation simultaneously apply, the
first one is selected”

e this strategy is not completely deterministic

e confluence is not always a desirable property
Example :

X equal X = true
X equal Y = false

Source language: semantics

e 7 : terms without variables

e V(X) : terms without non-constructors

e) : terms without variables nor non-constructors
e eqns [F] : list of equations associated to F

e X : set of substitutions from V(X) to V

“rewr [T]” evaluates the term 7" belonging to 7 and
returns a value belonging to V (ou “.L” if the equations
do not specify how T has to be evaluated).

(Fi € {1,...,n}) rewr [T;] = L
rewr [C(Ty,...,T,)] = L

(Vie{1,...,n}) rewr [T;] # L
rewr [C(Ty,...,T,)] = C(rewr [T1],. . ., rewr [T,])

(Fi e {1,...,n}) rewr [T;] = L
rewr [F(T1,...,T,)] = L

(Vi € {1,...,n}) rewr [T}] # L
rewr [F(T1,...,T,)] =
apply [Fl[rewr [T1],. .., rewr [T,]][eqns [F]]

Source language: semantics

“apply [F|[vi,...,vn][En,. .., Ep)” computes the value
returned by the non-constructor F' applied to the list
of actual parameter vy,...,v, belonging to V, where
Ei, ..., Eyis the list of equations associated to F

apply [Fl[vi,...,v][@] = L

Eyo=FW,...,V3) =T
(Jo € X) (Vie{1,...,n}) o(V;) =,
apply [Fl[vi,...,va][En,. .., Ep] = rewr [o(T)]

FE,:=PFP, and ... and P, => F(%,,V;@) =T
(Vje{l,....m}) P, u=T{ =T§
(o€ X) (Vie{l,...,n})o(Vi))=v;
(Vi € {1,...,m}) rewr [o(T})] = rewr [o(T3)]
apply [Fl[v1,...,v)[En, ..., Ep) = rewr [o(T)]

in any other case

apply [F[v1,...,vn)[EL, ..., Ep] =
apply [Fl[vi,...,v][Ea,..., Ep]

Verifications for sorts and constructors

1. detection of sorts without constructors
— considered as external sorts

2. detection of improductive sorts

sort S7
constructor 1: Fj : bool, Sy — 5
constructor 2: Fy : S7 — 5}

sort SQ
constructor: F3: S;,nat — Sy

3. the constructors of an external sort must be exter-
nal

4. the constructors of a non-external sort must not be
external

5. new constructors cannot be added to a renamed
sort

6. the constructors of a given sort S should be de-
clared in the same type as S (modularity)

Verifications for non-constructors

. detection of non-constructeurs without equations
—> considered as external functions

.an external operation (constructor or non-
constructor) must not have associated equations

. the equations associated to a given non-constructor
F' should occur in the type where F' is declared
(modularity)

. new equations cannot be added to a renamed non-
constructor

. left-hand sides of equations are made linear:
P = F(X,C(X),...) =T
is replaced with:
Pand (X = X') => F(X,C(X"),..) =T

where X' is a new variable of the same sort as X

The CESAR.ADT compiler

- . oy
- - .-

”r' \\\\ ,’;' ‘s\\
‘\\ SDL ”’ ‘\\ ’,,
\s~---1-—_——‘ I P T-—"—“
1 |
1 |
I |
r--TT === L 1 f====-==°=° Comeees H
LOTOS i SDL | i :
pre-processor | pre-processor i E i
| |

. verifications
input lan -
p guage transformations
translation of translation of
sorts and constructors non-constructors
output language optimisations
............... s et S e e g
f ! : 1
& | ADA E : i
post-processor i post-processor ! I !
S | I R
] 1
| i
JUE TR BTN S
. l/ \\ I” \\
™ L ADA) c\ /i

W -

Compiling sorts and non-constructors

For each (non-external) sort .S, one must produce:

e 3 type |TYPEg

e a comparison function [CMPg : § X S — bool

e an iteration macro [ITRg

e a printing procedure |[PRTg : file X S

e For each constructor C : 51,...,5, — S
one must produce:

— a function [FUNC¢o : S1,...,5, — S

FUNCc(v1,...,vn) = C(v1,...,vp)

— a test predicate |TEST¢ : S — bool

v has the form C(vy,...,v,) <= TEST¢(v) = true

— n selection functions |SELL : S — S;|(1 << n)

v has the form C(vy,...,v,) = SELL(v) = v;

10
General sort implementations

Principle 1: The implementation of a given sort only
depends on the profile of its constructors

Principle 2: Any sort can be implemented using only
pointers and discriminated unions

Example:

sorts
History
cons
NoTReqs : -> History
Append : TSP, History -> History

Context-free definition of History terms:

<History> ::= NoTReqs | Append (<TSP>, <History>)

Representation by a linked list:

Append (t1, Append (t2, Append (t3, NoTReqs)))
Append Append Append NoTRegs

0 e N 0 e

Optimized sort implementations

Special case 1:

sort ADDR
constructor 1: FIRST :—— ADDR
constructor 2: NEXT : ADDR — ADDR

—> implemented using an integer type

Special case 2:

sort SIGNAL
constructor 1: SIGHUP :— SIGNAL
constructor 2: SIGINT :— SIGNAL
constructor 3: SIGQUIT :— SIGNAL
constructor 4: SIGILL :— SIGNAL

—> implemented using an enumerated type (2 bits)

Special case 3:

sort TIMEVAL
constructor: TIME : SEC, USEC — TIMEVAL

—> implemented using a record type

11

12
Optimizations

1. Using the minimal number of bits

Boolean — 1 bit
Bit — 1 bit
Octet — 8 bits

2. Permutation of record fields

Random ordering

Optimal ordering

Octet Octet NaturalNumber

13
Compiling non-constructors and equations

source language (LOTOS)
(declarative)

:
target language (C)
(imperative)

Objectif : compiling instead of interpreting

Several algorithms for pattern-matching compiling:
e [Augustsson, 1985]

o [Wadler, 1987]

e [Kaplan, 1987]

e [Schncebelen, 1988]
e [Pettersson, 1992]
e [Puel-Suarez, 1993]

Chosen algorithm: [Schnoebelen, 1988]
e orthogonal to the implementation of sorts

e compiles a function on a given domain
e handles conditional equations

e handles non-free constructors

Target language: syntax

Terminal symbols:
e C : constructor

e ' : non-constructor
e m : integer

Non-terminal symbols:
e [: instruction

e [/ . expression

I ::= return E
| if E then [else I,
| error

E = $m

apply C,E,, ..., E,
apply F,FE,..., E,
E1 and E2

E1 - E2

test C, £

select C,m, E

14

The body of each generated function is an instruction

15
Target language: semantics

Notations:
e F': non-constructor considered

e L: list of actual parameters supplied to F’
e [: instruction occurring in the body of F

e /. expression occurring in the body of F

Two mutually recursive functions:

o “ezec [I][L]” executes instruction I and returns its
result

o “eval [E][L]” evaluates expression E and returns
its value

Rule for “return”:

ezec [return E][L]| = eval [E][L]

Rules for “if”:
eval [E|[L] = true
exzec [if E then I else L][L] = ezec [[1][L]

eval [E|[L] = false
ezec [if E then I; else L))|[L] = exec [I5][L]

16
Target language: semantics

Rule for “error”:

exec [error|[L] = L

Rule for “$”:

eval [$m][T1,...,Tn] = Tn

Rules for “apply” (case of a constructor):

(Fe € {1,...,n}) eval [E}][L] = L
eval [apply C, Ey,...,E)][L] = L

(Vi€ {1,...,n}) eval [Ej][L] # L
eval [apply C, Ey, ..., Ep|[L] =
C(eval [E4][L], ..., eval [E,][L])

Rules for “apply” (case of a non-constructor):

(Fi € {1,...,n}) eval [Ej][L] = L
eval [apply F, Fy,...,E,][L] = L

(Vi € {1,...,n}) eval [Ej][L] # L
body of function F' is instruction I
eval [apply F, En, ..., E,][L] =
exec [I|[eval [Er][L],..., eval [E,][L]]

17
Target language: semantics

Rules for “and”:
(eval [E7][L] = 1) V (ewval [Ex][L] = 1)
eval [Ey and Ey|[L] = L

(eval [En][L] # L) A (eval [Es][L] # L)
eval [En and Ey|[L] = (eval [E1][L] A eval [Es][L])
Rules for “=":
(eval [E4][L] = L) V (ewal [E5][L] = 1)
eval [Ey = Ep][L] = L

(eval [En][L] # L) A (eval [Es][L] # 1)
eval [E; = Ey][L] = (eval [E1][L] = eval [Es][L])
Rules for “test”:
eval [Eg|[L] = L
eval [test C, Ey|[L] = L

eval [Ep)[L] has the form C'(T1,...,T,)
eval [test C, Ey|[L] = (C = C")

Rules for “select”:

eval [Eo)[L] = L
eval [select C,m, Eo|[L] = L

eval [Eo)[L] has the form C(Ty,...,T,)
eval [select C, m, Fy|[L] = T,

Compiling non-constructors: examples

implies : bool X bool — bool
X implies Y = not (X) or Y
apply or, (apply not, $1), $2

not : bool — bool
not (true) = false
not (false) = true
if (test true, $1)
then return (apply true)
else return (apply false)

and : bool X bool — bool
X and true = X

X and false = false

if (test true, $2)

then return $1

else return (apply false)

18

Compiling non-constructors: examples

+ : nat X nat — nat
M+0=M
M + succ (N) = suce (M) + N
if (test 0, $2)
then return $1
else return (apply +, (apply succ, $1),
(select succ,1, $2))

19

= :nat X nat — nat

M-0=M
succ (M) - succ (N)

=
=

if (test 0, $2)
then return $1
else if (test succ, $1)
then return (apply -, (select succ,1, $1),
(select succ,1,$2))
else error

max : nat X nat — nat

M>N =>max (M,N) =M
max (M,N) = N

if ((apply >,$1,$2) = true)

then return $1

else return $2

20
Compiling non-constructors: examples

eq : nat X nat — bool

0 eq 0 = true
0 eq succ (N) = false
succ (M) eq 0 = false
succ (M) eq succ (N) = M eq N

if (test 0, $1)
then if (test 0, $2)
then return (apply true)
else return (apply false)
else if (test 0, $2)
then return (apply false)
else return (apply eq, (select succ,1,$1),
(select succ, 1, $2)

equal : nat X nat — bool
M equal M = true

M equal N = false

if ($1 = $2)

then return (apply true)
else return (apply false)

21
Optimisations

Constant detection
Functions are replaced with once-computed variables
nat n3 = succ (succ (succ (0)));

“Simple functions” detection
Functions are replaced with macro-definitions
#define implies(P, Q) (not (P) or (Q))

Test reduction
Short-circuits are used: &&, ||, ?:

if P then if Q then X else Y else Y
if (P && Q) then X else Y

Redundant code elimination
“goto” instructions are introduced for factorizing code

Applications

22

ATP : compiler for a timed process algebra

MAA : cryptographic signature algorithm [ISO 8731]
VTT : transit node
OTS : OSI transport service [ISO 8072]

XTL : compiler for an extended temporal logic
FWC : Airbus A320 flight warning computer

Source LOTOS programs

lines | Kbytes | types | sorts | cons | n-cons | eqns
ATP | 376] 12.638] 12] 12] 30 73] 81
MAA | 1126| 34.178 10 10| 16 184| 167
VTT | 1130| 39.444 17 16| 39 111 345
OTS | 1802| 72.170 40| 32| 87 245| 338
XTL | 3100(147.345 24| 15| 135 271 761
FWC | 13524|580.119| 145| 139| 515 786 | 1432

Code generated by C£ESAR.ADT 4.1 on a SUN 4/40

time |lines (C) | Kbytes (C) | Kbytes (obj)
ATP | 4.5 2294 90.165 49.992
MAA| 9.1 2041 110.878 40.960
VIT| 7.7 3202 161.159 57.940
OTS 19 5252 251.407 72.144
XTL | 32 8386 463.823 221.944
FWC| 179 21502, 1074.158 320.468

A self-compiling compiler

"T" diagrams [Bratman, 1961]

source

impl

target

Second pass of boostrap

Lotos C
Lotos
First pass of bootstrap ==
Lotos C| v [|Lotos C
Lotosl Lotos C
| (tmp

24
The CAESAR and CAESAR.ADT compilers

-~ -
- -
kL -

—d
-~ -
- -
- -
- - -
- -

data part control part

)
I
I
I
'
!
'
'
'
]
i
'
'
]
'

——————————

CAESAR.ADT CESAR

C code generated for
the abstract data type

P > - - -

———————————————————————————

C code generated for
the process part

simulation testing

execution verification

25
The EUCALYPTUS consortium

In Europe
e INRIA project SPECTRE / VERIMAG

supported by the Commission of the European Communities.
e University of Liege
supported by the Commission of the European Communities.
In Canada
e University of Montréal

supported by the IDACOM-NSERC-CWARC Industrial Re-

search Chair on Communications Protocols at the University
of Montreal.

e University of Ottawa

supported by the Telecommunications Research Institute of

Ontario (TRIO).

%
The EUCALYPTUS toolset architecture

4

Fenhanced” LOTOS program >

¥

@TOS pro@

standard LOTOS program

Ceexplicit” LTS > Cimplicit” LTS

requirements

symbolic simulation
goal-oriented execution

exhaustive verification (non-symbolic) simulation
on-the-fly verification (guided) execution
BDD-based verification partial verification

execution sequences

trace analysis

27
Conclusion

e pragmatic restrictions on the source language:

— orientation of equations
— explicit indication of constructors
— no equations between constructors

e efficient implementation for sorts and constructors:

— general representation scheme
— ad hoc optimizations for common cases

e efficient implementation for non-constructors:

— pattern-matching compiling algorithm
— many optimizations

e a workable compiler, CESAR.ADT:

— fast and robust

— static semantics verifications

— debugging features (debug, trace)

— importation of external sorts and operations

Current research directions

Support for parameterized types:
e new verifications needed

e adapt “flattening” to constructors

New optimizations for sorts:
e recognition of lists, binary trees, etc.

e garbage-collection

New optimisations for non-constructors:
e reduction of nested tests

e recursion elimination

28

	0a
	0b
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28

