

The VASY Team Validation of Systems

History of the VASY team

Staff (2007-2011)

- Permanent scientists:
 - Hubert Garavel (Inria)
 - Radu Mateescu (Inria)
 - Frédéric Lang (Inria)
 - Wendelin Serwe (Inria)
 - Gwen Salaün (Grenoble INP)
- Guest scientists:
 - Holger Hermanns (Saarland University 20%)
 - Etienne Lantreibecq (STMicroelectronics)
- Post-docs: 4 (~18 months)
- PhD students: 4 (~36 months Bull, STMicro)
- Software engineers: 17 (~19 months)
- Assistants: M. Felici D. Courtiol H. Pouchot

Scientific topics of VASY

Motivation

- Design of reliable computer systems
- Focus on asynchronous concurrency
 - Distributed processes
 - Message-passing communications
 - No central clock assumption
- Promotion of formal approaches
- Development of software tools (CADP, TRAIAN)
- Confrontation with real-life applications

Transfer theoretical concurrency results into robust tools for education, research, and industry

Main challenges

• A fundamental issue:

Fighting state explosion for asynchronous systems

• A usability issue:

Making formal methods acceptable by industry

• An architectural issue:

Designing modular components for verification and performance evaluation

Three main scientific themes

1. Models and verification techniques

2. Languages and compilation techniques

3. Case-studies and industrial applications

Theme 1: Models and verification

- Formal models for asynchronous concurrency
 - Automata-based models
 - Probabilistic / stochastic / timed models
 - (Parameterized) Boolean Equation Systems
- Explicit-state methods
 - Reachability analysis
 - On-the-fly verification
 - Compositional verification
 - Distributed verification
- Logical properties (model checking)
 - Mu-calculus, temporal logics
- Behavioural properties (equivalence checking)
 - Bisimulations
- Modular architectures generic software components

Theme 1: Highlights

- MCL / EVALUATOR 4.0
 - value-passing modal $\mu\text{-calculus}$ with data types
 - on-the-fly model checker based on parameterized B.E.S.
- SVL / BCG_MIN 2.0
 - compositional verification and performance evaluation
 - "smart reduction" automated strategies
 - signature-based minimization algorithms
- PBG / CAESAR_SOLVE
 - distributed verification using clusters (Grid 5000, PacaGrid)
 - distributed resolution algorithm for B.E.S.

Theme 2: Langages and compilation

- Formal languages for asynchronous concurrency
 - Process calculi
 - Functional / imperative languages
 - Standards: LOTOS [ISO 8807], E-LOTOS [ISO 15437]
- Pivot models / intermediate languages
 - Petri Nets extended with data
 - Communicating automata with data and time
- Compiling techniques
 - C code generation
 - rapid prototyping
 - interactive simulation
 - static analysis
 - source to source language translations

Theme 2: Highlights

- FIACRE (joint work with IRIT and LAAS-CNRS)
 - pivot language for asynchronous embedded systems
 - strongly inspired from our prior research on NTIF
 - part of OpenEmbedd/Topcased platforms (\rightarrow Polarsys)
- CHP (Communicating Hardware Processes)
 - language for asynchronous circuits (Caltech, CEA, TIMA)
 - formal semantics given by VASY
 - reduction to "standard" calculi by translation to LOTOS
- LOTOS NT (or LNT, for LOTOS New Technology)
 - an implementable version of E-LOTOS (ISO 15437)
 - tool chain by translation to "standard" LOTOS
 - used by Bull, CEA/Leti, and STMicroelectronics

Theme 2: Language map

Theme 3: Industrial applications

Main facts about VASY

Publications (2007-2011)

- PhD theses: 5
- Habilitation these: 1
- Journal papers: 11 (+7)
- Conference papers: 49 (+4)
- Book chapter: 1
- Press articles: 5
- Deliverables: 15
- Technical reports: 8

Collaborations

- Local
 - IBIS, IIHM, SARDES
- National
 - Inria: ATOLL (Rocq.) ESPRESSO (Rennes) OASIS (Sophia)
 - LAAS-CNRS and IRIT (Toulouse) LE2I (Dijon) LRI (Orsay)
- International
 - Bucharest Imperial College Malaga Twente Saarland
 - MIT Sherbrooke California Santa Barbara
- Industrial
 - Airbus Bull CEA STMicroelectronics

Attracted funding (2007-2011)

- Total: 2.241 M€
- Average: 448 k€ per year

Software: cadp.inria.fr

- A long-term effort
 - 50 tools, 20 code libraries
 - 750 pages of technical documentation
 - 12 machine architectures supported
- Academic dissemination
 - 441 license agreements signed
 - licenses granted for 3056 machines (2007-2011)
 - 56 new case-studies tackled using CADP (152 in total)
 - 30 new research tools connected to CADP (61 in total)
 - 10 university lectures based on CADP (2007-2010)
 - user forum: 200 members, 1330 messages
- Industrial dissemination
 - 36 yearly licences sold (180 k€)

Final words...

What should be retained from VASY?

- Never surrender to dominant opinions of the moment
 - Asynchrony is crucial for embedded systems
 - Process calculi still have a future
 - Explicit-state model checking is alive
- Continuum: theory software tools applications
- Quest for integration
 - process calculi equivalence checking model checking - performance evaluation
- Modular architectures for model checkers
 - explicit on-the-fly compositional distributed
- Better formal methods
 - for models (operational): LNT (aka LOTOS NT)
 - for properties (declarative): MCL