
Compilation of

LOTO·S Abstract Data Types

Hubert Garavel

Laboratoire de Génie Informatique

Institut I.M.A,G

Grenoble, France

(I.N.R.I.A., VERILOG)

1 CJESAR and CJESAR.ADT

generation-

ClESAR.ADT

verification

Aldébaran, Auto, Squiggles, ...

2 Compiling ADTs

Problem
Executing LOTOS abstract data type specifications

Existing solutions
1. 	 dynamic term rewriting

2. 	 code generation for rewriting machines [Wolz-Boehm]

Our approach
11

• static compilation

• performing computations at compile-time

• no pattern-matchlng, unification, backtracking, ... at run-time

21
• 	 target language: C

Issues
• 	data representation

LOTOS sorts ~ C t)'pes

• translation of equations jnto deterministic code

LOTOS operations ~ C functions

[Schnoebelen, "Re:fined Compilation of Pattern-Matching

for Functional Languages", SCP, 1988]

•••

3Example

• taken from the transport service [IS0-8072]

• history of requests

• transformations:

- sorne operations removed: NonEmpty, eq, ne

- one operation introduced: App

type TransportServiceBasicTSPReq~estHistory is
sorts

History
opns

NoTReqs -> History
App .• TSP, History -> History
Append •• TSP, History -> History
Empty •• History -> Bool

eqns
forall t, ti, t2 TSP,

h, hi, h2 History
ofsort History

not .(IsTReq (t)) => Append (t, h) = h;

IsTReq (t) => Append (t, h) = App (t, h);
ofsort Bool

Empty (NoTReqs) = true; .
Empty (App (t, h)) = Empty (h) and not (IsTReq· (t));

endtype

4 lmplementing data

1. 	 apply flattening to the specification

2. 	 treat each sort S in turn

Here: S = History

3. 	 consider the set of operations with result of sort S

Here:

NoTReqs : -> History
App TSP, History -> History
Append •• TSP, History -> History

4. 	 divide this set in two parts

• 	constructors: not completely de:fined by the equations

e non-constructors completely de:fined by the equations
non-constructor operations can always be rewritten

Here:
* constructors: NoTReqs and App
* non-constrilctors. Append

not (IsTReq (t)) => Append (t, h) = h;

{
 IsTReq(t) 	 => Append (t, h) = App (t, h);

Constructor identification can be clone:

• 	by hand (as in CJESAR.ADT)

• automatically [Camon]

5 lmplementing data

5. choose an implementation for values

{ values of sort S } Ç { terms made only of constructors }

NoTReqs : -> History
Here: { A pp : TSP, History -> History
Syntactical definition:

<History> ::= NoTReqs 1 App (<TSP>, <History>)

Example: A pp (t 1 , App (t2, App (t3, NoTReqs)))

App App App NoTReqs

t 1 t2 t3

Representation with C data struetures:

general: pointers and discriminated unions:

• <App, t, h>

• <NoTReqs>

optimized: no discriminant

• <t, h>

• NULL

6Compiling operations

Implementation _of constructors
• allocation and initialization of a memory cell

create a cell <App, t, h>
App (t, h) -= { return a pointer to it

Implementation of non-constructors
• pattern-matching algorithm

• generation by induction on the set of rules

Empty (NoTReqs) = true;
Empty (App (t, h)) = Empty (h) and not (IsTReq (t));

-lJ.

if hO has the form <NoTReqs> then
true

Empty (hO)
else if hO has the form <App, t, h> then

Empty (h) and not (IsTReq (t))

not (IsTReq (t)) => App~nd (t, h) -- h·,

IsTReq (t) => Append -(t, h) = App (t, h);

-lJ.

if not (IsTReq (t)) then
h

Append (t, h) ­
else if IsTReq (t) then

App (t, h)

7 Theoret ical issues

Restrictions
• equations are oriented

• equations must be left-linear

f (t, h, h) = Append (t, h)

-u.
h = h' => f (t, h, h') = Append (t, h)

• 	equations _between constructors must be removed

Termination
• What happens if the rewriting system does not termina te?

• The generated code loops (unfinite recursive calls).

f 	 (t, h) = Append (t, f (t, h))

.ij.

f (t, h) - { A pp end (t, f (t, h))

~Confluence

• What happens if the rewriting system is not confluent?

• Call-by-value + decreasing priority is assumed.

g (t, NoTReq~) = false;

g (t, h) = IsTReq (t);

-li-

if h has the form <NoTReqs> then
false

g 	 (t, h) ­
el	se

IsTReq (t)

8 Conclusion

• LOTOS ADTs can be translated into C libraries

• a prototype tool exists: C.IESAR.ADT

• translation is general

• translation is fast

• generated code is efficient, even·optimal for:

- integer numbers

- enumerated types

- tuples (records)

• other. applications:

-LOTOS-+ ASN.l

SDL-+ C

	0
	1
	2
	3
	4
	5
	6
	7
	8

