Compilation of
LOTOS Abstract Data Types

Hubert Garavel

Laboratoire de Génie Informatique
Institut I.M.A.G
Grenoble, France

(LN.R.LA., VERILOG)

CAESAR and CESAR.ADT

LOTOS
specification

expansion

SUBLOTOS

generation

concrete types

C program
(simulator)

simulation

@

verification
Aldébaran, Auto, Squiggles, ...

CAESAR.ADT

1

Compiling ADTs 2

Problem
Executing LOTOS abstract data type specifications

Existing solutions

1. dynamic term rewriting

2. code generation for rewriting machines [Wolz-Boehm)]

Our approach

1’. static compilation

e performing computations at compile-time

e no pattern-matching, unification, backtracking, ... at run-time

2'. target language: C

Issues

¢ data representation
LOTOS sorts — C types

¢ translation of equations into deterministic code
LOTOS operations — C functions

[Schnoebelen, “Refined Compilation of Pattern-Matching
for Functional Languages”, SCP, 1988]

Example 3

e taken from the transport service [ISO-8072]
e history of requests
e transformations:

— some operations removed: NonEmpty, eq, ne

— one operation introduced: App

type TransportServiceBasicTSPRequestHistory is ...
sorts

History

opns
NoTReqs : -> History
App : TSP, History -> History
Append : TSP, History -> History
Empty : History -> Bool

eqns

forall t, t1, t2 : TSP,
h, hi, h2 : History
ofsort History
not (IsTReq (t)) => Append (t, h) = h;

IsTReq (t) => Append (t, h) = App (t, h);
ofsort Bool
Empty (NoTRegs) = true;

Empty (App (t, h)) = Empty (h) and not (IsTReq (t));
endtypz

Implementing data 4

1. apply flattening to the specification
2. treat each sort S in turn
Here: S =History

3. consider the set of operations with result of sort S

NoTReqs : -> History
Here: App : TSP, History -> History
Append : TSP, History -> History

4. divide this set in two parts

e constructors: not completely defined by the equations

¢ non-constructors completely defined by the equations
non-constructor operations can always be rewritten

Here:
* constructors: NoTReqs and App
* non-constructors. Append
not (IsTReq (t)) => Append (t, h) = h;
{ IsTReq(t) => Append (t, h) = App (t, h);

Constructor identification can be done:

e by hand (as in CESAR.ADT)

e automatically [Comon]

Implementing data .

5. choose an implementation for values
{ values of sort § } C { terms made only of constructors }

NoTReqs : -> History
Here: : ;

App : TSP, History -> History
Syntactical definition:

<History> ::= NoTReqs | App (<TSP>, <History>)

Example: App (t1, App (t2, App (t3, NoTRegs)))

t1 ——] 12 s e I 1

Representation with C data structures:

general: pointers and discriminated unions:
e <App, t, h>
e <NoTReqs>
optimized: no discriminant
o <t, h>
e NULL

Compiling operations &

Implementation of constructors

e allocation and initialization of a memory cell

_ | create a cell <App, t, h>
Spp (te W)= {'return a pointer to it

Implementation of non-constructors
¢ pattern-matching algorithm

e generation by induction on the set of rules

Empty (NoTRegs) = true;
Empty (App (t, h)) = Empty (h) and not (IsTReq (t));
4
[if hO has the form <NoTReqs> then

true
else if hO has the form <App, t, h> then
| Empty (h) and not (IsTReq (t))

Empty (hO) = ¢

not (IsTReq (t)) => Append (t, h) = h;

IsTReq (t) => Append (t, h) = App (t, h);
Y
(if not (IsTReq (t)) then
v -

A d (t, h) =
ppewd {) | else if IsTReq (t) then

| App (t, h)

Theoretical 1ssues

Restrictions
e equations are oriented

e equations must be left-linear
f (t, h, h) = Append (t, h)
Y
h=h>=>f (t, h, h’) = Append (t, h)

¢ equations between constructors must be removed

Termination
e What happens if the rewriting system does not terminate?
e The generated code loops (unfinite recursive calls).
f (t, h) = Append (t, £ (t, h))
Y

£ (t, h) = { Append (t, £ (t, h))

Confluence

e What happens if the rewriting system is not confluent?

e Call-by-value + decreasing priority is assumed.
g (t, NoTReqg) = false;
g (t, h) = IsTReq (t);

Y

(if h has the form <NoTReqs> then
false '
else

IsTReq (t)

g (t, h) = |

Conclusion

e LOTOS ADTs can be translated into C libraries
e a prototype tool exists: CAESAR.ADT

e translation is general

e translation is fast

e generated code is efficient, even optimal for:

— integer numbers
— enumerated types

— tuples (records)
e other applications:

— LOTOS — ASN.1
SDL — C

	0
	1
	2
	3
	4
	5
	6
	7
	8

