CADP 2006 from
a Model Driven Perspective

Hubert Garavel
and the VASY team
INRIA Rhone-Alpes

http.//www.inrialpes.fr/vasy

%l INRIA

Asynchronous systems

P2

P1

e several processes (or tasks, agents, entities)
e that execute concurrently (in parallel)
e at different speeds (no central clock)

e Wit
e Wit
e Wit

N message-passing communications
nout shared memory (unless explicitly modelled)

N unspecified communication latencies

A =

The CADP toolbox

e A verification toolbox for asynchronous systems
e A modular, extensible architecture
e Generic software components for verification
e Main functionalities:
- several Iinput languages
- step-by-step simulation
- C code generation - rapid prototyping
- verification
- test generation
- performance evaluation

A o

Some figures about CADP

e A comprehensive toolset
38 tools, 3 code libraries

e Four platforms supported
PC/Linux, Sparc/Solaris, PC/Windows, PowerPC/MacOS X

e International dissemination
- license agreements signed with 358 organizations
- since Jan. 15t 2006: licenses granted to ~800 machines

e Many applications
- 88 case-studies accomplished using CADP

- 24 research tools connected to CADP
- 28 university lectures based on CADP since 2002

A =

Model transformations in CADP

(Standard) model-based verification

high-level model correctness

(behavioural) properties

low-level model result + diagnostic
(behavioural) (model fragment)

- W T VASY 6

Standard vs. refined verification

e Standard model-based verification fits well
within the model-driven framework

e But there exist refined techniques:
- Partial / on-the-fly verification
- Compositional verification
- Distributed verification

e Are refined techniques compatible with the
current model-driven approaches?

A e

1. Partial /7 on-the-fly verification

m_odel generation e R
IS governed by
the checker properties

|

high-level model

(behavioural)

partially
low-level model generated result + diagnostic
(behavioural) (on demand) (model fragment)

- W T VASY 8

2. Compositional verification

B
-
—
-
—

high-level model

(behavioural)

model split
into parts

low-level model
(behavioural)

—_y
—_y
L
—_y
L
—_y
L
—_y
—_y

Z |

3. Distributed verification

high-level model

high-level model (behavioural)

(behavioural)

possibly with
reductions
(confluence)

(
fragments
located on

several

& machines

low-level model
(behavioural)

______ low-level model
(behavioural)

- W T VASY 10

Models supported by CADP

~N O O B W DN B

Seven models

Labelled Transition Systems
Markov models
Communicating automata
Process calculi - LOTOS
Modal mu-calculus formulas
Boolean equation systems
Verification scenarios

— @

VASY 12

1. Labelled Transition Systems

Labelled Transition Systems

e L|LTS: alow-level model to describe behaviors
(state spaces)

e LTS =graph

- edges labelled by "actions" (or "events", or
"labels") containing port names and typed data

- no information attached to states

VASY 14

.. Labelled Transition Systems

e | TS can be:

- written by hand (only the small ones)
- or generated automatically

e LTS can be very large (billions of states and
transitions) — state explosion problem

e CADP provides four representations for LTS

—_ A e

1.a. Explicit LTS model

e LTS Is given by its list of states and transitions
e CADP provides a compact file format: BCG

e Many CADP libraries and tools for BCG: bcg_draw,
bcg_edit, bcg _graph, bcg 10, bcg info,
bcg_labels, bcg _min...

VASY 16

1.b. Traces model

 Event traces (log files) obtained during
system execution

e Traces = a particular case of LTS

e CADP provides a dedicated trace format:
- text files
- one event per line
- comments allowed
- multiple traces allowed In the same file

e CADP tool for handling traces: SEQ.OPEN

A B

1.c. Partitioned LTS model

e A useful model for distributed verification
e PBG (Partitioned BCG Graph) format

PBG
1 model
BCG BCG j BCG BCG
fragment fragment fragment fragment

e LTS fragments are split accross different machines
e CADP tools: DISTRIBUTOR, BCG_MERGE

A B

1.d. Implicit LTS model

e A requirement for on-the-fly verification
- LTS 1s only built on demand
- LTS can be built only partially
- model Is only defined by a programming interface

e CADP tools for handling implicit LTS
- Open/Caesar programming interface

- many compilers implementing Open/Caesar:
bcg_open, caesar.open, exp.open, if.open,
kronos-open, mcrl.open, seqg.open, umlaut 1.0...

- many tools built on top of Open/Caesar

A =

2. Markov models

Markov models

Extensions of LTS by adding special transitions:
e ordinary transitions ("SEND !12 !true")

e probabilistic transitions ("prob 0.3")
— discrete time Markov chains (DTMC)

e stochastic transitions (“rate 1.1")
— continuous time Markov chains (CTMC)

e mixed transitions
- "SEND 112 'true ; prob 0.3"
- "SEND 112 Itrue ; rate 1.1"

Markov models are encoded in BCG or Open/Caesar

W VASY 21

CADP tools for Markov models

BCG_ MIN
- minimizes using bisimulation /7 lumpability
DETERMINATOR

- transforms a well-formed stochastic LTS
Into a CTMC by removing nondeterminism

BCG STEADY

- for a CTMC, computes steady-state proba-
bilities and throughputs on the long run *

- Interfaced with Excel and Gnuplot

BCG_TRANSIENT

- for a CTMC, computes transient pr(_)bab_ilities -
and throughputs at a given list of time instants

- interfaced with Excel and Gnuplot

low priority disk

- W TTVASY 22

3. Communicating LTS

Communicating LTS

The EXP 2.0 model of CADP:

e Set of LTS running in parallel asynchronously
e LTS described In various formats (BCG, SEQ...)
e Multiple synchronization primitives:
- synchronization vectors (MEC, FC2)
- process algebra parallel operators (CCS, CSP, LOTOS, E-LOTOS)
e Flexible operations on actions:
- action hiding
- action renaming
- action cut

—— % ——

VASY 24

The EXP 2.0 model of CADP

Action lists
Lii=A, ... A,

Composition expressions (~ 10 operators)

E::="LTS file"
| hide[all but]LiInE
| rename A, > A, ..., A, > A INE
| cut[allbut]LinE
| par[L, >TE 1] ... 11 [L, >TE,
I

/

VASY 25

Example of communicating LTS

hide B, C In
par
A, B, C > "pl.bcg"
|
A, B — "p2.bcg"

1
A, C —> "p3.bcg"

—— % ——

VASY 26

CADP tools for communicating LTS

e EXP.OPEN 2.0:

- on-the-fly exploration of communicating LTS

- partial order and confluence reductions

- connections to Petri net models: TINA, PEP

- automatic generation of environment constraints

e PROJECTOR 2.0:
- LTS generation under environment constraints

—_ A =

4. Process calculi - LOTOS

LOTOS

e A formal model for asynchronous systems
(protocols, distributed systems, etc.)

e International standard [ISO-8807:1989]

e Two orthogonal sub-languages:
Data: abstract data types
- sorts and operations
- algebraic equations
Processes: process algebras (CCS, CSP)
- parallel processes (interleaving semantics)
- message-passing communication

A e

LOTOS types: Example

type FLOOR is BOOLEAN
sorts
FLR

opns
LOWER (*! constructor *),
MIDDLE (*! constructor *),
UPPER (*! constructor *),
ERROR (*! constructor *) :-> FLR
INCR, DECR : FLR -> FLR
== , <, > :FLR, FLR -> BOOL
eqns
forall X, Y:FLR
ofsort FLR
INCR (LOWER) = MIDDLE;
INCR (MIDDLE) = UPPER;
(* else *) INCR (X) = ERROR;

/

ofsort FLR
DECR (MIDDLE) = LOWER;
DECR (UPPER) = MIDDLE;
(* else *) DECR (X) = ERROR;

ofsort BOOL
X == X = true;
(* else *) X ==Y = false;

ofsort BOOL
LOWER < MIDDLE = true;
LOWER < UPPER = true;
MIDDLE < UPPER = true;
(* else *) X <Y = false;

ofsort BOOL
X>Y=Y<X;
endtype

VASY 30

LOTOS processes: Example

UP] T DOWN
ELEVATOR
GOJ CALL
CLIENT, CLIENT,

ELEVATOR [CALL, GO, UP, DOWN] (LOWER, LOWER)
[[CALL, GO]|

(
CLIENT [CALL, GO] (LOWER, UPPER)

|11
CLIENT [CALL, GO] (UPPER, MIDDLE)

)

—_ Z =

LOTOS processes: Example

process ELEVATOR [CALL, GO, UP, DOWN] (CURRENT, TARGET: FLR) : noexit :=
[TARGET > CURRENT] ->
UP 1INCR (CURRENT);
ELEVATOR [CALL, GO, UP, DOWN] (INCR (CURRENT), TARGET)
[l
[TARGET < CURRENT] ->
DOWN !DECR (CURRENT);
ELEVATOR [CALL, GO, UP, DOWN] (DECR (CURRENT), TARGET)

[l
[TARGET == CURRENT] ->

(
CALL ?NEW_TARGET:FLR;

ELEVATOR [CALL, GO, UP, DOWN] (CURRENT, NEW_TARGET)
[l
GO NEW_TARGET:FLR;

ELEVATOR [CALL, GO, UP, DOWN] (CURRENT, NEW_TARGET)
)

endproc

—_ Z o

CADP tools for LOTOS

and written C code
types+functions <. data

behaviour

generated C code ‘(9enerated C code
types+functions Processes

LTS execution

W VA a3

Intermediate models for LOTOS

CAESAR.ADT

C code for
types+functions

LOTOS
program

\

Extended
Petri nets

Processes

CAESAR

C COW

control and
data flow
optimizations

, explicit LTS
(BCG)

> implicit LTS
(OPEN/CAESAR)

N'true" execution

(EXEC/CAESAR)

VASY 34

5. Modal mu-calculus formulas

Modal mu-calculus

Logic formulas to describe temporal properties
of actions A present in the LTS

Action formulas

o= A | —a | OLI\/OLZ‘ o A O
State formulas

¢ =F T —P | ¢1V QP | AR

C(aye [[alel X uX.elvX.o

with extensions (regular expressions) for user
friendliness

A e

Mu-calculus examples (1)

e Deadlock freedom
(T) T

O O

e Potential reachability of an action A
X . (A)YTVv(T)X
or simply
(T*. AT

O O— .. —O ‘e

e W VASY 37

Mu-calculus examples (2)

e No RECV reached before a SEND
vXK.[RECV]F A =SEND] X
or simply
[(-SEND)*.RECV] F

~SEND . —SEND ng{v
O

—_— Z =

Mu-calculus examples (3)

e A RECV Is fairly reached after each SEND
vX.([SEND] nY . ((RECV)T v
(=RECV)YY)A[T]X)

or simply
[T*.SEND] ((-RECV)*.RECV) T
SEND RECV

B oo

—_ A e

O

O

CADP tool for mu-calculus formulas

EVALUATOR 3.5 model checker:
e User-defined libraries of formula templates

e Formulas evaluated on-the-fly while the LTS
model 1s under construction

e Diagnostic (LTS fragment) generated to
explain why a formula Is true or false

e Linear-time complexity wrt LTS size and
formula size

—_ A e

6. Boolean Equation Systems

Boolean Equation Systems

e A key formalism to encode many verification
problems

e Examples:
- Model checking (temporal logics)
- Equivalence checking (bisimulations)
- State space reductions (confluence, partial orders, ...)
- Test case generation

e BES are often represented as boolean graphs or
game graphs

A e

Boolean Equation Systems

D

acyclic
dependencies
between_blocks
((alternatlon-freg

boolean variable
defined by its equation

equation block
(least/greatest fix point)

Z L

Boolean Equation Systems in CADP

e BES are often large (108 variables, 10° operators)

e CADP supports two representations:

- Explicit BES: text file format with gzip compression

- Implicit BES: "caesar_solve" programming interface
e CADP library for solving BES:

- CAESAR_SOLVE_1: on the fly solver

- diagnostic generation (examples or counterexamples)
e Three CADP tools for generating BES:

- EVALUATOR (model checking)

- BISIMULATOR (equivalence checking)

- REDUCTOR (minimization)

—_ A e

7. Verification scenarios

CADP end-user interfaces

i
|

2 different interfaces: ©F— e —=

Familts Windsd Kill Cleor |

| Torwriod paly 2k 5o fiagoes TLIL 20 e
- 5 li‘ | [“EEE, ¥ beg avhihito B ~tapth O 4 Ay gorgarasF]
o L et Al i h 1 1 delogt ge5
. _——— S — D.cg-,._q:-m: uring .-:u:u;[q.;:ln ﬁca{::::tu o
L Tl Lo)
deaibak sen “ Sorist satbe. baban s S i, seqente of e frns
1 e

[adandlock

- E? | | E& @ | o ey bsadth-Firot seerch alyorithe
- - —— - ik ssgueroian? found of depth 33
L o
I etk paly hibite. sey R P ——
l I] ‘ml.lll stata?
@ | ﬁ ER_TRAHG IHL IFERD 16"
CRLT_CET L lU.III]II.I lw |h\.l TR [) CLL 1]

W
1 HETRESP_MIL 0L 1™

File = LILGET 11 -|n;|| u- -pn; [P (FLD FRLEE. FRLGED (MOCOLL OLTOTG"
relpt mluh “ IHLBE 0P 110 IRERD 1P

! T_TRAITGFER |HD 1ML IFERD IR0 |RETRESPOOME 1OUTOND 0™

Hl T IHL 1A IFLT

“LHI_PUT 19 1) IBIC_SH IFI.IG IFALE, TREYX

" FRIE. |nq W3 IHL IFEFD |

IR TE. III.I. "

TG TA (fd B0 SH TR0 0L 1M1

TR |0 IFLIEH 1
_CET i ICI.III'lIu 0 (A0 TROC S PG IFALSE. TRLED

- dialog boxes —

2F P E g Jueloo

I Reduce ing i debarn

Resdsotion Relatic Find path to atabe, .

- WPy teporal Fewilat,.
[walarce w T E PAFEL_ TRWFER |0 1ML (FLUSH 130 INETRE_MIL 10UTOI0
it P o T i 1 A TEe) e T
FCET_TRTFER (ML 1ho | X) 1o
—_— I v Tonereational Enslislerce = Safcty v Gofare IS 1, (AL, w TR,
et Wi b LT MTE KILL (4 IMETRESP_TONE (MO0 1ROCH"
Devigion Hethod Yzl FRE_[AD |H1 |H| |tu_|p|1E FIIL 130"

T_PUT iHL IR0 IFLL_SH

"FREE_UT] ML IEOLETTEKILL ¥0°

f T_GET UL §IROI0 (R0 a0 IRC_3H IA0_O0L 00010
Hidirg File doptionall | 'I“'I BEP IHL IFLLEH 117

- contextual menus =] |

'Pl' TET IHL VTG TR0 1RO IBOC_SH IROLEOLL VIMOIDT
I Raduce uring Fcltools E TRARSFER ML IH0 IDCLAH 100 TRETRESR MIL §DUTO1G 00°
i

* Crardad

Rsdurtion Relstion T a0 IRC_SH IFLGG FELSE, TRUED TRCROOMAL | [m|e¢

Ehroeg Equlualencs cdendlocks

- online help '

|
|
Dexdaion Hethad |
Crardrd + Birary bacizimn |..g-.. |

® | Larce:

e SVL (Script Verification Language)
a Domain Specific Language for verification

J! l VASY 46

Motivations for SVL

. Textual interface for all the CADP tools

. Intuitive specification of verification
scenarios

. Reduced complexity of large compositional
verification scenarios

Example: 70 processes = 500 intermediate files

—_ A T

SVL Script: Example 1

% DEFAULT LOTOS FILE="bitalt_protocol.lotos"
"bitalt_protocol.exp" =
leaf strong reduction of
hide SDT, RDT, RDTe, RACK, SACK, SACKe in
(
(BODY_TRANSMITTER ||| BODY_RECEIVER)
|[SDT, RDT, RDTe, RACK, SACK, SACKe]|
(MEDIUM1 | | | MEDIUM2)
);
"bitalt dead.seq" = deadlock of "bitalt_protocol.exp";
"bitalt_live.seq" = livelock of "bitalt_protocol.exp";
branching comparison "bitalt_protocol.exp" == "bitalt_service.lotos";

—_— Z o

SVL Script: Example 2

% DEFAULT LOTOS FILE="rel rel.lotos"
"crash_trans.bcg" = strong reduction of CRASH_TRANSMITTER ;
"rel_rel.bcg" = generation of leaf strong reduction of
hide R_T1, R_ T2, R T3, R12, R13, R21, R23, R31, R32 in
((((RECEIVER_NODE_1 -]]?"rl_interface.lotos")
I[R12, R21, R13, R31]|
((RECEIVER_NODE 2 -||? "r2_interface.lotos")
1[R23, R32]|
(RECEIVER_NODE_3 -||? "r3_interface.lotos")
) -l[R_T2, R_T3]| "crash_trans.bcg"
) -l[R_T1, R_T2, R_T3]| "crash_trans.bcg"
)
I[R_T1, R T2, R T3]}
"crash_trans.bcg");

—_— A e

CADP tool for verification scenarios

SVL compiler:
e translates SVL scripts into Bourne shell scripts
e Jaunches these shells scripts

XXXXXXXXXXX
mmmmm

SVL script | = ..

— Caesar, Caesar.adt
s Bcg_min, Beg_labels
) T Fc2tools
Bourne shell script | ... Exp.Open
oo Projector
Reductor ...

—_— Z L

Conclusion

Models in CADP

Seven models available to CADP users

1. Labelled Transition Systems 5. Modal mu-calculus formulas
2. Markov models 6. Boolean equation systems
3. Communicating automata 7. Verification scenarios

4. Process calculi - LOTOS

More models used internally
- Petri nets extended with data
- Boolean graphs

Some models do not fit in the usual model-driven approach
- compressed binary file formats
- models split into fragments and/or accross different machines
- on-the-fly: models built on-demand by pipelined applications

—_ A -

More information ...

http://www.inrialpes.fr/vasy/cadp

A B

