
CADP 2006 from
a Model Driven Perspective

Hubert Garavel
and the VASY team
INRIA Rhône-Alpes

http://www.inrialpes.fr/vasy

VASY 2

Asynchronous systems

• several processes (or tasks, agents, entities)
• that execute concurrently (in parallel)
• at different speeds (no central clock)
• with message-passing communications
• without shared memory (unless explicitly modelled)
• with unspecified communication latencies

P1

P2

P3

P4 P5

VASY 3

The CADP toolbox
• A verification toolbox for asynchronous systems
• A modular, extensible architecture
• Generic software components for verification
• Main functionalities:

– several input languages
– step-by-step simulation
– C code generation - rapid prototyping
– verification
– test generation
– performance evaluation

VASY 4

Some figures about CADP

• A comprehensive toolset
38 tools, 3 code libraries

• Four platforms supported
PC/Linux, Sparc/Solaris, PC/Windows, PowerPC/MacOS X

• International dissemination
– license agreements signed with 358 organizations
– since Jan. 1st, 2006: licenses granted to ∼800 machines

• Many applications
– 88 case-studies accomplished using CADP
– 24 research tools connected to CADP
– 28 university lectures based on CADP since 2002

Model transformations in CADP

VASY 6

(Standard) model-based verification

high-level model

(behavioural)

correctness

properties

model generator
(compiler)

low-level model
(behavioural)

model checker or

equivalence checker

result + diagnostic
(model fragment)

VASY 7

Standard vs. refined verification
• Standard model-based verification fits well

within the model-driven framework

• But there exist refined techniques:
– Partial / on-the-fly verification
– Compositional verification
– Distributed verification

• Are refined techniques compatible with the
current model-driven approaches?

VASY 8

1. Partial / on-the-fly verification

high-level model

(behavioural)

correctness

properties

model generator
(compiler)

low-level model
(behavioural)

model checker or

equivalence checker

result + diagnostic
(model fragment)

model generation
is governed by
the checker

partially
generated

(on demand)

VASY 9

2. Compositional verification

high-level model

(behavioural)

model generator
(compiler)

low-level model
(behavioural)

gener.

minim.

A
B

C

A B C

gener. gener.

minim. minim.

recombination.

a b c

a+b+c

model split
into parts

VASY 10

3. Distributed verification

high-level model

(behavioural)

model generator
(compiler)

low-level model
(behavioural)

gener.
mach. 1

fragm. 1

merging

gener.
mach. 2

gener.
mach. 3

fragm. 2 fragm. 3

high-level model

(behavioural)

possibly with
reductions

(confluence)

low-level model
(behavioural)

fragments
located on

several
machines

Models supported by CADP

VASY 12

Seven models

1. Labelled Transition Systems
2. Markov models
3. Communicating automata
4. Process calculi - LOTOS
5. Modal mu-calculus formulas
6. Boolean equation systems
7. Verification scenarios

1. Labelled Transition Systems

VASY 14

Labelled Transition Systems
• LTS: a low-level model to describe behaviors

(state spaces)
• LTS = graph

– edges labelled by "actions" (or "events", or
"labels") containing port names and typed data

– no information attached to states
– except the identification of one initial state

VASY 15

… Labelled Transition Systems

• LTS can be:
– written by hand (only the small ones)
– or generated automatically

• LTS can be very large (billions of states and
transitions) → state explosion problem

• CADP provides four representations for LTS

VASY 16

1.a. Explicit LTS model
• LTS is given by its list of states and transitions

• CADP provides a compact file format: BCG

• Many CADP libraries and tools for BCG: bcg_draw,
bcg_edit, bcg_graph, bcg_io, bcg_info,
bcg_labels, bcg_min…

VASY 17

1.b. Traces model
• Event traces (log files) obtained during

system execution
• Traces = a particular case of LTS

• CADP provides a dedicated trace format:
– text files
– one event per line
– comments allowed
– multiple traces allowed in the same file

• CADP tool for handling traces: SEQ.OPEN

VASY 18

1.c. Partitioned LTS model
•A useful model for distributed verification
•PBG (Partitioned BCG Graph) format

PBG
model

GCF (Grid
Config. File)

… BCG
fragment

BCG
fragment

BCG
fragment

BCG
fragment

• LTS fragments are split accross different machines
• CADP tools: DISTRIBUTOR, BCG_MERGE

VASY 19

1.d. Implicit LTS model
•A requirement for on-the-fly verification

– LTS is only built on demand
– LTS can be built only partially
– model is only defined by a programming interface

• CADP tools for handling implicit LTS
– Open/Caesar programming interface
– many compilers implementing Open/Caesar:

bcg_open, caesar.open, exp.open, if.open,
kronos-open, mcrl.open, seq.open, umlaut 1.0…

– many tools built on top of Open/Caesar

2. Markov models

VASY 21

Markov models
Extensions of LTS by adding special transitions:

• ordinary transitions ("SEND !12 !true")
• probabilistic transitions ("prob 0.3")
→ discrete time Markov chains (DTMC)

• stochastic transitions ("rate 1.1")
→ continuous time Markov chains (CTMC)

• mixed transitions
– "SEND !12 !true ; prob 0.3"
– "SEND !12 !true ; rate 1.1"

Markov models are encoded in BCG or Open/Caesar

VASY 22

CADP tools for Markov models
BCG_MIN

– minimizes using bisimulation / lumpability

DETERMINATOR
– transforms a well-formed stochastic LTS

into a CTMC by removing nondeterminism

BCG_STEADY
– for a CTMC, computes steady-state proba-

bilities and throughputs on the long run
– interfaced with Excel and Gnuplot

BCG_TRANSIENT
– for a CTMC, computes transient probabilities

and throughputs at a given list of time instants
– interfaced with Excel and Gnuplot

3. Communicating LTS

VASY 24

Communicating LTS
The EXP 2.0 model of CADP:
• Set of LTS running in parallel asynchronously
• LTS described in various formats (BCG, SEQ…)
• Multiple synchronization primitives:

– synchronization vectors (MEC, FC2)

– process algebra parallel operators (CCS, CSP, LOTOS, E-LOTOS)

• Flexible operations on actions:
– action hiding
– action renaming
– action cut

VASY 25

The EXP 2.0 model of CADP
Action lists

L ::= A1, ..., An

Composition expressions (∼ 10 operators)

E ::= "LTS_file"
| hide [all but] L in E
| rename A1 → A'1, ..., An → A'n in E
| cut [all but] L in E
| par [L1 →] E1 || ... || [Ln →] En

| …

VASY 26

Example of communicating LTS

hide B, C in
par
A, B, C → "p1.bcg"
||
A, B → "p2.bcg"
||
A, C → "p3.bcg"

0

1 234

567 891011

12 1314 15161718 19

20 21 222324252627 28

293031 32

33 3435 36

C CAA

CA

A DA

A
C C

A

C

CB

C

C

A

A

C

A

C

B D

D

A

A

D

A

D
B

C
C

B B

C

B

B

D

A

A

C

AA

DD

A

DD

B

D

B

B

C C

B

C C

A

CB C

A

D AD

B

C

A

C

B D
D

B
BD

B

D

A

D

B
B

C

B

B
D

D

B

D
D

A

D

B

D

AC

B

C A

0

1 2 34

5 67 89 10

1112 13 14

15

G2 G1G4G3

G2

G1

G4

G2

G1G3 G2

G4

G3

G1

G4

G3

G2
G1

G2

G4
G1

G4

G2

G3

G1

G3 G4
G3

G2G1 G4 G3

0

1 2 34

5 6 7 8910

11 12 1314

15 16

G !TRUE G !TRUEG !FALSEG !FALSE

G !FALSE
G !TRUE

G !TRUE
G !FALSE

G !TRUE

G !FALSEG !FALSE

G !TRUE

G !FALSE

G !FALSE

G !TRUE

G !TRUE

G !FALSE

G !FALSE

G !TRUE

G !TRUE

G !FALSE G !FALSE

G !TRUE

G !TRUE

G !TRUE

G !FALSE G !FALSE

G !TRUE

G !FALSE

G !TRUEG !TRUE

G !FALSE
G !FALSE

G !FALSE

G !TRUE

G !TRUE

B C

p1.bcg

p2.bcg p3.bcg
A

VASY 27

CADP tools for communicating LTS

• EXP.OPEN 2.0:
– on-the-fly exploration of communicating LTS
– partial order and confluence reductions
– connections to Petri net models: TINA, PEP
– automatic generation of environment constraints

• PROJECTOR 2.0:
– LTS generation under environment constraints

4. Process calculi - LOTOS

VASY 29

LOTOS
• A formal model for asynchronous systems

(protocols, distributed systems, etc.)
• International standard [ISO-8807:1989]
• Two orthogonal sub-languages:

Data: abstract data types
– sorts and operations
– algebraic equations
Processes: process algebras (CCS, CSP)
– parallel processes (interleaving semantics)
– message-passing communication

VASY 30

LOTOS types: Example
type FLOOR is BOOLEAN

sorts
FLR

opns
LOWER (*! constructor *),
MIDDLE (*! constructor *),
UPPER (*! constructor *),
ERROR (*! constructor *) :-> FLR
INCR, DECR : FLR -> FLR
== , _<_ , _>_ : FLR, FLR -> BOOL

eqns
forall X, Y:FLR
ofsort FLR

INCR (LOWER) = MIDDLE;
INCR (MIDDLE) = UPPER;
(* else *) INCR (X) = ERROR;

ofsort FLR
DECR (MIDDLE) = LOWER;
DECR (UPPER) = MIDDLE;
(* else *) DECR (X) = ERROR;

ofsort BOOL
X == X = true;
(* else *) X == Y = false;

ofsort BOOL
LOWER < MIDDLE = true;
LOWER < UPPER = true;
MIDDLE < UPPER = true;
(* else *) X < Y = false;

ofsort BOOL
X > Y = Y < X;

endtype

VASY 31

LOTOS processes: Example

ELEVATOR [CALL, GO, UP, DOWN] (LOWER, LOWER)
|[CALL, GO]|

(
CLIENT [CALL, GO] (LOWER, UPPER)
|||
CLIENT [CALL, GO] (UPPER, MIDDLE)
)

ELEVATOR

CLIENT2CLIENT1

CALLGO

DOWNUP

VASY 32

LOTOS processes: Example

process ELEVATOR [CALL, GO, UP, DOWN] (CURRENT, TARGET: FLR) : noexit :=
[TARGET > CURRENT] ->

UP !INCR (CURRENT);
ELEVATOR [CALL, GO, UP, DOWN] (INCR (CURRENT), TARGET)

[]
[TARGET < CURRENT] ->

DOWN !DECR (CURRENT);
ELEVATOR [CALL, GO, UP, DOWN] (DECR (CURRENT), TARGET)

[]
[TARGET == CURRENT] ->

(
CALL ?NEW_TARGET:FLR;

ELEVATOR [CALL, GO, UP, DOWN] (CURRENT, NEW_TARGET)
[]
GO ?NEW_TARGET:FLR;

ELEVATOR [CALL, GO, UP, DOWN] (CURRENT, NEW_TARGET)
)

endproc

VASY 33

CADP tools for LOTOS

LOTOS program

data behaviour

CAESAR.ADT CAESAR

hand written C code
types+functions

generated C code
types+functions

generated C code
processes

LTS execution

VASY 34

Intermediate models for LOTOS

explicit LTS
(BCG)

implicit LTS
(OPEN/CAESAR)

LOTOS
program

Extended
Petri nets

control and
data flow
optimizations

CAESAR.ADT

C code for
types+functions

C code for
processes

CAESAR

"true" execution
(EXEC/CAESAR)

5. Modal mu-calculus formulas

VASY 36

Modal mu-calculus
Logic formulas to describe temporal properties

of actions A present in the LTS

Action formulas
α ::= A ⏐ ¬α ⏐ α1 ∨ α2⏐ α1 ∧ α2

State formulas
ϕ ::= F ⏐ T ⏐ ¬ϕ ⏐ ϕ1 ∨ ϕ2 ⏐ ϕ1 ∧ ϕ2

⏐ 〈 α 〉 ϕ ⏐ [α] ϕ ⏐ X ⏐ μX . ϕ ⏐ νX . ϕ
with extensions (regular expressions) for user

friendliness

VASY 37

Mu-calculus examples (1)

• Deadlock freedom
〈 T 〉 T

• Potential reachability of an action A
μX . 〈 A 〉 T ∨ 〈 T 〉 X

or simply
〈 T*. A 〉 T

A
. . .

VASY 38

Mu-calculus examples (2)

• No RECV reached before a SEND
νX . [RECV] F ∧ [¬SEND] X

or simply
[(¬SEND)*.RECV] F

. . .
¬SEND ¬SEND RECV

VASY 39

Mu-calculus examples (3)

• A RECV is fairly reached after each SEND
νX . ([SEND] μY . (〈 RECV 〉 T ∨
〈 ¬RECV 〉 Y) ∧ [T] X)

or simply
[T*.SEND] 〈 (¬RECV)*.RECV 〉 T

. . .
RECVSEND

. . .

VASY 40

CADP tool for mu-calculus formulas

EVALUATOR 3.5 model checker:
• User-defined libraries of formula templates
• Formulas evaluated on-the-fly while the LTS

model is under construction
• Diagnostic (LTS fragment) generated to

explain why a formula is true or false
• Linear-time complexity wrt LTS size and

formula size

6. Boolean Equation Systems

VASY 42

Boolean Equation Systems
• A key formalism to encode many verification

problems

• Examples:
– Model checking (temporal logics)

– Equivalence checking (bisimulations)

– State space reductions (confluence, partial orders, …)

– Test case generation

• BES are often represented as boolean graphs or
game graphs

VASY 43

Boolean Equation Systems

x1 =μ x2 ∨ x3

x2 =μ x3 ∨ x4

x3 =μ x2 ∧ x7M1

x4 =μ x5 ∨ x6

x5 =μ x8 ∨ x9

x6 =μ F
M2

x7 =ν x8 ∧ x9

x8 =ν T

x9 =ν F
M3

equation block
(least/greatest fix point)

acyclic
dependencies

between blocks
(= alternation-free)

boolean variable
defined by its equation

VASY 44

Boolean Equation Systems in CADP
• BES are often large (108 variables, 109 operators)
• CADP supports two representations:

– Explicit BES: text file format with gzip compression
– Implicit BES: "caesar_solve" programming interface

• CADP library for solving BES:
– CAESAR_SOLVE_1: on the fly solver
– diagnostic generation (examples or counterexamples)

• Three CADP tools for generating BES:
– EVALUATOR (model checking)
– BISIMULATOR (equivalence checking)
– REDUCTOR (minimization)

7. Verification scenarios

VASY 46

CADP end-user interfaces

2 different interfaces:
• EUCALYPTUS graphical

user-interface
– dialog boxes
– file types
– contextual menus
– online help

• SVL (Script Verification Language)
a Domain Specific Language for verification

VASY 47

Motivations for SVL

1. Textual interface for all the CADP tools

2. Intuitive specification of verification
scenarios

3. Reduced complexity of large compositional
verification scenarios

Example: 70 processes ⇒ 500 intermediate files

VASY 48

SVL Script: Example 1
% DEFAULT_LOTOS_FILE="bitalt_protocol.lotos"
"bitalt_protocol.exp" =

leaf strong reduction of
hide SDT, RDT, RDTe, RACK, SACK, SACKe in

(
(BODY_TRANSMITTER ||| BODY_RECEIVER)
|[SDT, RDT, RDTe, RACK, SACK, SACKe]|
(MEDIUM1 ||| MEDIUM2)

);
"bitalt_dead.seq" = deadlock of "bitalt_protocol.exp";
"bitalt_live.seq" = livelock of "bitalt_protocol.exp";
branching comparison "bitalt_protocol.exp" == "bitalt_service.lotos";

VASY 49

SVL Script: Example 2
% DEFAULT_LOTOS_FILE="rel_rel.lotos"
"crash_trans.bcg" = strong reduction of CRASH_TRANSMITTER ;
"rel_rel.bcg" = generation of leaf strong reduction of

hide R_T1, R_T2, R_T3, R12, R13, R21, R23, R31, R32 in
((((RECEIVER_NODE_1 -||? "r1_interface.lotos")

|[R12, R21, R13, R31]|
((RECEIVER_NODE_2 -||? "r2_interface.lotos")

|[R23, R32]|
(RECEIVER_NODE_3 -||? "r3_interface.lotos")

) -|[R_T2, R_T3]| "crash_trans.bcg"
) -|[R_T1, R_T2, R_T3]| "crash_trans.bcg"

)
|[R_T1, R_T2, R_T3]|
"crash_trans.bcg");

VASY 50

CADP tool for verification scenarios
SVL compiler:
• translates SVL scripts into Bourne shell scripts
• launches these shells scripts

xxxxxxxxxxx
xxxxxxxx
xxxxxx
xxx
xx
xxxxxxxxxx
xx
xxxx

SVL script

SVL compiler

xxxxxxxxxxxxxx
xxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxx
xxxxxxxxxxxxxx
xxxxxx
xxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxx
xxxxxxx
xxxxxxx

Bourne shell script

Caesar, Caesar.adt
Bcg_min, Bcg_labels
Fc2tools
Exp.Open
Projector
Reductor …

Conclusion

VASY 52

Models in CADP
Seven models available to CADP users

More models used internally
– Petri nets extended with data
– Boolean graphs

Some models do not fit in the usual model-driven approach
– compressed binary file formats
– models split into fragments and/or accross different machines
– on-the-fly: models built on-demand by pipelined applications

5. Modal mu-calculus formulas
6. Boolean equation systems
7. Verification scenarios

1. Labelled Transition Systems
2. Markov models
3. Communicating automata
4. Process calculi - LOTOS

VASY 53

More information …

http://www.inrialpes.fr/vasy/cadp

