Nested-Units Petri Nets

Hubert Garavel Inria Grenoble – LIG and Saarland University http://convecs.inria.fr

Outline

- Introduction
- The NUPN model
- The unit-safeness property
- Some expressiveness results
- The place-fusion abstraction
- Optimized encoding of markings
- Software support for NUPNs
- Conclusion

Three controversial equations in concurrency theory

Controversial equation #1

from: **R. van Glabbeek** and **F. Vaandrager**. *Petri Net Models for Algebraic Theories of Concurrency* (PARLE, 1987)

(for all a, b, c : actions) a.(b +c) = a.b + a.c ?

If the answer is yes

- linear-time semantics
- If the answer is no
 - branching-time semantics

Controversial equation #2

from: **R. van Glabbeek** and **F. Vaandrager**. *Petri Net Models for Algebraic Theories of Concurrency* (PARLE, 1987)

(forall a, b : actions) a || b = a.b + b.a ?

- If the answer is yes
 - interleaving semantics
- If the answer is no
 - true concurrency
 - Petri nets can distinguish

(Mazurkiewicz traces and Winskel event structures can too)

A 3rd controversial equation...

(forall a, b, c) (a.b) $||_{b}$ (b.c) = (a.b.c) $||_{b}$ b?

see also: G. Boudol, I. Castellani, M. Hennessy, A. Kiehn

A theory of processes with localities (Form. Asp. Comp. 1994)

Interleaving semantics:

they are the same (i.e., a.b.c)

Petri nets:

- they are also the same
- no way to indicate that a and c are not on the same side

Petri nets preserve concurrency, not locality

a

b

С

How to model locality and hierarchy?

- Places that belong to the same sequential process are enclosed into "units"
- Units can be recursively nested at an arbitrary depth

The NUPN model (NUPN = Nested-Unit Petri Nets)

NUPN definition

Extension of elementary nets (all arc weights = 1) NUPN = 8-tuple (P, T, F, M₀, U, u₀, ⊑, unit) Elements 1-4 of this tuple are standard

Definition 1. A (marked) Nested-Unit Petri Net (acronym: NUPN) is a 8-tuple $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ where:

- 1. P is a finite, non-empty set; the elements of P are called places.
- 2. T is a finite set such that $P \cap T = \emptyset$; the elements of T are called transitions.
- 3. F is a subset of $(P \times T) \cup (T \times P)$; the elements of F are called arcs.
- 4. M_0 is a subset of P; M_0 is called the initial marking.

NUPN definition

■ NUPN = 8-tuple (P, T, F, M_0 , U, u_0 , \subseteq , unit)

► Elements 5-8 of these tuples are novel: (5,6,7): tree of units + (8): mapping: place → unit

- 5. U is a finite, non-empty set such that $U \cap T = U \cap P = \emptyset$; the elements of U are called units.
- 6. u_0 is an element of U; u_0 is called the root unit.
- 7. ⊑ is a binary relation over U such that (U, ⊒) is a tree with a single root u₀, where (∀u₁, u₂ ∈ U) u₁ ⊒ u₂ ^{def} = u₂ ⊑ u₁; thus, ⊑ is reflexive, antisymmetric, transitive, and u₀ is the greatest element of U for this relation; intuitively, u₁ ⊑ u₂ espresses that unit u₁ is transitively nested in or equal to unit u₂.
 8. unit is a function P → U such that (∀u ∈ U \ {u₀}) (∃p ∈ P) unit (p) = u;
- intuitively, unit (p) = u expresses that unit u directly contains place p.

informatics mathematics

Analogy with known data structures

File systems

- unit \rightarrow directory
- ▶ place \rightarrow file

Directories can be recursively nested at arbitrary depth Each directory may (or not) contain files

XML documents

- unit \rightarrow element
- ▶ place \rightarrow attribute

(contrary to XML, the order of elements is not significant)

Units are not boxes...

A NUPN units encapsulates places only This is different from "boxes" (or "subnets") that encapsulate places, transitions, and arcs

Another key difference is parallel composition:

- ▶ 2 boxes in parallel \rightarrow 1 box
- ▶ 2 units in parallel \rightarrow 3 units

Execution rules ("token game")

The usual firing rules of Petri nets are unchanged
 Units are totally orthogonal to transitions

Yet, units allow markings to be structured:

 $\mathsf{places}\,(u) \stackrel{\mathrm{def}}{=} \{ p \in P \mid \mathsf{unit}\,(p) = u \} \qquad \widetilde{U} \stackrel{\mathrm{def}}{=} \{ u \in U \mid \mathsf{places}\,(u) \neq \varnothing \}$

Proposition 1. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a NUPN. The family of sets places (u), where $u \in \widetilde{U}$, is a partition of P.

 $M \triangleright u \stackrel{\text{def}}{=} M \cap \mathsf{places}\,(u)$

Proposition 2. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a NUPN. Any marking M can be expressed as $M = (M \triangleright u_1) \uplus ... \uplus (M \triangleright u_n)$, where $u_1, ..., u_n$ are the units of \widetilde{U} , and where \uplus denotes the disjoint set union.

The unit-safeness property

Unit-safeness property

Disjonction of two units

disjoint $(u_1, u_2) \stackrel{\text{def}}{=} (u_1 \not\sqsubseteq u_2) \land (u_2 \not\sqsubseteq u_1)$ characterizes pairs of units neither equal nor nested one in the other.

Unit safeness of a marking

Definition 5. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a NUPN. A marking $M \subseteq P$ is said to be unit safe iff it satisfies the predicate defined as follows: unit-safe $(M) \stackrel{\text{def}}{=} (\forall p_1, p_2 \in M) \ (p_1 \neq p_2) \Rightarrow \text{disjoint} (\text{unit} (p_1), \text{unit} (p_2));$ that is, all places of a unit-safe marking are contained in disjoint units.

Unit safeness of a NUPN

Definition 6. Let $N = (P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a NUPN. N is said to be unit safe *iff it is safe and all its reachable markings are unit safe*.

Note: Using P/T nets rather than elementary nets, the safeness condition (i.e., contact freeness) would not be needed to ensure that strict-firing and weak-firing rules coincide

informatics mathematics

Unit safeness \Rightarrow local mutual exclusion

Proposition 3. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a NUPN. For each marking M and unit u, unit-safe $(M) \Rightarrow card(M \triangleright u) \leq 1$; that is, a unit-safe marking cannot contain two different local places of the same unit.

In each unit, local places are mutually exclusive
 In terms of linear algebra:

$$\sum_{p \in \mathsf{places}(u)} x_p \leq 1$$

So, unit safeness implies safeness (in fact, from the definition)
 These are not S-invariants, but inequalities

because a given unit may lose its token

Unit safeness ⇒ hierarchical mutual exclusion

Proposition 4. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a NUPN. For each marking M and units (u, u'), one has: unit-safe $(M) \land (M \triangleright u \neq \emptyset) \land (u' \sqsubset u \lor u \sqsubset u') \Rightarrow (M \triangleright u' = \emptyset)$; that is, if a unit-safe marking contains a local place of some unit u, it contains no local place of any ancestor or descendent unit u' of u.

Parent and children units are mutually exclusive
 If a parent has a token, children have no token
 If a child has a token, parents have no token

$$B_1$$
; (B_2 || B_3); B_4

Linear-algebraic characterization

Proposition 6. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a safe NUPN. N is unit safe iff any reachable marking M satisfies the following system of inequalities: $(\forall u \in \widetilde{U}) \ (\forall u' \in \widetilde{U} \mid u \sqsubseteq u') \sum_{p \in \text{places } (u) \cup \text{places } (u')} x_p \leq 1 \qquad (I_{u,u'})$ where each variable x_p is equal to 1 if place p belongs to M, or 0 otherwise.

Again, these are inequalities, not S-invariants

Some expressiveness results

How restrictive is unit safeness?

- Unit safeness is an (optional) property of NUPNs
- Unit-safe NUPNs are well-adapted to encode:
 - (nested) co-begin/co-end programming schemes
 - process calculi terms (without recursion through parallel composition)
- Unit-safe NUPNs can also express:
 - all safe elementary nets
 - all nets having a state-machine decomposition
 - This is shown by translation to unit-safe NUPNs

Elementary safe net → unit-safe NUPN

Proposition 8. Let (P, T, F, M_0) be any ordinary, safe P/T net (i.e., a safe elementary net). There exists at least one 4-tuple $(U, u_0, \sqsubseteq, \text{unit})$ such that $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ is a unit-safe NUPN.

- NUPNs generalize safe elementary nets
- **•** N places \rightarrow N+1 units
 - ► *N* units, one single place in each unit
 - one root unit having no local place

State-machine net → unit-safe NUPN

Proposition 9. Let (P, T, F, M_0) be any ordinary P/T net possessing a statemachine decomposition. There exists at least one 4-tuple $(U, u_0, \sqsubseteq, \mathsf{unit})$ such that $(P, T, F, M_0, U, u_0, \sqsubseteq, \mathsf{unit})$ is a unit-safe NUPN.

- NUPNs generalize state machines
- **•** N state machines $\rightarrow N+1$ units
 - N units, one per state machine
 - one root unit having no local place

The place-fusion abstraction

Place-fusion abstraction

Idea:

merge all places of each unit into a single place
 perform reachability exploration on this abstracted net

Advantages:

- complexity reduction when units have many places
- useful to determine concurrent units [Garavel-Serwe-06]

Place-fusion abstraction:

- preserves the NUPN property
- but does not preserve safeness, nor unit safeness

Optimized encodings for markings

Gains due to safeness /unit safeness

- For safe nets: markings can be encoded with one bit per place (rather than one integer per place)
- **For unit-safe nets:** further reductions are possible
 - ▶ local reductions (in each unit)
 N places in a unit ⇒ N+1 local states
 ⌈log2 (N+1)⌉ or ⌈log2 (N) + 1⌉ bits
 - hierarchical reductions (between parent/children units) "vertical" overlapping between:
 - the bits encoding the N places of a unit
 - the bits encoding all sub-units of this unit

Statistical results

5 encoding schemes compared on > 3500 NUPNs

 Best encoding: local + hierarchical reductions applied recursively on the tree of nested units
 Number of bits reduced by more than 60%

scheme	overlapping	number of bits or Boolean variables	average size
(a)	no	$\sum_{i \in \{1,,n\}} N_i$ (i.e., N)	100.00%
(b)		$\sum_{i \in \{1,\dots,n\}} \lceil \log_2(N_i + 1) \rceil$	40.52%
(c)		$\sum_{i \in \{1,\dots,n\}} (\lceil \log_2(N_i) \rceil + 1)$	46.44%
(b)	yes	$\nu(u_0)$ with leaf $(u_j) \Rightarrow \nu(u_j) = \lceil \log_2(N_j + 1) \rceil$	
(c)	yes	$\nu(u_0)$ with $leaf(u_j) \Rightarrow \nu(u_j) = \lceil \log_2(N_j) \rceil + 1$	44.94%

H-W-B codes

- A useful metrics to measure NUPN complexity
- Metrics: a triple of integers, noted H-W-B
 - H is the height of the tree of nested units (the root unit does not count if it has no local place)
 - W is the width of the tree of nested units, i.e., the number of leaf units (if the NUPN is unit safe, W gives an upper bound on
 - the number of tokens present in reachable markings)
 - B is the number of bits needed to represent markings using the best recursive encoding
- If B = number of places, the code is noted --B (H=1, W=B)

Software support for NUPNs

The ".nupn" file format

Textual format used by CADP tools Concise, human-readable, easy to read and parse

!creator caesar !unit_safe places #5 0...4 initial place 0 units #3 0...2 root unit 0 UO #1 0...0 #2 1 2 U1 #2 1...2 #0 U2 #2 3...4 #0 TO #1 0 #2 1 3 T1 #1 1 #1 2 T2 #1 3 #1 4

The NUPN was created by the CÆSAR tool. The creator tool warrants that unit-safeness holds. There are 5 places numbered from 0 to 4. The initial marking contains only place 0. There are 3 units numbered from 0 to 2. The root unit is unit 0. Unit 0 contains 1 place (0) and 2 sub-units (1, 2). Unit 1 contains 2 places (1, 2) and no sub-unit. Unit 2 contains 2 places (3, 4) and no sub-unit. transitions #3 0...2 There are 3 transitions numbered from 0 to 2. Trans. 0 has 1 input place (0) and 2 output places (1, 3). Trans. 1 has 1 input place (1) and 1 output place (2). Trans. 2 has 1 input place (3) and 1 output place (4).

The NUPN extension for PNML

PNML: ISO standard for Petri nets (2011)

A NUPN-specific extension of PNML has been defined for the Model Checking Contest

```
<toolspecific tool="nupn" version="1.1">
   <size places="5" transitions="3" arcs="7"/>
   <structure units="3" root="u0" safe="true">
      \leq unit id = "u0" >
         <places>p0</places>
         <subunits>u1 u2</subunits>
      </unit>
      <unit id="u1">
         <places>p1 p2</places>
         <subunits/>
      </unit>
      <unit id="u2">
         <places>p3 p4</places>
         <subunits/>
      </unit>
   </structure>
</toolspecific>
```

http://mcc.lip6.fr/nupn.php

Where to find NUPN examples?

MCC (Model Checking Contest) http://mcc.lip6.fr/models.php

Where to find NUPN examples?

VLPN (Very Large Petri Nets) (in preparation) <u>http://cadp.inria.fr/resources/vlpn</u>

350 realistic benchmarks collected from diverse sources: CHP, EXP, Fiacre, LOTOS, LNT, applied pi-calculus, etc.

- Group 1: nets containing redundant units
- Group 2: nets containing disconnected places or transitions
- Group 3: unsafe nets
- Group 4: nets having one single unit
- Group 5: unstructured nets
- **Group 6: communicating automata**
- Group 7: pseudo-communicating automata
- Group 8: genuine NUPNs (concurrency + hierarchy) code: H-W-B, with W≥3

code: 1-W-B, with W \geq 2

code: 1-1-B

code: - - B

How to produce NUPNs?

- From "flat" Petri nets:
 - PNML2NUPN (Lom Messan Hillah, Paris)
 - ▶ translation PNML \rightarrow NUPN (applies Prop. 8)
- From networks of communicating automata:
 - **EXP.OPEN** (Frédéric Lang, Grenoble)
 - ▶ translation EXP networks \rightarrow NUPN (applies Prop. 9)
- From process calculi:
 - CAESAR (Hubert Garavel, Grenoble)
 - \blacktriangleright translation LOTOS \rightarrow NUPN

(more involved!)

How to analyze NUPNs?

CAESAR.BDD (Hubert Garavel, Grenoble)

- syntax /static semantics checks on ".nupn" files
- structural and behavioural properties using BDDs
- ▶ translation NUPN \rightarrow PNML

LTSmin

PNMC

- CAESAR.SDD (Alexandre Hamez, Toulouse)
- GreatSPN (Elvio Amparore, Torino)
- ITS-TOOLS (Yann Thierry-Mieg, Paris)
- LoLA (Karsten Wolf & Torsten Liebke, Rostock)

Informatics mathematics

- (Jeroen Meijer & Jaco van de Pol, Twente)
 - (Alexandre Hamez, Toulouse)

Model Checking Contest 2017

10 competing tools
 4 tools supporting NUPNs
 they won all golden medals
 they won 73% of medals
 Read

Conclusion

Benefits of NUPNs

They store more information than other models:

- LTS: no concurrency no locality no hierarchy
- Petri nets: concurrency no locality no hierarchy
- NUPN: concurrency + locality + hierarchy
- NUPNs are easy to produce from process calculi, high-level nets, communicating automata, etc.
- NUPNs allow significant savings in state-space generation (60% less bits/Boolean variables)
- NUPNs smoothly integrate with existing tools: no major software rewrite needed

Challenging open issues

Dedicated algorithms exploiting NUPN structure

- to efficiently decide if a NUPN is unit-safe
- to compute behavioural properties: deadlocks, etc.
- to enhance partial-order / stubborn-set reductions

Conversion of "flat" Petri nets to "optimal" NUPNs

- "hierarchical" decomposition into state machines
- goal: less units, more places per unit, maximal nesting
- NUPNs extended to support multiple tokens
 - \blacktriangleright relax unit-safeness constraint \Rightarrow new flow relations
 - useful to encode process calculi with parallel recursion

