
What is Wrong with Process
Calculi – And How to Recover ?

Hubert Garavel
Inria Grenoble – LIG

Université Grenoble Alpes

http://convecs.inria.fr

http://convecs.inria.fr/

Glory and misery
of process calculi

2

Achievements of process calculi
A fruitful theory for modeling concurrent systems

 the proper way of expressing concurrency
 early detection of design mistakes

Famous calculi: CSP, CCS, ACP…
ISO standards: LOTOS, E-LOTOS
Turing awards: Hoare, Milner
Robust tools: CADP, FDR, mCRL2, PAT…

 with many successes on industrial case studies
Conferences: CONCUR, EXPRESS/SOS …
Process algebra handbook (1342 pages)

 3

But a shrinking audience…
No longer a research priority for funding agencies
Fewer industrial users:

 industry still has many problems with concurrency
 but concurrency theory is not seen as THE solution

Fewer students:
 no clear demand for learning concurrency theory
 difficult to create (or even maintain) such courses

Negative feedback loop:
 fewer students ⇒ fewer tools ⇒ fewer aplications ⇒ …

Concurrency experts are progressively retiring
4

A declining influence (1/2)
Java (1995)

 parallelism based on shared variables and locks
 no formal semantics – Java memory model issues
 back in time to the 1970s (pre-Hoarian era)

UML (1997)
 concurrent state machines with a graphical syntax
 no formal semantics – incompatible views

DSMLs (Domain-Specific Modelling Languages)
 XML-based syntax
 semantics in natural language (with OCL constraints)
 5

A declining influence (2/2)
Ocaml 5 (2023)

 formely, JoCaml (2014) was based on the join-calculus
 instead, Ocaml 5 brings shared-memory concurrency

A modern Cassandra complex:

 we know everything about concurrency, in full detail
 but no one pays attention to our opinion

6

A few sharp statements

 "Process algebra has lost the battle!"
 Moshe Vardi (May 2020)

 "Almost no one uses process calculi anymore these days."
 Joost-Pieter Katoen (April 2023)

7

Why such a decline?

8

Many reasons, in combination
Concurrency theory is inherently difficult

 but we make it more obscure (Greek letters…)
Concurrency theory is intrinsically diverse

 but we encourage artificial proliferation
 do we need hundreds of bisimulations?
 do we need a different formalism in each university?

Outsiders cannot distinguish key ideas from details
Lack of critical mass, insufficient tool support
Few solutions directly usable by practitioners

9

Error #1: Over-emphasis on "calculi"
CSP (1978) was a programming language
CCS (1980) was a "calculus"

 elegant definition, with a syntax that fits on one line
 but too simple for practical needs
 few realistic systems have been modelled using CCS

"calculi" ≠ "languages"
 calculi focus on semantics, and ignore anything else
 calculi must be extended, often in incompatible ways
 they do not support good engineering practices
 they do not care about developer productivity

10

Error #2: Purely functional style
Originally, CSP (1978) was an imperative language
But CCS (TCSP, LOTOS…) chose a functional style
PRO:

 CCS's formal semantics was state-of-the-art at its time
CONS:

 no loop operator, only recursive processes
 no mutable variables, only parameters
 parameter lists may become long and error-prone
 imperative style combined with static analysis is
 as safe as functional style, and much more flexible

11

Error #3: Algebraic style (1/3)
Trend to use algebra everywhere:

 1) for data types and functions: LOTOS, PSF, µCRL, etc.
 2) for processes: PSF, µCRL, mCRL2

PRO 1 (for data types and functions):
 abstract data types were fashionable in the 80s
 formal semantics, independent from implementations
 evaluation of expressions is free from side effects

CONS 1:
 completeness and confluence (nondeterminism) issues
 no proper modelling of exceptions
"ADTs really killed LOTOS." Juan Quemada (E-LOTOS editor)

12

Error #3: Algebraic style (2/3)
PRO 2 (for processes):

 appealing (?) analogy with arithmetics: 0, 1, +, .
 a few intuitive axioms: commutativity, associativity…
 binary sequential composition (>> CCS's action prefix)

CONS 2:
 poorly readable
 overloading: "+" means either addition or choice
 LISP-like parentheses: "))))" mixing data and processes
 insufficient expression of data flow, e.g.,
 sum x.(RECV (x).SEND (x)) instead of RECV ?x; SEND !x

13

Error #3: Algebraic style (3/3)
Also:

 software/hardware engineers are not mathematicians
 ⇒ algebra is not so appealing to them
 algebraic specifications are harder to implement
efficiently than, e.g., finite-state machines
 algebraic laws (but congruence) do not help much in
formal verification, done by state-space exploration

All in one, algebra brings more problems than
solutions

14

How to recover?

15

Back to the roots
What is really essential in process calculi?

1. An effective way to precisely model concurrency
2. Message-passing communication
3. Action-based semantics (transitions, not states)
4. Formal semantics given by SOS rules
5. Algebraic properties:

 commutativity, associativity, etc. of operators
 congruence of parallel composition for bisimulation
 (to fight state-space explosion)

 16

Guidelines for a better language
Stay away from calculi

 a one-line language like CCS is not sufficient in real life
Stay away from the fully functional style

 mainstream programming languages are imperative
 but functional traits (e.g. pattern matching) are ok

Stay away from fully algebraic approaches
 most programmers are not mathematicians
 reuse the advances of structured programming

Retrospectively, CSP-1978 was very well done

17

Global map of process calculi

18

Oxford
track

CSP (1978)

Edinburgh
track

CCS (1981)

TCSP (1984)

ISO
track

CCS (1989)

π-calculus

bigraphs

CSPm (1997)

LOTOS (1989)

E-LOTOS (2001)

Grenoble
track

LOTOS NT (1997)

 LNT 1.0 (2006)

Amsterdam
track

ACP (1984)

PSF (1989)

µCRL (1995)

mCRL2 (2006)

 LNT 7.2 (2023)

…

M

VPL (1997)

Bristol
track

Occam1 (1983)

Occam2 (1988)

Occam3 (1992)

A few words on LNT
LNT: language being developed at INRIA Grenoble

 inspired from CSP-1978, Occam, and E-LOTOS
 process calculus with imperative and functional traits
 formal semantics given by SOS rules
 strong typing and static analyses to detect mistakes
 support for proofs: assertions, pre- / post-conditions

Language primarily designed for engineers:
 keep things as simple as possible
 use notations as standard as possible (Ada-like syntax)
 emphasize readability by non-experts

19

A few results about LNT
Tool chain for LNT:

 two compilers (LNT2LOTOS and TRAIAN) – 90,000 locs
 80% of these compilers written in LNT ("self-hosted")

 LNT is both a specification and programming language
 part of the CADP toolbox (https://cadp.inria.fr)

On-going dissemination:
 engineering and master courses (easier than LOTOS!)
 28 published case studies done with LNT:
 e.g. Google, Nokia, Orange, STMicroelectronics, Tiempo
 14 research tools generating LNT code
 20

https://cadp.inria.fr/

Conclusion

21

Concurrency theory today
The audience of concurrency theory is shrinking

 its valuable results might fade to oblivion

Time has come for encyclopedic synthesis:
 reexamine / select / simplify / sort
 tutorials needed ("Concurrency for the dummies")
 contributions to Wikipedia

Strengthen the links of concurrency theory with:
 industrial applications
 other branches of computer science

22

Process calculi have a future
There are still industrial needs:

 concurrent systems everywhere: hardware, software
 safety, security, performance issues

Other languages are not that good:
 limited expressiveness/scalability, dubious semantics
 absence of sound verification tools

Merge process calculi with more general languages
 extend the scope and applicability of process calculi
 use them as target languages to implement DSMLs
 23

