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Glory and misery
of process calculi
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Achievements of process calculi
m A fruitful theory for modeling concurrent systems

» the proper way of expressing concurrency
» early detection of design mistakes

m Famous calculi: CSP, CCS, ACP...
m ISO standards: LOTOS, E-LOTOS
m Turing awards: Hoare, Milner
m Robust tools: CADP, FDR, mCRL2, PAT...
with many successes on industrial case studies
m Conferences: CONCUR, EXPRESS/SOS ...
m Process algebra handbook (1342 pages)
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But a shrinking audience...

m No longer a research priority for funding agencies

m Fewer industrial users:
» industry still has many problems with concurrency
» but concurrency theory is not seen as THE solution
m Fewer students:
» no clear demand for learning concurrency theory
» difficult to create (or even maintain) such courses
m Negative feedback loop:
» fewer students = fewer tools = fewer aplications = ...

m Concurrency experts are progressively retiring
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A declining influence (1/2)
m Java (1995)

» parallelism based on shared variables and locks
» no formal semantics — Java memory model issues
» back in time to the 1970s (pre-Hoarian era)

m UML (1997)

» concurrent state machines with a graphical syntax
» no formal semantics — incompatible views
m DSMLs (Domain-Specific Modelling Languages)
» XML-based syntax
» semantics in natural language (with OCL constraints)
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A declining influence (2/2)

m Ocaml 5 (2023)

» formely, JoCaml (2014) was based on the join-calculus
» instead, Ocaml 5 brings shared-memory concurrency

m A modern Cassandra complex:
» we know everything about concurrency, in full detail
» but no one pays attention to our opinion
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A few sharp statements

"Process algebra has lost the battle!"
Moshe Vardi (May 2020)

"Almost no one uses process calculi anymore these days."
Joost-Pieter Katoen (April 2023)
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Why such a decline?
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Many reasons, in combination

m Concurrency theory is inherently difficult
» but we make it more obscure (Greek letters...)

m Concurrency theory is intrinsically diverse
» but we encourage artificial proliferation
» do we need hundreds of bisimulations?
» do we need a different formalism in each university?

m Outsiders cannot distinguish key ideas from details
m Lack of critical mass, insufficient tool support
m Few solutions directly usable by practitioners
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Error #1: Over-emphasis on "calcul

m CSP (1978) was a programming language

m CCS (1980) was a "calculus”

» elegant definition, with a syntax that fits on one line

» but too simple for practical needs

» few realistic systems have been modelled using CCS
m "calculi" # "languages”

» calculi focus on semantics, and ignore anything else

» calculi must be extended, often in incompatible ways

» they do not support good engineering practices

» they do not care aboyt developer productivity




Error #2: Purely functional style

m Originally, CSP (1978) was an imperative language
m But CCS (TCSP, LOTOS...) chose a functional style

m PRO:
» CCS's formal semantics was state-of-the-art at its time

m CONS:

» no loop operator, only recursive processes
» no mutable variables, only parameters
» parameter lists may become long and error-prone

» imperative style combined with static analysis is
as safe as functional style, and much more flexible

r d

informatics gFmathematics '
6Z26a——— LI G 11




Error #3: Algebraic style (1/3)

m Trend to use algebra everywhere:
» 1) for data types and functions: LOTOS, PSF, uCRL, etc.
» 2) for processes: PSF, uCRL, mCRL2

m PRO 1 (for data types and functions):
» abstract data types were fashionable in the 80s
» formal semantics, independent from implementations
» evaluation of expressions is free from side effects

m CONS 1:

» completeness and confluence (hondeterminism) issues
» no proper modelling of exceptions
» "ADTs really killed LOTOS." Juan Quemada (E-LOTOS editor)

informatics g#mathemat '
6Z26a-—— LI G 12




Error #3: Algebraic style (2/3)

m PRO 2 (for processes):
» appealing (?) analogy with arithmetics: 0, 1, +, .
» a few intuitive axioms: commutativity, associativity...
» binary sequential composition (>> CCS's action prefix)

m CONS 2:

» poorly readable
» overloading: "+" means either addition or choice
» LISP-like parentheses: "))))" mixing data and processes

» insufficient expression of data flow, e.g.,
sum X.(RECV (x).SEND (x)) instead of RECV ?x; SEND !x
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Error #3: Algebraic style (3/3)

m Also:

» software/hardware engineers are not mathematicians
—> algebra is not so appealing to them

» algebraic specifications are harder to implement
efficiently than, e.g., finite-state machines

» algebraic laws (but congruence) do not help much in
formal verification, done by state-space exploration

m All in one, algebra brings more problems than
solutions
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How to recover?
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Back to the roots

What is really essential in process calculi?

An effective way to precisely model concurrency
Message-passing communication

Action-based semantics (transitions, not states)
Formal semantics given by SOS rules

A S

Algebraic properties:
» commutativity, associativity, etc. of operators

» congruence of parallel composition for bisimulation
(to fight state-space explosion)

r d
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Guidelines for a better language

m Stay away from calculi

» a one-line language like CCS is not sufficient in real life
m Stay away from the fully functional style

» mainstream programming languages are imperative

» but functional traits (e.g. pattern matching) are ok
m Stay away from fully algebraic approaches

» most programmers are not mathematicians

» reuse the advances of structured programming
m Retrospectively, CSP-1978 was very well done
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Global map of process calculi
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A few words on LNT

m LNT: language being developed at INRIA Grenoble
» inspired from CSP-1978, Occam, and E-LOTOS
» process calculus with imperative and functional traits
» formal semantics given by SOS rules
» strong typing and static analyses to detect mistakes
» support for proofs: assertions, pre- / post-conditions

m Language primarily designed for engineers:
» keep things as simple as possible
» use notations as standard as possible (Ada-like syntax)
» emphasize readability by non-experts
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A few results about LNT

m Tool chain for LNT:
» two compilers (LNT2LOTOS and TRAIAN) — 90,000 locs
» 80% of these compilers written in LNT ("self-hosted")
LNT is both a specification and programming language
» part of the CADP toolbox (https://cadp.inria.fr)

m On-going dissemination:

» engineering and master courses (easier than LOTOS!)

» 28 published case studies done with LNT:
e.g. Google, Nokia, Orange, STMicroelectronics, Tiempo

» 14 research tools generating LNT code

r d
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Conclusion
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Concurrency theory today

m The audience of concurrency theory is shrinking
» its valuable results might fade to oblivion

m Time has come for encyclopedic synthesis:
» reexamine / select / simplify / sort
» tutorials needed ("Concurrency for the dummies")
» contributions to Wikipedia

m Strengthen the links of concurrency theory with:
» industrial applications
» other branches of computer science
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Process calculi have a future

m There are still industrial needs:
» concurrent systems everywhere: hardware, software
» safety, security, performance issues

m Other languages are not that good:
» limited expressiveness/scalability, dubious semantics
» absence of sound verification tools

m Merge process calculi with more general languages
» extend the scope and applicability of process calculi
» use them as target languages to implement DSMLs
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