Nested-Units Petri Nets

A Structural Means to Increase Efficiency and Scalability of Verification on Elementary Nets

Hubert Garavel

Inria Grenoble – LIG

and Saarland University

http://convecs.inria.fr

Outline

- Introduction
- The NUPN model
- The unit-safeness property
- Some expressiveness results
- The place-fusion abstraction
- Optimized encoding of markings
- Software support for NUPNs
- Conclusion

Three controversial equations in concurrency theory

The two first equations have been borrowed from:

Rob van Glabbeek and Frits Vaandrager.

Petri Net Models for Algebraic Theories of Concurrency (PARLE, 1987)

Controversial equation #1

(for all a, b, c : actions) a.(b+c) = a.b + a.c?

- If the answer is yes
 - linear-time semantics

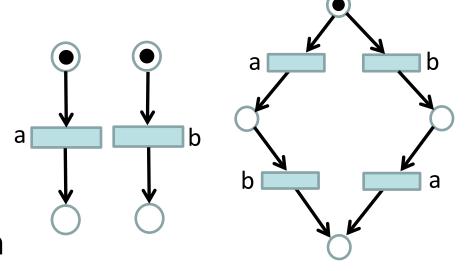
- If the answer is no
 - branching-time semantics

Controversial equation #2

(forall a, b : actions) $a \mid b = a.b + b.a$?

- If the answer is yes
 - interleaving semantics

- If the answer is no
 - true concurrency
 - Petri nets can distinguish
 - ► (Mazurkiewicz traces and Winskel event structures can too)

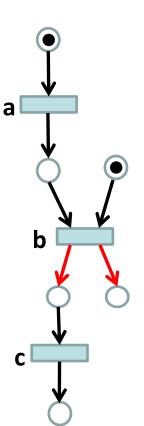


A new 3rd controversial equation...

(forall a, b, c) (a.b) $| |_b$ (b.c) = (a.b.c) $| |_b$ b?

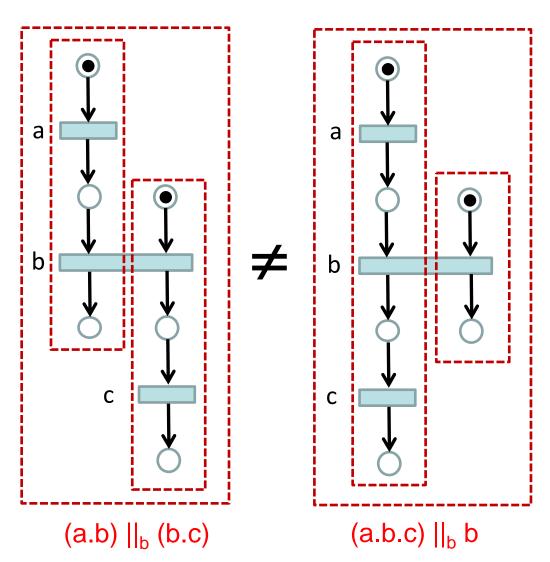
- Interleaving semantics:
 - ▶ they are the same (i.e., a.b.c)

- Petri nets:
 - they are also the same
 - no way to indicate that a and c are not on the same side
 - Petri nets preserve concurrency, not locality



How to model locality and hierarchy?

- Places that belong to the same sequential process are enclosed into "units"
- Units can be recursively nested at an arbitrary depth



The NUPN model (NUPN = Nested-Unit Petri Nets)

NUPN definition

- Extension of elementary nets (all arc weights = 1)
- NUPN = 8-tuple (P, T, F, M_0 , U, u_0 , \sqsubseteq , unit)
 - Elements 1-4 of this tuple are standard

Definition 1. A (marked) Nested-Unit Petri Net (acronym: NUPN) is a 8-tuple $(P, T, F, M_0, U, u_0, \sqsubseteq, \mathsf{unit})$ where:

- 1. P is a finite, non-empty set; the elements of P are called places.
- 2. T is a finite set such that $P \cap T = \emptyset$; the elements of T are called transitions.
- 3. F is a subset of $(P \times T) \cup (T \times P)$; the elements of F are called arcs.
- 4. M_0 is a subset of P; M_0 is called the initial marking.

NUPN definition

- NUPN = 8-tuple (P, T, F, M_0 , U, u_0 , \sqsubseteq , unit)
 - ► Elements 5-8 of these tuples are novel: (5,6,7): tree of units + (8): mapping: place \rightarrow unit
- 5. U is a finite, non-empty set such that $U \cap T = U \cap P = \emptyset$; the elements of U are called units.
- 6. u_0 is an element of U; u_0 is called the root unit.
- 7. \sqsubseteq is a binary relation over U such that (U, \supseteq) is a tree with a single root u_0 , where $(\forall u_1, u_2 \in U)$ $u_1 \supseteq u_2 \stackrel{\text{def}}{=} u_2 \sqsubseteq u_1$; thus, \sqsubseteq is reflexive, antisymmetric, transitive, and u_0 is the greatest element of U for this relation; intuitively, $u_1 \sqsubseteq u_2$ espresses that unit u_1 is transitively nested in or equal to unit u_2 .
- 8. unit is a function $P \to U$ such that $(\forall u \in U \setminus \{u_0\})$ $(\exists p \in P)$ unit (p) = u; intuitively, unit (p) = u expresses that unit u directly contains place p.

Analogy with known data structures

■ File systems

- ▶ unit → directory
- ▶ place → file

directories can be recursively nested at arbitrary depth each directory may (or not) contain files

XML documents

- \blacktriangleright unit \rightarrow element
- ▶ place → attribute

(contrary to XML, order of elements is not significant)

Units are not boxes...

A NUPN units encapsulates places only
 This is different from "boxes" (or "subnets") that encapsulate places, transitions, and arcs

- Another key difference is parallel composition:
 - ▶ 2 boxes in parallel \rightarrow 1 box
 - ▶ 2 units in parallel \rightarrow 3 units

Execution rules ("token game")

- The usual firing rules of Petri nets are unchanged
- Units are totally orthogonal to transitions
- Yet, units allow markings to be structured:

$$\mathsf{places}\,(u) \stackrel{\mathrm{def}}{=} \{ p \in P \mid \mathsf{unit}\,(p) = u \} \qquad \widetilde{U} \stackrel{\mathrm{def}}{=} \{ u \in U \mid \mathsf{places}\,(u) \neq \varnothing \}$$

Proposition 1. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a NUPN. The family of sets places (u), where $u \in \widetilde{U}$, is a partition of P.

$$M \triangleright u \stackrel{\mathrm{def}}{=} M \cap \mathsf{places}\,(u)$$

Proposition 2. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a NUPN. Any marking M can be expressed as $M = (M \triangleright u_1) \uplus ... \uplus (M \triangleright u_n)$, where $u_1, ..., u_n$ are the units of \widetilde{U} , and where \uplus denotes the disjoint set union.

The unit-safeness property

Unit-safeness property

Disjonction of two units

disjoint $(u_1, u_2) \stackrel{\text{def}}{=} (u_1 \not\sqsubseteq u_2) \land (u_2 \not\sqsubseteq u_1)$ characterizes pairs of units neither equal nor nested one in the other.

Unit safeness of a marking

Definition 5. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a NUPN. A marking $M \subseteq P$ is said to be unit safe iff it satisfies the predicate defined as follows: unit-safe $(M) \stackrel{\text{def}}{=} (\forall p_1, p_2 \in M) \ (p_1 \neq p_2) \Rightarrow \text{disjoint} (\text{unit} (p_1), \text{unit} (p_2)); \text{ that is, all places of a unit-safe marking are contained in disjoint units.}$

Unit safeness of a NUPN

Definition 6. Let $N = (P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a NUPN. N is said to be unit safe iff it is safe and all its reachable markings are unit safe.

Note: Using P/T nets rather than elementary nets, the safeness condition (i.e., contact freeness) would not be needed to ensure that strict-firing and weak-firing rules coincide

Unit safeness \Rightarrow local mutual exclusion

Proposition 3. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \mathsf{unit})$ be a NUPN. For each marking M and unit u, unit-safe $(M) \Rightarrow card(M \rhd u) \leq 1$; that is, a unit-safe marking cannot contain two different local places of the same unit.

- In each unit, local places are mutually exclusive
- In terms of linear algebra:

$$\sum_{p \in \mathsf{places}\,(u)} x_p \le 1$$

- So, unit safeness implies safeness (in fact, from the definition)
- These are not S-invariants, but inequalities
 - because a given unit may lose its token

Unit safeness ⇒ hierarchical mutual exclusion

Proposition 4. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \mathsf{unit})$ be a NUPN. For each marking M and units (u, u'), one has: $\mathsf{unit}\text{-safe}(M) \land (M \rhd u \neq \varnothing) \land (u' \sqsubseteq u \lor u \sqsubseteq u') \Rightarrow (M \rhd u' = \varnothing)$; that is, if a unit-safe marking contains a local place of some unit u, it contains no local place of any ancestor or descendent unit u' of u.

- Parent and children units are mutually exclusive
 - ▶ If a parent has a token, children have no token
 - ▶ If a child has a token, parents have no token

$$B_1$$
; (B_2 || B_3); B_4

Linear-algebraic characterization

■ Unit-safeness ⇔ system of linear inequalities

Proposition 6. Let $(P, T, F, M_0, U, u_0, \sqsubseteq, \text{unit})$ be a safe NUPN. N is unit safe iff any reachable marking M satisfies the following system of inequalities: $(\forall u \in \widetilde{U}) \ (\forall u' \in \widetilde{U} \mid u \sqsubseteq u') \ \sum_{p \in \text{places}\ (u) \cup \text{places}\ (u')} x_p \leq 1 \ (I_{u,u'})$ where each variable x_p is equal to 1 if place p belongs to M, or 0 otherwise.

Again, these are inequalities, not S-invariants

Some expressiveness results

How restrictive is unit safeness?

- Unit safeness is an (optional) property of NUPNs
- Unit-safe NUPNs are well-adapted to encode:
 - (nested) co-begin/co-end programming schemes
 - process calculi terms (without recursion through parallel composition)
- Unit-safe NUPNs can also express:
 - all safe elementary nets
 - ► all nets having a state-machine decomposition This is shown by translation to unit-safe NUPNs

Elementary safe net → unit-safe NUPN

Proposition 8. Let (P, T, F, M_0) be any ordinary, safe P/T net (i.e., a safe elementary net). There exists at least one 4-tuple $(U, u_0, \sqsubseteq, \mathsf{unit})$ such that $(P, T, F, M_0, U, u_0, \sqsubseteq, \mathsf{unit})$ is a unit-safe NUPN.

- NUPNs generalize safe elementary nets
- N places $\rightarrow N+1$ units
 - ▶ N units, one single place in each unit
 - one root unit having no local place

State-machine net → unit-safe NUPN

Proposition 9. Let (P, T, F, M_0) be any ordinary P/T net possessing a state-machine decomposition. There exists at least one 4-tuple $(U, u_0, \sqsubseteq, \mathsf{unit})$ such that $(P, T, F, M_0, U, u_0, \sqsubseteq, \mathsf{unit})$ is a unit-safe NUPN.

- NUPNs generalize state machines
- N state machines \rightarrow N+1 units
 - N units, one per state machine
 - one root unit having no local place

The place-fusion abstraction

Place-fusion abstraction

Idea:

- merge all places of each unit into a single place
- perform reachability exploration on this abstracted net

Advantages:

- complexity reduction when units have many places
- ▶ useful to determine concurrent units [Garavel-Serwe-06]
- Place-fusion abstraction:
 - preserves the NUPN property
 - but does not preserve safeness, nor unit safeness

Optimized encodings for markings

Gains due to safeness / unit safeness

- For safe nets: markings can be encoded with one bit per place (rather than one integer per place)
- For unit-safe nets: further reductions are possible
 - ► local reductions (in each unit)
 N places in a unit ⇒ N+1 local states
 [log2 (N+1)] or [log2 (N) + 1] bits
 - hierarchical reductions (between parent/children units) "vertical" overlapping between:
 - the bits encoding the N places of a unit
 - the bits encoding all sub-units of this unit

Statistical results

- 5 encoding schemes compared on > 3500 NUPNs
- Best encoding: local + hierarchical reductions
- Number of bits reduced by more than 60%

scheme	overlapping	number of bits or Boolean variables	average size
(a)	no	$\sum_{i \in \{1, \dots, n\}} N_i \text{(i.e., } N)$	100.00%
(b)	no	$\sum_{i \in \{1, \dots, n\}} \lceil \log_2(N_i + 1) \rceil$	40.52%
(c)	no	$\sum_{i \in \{1, \dots, n\}} (\lceil \log_2(N_i) \rceil + 1)$	46.44%
(b)	yes	$\nu(u_0)$ with $leaf(u_j) \Rightarrow \nu(u_j) = \lceil \log_2(N_j + 1) \rceil$	
(c)	yes	$\nu(u_0)$ with $\operatorname{leaf}(u_j) \Rightarrow \nu(u_j) = \lceil \log_2(N_j) \rceil + 1$	44.94%

Software support for NUPNs

The ".nupn" file format

- Textual format used by CADP tools
- Concise, human-readable, easy to read and parse

```
The NUPN was created by the CÆSAR tool.
!creator caesar
                        The creator tool warrants that unit-safeness holds.
!unit_safe
                        There are 5 places numbered from 0 to 4.
places #5 0...4
initial place 0
                        The initial marking contains only place 0.
units #3 0...2
                        There are 3 units numbered from 0 to 2.
root unit 0
                        The root unit is unit 0.
U0 #1 0...0 #2 1 2
                        Unit 0 contains 1 place (0) and 2 sub-units (1, 2).
                        Unit 1 contains 2 places (1, 2) and no sub-unit.
U1 #2 1...2 #0
U2 #2 3...4 #0
                        Unit 2 contains 2 places (3, 4) and no sub-unit.
transitions #3 0...2 There are 3 transitions numbered from 0 to 2.
                        Trans. 0 has 1 input place (0) and 2 output places (1, 3).
TO #1 0 #2 1 3
                        Trans. 1 has 1 input place (1) and 1 output place (2).
T1 #1 1 #1 2
                        Trans. 2 has 1 input place (3) and 1 output place (4).
T2 #1 3 #1 4
```


The NUPN extension for PNML

- PNML: ISO standard for Petri nets (2011)
- A NUPN-specific extension of PNML has been defined for the Model Checking Contest

```
<toolspecific tool="nupn" version="1.1">
   <size places="5" transitions="3" arcs="7"/>
   <structure units="3" root="u0" safe="true">
      <unit id=""" >
         <places>p0</places>
         <subunits>u1 u2</subunits>
      </unit>
      <unit id="u1">
         <places>p1 p2</places>
         <subunits/>
      </unit>
      <unit id="u2">
         <places>p3 p4</places>
         <subunits/>
      </unit>
   </structure>
</toolspecific>
```

http://mcc.lip6.fr/nupn.php

Where to find NUPN examples?

- MCC (Model Checking Contest)
 - ▶ 2013: 1 benchmark
 - ▶ 2014: 5 benchmarks (totalling 5 instances)
 - 2015: 2 benchmarks (totalling 15 instances)
 - models given in PNML http://mcc.lip6.fr
- VLPN (Very Large Petri Nets)
 - ➤ 350 realistic benchmarks from diverse origins: CHP, EXP, Fiacre, LOTOS, LNT, applied pi-calculus, etc.
 - models given both in PNML and ".nupn" format
 - http://cadp.inria.fr/resources/vlpn (really soon now)

How to produce NUPNs?

- From "flat" Petri nets:
 - ► PNML2NUPN (Lom Messan Hillah, Paris)
 - ▶ translation PNML → NUPN

- (applies Prop. 8)
- From networks of communicating automata:
 - ► EXP.OPEN (Frédéric Lang, Grenoble)
 - \blacktriangleright translation EXP networks \rightarrow NUPN (applies Prop. 9)
- From process calculi:
 - ► CAESAR (Hubert Garavel, Grenoble)
 - ▶ translation LOTOS → NUPN

(more involved!)

How to analyze NUPNs?

- CAESAR.BDD (Hubert Garavel, Grenoble)
 - syntax /static semantics checks on ".nupn" files
 - structural and behavioural properties using BDDs
 - ▶ translation NUPN → PNML
- CAESAR.SDD (Alexandre Hamez, Toulouse)
 - behavioural properties using SDDs
- PNMC (Alexandre Hamez, Toulouse)
 - model checker (ranked 2nd at MCC 2014 and 2015)
- ITS-TOOLS (Yann Thierry-Mieg, Paris)
 - model checker (ranked 3rd at MCC 2015)

Conclusion

Benefits of NUPNs

- Comparison with other models:
 - ▶ LTS: no concurrency no locality no hierarchy
 - ▶ Petri nets: concurrency no locality no hierarchy
 - ► NUPN: concurrency + locality + hierarchy
- NUPNs are easy to produce from process calculi, high-level nets, communicating automata, etc.
- NUPNs allow significant savings in state-space generation (60% less bits/Boolean variables)
- NUPNs smoothly integrate with existing tools: no major software rewrite needed

Challenging open issues

- Dedicated algorithms exploiting NUPN structure
 - to efficiently decide if a NUPN is unit-safe
 - ▶ to compute behavioural properties: deadlocks, etc.
 - to enhance partial-order / stubborn-set reductions
- Conversion of "flat" Petri nets to "optimal" NUPNs
 - "hierarchical" decomposition into state machines
 - goal: less units, more places per unit, maximal nesting
- NUPNs extended to support multiple tokens
 - ▶ relax unit-safeness constraint ⇒ new flow relations
 - useful to encode process calculi with parallel recursion

