
Nested-Units Petri Nets
A Structural Means to Increase Efficiency and
Scalability of Verification on Elementary Nets

Hubert Garavel
Inria Grenoble – LIG

and Saarland University

http://convecs.inria.fr

http://convecs.inria.fr/

Outline

Introduction
The NUPN model
The unit-safeness property
Some expressiveness results
The place-fusion abstraction
Optimized encoding of markings
Software support for NUPNs
Conclusion

2

Three controversial equations
in concurrency theory

3

The two first equations have been borrowed from:

Rob van Glabbeek and Frits Vaandrager.
Petri Net Models for Algebraic Theories of Concurrency
(PARLE, 1987)

Controversial equation #1

(for all a, b, c : actions) a.(b +c) = a.b + a.c ?

If the answer is yes

 linear-time semantics

If the answer is no
 branching-time semantics

4

Controversial equation #2

(forall a, b : actions) a || b = a.b + b.a ?

If the answer is yes

 interleaving semantics

If the answer is no
 true concurrency
 Petri nets can distinguish
 (Mazurkiewicz traces and Winskel event structures can too)

 5

a b

a

a

b

b

A new 3rd controversial equation…
 (forall a, b, c) (a.b) ||b (b.c) = (a.b.c) ||b b ?

Interleaving semantics:
 they are the same (i.e., a.b.c)

Petri nets:
 they are also the same
 no way to indicate that a and c are not
 on the same side
 Petri nets preserve concurrency, not locality

6

a

b

c

How to model locality and hierarchy?
Places that
belong to the
same sequential
process are
enclosed into
"units"
Units can be
recursively
nested at an
arbitrary depth

7

≠

a

b

c

a

b

c

(a.b.c) ||b b (a.b) ||b (b.c)

The NUPN model
(NUPN = Nested-Unit Petri Nets)

8

NUPN definition

9

Extension of elementary nets (all arc weights = 1)
NUPN = 8-tuple (P, T, F, M0, U, u0, , unit)

 Elements 1-4 of this tuple are standard

NUPN definition

10

NUPN = 8-tuple (P, T, F, M0, U, u0, , unit)
 Elements 5-8 of these tuples are novel:
 (5,6,7): tree of units + (8): mapping: place → unit

Analogy with known data structures
File systems

 unit → directory
 place → file

directories can be recursively nested at arbitrary depth
each directory may (or not) contain files

XML documents
 unit → element
 place → attribute

(contrary to XML, order of elements is not significant)
 11

Units are not boxes…

12

A NUPN units encapsulates places only
 This is different from "boxes" (or "subnets") that

encapsulate places, transitions, and arcs

Another key difference is parallel composition:

 2 boxes in parallel → 1 box
 2 units in parallel → 3 units

Execution rules ("token game")
The usual firing rules of Petri nets are unchanged
Units are totally orthogonal to transitions
Yet, units allow markings to be structured:

13

The unit-safeness property

14

Unit-safeness property

15

 Note: Using P/T nets rather than elementary nets, the safeness condition (i.e., contact
freeness) would not be needed to ensure that strict-firing and weak-firing rules coincide

Unit safeness of a NUPN

Unit safeness of a marking

Disjonction of two units

Unit safeness ⇒ local mutual exclusion

16

In each unit, local places are mutually exclusive
In terms of linear algebra:

 So, unit safeness implies safeness
These are not S-invariants, but inequalities

 because a given unit may lose its token

(in fact, from the definition)

Unit safeness ⇒ hierarchical mutual exclusion

17

Parent and children units are mutually exclusive
 If a parent has a token, children have no token
 If a child has a token, parents have no token

Linear-algebraic characterization

Unit-safeness ⇔ system of linear inequalities

18

Again, these are inequalities, not S-invariants

Some expressiveness results

19

How restrictive is unit safeness?
Unit safeness is an (optional) property of NUPNs
Unit-safe NUPNs are well-adapted to encode:

 (nested) co-begin/co-end programming schemes
 process calculi terms (without recursion through
parallel composition)

Unit-safe NUPNs can also express:
 all safe elementary nets
 all nets having a state-machine decomposition

This is shown by translation to unit-safe NUPNs

20

Elementary safe net → unit-safe NUPN

21

NUPNs generalize safe elementary nets
N places → N+1 units

 N units, one single place in each unit
 one root unit having no local place

State-machine net → unit-safe NUPN

22

NUPNs generalize state machines
N state machines → N+1 units

 N units, one per state machine
 one root unit having no local place

The place-fusion abstraction

23

Place-fusion abstraction
Idea:

 merge all places of each unit into a single place
perform reachability exploration on this abstracted net

Advantages:
 complexity reduction when units have many places
 useful to determine concurrent units [Garavel-Serwe-06]

Place-fusion abstraction:
 preserves the NUPN property
 but does not preserve safeness, nor unit safeness

24

Optimized encodings for markings

25

Gains due to safeness /unit safeness

26

For safe nets: markings can be encoded with one
bit per place (rather than one integer per place)
For unit-safe nets: further reductions are possible

 local reductions (in each unit)
 N places in a unit ⇒ N+1 local states
 log2 (N+1) or log2 (N) + 1 bits
 hierarchical reductions (between parent/children units)
 "vertical" overlapping between:
 — the bits encoding the N places of a unit
 — the bits encoding all sub-units of this unit

Statistical results

27

5 encoding schemes compared on > 3500 NUPNs
Best encoding: local + hierarchical reductions
Number of bits reduced by more than 60%

Software support for NUPNs

28

The ".nupn" file format

29

Textual format used by CADP tools
Concise, human-readable, easy to read and parse

The NUPN extension for PNML

30

PNML: ISO standard for Petri nets (2011)
A NUPN-specific extension of PNML has been
defined for the Model Checking Contest

http://mcc.lip6.fr/nupn.php

http://mcc.lip6.fr/nupn.php

Where to find NUPN examples?
MCC (Model Checking Contest)

 2013: 1 benchmark
 2014: 5 benchmarks (totalling 5 instances)
 2015: 2 benchmarks (totalling 15 instances)
 models given in PNML http://mcc.lip6.fr

VLPN (Very Large Petri Nets)
 350 realistic benchmarks from diverse origins:
CHP, EXP, Fiacre, LOTOS, LNT, applied pi-calculus, etc.
 models given both in PNML and ".nupn" format
 http://cadp.inria.fr/resources/vlpn (really soon now)

31

http://mcc.lip6.fr/
http://cadp.inria.fr/resources/vlpn

How to produce NUPNs?
From "flat" Petri nets:

 PNML2NUPN (Lom Messan Hillah, Paris)
 translation PNML → NUPN (applies Prop. 8)

From networks of communicating automata:
 EXP.OPEN (Frédéric Lang, Grenoble)
 translation EXP networks → NUPN (applies Prop. 9)

From process calculi:
 CAESAR (Hubert Garavel, Grenoble)
 translation LOTOS → NUPN (more involved!)

32

How to analyze NUPNs?
CAESAR.BDD (Hubert Garavel, Grenoble)

 syntax /static semantics checks on ".nupn" files
 structural and behavioural properties using BDDs
 translation NUPN → PNML

CAESAR.SDD (Alexandre Hamez, Toulouse)
 behavioural properties using SDDs

PNMC (Alexandre Hamez, Toulouse)
 model checker (ranked 2nd at MCC 2014 and 2015)

ITS-TOOLS (Yann Thierry-Mieg, Paris)
 model checker (ranked 3rd at MCC 2015)

33

Conclusion

34

Benefits of NUPNs
Comparison with other models:

 LTS: no concurrency – no locality – no hierarchy
 Petri nets: concurrency – no locality – no hierarchy
 NUPN: concurrency + locality + hierarchy

NUPNs are easy to produce from process calculi,
high-level nets, communicating automata, etc.
NUPNs allow significant savings in state-space
generation (60% less bits/Boolean variables)
NUPNs smoothly integrate with existing tools:
no major software rewrite needed

 35

Challenging open issues
Dedicated algorithms exploiting NUPN structure

 to efficiently decide if a NUPN is unit-safe
 to compute behavioural properties: deadlocks, etc.
 to enhance partial-order / stubborn-set reductions

Conversion of "flat" Petri nets to "optimal" NUPNs
 "hierarchical" decomposition into state machines
 goal: less units, more places per unit, maximal nesting

NUPNs extended to support multiple tokens
 relax unit-safeness constraint ⇒ new flow relations
 useful to encode process calculi with parallel recursion

 36

	Nested-Units Petri Nets �A Structural Means to Increase Efficiency and Scalability of Verification on Elementary Nets
	Outline
	Three controversial equations�in concurrency theory
	Controversial equation #1
	Controversial equation #2
	A new 3rd controversial equation…
	How to model locality and hierarchy?
	The NUPN model�(NUPN = Nested-Unit Petri Nets)
	NUPN definition
	NUPN definition
	Analogy with known data structures
	Units are not boxes…
	Execution rules ("token game")
	The unit-safeness property
	Unit-safeness property
	Unit safeness  local mutual exclusion
	Unit safeness  hierarchical mutual exclusion
	Linear-algebraic characterization
	Some expressiveness results
	How restrictive is unit safeness?
	Elementary safe net  unit-safe NUPN
	State-machine net  unit-safe NUPN
	The place-fusion abstraction
	Place-fusion abstraction
	Optimized encodings for markings
	Gains due to safeness /unit safeness
	Statistical results
	Software support for NUPNs
	The ".nupn" file format
	The NUPN extension for PNML
	Where to find NUPN examples?
	How to produce NUPNs?
	How to analyze NUPNs?
	Conclusion
	Benefits of NUPNs
	Challenging open issues

