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Three controversial equations 
in concurrency theory 
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The two first equations have been borrowed from: 

Rob van Glabbeek and Frits Vaandrager. 
Petri Net Models for Algebraic Theories of Concurrency 
(PARLE, 1987) 
 



Controversial equation #1 
 

(for all a, b, c : actions)    a.(b +c) = a.b + a.c  ? 
 
If the answer is yes 

 linear-time semantics 
 

If the answer is no 
 branching-time semantics 
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Controversial equation #2 
 
(forall a, b : actions)  a || b =  a.b + b.a  ? 

 
If the answer is yes 

 interleaving semantics 
 

If the answer is no  
 true concurrency 
 Petri nets can distinguish 
 (Mazurkiewicz traces and Winskel event structures can too) 
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A new 3rd controversial equation… 
 (forall a, b, c)   (a.b) ||b (b.c) = (a.b.c) ||b b  ? 
 

Interleaving semantics: 
 they are the same  (i.e., a.b.c) 
 

Petri nets: 
 they are also the same 
 no way to indicate that a and c are not 
 on the same side 
 Petri nets preserve concurrency, not locality 
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How to model locality and hierarchy? 
Places that 
belong to the 
same sequential 
process are 
enclosed into 
"units" 
Units can be 
recursively 
nested at an 
arbitrary depth 
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The NUPN model 
(NUPN = Nested-Unit Petri Nets) 
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NUPN definition 
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Extension of elementary nets   (all arc weights = 1) 
NUPN = 8-tuple (P, T, F, M0, U, u0,   , unit) 

 Elements 1-4 of this tuple are standard 
 



NUPN definition 
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NUPN = 8-tuple (P, T, F, M0, U, u0,     , unit) 
 Elements 5-8 of these tuples are novel:  
 (5,6,7): tree of units   +   (8): mapping: place → unit 



Analogy with known data structures 
File systems 

 unit → directory 
 place → file 

directories can be recursively nested at arbitrary depth 
each directory may (or not) contain files 
 

XML documents 
 unit → element 
 place → attribute 

(contrary to XML, order of elements is not significant) 
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Units are not boxes… 
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A NUPN units encapsulates places only 
    This is different from "boxes" (or "subnets") that 

encapsulate places, transitions, and arcs 
 
Another key difference is parallel composition: 

 2 boxes in parallel → 1 box 
 2 units in parallel   → 3 units 

 
 



Execution rules ("token game") 
The usual firing rules of Petri nets are unchanged 
Units are totally orthogonal to transitions 
Yet, units allow markings to be structured: 
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The unit-safeness property 
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Unit-safeness property 
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     Note: Using P/T nets rather than elementary nets, the safeness condition (i.e., contact 
freeness)  would not be needed to ensure that strict-firing and weak-firing rules coincide 

Unit safeness of a NUPN 

Unit safeness of a marking 

Disjonction of two units 



Unit safeness ⇒ local mutual exclusion 
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In each unit, local places are mutually exclusive 
In terms of linear algebra: 

 So, unit safeness implies safeness  
These are not S-invariants, but inequalities 

 because a given unit may lose its token 

(in fact, from the definition) 



Unit safeness ⇒ hierarchical mutual exclusion 
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Parent and children units are mutually exclusive 
 If a parent has a token, children have no token 
 If a child has a token, parents have no token 

 

 



Linear-algebraic characterization 

Unit-safeness ⇔ system of linear inequalities 
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Again, these are inequalities, not S-invariants 
 



Some expressiveness results 
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How restrictive is unit safeness? 
Unit safeness is an (optional) property of NUPNs 
Unit-safe NUPNs are well-adapted to encode: 

 (nested) co-begin/co-end programming schemes 
 process calculi terms (without recursion through 
parallel composition) 

Unit-safe NUPNs can also express: 
 all safe elementary nets 
 all nets having a state-machine decomposition 

This is shown by translation to unit-safe NUPNs 
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Elementary safe net → unit-safe NUPN 
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NUPNs generalize safe elementary nets 
N places → N+1 units 

 N units, one single place in each unit 
 one root unit having no local place 



State-machine net → unit-safe NUPN 
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NUPNs generalize state machines 
N state machines → N+1 units 

 N units, one per state machine 
 one root unit having no local place 



The place-fusion abstraction 
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Place-fusion abstraction 
Idea: 

 merge all places of each unit into a single place 
perform reachability exploration on this abstracted net 

Advantages: 
 complexity reduction when units have many places 
 useful to determine concurrent units  [Garavel-Serwe-06] 

Place-fusion abstraction: 
 preserves the NUPN property 
 but does not preserve safeness, nor unit safeness 
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Optimized encodings for markings 
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Gains due to safeness /unit safeness 
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For safe nets: markings can be encoded with one 
bit per place (rather than one integer per place) 
For unit-safe nets: further reductions are possible 

 local reductions (in each unit)  
 N places in a unit ⇒ N+1 local states 
 log2 (N+1) or  log2 (N) + 1  bits 
 hierarchical reductions (between parent/children units) 
 "vertical" overlapping between: 
 — the bits encoding the N places of a unit 
 — the bits encoding all sub-units of this unit 



Statistical results 
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5 encoding schemes compared on > 3500 NUPNs 
Best encoding: local + hierarchical reductions 
Number of bits reduced by more than 60% 



Software support for NUPNs 
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The ".nupn" file format 
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Textual format used by CADP tools 
Concise, human-readable, easy to read and parse 



The NUPN extension for PNML 
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PNML: ISO standard for Petri nets (2011) 
A NUPN-specific extension of PNML has been 
defined for the Model Checking Contest 

http://mcc.lip6.fr/nupn.php 
 

http://mcc.lip6.fr/nupn.php


Where to find NUPN examples? 
MCC (Model Checking Contest) 

 2013: 1 benchmark 
 2014: 5 benchmarks (totalling 5 instances) 
 2015: 2 benchmarks (totalling 15 instances) 
 models given in PNML    http://mcc.lip6.fr 

VLPN (Very Large Petri Nets)  
 350 realistic benchmarks from diverse origins: 
CHP, EXP, Fiacre, LOTOS, LNT, applied pi-calculus, etc. 
 models given both in PNML and ".nupn" format 
 http://cadp.inria.fr/resources/vlpn   (really soon now) 
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How to produce NUPNs? 
From "flat" Petri nets:  

 PNML2NUPN   (Lom Messan Hillah, Paris) 
 translation PNML → NUPN                    (applies Prop. 8) 

From networks of communicating automata: 
 EXP.OPEN   (Frédéric Lang, Grenoble) 
 translation EXP networks → NUPN      (applies Prop. 9) 

From process calculi: 
 CAESAR   (Hubert Garavel, Grenoble) 
 translation LOTOS → NUPN                  (more involved!) 
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How to analyze NUPNs? 
CAESAR.BDD   (Hubert Garavel, Grenoble) 

 syntax /static semantics checks on ".nupn" files 
 structural and behavioural properties using BDDs 
 translation NUPN → PNML 

CAESAR.SDD   (Alexandre Hamez, Toulouse) 
 behavioural properties using SDDs 

PNMC   (Alexandre Hamez, Toulouse) 
 model checker (ranked 2nd at MCC 2014 and 2015) 

ITS-TOOLS   (Yann Thierry-Mieg, Paris) 
 model checker (ranked 3rd at MCC 2015) 
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Conclusion 
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Benefits of NUPNs 
Comparison with other models: 

 LTS: no concurrency – no locality – no hierarchy 
 Petri nets: concurrency – no locality – no hierarchy 
 NUPN: concurrency + locality + hierarchy 

NUPNs are easy to produce from process calculi, 
high-level nets, communicating automata, etc. 
NUPNs allow significant savings in state-space 
generation (60% less bits/Boolean variables) 
NUPNs smoothly integrate with existing tools: 
no major software rewrite needed 
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Challenging open issues 
Dedicated algorithms exploiting NUPN structure 

 to efficiently decide if a NUPN is unit-safe 
 to compute behavioural properties: deadlocks, etc. 
 to enhance partial-order / stubborn-set reductions 

Conversion of "flat" Petri nets to "optimal" NUPNs 
 "hierarchical" decomposition into state machines 
 goal: less units, more places per unit, maximal nesting 

NUPNs extended to support multiple tokens 
 relax unit-safeness constraint ⇒ new flow relations 
 useful to encode process calculi with parallel recursion 
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