
A Simple Approach for Building
Compiler Front-ends

Hubert Garavel
INRIA – Université Grenoble Alpes and DEPEND

http://convecs.inria.fr

http://convecs.inria.fr/

Compiler architecture

2

Compiler architecture
 source program (input)

lexical analysis
syntactic analysis

abstract syntax tree
semantic analyses:
identifier binding,

type checking,
data-flow checking, etc.

code generation
target program (output)

3

compiler front-end

compiler back-end

Basic facts
The back-end is usually the most complex part
 (20% front-end, 80% back-end ?)

Compiler authors have strong views about which
language to use for the back-end:

 traditionally: C/C++ (but too low-level)
 today: Haskell, Java, Ocaml, LNT, Python, Rust, etc.

What about the front-end?

4

Front-end construction
Compiler front-ends may be programmed
manually — but this is boring and error-prone
In practice, one uses compiler-generation systems

 lexical and syntactic descriptions using BNF grammars
 tools generate analyzers from these grammars
 BNF grammars must not be ambiguous
 BNF grammars must follow restrictions: LL, LR, LALR

Examples of tools:
 Lex/Yacc (and Flex/Bison), ANTLR, SYNTAX, etc.

5

Front-end vs back-end tradeoffs
Fixing a programming language for the back-end
restricts the choice of tools for the front-end
Wikipedia: Comparison_of_parser_generators

 22 tools listed for lexer generation, but
 only one for Haskell (resp. Eiffel, Go, Rust)
 98 tools listed for parser generation, but

 only one for Erlang (resp. Common Lisp)
 only two for Ada (resp. Haskell, Swift)

Not all lexer/parser generators are equal:
 different restrictions on the BNFs accepted (e.g., LL vs LR)
 some give user-friendly explanation of conflicts in grammar
 some have automatic recovery from lexical/syntactic errors

 6

https://en.wikipedia.org/wiki/Comparison_of_parser_generators

Three possible solutions
1. Front-end and back-end in the same language

 restricted choice of tools for the front-end

2. Front-end and back-end in compatible languages
 example: CADP compilers
 front-end written in SYNTAX, back-end written in LNT
 both SYNTAX and LNT generate C code

3. Front-end and back-end in different languages
 front-end builds an abstract tree (XML or JSON file)
 back-end reads this file, then does semantic analyses

7

The third solution
Advantages for compiler writers:

 they can choose "their" language for the back end
 they can chose the "best" tool for the front-end
 front- and back-end are separate software modules
 front-end and back-end can be developed in parallel
 (once the XML/JSON structure has been specified)

Drawbacks:
 performance penalty for communicating through files
instead of through memory

8

Remainder of this talk

A working implementation of the third solution

Front-end done using INRIA's SYNTAX tool

Abstract tree in XML or JSON format
 few parser generators export XML or JSON files

Simple, efficient, widely applicable

9

Introduction to the SYNTAX
compiler-generation system

10

SYNTAX
Likely, the oldest INRIA software still in activity
Undertaken in 1972 (Algol60 → PL/1 → C)
Large software: 1618 files 468,000 lines of code

 bootstrapped (SYNTAX written using SYNTAX)
 now maintained by CONVECS, with the help of
Pierre Boullier, the main author of SYNTAX

Two-level interface:
 higher level: "processors" BNF, CSYNT, LECL…
 lower level: C code libraries ("managers")

11

The LECL processor
LECL produces tables for a scanner automaton
that recognizes the tokens of the language
The input language is expressive (more than Lex)

Ada-like comments Comments = "-" "-" {^EOL} EOL ;

C-like #include Include = "#" &Is_First_Col {space} "include" {space}
 QUOTE {^"\n"}+ QUOTE {space} EOL @1 ; @2 ;
 Tokens
 %Integer = {DIGIT}+;
 Priority shift > reduce;
 %Ident = LETTER [{LETTER | DIGIT}] ;
 Context All But %Ident, %Integer;

 12

The BNF processor
BNF verifies that a context-free grammar is correct
(symbols are well defined, productive, etc.)

 <const> = "false" ;
 <const> = "true" ;
 <const> = %Integer ;
 fragment of a grammar <const> = %Real ;
 for the LUSTRE language <exp> = <const> ;
 <exp> = <exp> "and" <exp> ;
 <exp> = <exp> "+" <exp> ;
 <exp> = "pre" <exp> ;
 <exp> = <exp> "->" <exp> ;
 <exp> = "if" <exp> "then" <exp> "else" <exp> ;
 <exp> = %Ident "(" <exp_list> ")" ;

13

The CSYNT processor
CSYNT produces tables for a parser automaton that
recognizes the language of the BNF grammar

 ascending deterministic analysis : LR(1) or LALR(1)
 optimisation techniques to reduce the automaton

 In case of Shift/Reduce or Reduce/Reduce conflicts
 1. one may let CSYNT use its predefined resolution
strategies (e.g., Shift > Reduce)
 2. one may modify the grammar
 3. one may use syntactic predicates and/or actions
 4. one uses the PRIO processor

14

The PRIO processor
PRIO removes conflicts (ambiguities) in a BNF
 grammar using higher-level strategies:

 %left "or"
 %left "and"
 priority rules for a %nonassoc "not"
 LUSTRE-like language %left "+" "-"
 %left "*" "/" "div" "mod"
 %nonassoc "<" "<=" "=" ">=" ">" "<>"
 <exp> = "-" <exp> ; %prec "not"

15

The RECOR processor
Automatic recovery of errors:

 lexical : insertion-destruction-permutation of characters
 syntactic: insertion-destruction-permutation of tokens

 This is a key feature of SYNTAX

16

The "semantic" processors
SYNTAX has three semantic processors:

 SEMACT
 SEMAT
 SEMC (formerly named TABC)

The CONVECS team uses SEMC:
 BNF extended with typed synthesized attributes
(Yacc only support a single attribute per non-terminal)
 these attributes are computed by C code fragments
 it is good practice to keep these fragments short

17

Abstract tree construction

18

Functionalities of the front-end
1. Parse the input program using SYNTAX:

 LECL description of the lexer
 BNF/SEMC description of the parser
 PRIO description of priority rules in the BNF grammar
 RECOR description of error-recovery rules

2. Output the abstract tree in XML or JSON format

19

Standard vs simple approach
Standard approach:

 specify the abstract tree as a data structure in memory
 build this data structure using synthesized attributes
 (e.g., Yacc or SYNTAX) while parsing the input program
 traverse the data structure and dump it to a file in XML
 or JSON format

Drawback: the data structure is described three times
Simple approach:

 directly output the XML or JSON file while parsing the
input program

20

Preliminary remark
The abstract tree cannot be written to disk
"on-the-fly", while reading the input program

Example:

 input term: (n + 1)
 output term: <sum><var>n</var>1</sum>

 One cannot write <sum> before having read "+"
 ⇒ unbounded lookahead is needed
 ⇒ XML output must be buffered in memory

21

Overview of the translation

The abstract syntax tree is not built as a tree, but
simply as the concatenation of many small text
fragments (here, in XML) stored in memory
These fragments are then dumped to a file

22

*
+ 10

n 1

<mult>
</mult> 10

1 <var>n</var>
<sum> </sum>

10 * (n + 1)

The new SXML library of SYNTAX
SXML_TYPE_LIST: linked list whose elements are
character strings (possibly of different lengths)

SXML_PRINT: function that prints to a file the
character strings contained in a linked list

SXML_T*, SXML_L*: concatenation functions
taking one or many character strings and/or
linked lists, and returning a linked list

23

Implementation of SXML

24

 NULL

Straightforward implementation:

<const> \0 3.1416 \0 </const> \0

Clever implementation (concatenation in constant time):

<const> \0 3.1416 \0 </const> \0

LUSTRE example (1/4)
<Type> = "bool" ;
$LIST (<Type>)
 $LIST (<Type>) = SXML_T ("bool");
*--
<Type> = "int" ;
$LIST (<Type>)
 $LIST (<Type>) = SXML_T ("int");
*--
<Type> = "real" ;
$LIST (<Type>)
 $LIST (<Type>) = SXML_T ("real");
*--
<Type> = %Ident ;
$LIST (<Type>)
 $LIST (<Type>) = SXML_T ($ptext ("%Ident"));

25

LUSTRE example (2/4)

<LocalDecls> = ;

$LIST (<LocalDecls>)

 $LIST (<LocalDecls>) = SXML_T ("<var></var>");

*--

<LocalDecls> = "var" <VarDeclList> ";" ;

$LIST (<LocalDecls>)

 $LIST (<LocalDecls>) = SXML_TLT ("<var>", $LIST (<VarDeclList>), "</var>");

26

LUSTRE example (3/4)

<Decl> = "function" <Header> <LocalDecls> <Equations> ";" ;

$LIST (<Decl>)

 $LIST (<Decl>) = SXML_TLLLT ("<function>",
 $LIST (<Header>),
 $LIST (<LocalDecls>),
 $LIST (<Equations>),
 "</function>");

27

LUSTRE example (4/4)
<Expr> = "not" <Expr> ;
$LIST (<Expr>)
 $LIST (<Expr>) = SXML_TLT ("<expr kind=\"not\">",
 $LIST (<Expr>'), "</expr>");
*--
<Expr> = <Expr> "and" <Expr> ;
$LIST (<Expr>)
 $LIST (<Expr>) = SXML_TLLT ("<expr kind=\"and\">",
 $LIST (<Expr>'), $LIST (<Expr>''),"</expr>");
*--
<Expr> = "if" <Expr> "then" <Expr> "else" <Expr> ;
$LIST (<Expr>)
 $LIST (<Expr>) = SXML_TLLLT ("<expr kind=\"if\">",
 $LIST (<Expr>'), $LIST (<Expr>''), $LIST (<Expr>'''), "</expr>");

28

Conclusion

29

SYNTAX + SXML
A concise solution to build compiler front-ends

A single file for concrete and abstract syntaxes
 no need to define the abstract syntax tree separately

Already used for two compiler front-ends:
 LUSTRE → XML
 FORTRAN 77 → JSON (ongoing work)

Also applicable to Yaml or other custom formats

30

