
SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallel and Distributed
Model Checking

Hubert Garavel

VASY team
INRIA Rhône-Alpes

655, avenue de l’Europe
38330 Montbonnot Saint Martin

France

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Motivations

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Functional verification

Modelling language:
-process algebra
-communicating FSMs
-Petri nets…

State space:
-LTS (Lab. Trans. Syst.)
-Kripke structure
-marking graphs

Generation

minimisation
(e.g. bisimulations)

Verification:
-model-checking
-equivalence checking

Logical results
+ diagnostics

Functional
Queries

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Verification state spaces
• State/transition models
• LTS (“black box” vision)

– no information in states (except initial state)
– all information on transitions
– process algebras, bisimulation, branching-time logics (modal mu

calculus, ACTL), conformance testing
– often ‘explicit state’ model-checking (CWB, CADP, mCRL)

• Kripke structures (“white/grey” box vision)
– all information in states
– no information on transitions
– linear-time logics
– often ‘symbolic’ model-checking: set of states (often represented

using BDDs, MTDDs…) but also explicit-state approaches
• Timed transition systems (not covered in this lecture)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Performance evaluation

Discrete-event system:
-stoch. process algebra
-stoch. Petri nets
-queing networks

State space:
-Markov chains (CTMC)
-transition rate matrix

Generation

minimisation
(e.g. lumping, elimination

of ‘vanishing’ states…)

Solution:
-steady-state analysis
-transient analysis

Probabilities
Performance

Queries

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Performance state spaces

• Continuous-Time Markov Chains (CTMC)
– no information attached to states
– stochastic information rate (s, s’) > 0 attached to

each transition s --> s’

• Transition rate matrix
R [s, s’] = if exists s -->s’ then rate (s, s’) else 0

• Matrix R is often large, sparse (and stiff)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

State space exploration
• Various traversals

– Breadth-first search (BFS): exhaustive construction,
reachability analysis, shortest path, …

– Depth-first search (DFS): cycle detection…
– Synchronous product with an observer or a formula

• Exploration requires a lot of memory
– Avoid cycles => store visited states
– BFS requires a FIFO queue
– DFS requires a stack
– More (e.g. state table) is often needed to avoid

recomputations

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

State space EXPLOSION
• The size of state/transition model often

grows exponentially in the size of the
problem

• Exploration is limited by the physical and
virtual memory

• Two problems:
– state space does not fit into memory
– state space fits in memory, but is too large for

being explored entirely
(e.g., access to hash table becomes slower as the
number of states grows)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Fighting state explosion

• Two approaches
– ‘Clever’ methods
– ‘Brute-force’ methods

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

‘Clever’ methods (1)
• Design ‘better’ modelling languages

– small languages
– formal semantics
– built-in abstractions
– compositionality properties

• Examples
– process algebras
– synchronous languages
– new generation languages: E-LOTOS [ISO 15437]

• Counter-examples(!)
– C, C++, Java, SDL, UML/RT, etc.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

‘Clever’ methods (2)
• Invent better verification algorithms

– Operate on higher-level models
! Abstractions, hiding
! Data flow analysis, static analysis
! Reductions, property preserving transformations

– Exploit structure information
! Hierarchical and compositional verification
! ‘Symbolic’ models (decision diagrams, Kronecker algebras)

– Avoid redundancies
! Partial orders / stubborn sets
! Symmetries

– Use locality
! Caching, bounded-memory algorithms

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

‘Brute force’ methods

•Forget about your PC or workstation
•Use a more powerful machine

– Increase memory and processing power to
handle larger state spaces

– Use a ‘supercomputer’

•Use N machines instead of one
– Combine the resources of several machines

– Ideally, N machines => problems N times larger

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

A note about ethics

•Are brute force methods ‘moral’?

•The answer is: Yes!
– Brute-force is the essence of model-checking
– Orthogonal to ‘clever’ methods

•Chess programs combine brute force and
clever strategies

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Bad news #1
• Brute-force methods will never work

• An exponentially growing problem is attacked
by increasing the resources at most linearly!

• That is the fate of model-checking

• In the future, will machine capabilities grow
faster than problem complexity?

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Lecture overview

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

State of the art in parallel and
distributed approaches

• Recent work
– first paper in 1987
– but many significant works > 1995

• Many different approaches
– different problems: explicit or symbolic model checking, Markov solutions…
– different machine architectures: SIMD, MIMD, shared- or distributed-memory…

• Split accross ‘disjoint’ scientific fields
– massively parallel and distributed computers
– formal verification
– performance evaluation
– Petri Nets

• Lack of unifying vision
– mostly conference papers (never in the mainstream)
– NEW! dedicated workshop PDMC 02 (Parallel and Distributed Model-Checking)
– few journal publications
– no survey paper
– no book

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Organization of the lecture

• Breadth-first search of the various branches
• For each branch, depending on the available

material:
– Bibliographic references
– Complexity results
– Summary of the main ideas
– Experimental results
– If enough material (publications by different

teams) : general ‘laws’, if any

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Contents of the lecture
Parallelization and Distribution
Explicit-State Reachability Analysis and State Space Construction

SIMD
Shared Memory
Distributed Memory

Symbolic Reachability Analysis and State Space Construction
Shared Memory
Vector Processors
SIMD
Distributed Memory

Equivalence checking
Distributed Memory
Shared Memory

Model checking
LTL
CTL
Mu-calculus

Solutions of Markov Chains
Numerical Solutions (Steady-State and Transient Analysis)
Implicit Representations

Conclusion

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallelization and Distribution

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Five machine architectures
1. Vector processors

• Pipelined functional units operating on arrays of data
• Expensive, few publications

2. Data parallel machines (SIMD)
• Dedicated hardware for data parallel (regular) programs
• Require special languages and compilers
• Expensive, few publications

3. Shared-memory multiprocessors
• Several processors sharing a central memory
• Programmed using (POSIX) threads and semaphores locks
• Expensive, but used

4. Distributed-memory multiprocessors (MIMD)
• Independent machines connected by a high-speed network
• No shared memory, only local memories
• Programmed using message passing primitives (eg. MPI)
• Exemple: Networks Of Workstations (NOW), clusters of PCs, Internet computing grids
• Cheap, available in most laboratories and companies
• Many publications

5. Distributed shared memory multiprocessors (DSM)
• Independent machines with both local memories and shared memories
• Memory hierarchies, cache coherency protocols (CC-NUMA, etc.)
• Expensive, few publications

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Speedup
• N = number of processors/nodes/machines
• Speedup(N) = time taken by sequential version

time taken by parallel version with N nodes
• Cheat(N) = time taken by parallel version with 1 node

time taken by parallel version with N nodes

• Ideally: Speedup(N) = N or even more! (superlinear)
• Practically: Speedup (N) < N due to:

– parallelization/distribution overhead
– synchronizations which force tasks to idle

• Speedup often depends from the model: an efficient,
general purpose, implementation is hard

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Load balancing

• How to ensure that the N processors have the
same amount of work?

• Unbalanced load slows down the whole system
(limited by the most loaded machine)

• Different measures:
– Physical: CPU time used by each node
– Logical: state space portion explored by each node

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallel complexity theory

P-complete
problems

NC problems

efficient (polylog time)
parallel algorithms

instrinsically sequential
problems

‘P = NC ?’ is unknown (everybody failed so far)
An efficient parallel algorithm to solve P-complete
problems would be a major algorithmic breakthrough

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallel complexity theory

Many useful problems are P-complete
But…
•This is about worst-case time
complexity

•Memory space (rather than time) is
our primary concern

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallel and Distributed

Explicit-State
Reachability Analysis and
State Space Construction

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Definitions
• Explicit state approach

– explore states one by one
– forward exploration only (predecessor function not available)
– rich data types => explicit state
– tools: CADP, SPIN, etc.

• Reachability analysis
– (forward) exploration from the initial state
– breadth-first (or depth-first)
– stores all encountered states in memory
– enables simple verifications (deadlocks, state invariants, safety

properties)
• State space construction

– similar to reachability analysis
– additionally: store all transitions
– used to generate LTS, Kripke structures, Markov chains

• Parallelizing state space generation is a goal in itself
(at least: a prerequisite for deeper verifications)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Basic sequential algorithm
E : set of (explored) states := {} -- stored in memory
V : set of (visited) states := {S0} -- stored in memory
T : set of transitions := {} -- stored on disk
while V not empty do

S1 := oneof (V)
move S1 from V to E
for all L, S2 such that S1 ---L---> S2 do

if S2 neither in E nor in V then add S1 to V endif
add transition (S1, L, S2) to T

done
done -- the generated state space is given by (E, T)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Two main operations

• Computing the transition function
given S1, compute all (L, S2) such that S1 ---L--> S2

(done |S| times)
=> language dependent

• Detecting already known states

determine whether S2 is in E or in V
(done |T| times)
=> hash-tables (CADP, SPIN) or B-trees

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

State representations

• States are vectors of values
(e.g. Petri net markings, variable values…)

But
– state vectors are memory expensive
– not needed for equivalence checking, action-

based model-checking, Markov chain solution…

• States are also assigned unique numbers
• The hash-table (or B-tree) ensures the

mapping ‘state vector <--> unique number’

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / SIMD

• [CCBF94] S. Caselli, G. Conte, F. Bonardi, and M. Fontanesi.
Experiences on SIMD Massively Parallel GSPN Analysis.
Computer Performance Evaluation: Modelling Techniques and
Tools. LNCS 794, pp. 266—283, 1994.

• [CCM95] S. Caselli, G. Conte, and P. Marenzoni. Parallel State
Space Exploration for GSPN Models. Proc. 16th Int. Conf. on
Applications and Theory of Petri Nets, LNCS 935, 181—200,
1995.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / SIMD
• Gen. Stoch. Petri Nets --> reachability graph

• The sequential algorithm must be revisited to match
data flow patterns of the SIMD (Connection Machine)

• The two main operations (transition function and state
search) are irregular and do not exhibit the regularity in
data structures required for SIMD implementations

• Positive: capability to generate larger state spaces (4-10
Mstates) than on a workstation

• Negative: speed! Even with 32 processors, slower than a
workstation (1.5 Mstates => 2 hours)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Shared Mem.

• [AH97] S. C. Allmaier and G. Horton. Parallel Shared-Memory
State-Space Exploration in Stochastic Modeling. Proc. Int. Conf.
on Solving Irregularly Structured Problems in Parallel, LNCS
1253, pp. 207—218, 1997.

• [ASD97] S. Allmaier, S. Dalibor, and D. Kreische. Parallel Graph
Generation Algorithms for Shared and Distributed Memory
Machine. Proc. Parallel Computing: Fundamentals, Applications
and New Directions(ParCo’97), pp. 581—588, Elsevier, 1997.

• [AKH97] S. Allmaier, M. Kowarschik, and G. Horton. State
Space Construction and Steady-State Solution of GSPNs on a
Shared-Memory Multiprocessor. Proc. 7th IEEE Int. Workshop on
Petri Nets and Performance Models PNPM'97, pp. 112—121, IEEE
Computer Society Press, 1997.

• [AK99] S. Allmaier and D. Kreische. Parallel Approaches to the
Numerical Transient Analysis of Stochastic Reward Nets. Proc.
Int. Conf. on Applications and Theory of Petri Nets, pp. 147—
167, 1999.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Shared Mem.

• Gen. Stoch. Petri Nets --> reachability graph

• The sequential algorithm is almost unchanged
• N threads execute concurrently

– V implemented as N local stacks + 1 shared stack
– E union V is implemented as a shared B-tree

• Locks on the shared stack and B-tree nodes

• With 8 processors, 4 Mstates and 25 Mtrans can be
generated in 1h40

• Good (linear) speedup

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / Old

First attempt at parallelizing state space generation

• [AAC87] S. Aggarwal, R. Alonso, and C. Courcoubetis. Distributed
Reachability Analysis for Protocol Verification Environments. In
Discrete Event Systems: Models and Applications, Lecture Notes
in Computer and Information 103, pp. 40-56, Aug. 1987.

• [Aba94] P. Abaziou. Parallélisation d'OPEN/CAESAR dans
l'environnement EPEE. Mémoire de DEA en informatique, IFSIC
(Rennes, France), 1994.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / Old

• Target: NOW (Ethernet network of SUN 2-3 workstations)
• Two (main) types of nodes:

– generators: compute transition function
– tabulators: state storage and search

• Key idea: the state set is partitionned between the tabulators
using a hash function

H: state vector -> tabulator identifier
• Not implemented
• Much criticized in the litterature [SD97, LS99]

– complex: six different processes
– termination relies on timing assumptions that may be

difficult to guarantee => complex scheduling problems
– communication overhead: each states is transferred at least

2 times over the network

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / Old

• 1st implementation: Th. Jéron (INRIA Rennes) 1991
– Echidna tool for Estelle (communicating FSMs)
– 2 generators, 2 tabulator processes
– Target machines: iPSC, TNode
– No publication available

• 2nd implementation : P. Abaziou (DEA student of Th. Jéron
and J-M. Jézéquel, INRIA Rennes) 1993—94

– Language-neutral platform (Open/Caesar)
– Code distribution environment (Epee)
– Architecture-neutral communication library (POM)
– Target machine: Hypercube
– Termination : Dijsktra et al. circulating probe algorithm

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / New

• [CCM95] S. Caselli, G. Conte, and P. Marenzoni. Cited above.
• [MCC97] P. Marenzoni, S. Caselli, and G. Conte. Analysis of

Large GSPN Models: A Distributed Solution Tool. Proc. 7th IEEE
Int. Workshop on Petri Nets and Performance Models, IEEE
Computer Society Press , pp. 122—131, 1997.

• [NC97] D. Nicol and G. Ciardo. Automated Parallelization of
Discrete State-Space Generation. Journal of Parallel and
Distributed Computing, 47(2), pp. 153—167, 1997.

• [SD97] U. Stern and D. Dill. Parallelizing the Murphi Verifier.
Proc. Computer-Aided Verification, LNCS 1254, pp. 256—267,
June 1997.

• [CGN98] G. Ciardo, J. Gluckman, and D. Nicol. Distributed
State Space Generation of Discrete-State Stochastic Models.
INFORMS Journal on Computing 10(1), pp. 82—93, 1998.

• [HBB98] B. R. Haverkort, H. C. Bohnenkamp, and A. Bell.
Efficiency Improvements in the Evaluation of Large Stochastic
Petri Nets. Aug 1998.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / New
• [KMHK98] W. J. Knottenbelt, M. A. Mestern, P. G. Harrison, and P.

Kritzinger. Probability, Parallelism and the State Space Exploration
Problem. Proc. 10th Int. Conf. on Computer Performance Evaluation -
Modelling, Techniques and Tools. LNCS 1469, pp. 165—179 (Sections 4—6
only), Sep 1998.

• [AK99] S. Allmaier and D. Kreische. Cited above.
• [HBB99] B. R. Haverkort, A. Bell, and H. C. Bohnenkamp. On the Efficient

Sequential and Distributed Generation of Very Large Markov Chains from
Stochastic Petri Nets. Proc. 8th Int. Workshop on Petri Nets and
Performance Models, IEEE Computer Society Press, pp. 12—21, Sep 1999.

• [LS99] F. Lerda and R. Sisto. Distributed-Memory Model Checking with
SPIN. Proc. SPIN'99, LNCS 1680, pp. 22—39, July 1999.

• [Cia01] G. Ciardo. Distributed and Structured Analysis Approaches to
Study Large and Complex Systems. Proc. 1st EFF/Euro Summer School on
Trends in Computer Science, LNCS 2090, pp. 344—374, July 2001.

• [GMS01] H. Garavel, R. Mateescu, and I. Smarandache. Parallel State
Space Construction for Model-Checking. Proc. 8th SPIN Workshop, LNCS
2057, pp. 217—234, May 2001. Revised version available as INRIA
Research Report RR-4241, Dec. 2001.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / New

• Summary: All these algorithms have deep
similarities and produce good results

• Many implementations: GSPN tools, Murphi, SPIN, CADP…

• Teams who started with SIMD or shared-memory
eventually switched to distributed-memory
[CCM95,AK99]

• My own preferences: [CGN98,Cia01] and (of course!)
[GMS01] used in our DISTRIBUTOR tool

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / New

Principles
• N machines (plus possibly a frontal ‘master’)

connected by a local network or bus
• Each machine can send messages to any other
• The state space is partitioned among the machines

using a function (as in [AAC87])
• Each machine M is both a generator and a tabulator

– It keeps its states in its local memory (hash table)
– It computes the successors of its states
– It also keeps a part of the transition relation

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / New

Choosing a partition function
H (s:state vector) -> machine_id

• H can be either a hash function
– General byte string hashing [GMS01]
– Universal hashing [SD97]
– Weighted sums of Petri net places [Cia01]
– Subset of Petri net places [HBB99]

• or based on lexicographic ordering [CN97]
– A preliminary random walk in the state space is used to

obtain a sampling of reachable states
– These sample states are lexicographically sorted in N

intervals
– H (S) = M iff state S is in the M-th interval

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / New

State storage and numbering
• Machine M stores {s:states | H (S) = M} in a

local hash-table (or B-tree)
• Each state is assigned a locally unique number

local(S) by its owner M = H (S)
• How to produce a globally unique identifier?

– Most authors use a pair: (H (S), local(S))
– [GMS01] uses a number: (N * local(S)) + H (S)

(from which projections are obtained using div and mod)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / New

Hashing assessment [HBB99] [Cia01] [GMS01]

• Hashing seems to distribute the states evenly
between machines

Ni = number of states on machine i
Spatial balance = Maxi,j {Ni/Nj} in range 1—1.5

• But the number of cross arcs is harder to
control (20%—60%)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / New

Transition storage

• Each machine computes the successors (outgoing
transitions) of its states

• but receives and stores the predecessors (incoming
transitions) of its states

• Machine M receives triples (n1, L, S2) such H (S2) = M and
stores triples (n1, L, n2) on disk

• The transition rate matrix is stored by columns and not by
raws

• Why? Only M knows that the number of S2 is n2
• Reduces the number of messages (contrary to [KMHK98])

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / New

Distributed termination detection

• Termination: all machines have processed all
their states and no more messages are in
transit in the queues

• Several algorithms:
– Dijkstra et al.’s circulating probe algorithm
– Nicol’s non-commital synchronization barrier
– Mattern’s two wave algorithm [GMS01]

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / New

Remapping [NC97,Cia01]
• Classes = set of states (e.g., 100 states/class)

• Each state belongs to a single class (always the
same) given by a partition function H

H (s:state vector) : class_id

• Each class is stored on one processor (which may
change) given by an array T replicated on each
machine

T [c:class_id] : processor_id

• Classes move between processors to balance load

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Explicit / Dist. Mem. / New

• Many possible remapping strategies
– Why? Optimize spatial or temporal balance?
– How?
– When?

• Experimental results
– Remapping CPU overhead: below 5%
– 8 processors: minor improvement
– 16 processors: beneficial (speedup 12—13)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallel and Distributed

Symbolic
Reachability Analysis and
State Space Construction

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Symbolic Rechability Analysis

•Mostly done using BDDs
•Different combinations:

– algorithm: breadth-first or depth-first
– machine architecture: shared memory, vector

processors, SIMD, distributed [shared] memory
– BDD variant: ‘standard’ BDD, ROBDDs (Reduced

Ordered BDDs), etc.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Symbolic / Shared Mem.

• [KC90] S. Kimura and E. M. Clarke. A Parallel Algorithm for
Constructing Binary Decision Diagrams. Proc. Int. Conf. on
Computer-Aided Design, pp. 220—223, Nov. 1990.

• [KIH92] S. Kimura, T. Igaki, and H. Haneda. Parallel Binary
Decision Diagram Manipulation. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Science, vol. E75-A, no. 10, pp. 1255—1262, Oct 1992.

• BDDs seen as a minimal finite automata
• Generation/minimization of product automata
• Speedup:

– 10 for 16 processors [KC90]
– 14 for 25 processors [KIHM95]

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Symbolic / Vector Processors

• [OIY91a] H. Ochi, N. Ishiura, and S. Yajima. Breadth-First
Manipulation of SBDD of Boolean Functions for Vector
Processing. Proc. 28th ACM/IEEE Design Automation Conf., pp.
413—416, Jun 1991.

• [OIY91b] H. Ochi, N. Ishiura, and S. Yajima. A Vector Algorithm
for Manipulating Boolean Functions Based on Shared Binary
Decision Diagrams. Proc. Int. Symp. on Supercomputing, pp.
191—200, Nov 1991.

• [OIY91c] H. Ochi, N. Ishiura, and S. Yajima. A Vector Algorithm
for Manipulating Boolean Functions Based on Shared Binary
Decision Diagrams. Supercomputer 46, vol. 8, no. 6, ASFRA, pp.
101—118, Nov 1991.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Symbolic / SIMD
[GRR95] S. Gai, M. Rebaudengo, and M. S. Reorda. A Data
Parallel Algorithm for Boolean Function Manipulation. Proc. 5th
Symp. on the Frontiers of Massively Parallel Computations
FRONTIERS'95, pp. 28—34, Feb 1995.

•Uses breadth-first search
•Distributes BDD nodes and hash table
• Some ISCAS-85 benchmarks

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Symbolic / Distrib. Shared Mem.

[PSC94] Y. Parasuram, E. Stabler, and S. K. Chin. Parallel
Implementation of BDD Algorithms Using a Distributed Shared
Memory. Proc. 27th Hawaii Int. Conf. on System Sciences Vol I:
Architecture, pp. 16—25, Jan 1994.

• BDD nodes and hash table distributed and shared
among processors

• Also uses a distributed stack
• Speedup: 20—32 on some ISCAS-85 circuits

[Bas98] S. Basonov. Parallel Implementation of BDD on DSM
Systems. M.Sc. thesis, Computer Science Dept., Technion,
1998.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Symbolic / Distrib. Mem.
• [RSBS96] R. K. Ranjan, J. V. Sanghavi, R. K. Brayton, and A.

Sangiovanni-Vincentelli. Binary Decision Diagrams on Network
of Workstations. Proc. IEEE Int. Conf. on Computer Design,
pp. 358—364, 1996.

• [SRBS96] J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and A.
Sangiovanni-Vincentelli. High-Performance BDD Package Based
on Exploiting Memory Hierarchy. Proc. Design Automaton
Conf., June 1996.

• Distributes BDD nodes on a network of workstations
• Assigns a set of consecutive variables to the same machine
• Allows to handle BDD with several Mnodes
But

– Not really parallel (only one machine computes at a time)
– Unimpressive speedup (often < 1)
– Existential quantification and variable reordering is not

efficient

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Symbolic / Distrib. Mem.

[SB96] T. Stornetta and F. Brewer. Implementation of an
Efficient Parallel BDD Package. Proc. 33rd IEEE Conf. on Design
Automation, pp. 641—644, 1996.

• Based on Brace-Rudell-Bryant’s BDD package (1990)
• Distributes BDD nodes among processors
• Uses depth-first algorithms
• Unique table: distributed, two-level hash-table
• Computed and uncomputed: distributed hash tables
• Local LRU caches for fast access to distant BDD nodes
• Speedup: 7—57 for 32 processors on some ISCAS-85

benchmarks

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Symbolic / Distrib. Mem.

[HGGS00] T. Heyman, D. Geist, O. Grumberg, and A. Schuster.
Achieving Scalability in Parallel Reachability Analysis of Very
Large Circuits. Proc. 12th Int. Conf. on Computer-Aided
Verification, LNCS 1855, pp. 20—35, July 2000.

• State exploration using BFS on a NOW
• State space is cut in a fixed number of slices
• Slices travel between machines to balance load
• Fast storage: use network instead of disk
• ISCAS’89—93 and IBM benchmarks
• Handles large BDDs up to 1.2 Mnodes
• Linear speedup (0.4N — 0.6N)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Reachability / Symbolic / Distrib. Mem.

A few other references:

• [AO96] P. Arunachalam and H. Oregon. Distributed Binary
Decision Diagrams for Verification of Large Circuits.
Proceedings of the IEEE Int. Conf. on Computer Design, pp.
365—370, 1996.

• [BO97] B. Yang and D. R. O’Hallaron. Parallel Breadth-First BDD
Construction. ACM Sigplan Notices, 32(7), pp. 145—146, July
1997.

• [CB97] J. S. Cheng and P. Banerjee. Parallel Construction
Algorithms for BDDs. Dept. of Electrical and Computer
Engineering, Northwestern University (Evanston, IL, USA),
1997.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallel and Distributed

Equivalence Checking

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Bad news #2

• Computing strong bisimilarity in finite
transition systems is a P-complete problem
[ABGS91] C. Alvarez, J. L. Balcazar, J. Gabarro, and M. Santha.
Parallel Complexity in the Design and Analysis of Concurrent
Systems. Proc. PARLE'91, LNCS 505, pp. 288—303, 1991.

=> Algorithms for computing bisimulation
seem to be inherently sequential and hard to
parallelize

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Equiv. checking / Distributed Mem.

• [ZS92] S. Zhang and S. A. Smolka. Towards Efficient
Parallelisation of Equivalence Checking Algorithms. Proc.
FORTE'92 (Lannion, France), pp. 133—146, 1992.

• [BS02] S. Blom and S. Orzan. A Distributed Algorithm for Strong
Bisimulation Reduction of State Spaces. In L. Brim and O.
Grumberg, eds., Proc. Workshop on Parallel and Distributed
Model Checking PDMC'02 (Brno, Czech Republic), Aug. 2002. To
appear in ENTCS.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Equiv. checking / Distributed Mem.

• Two attempts at parallelizing the Kanellakis-
Smolka partition refinement algorithm
– [ZS92]: The block splitting task is distributed

among processors (to optimize time)
– [BS02]: States are distributed between machines

• Obtained results (in both cases):
– some improvements, not fully convincing
– more experimental feedack is needed

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Equiv. checking / Shared Mem.

• [ZS92] S. Zhang and S. A. Smolka. Cited above.

• [RL98] S. Rajasekaran and I. Lee. Parallel Algorithms for
Relational Coarsest Partition Problems. IEEE Trans. on Parallel
and Distributed Systems, 9(7), July 1998.

• [JKOK] C. Jeong, Y. Kim, Y. On, and H. Kim. A Faster Parallel
Implementation of the Kanellakis-Smolka Algorithm for
Bisimilarity Checking. Tech. Report, Lab. Computer Software
Technology, Electronics and Telecommunications Research
Institute, Taejon, Korea.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Equiv. checking / Shared Mem.

• [RL98] proposes two ‘nearly optimal’
algorithms for CRCW PRAM machines

• [JKOK] proposes an alternative algorithm
and claim superior performance

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Four pragmatic remarks
1. The problem remains open for distributed-

memory machines (including NOWs)

2. Work focuses on Kanellakis-Smolka algorithm,
which seems simpler to parallelize than Paije-
Tarjan algorithm.

3. Work focuses on time improvement, but memory
can be a problem too.

4. Work is for strong bisimulation only. No work on
weaker equivalences (e.g., branching,
observational)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallel and Distributed

Model Checking

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

A tentative classification
for a complex situation

• Many potential combinations:
– type of logic: LTL, CTL, alternation-free or full

mu-calculus
– state space: explicit state or symbolic (BDD)
– algorithm: global or local (on the fly)
– machine architecture: vectorial, SIMD, shared- or

disstributed-memory
• But

– many combinations have not been studied yet
– existing ones have been studied by only one team

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Known combinations
• LTL model-checking

– explicit state / distributed memory
– explicit state / shared memory

• CTL model-checking
– explicit state / vector processors
– symbolic / vector processors
– explicit state / SIMD

• Mu-calculus model-checking
– explicit state / distributed memory
– symbolic / distributed memory

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallel and Distributed

LTL Model Checking

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Bad news #3

• LTL model checking relies on a (nested)
depth-first search (DFS) of the state space.
This algorithm is implemented in SPIN.

• Unfortunately, DFS is a P-complete problem

[Rei85] J. H. Reif. Depth-first search is inherently sequential.
Information Processing Letters, 20(5), pp. 229—234, 1985.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

LTL / Explicit State / Distributed Memory

• [LS99] F. Lerda and R. Sisto. Cited above.

• [BBS01] J. Barnat, L. Brim, and J. Stribrna. Distributed LTL
Model-Checking in SPIN. Proc SPIN'01 (Toronto, Canada), LNCS
2057, pp. 200—216, May 2001.

• [BCKP01] L. Brim, I. Cerna, P. Krcal, and R. Pelanek.
Distributed LTL Model Checking Based on Negative Cycle
Detection. Proc. FTS-TCS 2001 (Bangalore, India), Sep. 2001.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

LTL / Explicit State / Distributed Memory

• [LS99] does not perform a DFS and cannot be used
to check full LTL (only safety properties)

• [BBS01] proposes a distributed algorithm for nested
DFS. No experimental results reported.

• [BCKP01] replaces nested DFS by a shortest path
problem (negative cycle detection)
– Worst-case time complexity worse than nested DFS
– But easier to distribute on several machines
– Practically, less messages and better speedup

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

LTL / Explicit State / Shared Memory

• [IB02a] C. P. Inggs and H. Barringer. On the Parallelisation of
Model Checking. Proc. 2nd Workshop on Automated
Verification of Critical Systems AVOCS'02. Tech. report, Univ.
of Birmingham, Apr. 2002.

• [IB02b] C. P. Inggs and H. Barringer. Effective State Exploration
for Model Checking on a Shared Memory Architecture. In L.
Brim and O. Grumberg, eds., Proc. Workshop on Parallel and
Distributed Model Checking PDMC'02 (Brno, Czech Republic),
Aug. 2002. To appear in ENTCS.

Papers not available before this lecture (presumably
related to LTL model checking)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallel and Distributed

CTL Model Checking

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Bad news #4

CTL model-checking is a P-complete problem

E. A. Emerson, cited in [ZOS94] S. Zhang, O. Sokolsky, and S. A.
Smolka. On the Parallel Complexity of Model Checking in the
Modal Mu-Calculus. Proc. 9th IEEE Symp. on Logic in Computer
Science, pp. 154—163, July 1994.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

CTL / Explicit State / Vector Processors

[HMH90] H. Hiraishi, S. Meki, and K. Hamaguchi. Vectorized
Model Checking for Computation Tree Logic. Proc. Computer-
Aided Verification, LNCS 531, pp. 44—53, 1990.

• Bit vectors: VF[s]=value of formula F in state s
• Bottom-up evaluation of VF[.] on the syntactic

structure of formula F
• Vectorial execution was 26—39 times faster

than scalar execution (on the same machine)
• It was 1000 times faster than Clarke et al.’s

sequential CTL model checker (on a Sun 3/80)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

CTL / Symbolic / Vector Processors

• [OIY91a] [OIY91b] [OIY91c] H. Ochi, N. Ishiura, and S. Yajima.
Cited above.

• [HHOY91] H. Hiraishi, K. Hamaguchi, H. Ochi, and S. Yajima.
Vectorized Symbolic Model Checking for Computation Tree
Logic for Sequential Machine Verification. Proc. Computer-
Aided Verification, LNCS 575, pp. 214—224, 1991.

• Based on a vectorial BDD package
• Use BFS algorithm to evaluate CTL, rather than

DFS (incompatible with vector processing)
• Vectorial execution was 6—20 times faster than

scalar execution (on the same machine)

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

CTL / Explicit State / SIMD
• [Bou95] M. Bourdellès. Proposition d'une parallélisation SPMD

de l'algorithme de model-checking utilisant la logique CTL.
Mémoire de DEA en informatique, IFSIC (Rennes, France), 1995.

• States are partitioned between processors
•Each processor computes the same CTL

(sub-)formula (SIMD)
•Local computations altern with propagation

to neighbours
•Not implemented

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallel and Distributed

Mu-Calculus
Model Checking

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Bad news #5

• The problem of checking whether an LTS is a
model of a formula of the propositional mu-
calculus is P-complete.
[ZOS94] S. Zhang, O. Sokolsky, and S. A. Smolka. Cited above.

• This is even true under strong assumptions
– the formula is fixed and alternation-free
– and the LTS is deterministic and acyclic
– and the LTS fan-in and fan-out are bounded by 2

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Mu-calculus / Explicit State / Dist. Mem.

• [BLW01a] B. Bollig, M. Leucker, and M. Weber. Parallel Model
Checking for the Alternation Free Mu-Calculus. Proc. 7th Int.
Conf. on Tools and Algorithms for the Construction and Analysis
of Systems TACAS'01, LNCS 2031, pp. 543—558, 2001.

• [BLW01b] B. Bollig, M. Leucker, and M. Weber. Local Parallel
Model Checking for the Alternation Free Mu-Calculus. Tech.
Report AIB-04-2001, Aachen University of Technology, 2001.
Revised version of [BLW01a].

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Mu-calculus / Explicit State / Dist. Mem.

• Alternation-free fragment of modal mu-calculus
• Parallelization of Stirling’s game-based local algorithm
• States of the game graph are partitionned between processors

using a hash function
• Successors and predecessors of each state are kept
• Game graph built and coloured simultaneously (BFS traversal)
• Mitigated results

– NOW with up to 52 processors
– Up to 1 Mstates (LTS) and 13 Mstates (game graph)

But
– Implementation does not work on the fly
– Seems to be slow (9 minutes for an LTS with 1 Mstates)
– No speedup below 5 processors

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Mu-calculus / Symbolic / Dist. Mem.

[GHS01] O. Grumberg, T. Heyman, and A. Schuster. Distributed
Symbolic Model Checking for Mu-Calculus. Proc. 13th Int. Conf.
on Computer Aided Verification, LNCS 2102, pp. 350—362, 2001

• Applies to full propositional mu-calculus
• Global algorithm (not on-the-fly: requires the

construction of the whole Kripke structure)
• Symbolic (BDD) representation of the state space
• State space slicing into subsets of the ‘same’ size
• Slices are distributed to processors
• Proof of correctness given
• No implementation reported

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Parallel and Distributed

Solution of Markov Chains

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Goals
Given a Markov chain, one wants to compute
• steady-state analysis

– for ergodic CTMCs: stationary state probabilities
– for absorbing CTMCs: expected state sojourn state

times until absorbtion

• and/or transient analysis
instantaneous or cumulative measures for a set of
user-defined time instants:
– state probability vector at time t1, t2, … tn
– total time spent in each state up to time t

=> In any case, the solution is a real vector
indexed by states

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Exemple: Steady State Probabilities

• Transition rate matrix
R [s, s’] = if exists s -->s’ then rate (s, s’) else 0

• Infinitesimal generator matrix
Q [s, s’] = if s<>s’ then R [s, s’] else —Sum s’’<> s R [s, s’’]

• Numerical stationary solution of CTMC R:
Compute a vector pi[s] of probabilities /

pi Q = 0 and Sums pi[s] = 1
=> solve a linear homogeneous system of equations

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Numerical methods
[Ste94] W. J. Stewart. Introduction to the Numerical Solution
of Markov Chains. Princeton University Press, 1994.

• Several algorithms:
– Power
– Jacobi
– Gauss-Seidel
– SOR iterations
– Conjugate Gradient Squared (CGS)
– Block-oriented methods: block-Jacobi
– …

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Difficulties of numerical methods
• The state space S is very large

– Probability vectors pi are of dimention |S|
– Matrixes R and Q have |S|*|S| elements
– These matrices are very sparse
– Memory is a bottleneck

• Key operation: matrix.vector (or vector.
matrix) multiplication
– Floating-point computations are CPU-intensive
– Time also can be a bottleneck
– Robust algorithms to ensure num. stability

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Numerical / Steady State / Parallel

• [AKH97] S. Allmaier, M. Kowarschik, and G. Horton. Cited
above (see Sections 3—4 of their paper).

• [MCC97] P. Marenzoni, S. Caselli, and G. Conte. Cited above
(see Sections 5—6 of their paper).

• [CGN98] G. Ciardo, J. Gluckman, and D. Nicol. Cited above
(see Section 4.2 of their paper).

• [MPS99] V. Migallon, J. Penadès, and D. B. Szyld. Experimental
Study of Parallel Iterative Solutions of Markov Chains with
Block Partitions. In B. Plateau, W. J. Stewart, and M. Silva,
Numerical Solution of Markov Chains, pp. 96—110, Prensas
Universitarias de Zaragoza, Sep 1999.

• [BB00] A. Bell and B. R. Haverkort. Serial and Parallel Out-Of-
Core Solution of Linear Systems Arising from Generalised
Stochastic Petri Nets. RWTH Aachen, Germany, 2000.

• [Cia01] G. Ciardo. Cited above.

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Numerical / Steady State / Parallel

Summary:
• Parallel/distributed implementations outperform

sequential ones
• The critical issue is the parallel sparse

matrix.vector multiplication.
• Gauss-Seidel is efficient sequentially, but difficult

to distribute (contrary to Jacobi and CGS).
• Solving large Markov chains still takes time:

– 50 Mstates requires < 1 day
– 724 Mstates requires >16 days
on a cluster of 26 PCs using MPI [BB00]

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Numerical / Steady State / Disk-Based
• [DS98] D. D. Deavours and W. H. Sanders. An Efficient Disk-

Based Tool for Solving Large Markov Models. Performance
Evaluation, 33(1), pp. 67—84, June 1998.

• A single (bi-processor) workstation
• Gauss-Seidel method
• Matrix stored on disk (‘out of core’)
• Two cooperating threads:

– high throughput disk I/O
– computation

• Successful method: 10 Mstates-100 Mtrans. on a
single 128 MB RAM workstation

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Numerical / Steady State / Disk-Based
• [KH99] W. J. Knottenbelt and P. G. Harrison. Distributed Disk-

Based Solution Techniques for Large Markov Models. In B.
Plateau, W. J. Stewart, and M. Silva, Proc. 3rd Int. Meeting on
the Numerical Solution of Markov Chains, pp. 58—75, Prensas
Universitarias de Zaragoza, Sep 1999.

• Distributed-memory approach
• Jacobi and CGS methods
• Matrix stored on disk
• Two cooperating processes per node:

! high throughput disk I/O
! computation and inter-nodes communications

• Reorder matrix raws/column to improve locality exploiting
structure of BFS-generated graphs

• 50 Mstates-500 Mtrans. in 17 hours on a Fujitsu computer
with 16 nodes (300 MHz, 256 MB RAM) using MPI

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Numerical / Transient
[AK99] S. Allmaier and D. Kreische. Cited above.

• Shared-memory implementation
– Parallelization is simple: CTMC in shared memory
– Solves a CTMC with 2 Mstates and 19 Mtrans

in 1 hour 16 on a Convex SPP (8 processors)
– For larger examples, swapping issues…

• Distributed-memory implementation
– Main issue: vector.matrix multiplication
– Solves a CTMC with 2.5 Mstates and 24 Mtrans

in 14 minutes on a cluster of 8 PCs.
– Scales up to 16 PCs

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Implicit representations

• [Don93] S. Donatelli. Superposed Stochastic Automata: A Class
of Stochastic Petri Nets with Parallel Solution and Distributed
State Space. Performance Evaluation, vol. 18, pp. 21—26,
1993.

• [BFK99] P. Buchholz, M. Fischer, and P. Kemper. Distributed
Steady State Analysis Using Kronecker Algebra. In B. Plateau,
W. J. Stewart, and M. Silva, eds., Proc. 3rd Int. Meeting on
the Numerical Solution of Markov Chains (Zaragoza, Spain),
pp. 76—95, Sep 1999.

• [Cia01] G. Ciardo. Cited above (see Section 5).

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Conclusion

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Past and present

• Significant work has been done
• Some clear successes:

– Reachability analysis / Explicit state / Distributed
– Reachability analysis / Symbolic / Distributed
– Markov chains solutions / Steady State / Disk-based

• Approaches are split between different
branches of computer science

• A unified view can be fruitful

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Future
• A lot of ‘useful’ problems are still open
• Not covered in this lecture: parallel

verification of timed systems…
• Many problems have only been attacked by

one team: cross-check the results!
• Implementations/experiments are essential
• The best sequential algorithms are not the

best candidates
• NOWs, PC clusters, Internet grids(?) are

everywhere

SFM02:MC Summer School (Bertinoro, Italy) © 2002 Hubert Garavel

Think distributed!

