
1

SEQ.OPEN: A Tool for Efficient
Trace-Based Verification

Hubert Garavel and Radu Mateescu

INRIA Rhône-Alpes
655, avenue de l’Europe

38330 Montbonnot Saint Martin
France

http://www.inrialpes.fr/vasy

2

Motivations
• Verification of complex industrial systems

• Formal methods are not always applicable to
existing (i.e., already running) systems

• These systems are often "opaque" (black box)

• Only the inputs/outputs events are visible

• Traces = chronological list of inputs/outputs

• Goal: Check the correctness of traces

3

Off-line vs On-line Traces
• Off-line trace = trace stored in a "log file"
• On-line trace = trace generated on the fly as

the system executes
• Two different approaches to verification

– For off-line traces: trace-based model checking
– For on-line traces: run-time monitoring

• Pros and cons:
– with off-line traces: it is easier to verify several

temporal formulas (also, multiple runs may not
produce the same trace due to nondeterminism)

– with on-line traces: errors can be detected earlier

4

In this paper

• We focus on off-line traces ("log files"),which
are easier to obtain in practice

• We follow a pragmatic approach:
– We do not want to develop a yet another model

checker that would be dedicated to traces

– We want to reuse already existing tools as much as
possible

– The amount of new software development should
be as limited as possible

5

The CADP toolbox
http://www.inrialpes.fr/vasy/cadp

• Many features:
– LOTOS -> C compilers
– equivalence checking (bisimulations)
– model checking (modal mu-calculus)
– visual checking (graph drawing)
– exhaustive, partial, on the fly, compositional verification
– step by step simulation, random execution
– C code generation, rapid prototyping
– test case generation

• A wide dissemination:
– license agreement signed with 310 organizations
– installed on 840 machines in 2003
– 72 case studies done with CADP
– 16 research tools connected to CADP
– 17 academic courses using CADP

6

Assumptions on the trace file format
• We want to handle large traces
• No a priori limitation on:

– the length of traces (i.e., number of I/O events)
– the size of labels (which is application-dependent)

• Traces should be encoded in standard text files
• The trace format should be simple
• We reuse the SEQUENCE format of CADP

– human-readable text files
– one event per line, enclosed between "…"
– multiple traces allowed, separated by []

7

Exemple of a trace file

"PRI_INIT !PRB0 !COH !PMWI_D !ADDR !WB !VECTOR(00001) !PRB0 !SRCTXNID !M0_SNC0 !0"
"ILU_RESP !PRB0 !COH !NOCMP !IRETRY !NORMAL !0 !VECTOR(1000000)"
"ILU_REQ !OP_NIL !SRCTXNID !M0_SNC0 !WB !PMWI_D !ADDR !COH !VECTOR(0000000) !PRB0 !0"
"PRR_UPD_CLCOL !PRB0 !COH !VECTOR(0000000) !NODATA !CMP !PCMP !NORMAL !0"
"ILU_RELEASE !PCMP !COH !WB !SRCTXNID !M0_SNC0 !CMP"
"PRR_UPD_CLCOL !PMWW !DIRUPDATE !DIR_E !VECTOR(1000000) !ADDR"
"PRBE_RELEASE !PRB0"
"PRR_REQ !OP_NIL !SRCTXNID !M0_SNC0 !UC !PRLC !COH !VECTOR(0000000) !VECT"
"ILU_RESP !PRB0 !COH !NOCMP !IRETRY !NORMAL !0 !VECTOR(0001000)"
…
[]
"PRI_INIT !PRB0 !COH !PRLD !ADDR !WB !VECTOR(00001) !PRB0 !SRCTXNID !M0_SNC0 !0"
"PRR_UPD_CLCOL !PRB0 !COH !VECTOR(0000001) !DATA !NOCMP !PDATA !NORMAL !0"
"ILU_RESP !PRB0 !COH !NOCMP !NULL !NORMAL !0 !VECTOR(0001000)"
"PRR_UPD_CLCOL !NOT_PMWW !DIRNOUPDATE !DIR_NOE !VECTOR(1001000) !ADDR"
"PRI_INIT !PRB0 !COH !PMWE_D !ADDR !WM !VECTOR(00100) !PRB0 !SRCTXNID !M0_SNC0 !0"
"PRR_UPD_CLCOL !PRB0 !COH !VECTOR(0000000) !NODATA !CMP !PCMP !NORMAL !0"
"ILU_RELEASE !PCMP !COH !WM !SRCTXNID !M0_SNC0 !CMP"
"PRR_UPD_CLCOL !PMWW !DIRUPDATE !DIR_E !VECTOR(1000000) !ADDR"
…

2nd trace begins here

1st trace begins here

8

The OPEN/CAESAR framework

Open/Caesar API

LOTOS LTS
communicating

 LTSs … UML/RT

implicit LTS

SDL

CAESAR BCG.OPEN EXP.OPEN IF.OPEN UMLAUT …

LTS generation
interactive simulation
random execution
on the fly verification
partial verification
test generation

Open/Caesar
librairies

9

The SEQ.OPEN tool
• A new OPEN/CAESAR tool

• SEQ.OPEN reads a ".SEQ" file containing traces
encoded in the SEQUENCE format

• Traces are viewed as an implicit LTS, accessed
using the OPEN/CAESAR interface

• Traces can be verified using various OPEN/CAESAR
tools, such as:
– EVALUATOR (model-checking of mu-calculus formulas)
– EXHIBITOR (search for regular expressions)
– BISIMULATOR (check for trace inclusion in an LTS)

10

The SEQ.OPEN tool (with EVALUATOR)

Trace
(.SEQ file)

SEQ.OPEN C compiler

property

EVALUATOR

executable
true / false +
diagnostic (trace prefix)

OPEN/CAESAR
interface

Open/Caesar
library

11

Implementation of states
• Three kinds of states in SEQ.OPEN:

– initial state (any number of successors)
– "ordinary states" (exactly one successor)
– deadlock states (zero successor)

• Implementation: SEQ.OPEN does not load the
entire trace (which can be large) in memory

• Instead: state = offset in the .SEQ file
(+ 2 special offsets for initial/deadlock states)

• State offsets are canonical:
equality of file offsets <=> equality of states

12

Implementation of labels

• Labels are character strings contained in the
.SEQ file; their number and size are unbounded

• SEQ.OPEN does not store all labels in memory

• Instead: label = file offset (pointing to the
opening double quote of the label)

• Label offsets are not canonical (contrary to
states): two different offsets can point to
equal character strings

13

Hash-based caching
• SEQ.OPEN uses an internal cache table to:

– avoid redundant accesses in the .SEQ file
– speed up the computation of state successors
– speed up the mapping from file offsets to

character strings

• Principle: hash-based caching
– to each state offset => label and successor state
– to each label offset => character string
– collisions resolved by overwriting existing entries

14

Architecture of SEQ.OPEN

15

Two significant applications
• Hardware design: Multiprocessor architectures

– Bull "NovaScale" servers ("FormalFame" project)
– Random/guided simulation of Verilog designs 

very large traces (>100,000 events)
– Correctness and coverage checking using SEQ.OPEN

• Software architectures
– IST Project "Archware"
– Traces generated by the execution of a multi-

threaded virtual machine
– Correctness checking using SEQ.OPEN

16

Conclusion
• A pragmatic approach

– trace checking is easily accepted in industry
– do not develop a new model-checker for traces
– reuse the existing CADP technology
– use a simple, general format for traces

• A software implementation available
– SEQ.OPEN (1,200 lines of code)
– distributed as part of CADP (since Dec. 2002)

• Several non-trivial applications

	SEQ.OPEN: A Tool for Efficient �Trace-Based Verification
	Motivations
	Off-line vs On-line Traces
	In this paper
	The CADP toolbox�http://www.inrialpes.fr/vasy/cadp
	Assumptions on the trace file format
	Exemple of a trace file
	The OPEN/CAESAR framework
	The SEQ.OPEN tool
	The SEQ.OPEN tool (with EVALUATOR)
	Implementation of states
	Implementation of labels
	Hash-based caching
	Architecture of SEQ.OPEN
	Two significant applications
	Conclusion

