
An Account of the LNT Project
(1998-2024)

Hubert Garavel
joint work with F. Lang, W. Serwe and many others

INRIA Grenoble – LIG – Université Grenoble Alpes

http://convecs.inria.fr

Technical University of Eindhoven – September 30, 2024

http://convecs.inria.fr/

What is LNT?

LNT: acronym for "LOTOS New Technology"

A formal method designed to replace LOTOS

Developed at INRIA Grenoble since 1998

On-line resources about LNT:

 https://cadp.inria.fr/tutorial (see LNT section)

2

https://cadp.inria.fr/tutorial

1. Design principles of LNT

3

Goals
LNT is intended to describe critical systems

 strong, nominal typing (no type inference)
 static analysis (control-flow and data-flow analyses)
 strictness (many compiler checks and warnings)

⇒ catch many errors early, before exploring state spaces
LNT is designed to be used by industry engineers

 stay aligned with mainstream languages
 ease of reading > ease of writing
 simplicity: avoid esoteric symbols (CSP), omnipresent
brackets (LOTOS), overloaded parentheses (µCRL), etc.

4

Synchretism and unification
LNT combines ingredients from diverse sources:

 functional programming languages
 imperative programming languages
 process calculi

⇒ engineers and students already know 80% of LNT

LNT provides sequential and parallel constructs
 one can use the sequential part alone
 the sequential part is a subset of the parallel part
 (contrary to LOTOS, SDL, FDR, µCRL, etc., which have
 two different languages for data and behaviour)

5

About minimality
LNT is not "minimal" in the sense of the λ-calculus:

 it provides if-then-else, case, and alt conditionals
 it provides while-loops, for-loops, loops with break
 it provides functions as a restricted form of processes

 ⇒ minimizing the number of LNT constructs is not a goal
Alternative goals to be minimized:

 differences between LNT and mainstream languages
 time needed by "ordinary" engineers to learn LNT
 time needed to write and read LNT models
 size (number of lines) of LNT models

 6

Concurrency
Concurrent processes as first-class citizen
Primitive concepts borrowed from process calculi

 no shared memory between parallel processes
 nondeterministic choice (on control branches and data)
 multiway synchronous communication (rendezvous)

Non-primitive concepts:
 state machines (do not scale up to complex systems)
 shared variables (too many possible semantics)
 FIFO queues of messages

⇒ all these concepts can be derived from primitive ones
7

Process calculi: a complicated story

8

Oxford
track

CSP (1978)

Edinburgh
track

CCS (1981)

TCSP (1984)

ISO
track

CCS (1989)

π-calculus

bigraphs

CSPm (1997)

LOTOS (1989)

E-LOTOS (2001)

Grenoble
track

LOTOS NT (1997)

 LNT 1.0 (2006)

Amsterdam
track

ACP (1984)

PSF (1989)

µCRL (1995)

mCRL2 (2006)

 LNT 7.3 (2024)

…

M

VPL (1997)

Bristol
track

occam1 (1983)

occam2 (1988)

occam3 (1992)

Main sources of inspiration for LNT (1)

GCL (Guarded Command Language) – E. Dijkstra (1975)
 nondeterministic choice

CSP (Communicating Sequential Processes) – T. Hoare (1978)
 concurrent processes without shared memory
 atomic synchronous communication (rendezvous)

CCS (Calculus of Communicating Systems) – R. Milner (1980)
 semantics: LTS, τ-transitions, SOS rules, bisimulations…

SML (Standard Meta Language) – R. Milner (1983)
 constructor types, pattern-matching "case"

9

Main sources of inspiration for LNT (2)
occam – D. May @ INMOS (1983)

 proof that CSP can evolve into an industrial language
Ada – J. Ichbiah et al. @ Honeywell Bull (1983)

 clever syntax for structured programming constructs
NIL / Hermes – R. Strom et al. @ IBM (1984)

 static detection of uninitialized variables ("typestate")
LOTOS – ISO standard 8807 (1989)

 processes parameterized by gates, disable operator
E-LOTOS – ISO standard 15437 (2001)

 functional data types instead of ADTs, imperative style
 10

Functional or imperative style?
Situation:

 abstract data types in LOTOS / SDL / µCRL are rejected
 functional programming is not widely adopted
 E-LOTOS' functional/imperative mix is unsatisfactory

 ⇒ LNT adopts a "truly imperative" style

But "mutable" variables may raise semantic issues:
 side effects in expressions, especially Boolean guards
 write-write or read-write conflicts on shared variables
 variables used but not assigned before

11

Static analysis
To avoid semantic issues with the imperative style:

 static analysis (aka control and data-flow analyses)
Two main roles:

 preserve semantics (e.g., forbid uninitialized variables)
 emit pertinent warnings about dubious parts of code

Practical issues:
 static analysis algorithms are involved and error-prone
 they address undecidable questions (∼halting problem)
 they are pessimistic (may reject correct LNT programs)

12

Example 1

The exact frontier between correct and incorrect
 LNT models depends on compiler's cleverness

13

var X, Y: nat in
 INPUT (?X);
 if X < 100 then
 Y := 1
 end if;
 if sqrt (X) < 10 then
 Y := Y + 1 -- is Y properly initialized here?
 end if
end var

Example 2

The frontier between correct and incorrect models
is also a matter of personal taste

14

par
 X := 0
||
 while false loop
 X := 1
 end loop
end par

 -- should the compiler report a write-write conflict
 -- on variable X in the parallel composition?

2. Development tools for LNT

15

Executability
Specifications vs programs:

 specifications are declarative, programs are imperative
 such a difference is advocated by Z, TLA+, etc.
 but engineers dislike doing the work twice

LNT (as CSP, LOTOS, etc.) makes no such difference:
 Traditional concept of executable formal method
 LNT is detailed enough to express algorithms
 LNT models are meant to be executable
 (at least with simulation or rapid prototyping)
 Yet, LNT has nondetermism, pre-/post- conditions…

16

Implementing LNT

For a new language such as LNT, one needs
compilers/translators

INRIA Grenoble has been developing tools
for LNT since 1998

Four successive (yet overlapping) phases

17

1998-2018: TRAIAN 1 & 2
PhD thesis of Mihaela Sighireanu (1999)
contributions to E-LOTOS ("LOTOS NT" dialect)
TRAIAN: a compiler (or "transpiler") for LOTOS NT

 only handles LOTOS NT types and functions
 generates C code (no need for LNT-specific byte code)
 written using attribute grammars (SYNTAX + FNC2)
 11 releases of TRAIAN: v1.0 (1998) → v2.9 (2019)

TRAIAN is heavily used for compiler construction
 13 compilers written using SYNTAX + TRAIAN
 most of their code (63-91%) is written in LNT itself

18

Compilers/translators built using TRAIAN

19

2006-2020: LNT2LOTOS
LNT2LOTOS: a translator from LNT to LOTOS

 developed at Bull's request (to get rid of LOTOS ADTs)
 enables reuse for LNT of the existing CADP tools
 started with LNT types and functions
 progressively expanded to handle LNT processes
 "lightweight" translation: no type checking, etc.

 most checks deferred to the target LOTOS compiler
Since 2010: LOTOS abandoned at INRIA Grenoble

 replacement of LOTOS by LNT
 LNT successfully used in 30+ cases studies

20

2016-2020: TRAIAN 3.0
Practical issues with TRAIAN 2:

 FNC2 attribute grammars were verbose and tedious
 FNC2 was no longer maintained (and no source code)
 FNC2 executables were 32-bit, hitting 3-4 GB limit

⇒ maintenance and evolution of TRAIAN 2 was difficult
2016-2020: complete rewrite of TRAIAN

 SYNTAX+FNC2 replaced by SYNTAX+LNT technology
 TRAIAN 3.0: entirely different from TRAIAN 2.9, yet
 producing exactly the same C code (modulo renaming)
 TRAIAN 3.0 bootstrapped using TRAIAN 2.9

21

2020-now: The Great Convergence
2020: Two different LNT languages and compilers

 TRAIAN 3.0: produces C code for LNT types/functions
 LNT2LOTOS: produces LOTOS code (handles processes)

Practical issues:
 both compilers were incompatible in many details
 we could not maintain two different LNT dialects

We progressively evolved both compilers:
 discussion and selection of the "best" features for LNT
 unification of syntax, semantics, libraries, tests, docs
 TRAIAN is now the front-end called before LNT2LOTOS

22

Great Convergence steps

23

TRAIAN LNT2
LOTOS TRAIAN

TRAIAN TRAIAN

LNT2
LOTOS LNT2

LOTOS

LNT2

LOTOS

C LOTOS C LOTOS C LOTOS C LOTOS

Lotos
NT

LNT LNT
LNT LNT

Oct. 2023 Jan. 2024 → now 1998 2006 Mar. 2020→2023

The LNT team(s)

24

TRAIAN 1.0 to 2.9

LNT2LOTOS 1.0 to 7.1

Mihaela Sighireanu

Guillaume Schaeffer

Lian Apostol

Alban Catry

Sai-Srikar Kasi

Jan Stoecker

Xavier Clerc

Yves Guerte

Christine McKinty

Vincent Powazny

TRAIAN 3.0 to 3.15

David Champelovier

Hubert Garavel
Frédéric Lang

Wendelin Serwe

3. Conclusion

25

Summary
LNT: a computer language combining two different

models of computation:
Sequential computation (types and functions)

 application domain: compiler construction
 so far: 13 compilers/translators written in LNT

Parallel computation (processes and events)
 application domain: hardware/software/telco systems
 so far: 30+ case studies done with LNT
 15 translators "X → LNT" developed

26

Current status
LNT exists and is operational:

 since 2010, LNT fully replaces LOTOS in Grenoble
 using LNT does not increase the size of state spaces
 LNT used by several companies
 LNT used to teach concurrency in universities

Robust compilers for LNT are available:
 TRAIAN (58,000 lines of code): 4 releases / year
 LNT2LOTOS (45,000 lines of code): 12 releases / year
 LNT test suites totalling 15+ million lines of code

 27

Next steps
The LNT language is (slightly) evolving:

 based on case studies and "X → LNT" translators
 feedback/suggestions welcome

The LNT tools are evolving fast:

 better error messages for novice users
 more precise static analyses
 separation of roles between TRAIAN and LNT2LOTOS
 (LNT2LOTOS → LOTOS code generator)

28

Possible collaborations
Upgrade old formal models to LNT:

 can LNT replace prior formal methods?
 feedback welcome to enhance LNT
 papers for MARS@ETAPS workshops

Create back-ends for LNT:
 TRAIAN could export a decorated
 abstract tree (XML or JSON)
 new translators "LNT → X" could be
 developed (in addition to LNT2LOTOS)

29

TRAIAN

LNT2
LOTOS

C

LOTOS

LNT

XML
JSON

???

???

