
Introduction The GRL modelling language Translation into LNT The muGRL property language Applications Conclusion

A Formal Framework
for Modelling and Verifying Globally Asynchronous

Locally Synchronous Systems

Fatma Jebali
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Globally Asynchronous Locally Synchronous systems [Chapiro]

A set of synchronous components composed asynchronously

Synchronous components

Infinite sequence of zero-delay steps
Composition: one shared clock
Communication: zero-delay
Determinism

Asynchronous composition of
synchronous components

Composition: no shared clock
Communication: non-zero delay
Nondeterminism

GALS examples: networks-on-chip, flight control systems, networks of
Programmable Logic Controllers (PLCs)
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Modelling and verifying GALS systems (1)

Problem: which formalisms to model and verify GALS systems?
Solution 1: synchronous languages and corresponding
verification tools

Existing
approaches

☼ Use a single-clock model (e.g., Lustre)

☼ Use a mutli-clock model (e.g., Signal, Multiclock Esterel)

Advantages , Built-in constructs for synchrony (synchronous parallel and
delay operators, synchrony assumptions)

, Simplicity of usage

Limitations / Only deterministic GALS applications are addressed

/ Mainly safety properties are specified
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Modelling and verifying GALS systems (2)

Problem: which formalisms to model and verify GALS systems?
Solution 2: asynchronous languages and corresponding
verification tools

Existing
approaches

☼ Translate GALS languages into input languages of model
checkers (e.g., CRSM → Promela, Signal → nuSMV)

☼ Combine a synchronous language with an asynchronous
language (e.g., Signal + Promela, SAM + LNT)

Advantages , Built-in constructs for asynchrony: asynchronous parallel
operator, abstraction means (e.g., hiding, nondeterminism)

, General properties (e.g., unbounded liveness, fairness)

⇒ Expressiveness for general GALS systems

Limitations / Lack of built-in constructs for synchrony

/ Complexity of usage ⇒ steep learning curve
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Our motivation

Goal: Circumvent the limitations of existing approaches to model
and verify GALS systems
Context: Bluesky project (Minalogic competitiveness cluster,

Crouzet Automatismes)

Existing: a Crouzet synchronous language to design single
PLCs (graphical syntax, no formal semantics)

Contributions:

⇒ Scale up distributed applications based on networks of PLCs
(GALS systems)

⇒ Enhance Crouzet design process with formal verification

Approach: Propose Domain-Specific Languages as pivot forms to:

, Connect seamlessly GALS design tools to verification tools

, Enhance the modularity of the connection

, Reduce the complexity of usage
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Proposed approach: GALS-specific languages
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GRL: a language for modelling the behaviour of GALS
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GRL in a nutshell

GRL is a new modelling language intended for GALS systems

Rich data structures (e.g., integers, sets, lists)

Blocks denote synchronous components
→ deterministic
→ Locally Synchronous

Mediums are user-defined communication channels
→ asynchronous, nondeterministic

Environments are optional user-defined constraints on blocks
to close the system
→ asynchronous, nondeterministic

Systems are a composition of blocks, environments, and
mediums
→ Globally Asynchronous
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GRL systems

A process algebraic style is adopted

Components are composed in asynchronous parallelism
→ Interleaving semantics
→ Implicit asynchronous parallel operator

Communication is done by message-passing synchronization

Hiding mechanism is supported for abstraction

System behaviour:

Blocks evolve infinitely and independently
→ pure interleaving
→ active components
Environments and mediums are triggered by blocks
→ pure interleaving
→ passive components

Modelling is compositional
→ several environments and mediums can be plugged
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Example: GRL systems

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Car park management system
system Car Park (Dmd Out, Dmd In, (∗ observable ∗)

Car Out, Car In: bool , . . . )
is

var From Exit, To Entrance: bool (∗ non−observable ∗)
block l i st (∗ PLCs ∗)

Exit (Dmd Out, ?Car Out) [?To Entrance] ,
Entrance (Dmd In, ?Car In , . . . ) [From Exit] ,
. . .

environment l i st (∗ constraints ∗)
Same Pace 3 (Entrance, Exit , . . . ) ,
Counter (Car In , Car Out, ?Dmd Out)

medium l ist (∗ asynchronous communication ∗)
Unreliable [?From Exit, To Entrance]

end system
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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GRL blocks

The synchronous loop is built-in

The code of a block describes an execution step
1 Read inputs
2 Deterministically compute outputs and next internal state

The internal state is explicit and represented by static variables

Computation is instantaneous

Example:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− GRL code
block B Edge ( in Signal : bool ,

out Edge: bool) is
static var pre Signal : bool := false
Edge := Signal and not (pre Signal);
pre Signal := Signal

end block
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Corresponding Lustre node
node B Edge (Signal : bool)

returns (Edge: bool);
let

Edge := Signal and
not (pre (Signal))

tel
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Synchronous composition of blocks

Blocks can be composed inside other blocks hierarchically
There is no synchronous parallel operator
The order of block invocations should be:
→ either specified by the user
→ or inferred by a front-end compiler
Dataflow communication is adopted (zero-delay)
Example:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

block Exit
( in Dmd Out : bool , (∗ request leaving ∗)
out Car Out : bool) (∗ grant a request ∗)

[send To Entrance: bool] (∗ inform Entrance ∗)
is

var Edge: bool (∗ links ∗)
B Edge (Dmd Out, ?Edge);
B And (Edge, Dmd Out, ?Car Out);
To Entrance := Car Out

end block
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B_And 

Dmd_Out 
Car_Out 

To_Entrance 
Edge B_Edge 

Exit 
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GRL mediums

Mediums describe the asynchronous communication between
blocks

A medium interacts with one or several blocks
→ Each interaction is either a reception or an emission of
tuples of values (messages)
→ Received messages are buffered in the medium state before
being emitted

Explicit nondeterministic statements are supported

Mediums are user-defined
→ Various buffering mechanisms and communication
protocols can be described
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Example: unreliable communication medium

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Communication between the Exit and the Entrance PLCs
medium Unreliable [receive Input: bool , send Output: bool] is

static var buffer : bool := false −− one−place buffer
select

when ?Input −> select
buffer := Input −− buffering

[ ] null −− loss
end select

[ ] when Output −> Output := buffer
end select

end medium
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Exit Entrance 
Input Output 

Unreliable 

16 / 44



Introduction The GRL modelling language Translation into LNT The muGRL property language Applications Conclusion

GRL environments

Environments describe constraints on the behaviour of blocks

Two types of constraints are possible:

Data constraints concern the values carried by block inputs
Activation constraints concern the execution (also called
activation) of bocks

Explicit nondeterministic statements are supported

Combining activation and data constraints is possible
→ Complex constraints can be described, e.g., test case
scenarios
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GRL environments: data constraints

Environments produce block inputs and react to block outputs

Constraints on the inputs of one or several blocks can be
described
→ The value of a block input may depend on the past values
carried by inputs and outputs of other blocks
→ Past values are stored in the environment state

Data constraints are similar to, but more general than,
assertions in synchronous languages
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Example: data constraints

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− I f the car park is empty, no leaving request is possible
environment Counter ( in Car In: bool , (∗ car entering ∗)

in Car Out: bool , (∗ car leaving ∗)
out Dmd Out: bool) (∗ leaving request ∗)

is
static var cars : nat := 0 (∗ actual number of cars ∗)
select

when ?Car In −> i f Car In then cars := cars + 1 end i f
[ ] when ?Car Out −> i f Car Out then cars := cars − 1 end i f
[ ] when Dmd Out−> i f (cars == 0) then Dmd Out := false else Dmd Out := any bool end i f
end select

end environment
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Entrance Exit 

Counter 

Car_In Dmd_Out Car_Out 
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Example: data constraints
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Example: data constraints
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Example: data constraints
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GRL environments: activation constraints

Environments control the degree of asynchrony in block
composition

Constraints on the activations of one or several blocks can be
described
→ They permit or deny block activations at specific moments
of the system execution
→ The history of block activations is stored in the
environment state

Various activation strategies can be implemented
→ Abstract real-time properties in an asynchronous model
→ e.g., relations between block paces, priorities, failure
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Example: activation constraints

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Blocks Entrance, Exit , and Storey evolve at almost the pace
environment Same Pace 3 (block Entrance, Exit , Storey) is

static var ok N, ok X, ok S: bool := true
select

i f ok N then enable Entrance; ok N := false end i f (∗ 1 ∗)
[ ] i f ok X then enable Exit ; ok X := false end i f (∗ 3 ∗)
[ ] i f ok S then enable Storey; ok S := false end i f (∗ 2 ∗)
end select ;
i f not (ok N or ok X or ok S) then ok N := true ; ok X := true ; ok S := true end i f

end environment
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The activation strategy of blocks
Entrance, Exit, and Storey, induced
by the environment: Entrance 

Exit 

Storey 3 

2 

6 5 

0 

Entrance 

Entrance 

Entrance 

Exit 

Exit 

Exit 

Storey 

Storey 

Storey 

4 

1 
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Semantics of GRL

140 static semantic rules (typing, binding, initialisation)
→ Reject syntactically correct but semantically incorrect programs

24 dynamic semantic rules
→ Formally defined (Structural Operational Semantics)

Systems are represented by Labelled Transition Systems (LTSs)

States correspond to static variables
Transitions correspond to blocks steps (Esterel-like)
A transition label indicates:
→ The block under execution
→ Its observable interactions with the outside world (process algebra)
A system LTS is the interleaving of the possible transitions
corresponding to the system blocks

25 / 44



Introduction The GRL modelling language Translation into LNT The muGRL property language Applications Conclusion

Example: Semantics of a GRL block

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− GRL code
block Exit ( in Dmd Out: bool , out Car Out: bool) [send To Entrance: bool] is

. . .
end block
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Block name 

Couples (parameter = value) 

Hidden parameter 

0 1 
Exit  (Dmd_Out= true, Car_out= true) [ _ ] 

Figure a: One step of block Exit

Exit  (Dmd_Out= false, Car_out= false) [ _ ] 

Exit  (Dmd_Out= true, Car_out= false) [ _ ] 

Exit  (Dmd_Out= false, Car_out= false) [ _ ] 

1 

0 

Exit  (Dmd_Out= true, Car_out= true) [ _ ] 

Figure b: The behaviour of block Exit
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Example: Semantics of a GRL system

7 7 

4 

3 0 
Exit  (Dmd_Out= false, Car_out= false) [_] Exit  (…) […] 

3 3 

3 

2 

4 

5 

7 

6 8 

1 

Figure c: The behaviour of system Car Park (excerpt)
27 / 44



Introduction The GRL modelling language Translation into LNT The muGRL property language Applications Conclusion

GRL vs. Existing GALS approaches

Rich data Data Activation User-defined
types constraints constraints mediums (with

nondeterminism)

CRSM 7 7 3 7

SystemJ 3 7 3 7

Signal+Promela 3 7 3 7

SAM+LNT 3 7 7 3

GRL 3 3 3 3
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Translation from GRL into LNT
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Translation of systems

GRL systems Ð→ LNT processes

GRL top-level blocks, mediums, environments Ð→ LNT processes

Block processes interleave
→ A locking mechanism ensures their atomicity

Medium and environment processes interleave

Message-passing synchronisations are done between different processes

Example:

Entrance 

Unreliable 

Counter 

Exit 

Unreliable 
process 

Counter 
process 

Exit 
process 

Entrance 
process 

Locking  
mechanism 

Mutex 
process 

Message-passing 
synchronisations 

Pure interleaving 

Pure interleaving 
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Translation of blocks

GRL blocks Ð→ LNT functions implementing one step

GRL top-level blocks Ð→ LNT wrapper processes [Garavel]

Implement the block synchronous loop:
(1) Value reception, (2) LNT function call, (3) Value emission

GRL internal state Ð→ LNT local variables

Declared before the synchronous loop
Propagated to functions as in out parameters

Example:

B_And 

B_Edge 

Exit 
B_Edge 

Value 
reception 

     Value 
emission 

Exit Wrapper process 

Current 
 state 

Next  
state  

Exit function 

B_And 
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Translation of environments and mediums

GRL environments & mediums Ð→ LNT processes

GRL data signals Ð→ LNT communication actions with
message-passing

GRL activation signals Ð→ LNT communication actions
synchronizing with block processes and the lock

GRL internal state is translated in the same way as in block
translation
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Tool support

GRL2LNT is a tool implementing:

GRL static semantics rules
The translation function from GRL to LNT

→ 30,000 lines of Syntax & Lotos NT code
→ Tested on 555 GRL programs

Each GRL transition Ð→ an LNT transition sequence
→ Linear expansion in the number of transitions (locking mechanism)

Example:

B_And 

Dmd_Out 
Car_Out 

To_Entrance 
Edge B_Edge 

Exit 

0 1 
Exit  (Dmd_Out= true, Car_out= true) [ _ ] 

3 

0 

1 

Start !Exit 

2 
Dmd_Out !true i Car_Out !true 

5 

Finish 

4 

GRL transition ÐÐ→ Atomic sequence of LNT transitions
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The muGRL property patterns

muGRL is a set of property patterns for GALS systems
→ 42 patterns

It aims at reducing the complexity of using temporal logics

Property patterns include:

General property patterns (safety, liveness, fairness)
GALS property patterns
Discrete real-time property patterns

They are are translated into MCL

The interpretation model is the LTSs of GRL2LNT
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GALS property patterns (1)

GALS property patterns include deadlocks (activation, data),
livelocks (activation, data), and instability [Caspi]
Example 1: data deadlock
“For block Exit, inputs and outputs carry infinitely the same values”

muGRL pattern Translation into MCL

Idle (Dmd Out)
[ true∗.{Dmd Out ?x:bool}.

true∗.{Dmd Out ?y:bool where x <> y}
] false

All Idle (Dmd Out, Car Out) Idle (Dmd Out) and Idle (Car Out)

0 1 

2 

3 

i 

Exit 
Car_Out = false 

Figure a: Data deadlock situation in block Exit behaviour
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GALS property patterns (2)

Example 2: stability
“For block Entrance, if input Dmd In stabilise, i.e., carry infinitely the

same value, output Car In should stabilise in the future”

muGRL pattern Translation into MCL

Stability (Dmd In, Car In)

[ true∗.{Dmd In ?x:bool}.
true∗.{Dmd In ?y:bool where x <> y}

] false implies not
< true∗.{Car In ?v:bool}.

true∗.{Car In ?w:bool where v <> w}
> @

0 1 

2 

Entrance 

Car_In = false 
3 4 

Car_Out = true 
6 5 

Figure b: Instability situation in block Entrance behaviour
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Discrete real-time property patterns

Discrete real-time property patterns include deadline, event sustain,
and boundedness

Example: boundedness
“Between two successive activations of Exit, Entrance is activated at most twice”

muGRL pattern Translation into MCL

Not To Unless More (true∗. {Exit},
{Exit},
{Entrance}, 2)

[ true∗ . {Exit} . (not ({Entrance}))∗ .
({Entrance} . (not ({entrance} or {Exit}) )∗ ){3}

] false

Entrance 
Exit 

Storey 3 

2 

6 5 

0 

Entrance 

Entrance 

Entrance 

Exit 

Exit 

Exit 

Storey 

Storey 

Storey 

4 

1 
0 

Entrance 

Exit Storey 

Figure c: Bounded activation ensured Figure d: Bounded activation not ensured 37 / 44



Introduction The GRL modelling language Translation into LNT The muGRL property language Applications Conclusion

Real-life applications
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AutoFlight Control Systems

Work with IRT Saint-Exupéry, Thalès Avionics

Apply our work on systems with strict real-time constraints

Approximate real-time constraints in GRL

On synchronous blocks, by counting block steps
On asynchronous systems, by implementing activation strategies

Altitude target acquisition function

571 lines of GRL, 1988 lines of LNT, 438 line verification script
Tractable state spaces (20 million states, 30 million transitions)

Results

GRL, muGRL, and CADP are appropriate for theses systems
Promising results on the verification of real-time properties
(comparison with the Tina toolbox)
GRL will be evaluated at IRT Saint-Exupéry
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Networks of PLCs

Work with Crouzet Automatismes, Bluesky project

Apply our approach on systems with no real-time guaranties
High degree of asynchronous parallelism
Unreliable communication

Car park, among several distributed applications

463 lines of GRL, 1187 lines of LNT, 391 line verification script
Large state spaces (800 million states, 1 billion transitions)

Results

A compiler from Crouzet design language into GRL is developed by
Crouzet
Libraries of reusable GRL components are built
Crouzet investigates to use GRL as end-user language

GRL 
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Conclusion
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Conclusion: contributions

Combine principles of synchronous languages and (asynchronous)
process algebra into a single, coherent language: GRL

Define property patterns to reduce the complexity of using
temporal logics: muGRL

Equip GRL and muGRL with verification tools by mapping to the
LNT and MCL languages supported by the CADP toolbox

Apply GRL and muGRL to realistic GALS problems and connect
GRL to industrial tools for PLCs

Positive feedback from industrial GALS users
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Conclusion: future work

Prove the translation function from GRL into LNT

Explore more CADP techniques, e.g., probabilistic and
compositional verification

Use GRL to connect synchronous languages, e.g., Lustre, to
CADP

Experiment other real-life applications
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