A Formal Framework
for Modelling and Verifying Globally Asynchronous
Locally Synchronous Systems

Fatma Jebali

Université Grenoble Alpes
Inria Grenoble — Rhéne-Alpes / Convecs
LIG

September 12, 2016

Introduction

Introduction

@ Goal: building correct systems
@ Means: formal methods
@ Technique: model checking

Requirements System
T T
Formalisation Modelling

l

)

Property
specification

a

Verdict

N

not satisfied
counter-example

System
model

satisfied

Introduction

Introduction

@ Goal: building correct systems
@ Means: formal methods

@ Technique: model checking

Requirements System l

T T
Formalisation Modelling

Property System

specification model

a

Verdict

N

not satisfied
counter-example

High-level
formalism

satisfied

@ Need: adequate formalisms to write models and
properties 3/44

Introduction

Globally Asynchronous Locally Synchronous systems [Chapiro]

@ A set of synchronous components composed asynchronously

@ Synchronous components

o Infinite sequence of zero-delay steps — o
e Composition: one shared clock
e Communication: zero-delay Qo
e Determinism
@ Asynchronous composition of — :D_’
synchronous components ® S
o Composition: no shared clock ., A o
e Communication: non-zero delay o

o Nondeterminism

@ GALS examples: networks-on-chip, flight control systems, networks of
Programmable Logic Controllers (PLCs)

Introduction

Modelling and verifying GALS systems (1)

Problem: which formalisms to model and verify GALS systems?
Solution 1: synchronous languages and corresponding
verification tools

Existing Use a single-clock model (e.g., Lustre)

h . . .
approaches Use a mutli-clock model (e.g., Signal, Multiclock Esterel)

Advantages © Built-in constructs for synchrony (synchronous parallel and
delay operators, synchrony assumptions)

® Simplicity of usage

Limitations ® Only deterministic GALS applications are addressed

® Mainly safety properties are specified

Introduction

Modelling and verifying GALS systems (2)

Problem: which formalisms to model and verify GALS systems?
Solution 2: asynchronous languages and corresponding
verification tools

Existing Translate GALS languages into input languages of model
approaches checkers (e.g., CRSM — Promela, Signal - nuSMV)

Combine a synchronous language with an asynchronous
language (e.g., Signal + Promela, SAM + LNT)

Advantages © Built-in constructs for asynchrony: asynchronous parallel
operator, abstraction means (e.g., hiding, nondeterminism)

® General properties (e.g., unbounded liveness, fairness)

= Expressiveness for general GALS systems

Limitations ® Lack of built-in constructs for synchrony

® Complexity of usage = steep learning curve

6 /44

Introduction

Our motivation

Goal: Circumvent the limitations of existing approaches to model
and verify GALS systems
Context: Bluesky project (Minalogic competitiveness cluster,
Crouzet Automatismes)
@ Existing: a Crouzet synchronous language to design single
PLCs (graphical syntax, no formal semantics)
e Contributions:

= Scale up distributed applications based on networks of PLCs
(GALS systems)
= Enhance Crouzet design process with formal verification

Approach: Propose Domain-Specific Languages as pivot forms to:
® Connect seamlessly GALS design tools to verification tools
® Enhance the modularity of the connection

® Reduce the complexity of usage

Introduction

Proposed approach: GALS-specific languages

GRL

Behaviour modelling

muGRL

Property specification

GALS designer

GRL2LNT
LNT process
language
MCL temporal LNT2LOTOS
logic + Caesar
Evaluator
%
True - False

=1 CADP

The GRL modelling language

GRL: a language for modelling the behaviour of GALS

The GRL modelling language

GRL in a nutshell

GRL is a new modelling language intended for GALS systems
@ Rich data structures (e.g., integers, sets, lists)

@ Blocks denote synchronous components
— deterministic
— Locally Synchronous

@ Mediums are user-defined communication channels
— asynchronous, nondeterministic

@ Environments are optional user-defined constraints on blocks
to close the system
— asynchronous, nondeterministic

@ Systems are a composition of blocks, environments, and
mediums
— Globally Asynchronous

10 /44

The GRL modelling language

GRL systems

@ A process algebraic style is adopted

@ Components are composed in asynchronous parallelism
— Interleaving semantics
— Implicit asynchronous parallel operator

Communication is done by message-passing synchronization

Hiding mechanism is supported for abstraction

System behaviour:

e Blocks evolve infinitely and independently
— pure interleaving
— active components
e Environments and mediums are triggered by blocks
— pure interleaving
— passive components

Modelling is compositional

— several environments and mediums can be plugged e

The GRL modelling language

Example: GRL systems

— Car park management system
system Car_Park (Dmd.Out, Dmd_In, (% observable)
Car_Out, Car_In: bool, ...)
is
var From_Exit, To_Entrance: bool (* non-observable)
block list (* PLCs %)
Exit (Dmd_Out, ?Car_Out) [?To_Entrance],
Entrance (Dmd.In, ?Car_In, ...) [From_Exit],

environment list (x constraints)
Same_Pace 3 (Entrance, Exit, ...),
Counter (Car_In, Car_Out, ?Dmd.Out)
medium list (x asynchronous communication)
Unreliable [?From_Exit, To_Entrance]
end system

12 /44

The GRL modelling language

GRL blocks

The synchronous loop is built-in

The code of a block describes an execution step
@ Read inputs
@ Deterministically compute outputs and next internal state

The internal state is explicit and represented by static variables

Computation is instantaneous

Example:

— GRL code — Corresponding Lustre node
block B_Edge (in Signal: bool, node B_Edge (Signal: bool)
out Edge: bool) is returns (Edge: bool);
static var pre_Signal: bool := false let
Edge := Signal and not (pre_Signal); Edge := Signal and
pre_Signal := Signal not (pre (Signal))
end block tel

13 /44

The GRL modelling language

Synchronous composition of blocks

Blocks can be composed inside other blocks hierarchically
There is no synchronous parallel operator

The order of block invocations should be:

— either specified by the user

— or inferred by a front-end compiler

Dataflow communication is adopted (zero-delay)
Example:

block Exit
(in DmdOut : bool, (* request leaving)
out Car_Out : bool) (% grant a request %) Dmd_Out
[send To_Entrance: bool] (* inform Entrance)
is
var Edge: bool (* links)
B_Edge (DmdOut, ?Edge);
BAnd (Edge, DmdOut, ?Car_Out);
To_Entrance := Car_Out
end block

Car_Out

To_Entrance

14 /44

The GRL modelling language

GRL mediums

@ Mediums describe the asynchronous communication between
blocks

@ A medium interacts with one or several blocks
— Each interaction is either a reception or an emission of
tuples of values (messages)
— Received messages are buffered in the medium state before
being emitted

@ Explicit nondeterministic statements are supported

@ Mediums are user-defined
— Various buffering mechanisms and communication
protocols can be described

15 /44

The GRL modelling language

Example: unreliable communication medium

— Communication between the Exit and the Entrance PLCs
medium Unreliable [receive Input: bool, send Output: bool] is
static var buffer: bool := false — one-place buffer
select
when ?Input = select
buffer := Input — buffering

[] null — loss
end select
[] when Output = Output := buffer
end select
end medium

Input Output

16 /44

The GRL modelling language

GRL environments

Environments describe constraints on the behaviour of blocks

Two types of constraints are possible:
e Data constraints concern the values carried by block inputs
o Activation constraints concern the execution (also called
activation) of bocks

Explicit nondeterministic statements are supported

Combining activation and data constraints is possible
— Complex constraints can be described, e.g., test case
scenarios

17 /44

The GRL modelling language

GRL environments: data constraints

@ Environments produce block inputs and react to block outputs
o Constraints on the inputs of one or several blocks can be
described
— The value of a block input may depend on the past values
carried by inputs and outputs of other blocks
— Past values are stored in the environment state
@ Data constraints are similar to, but more general than,
assertions in synchronous languages

18 /44

The GRL modelling language

Example: data constraints

— If the car park is empty, no leaving request is possible

environment Counter (in Car_In: bool, (% car entering x*)

in Car_Out: bool, (% car leaving =)
out Dmd Out: bool) (* leaving request)
is
static var cars: nat := 0 (* actual number of cars)
select

when ?Car_In = if Car_In then cars := cars + 1 end if

[] when ?Car_Out = if CarOut then cars := cars — 1 end if

[] when DmdOut—> if (cars =10) then DmdOut := false else Dmd.Out := any bool end if
end select

end environment

Ca r_|n Car_Out

Entrance pmd_Out

Counter

19 /44

The GRL modelling language

Example: data constraints

out Dmd Out: bool) (* leaving request)

static var cars: nat := 0

when DmdOut —> if (cars = 0) then Dmd.Out := false else DmdOut := any bool end if

Car_In Car_Out md_Out
Entrance

20 /44

The GRL modelling language

Example: data constraints

in Car_In: bool, (% car entering *)

when ?Car_In = if Car_In then cars := cars + 1 end if

Ca r_|n Car_Out

md_Out

Entrance Exit

Counter

21 /44

The GRL modelling language

Example: data constraints

in CarOut: bool, (* car leaving)

when ?Car_Out —> if Car_Out then cars := cars — 1 end if

Car_In Car_Out Dmd_Out
Entrance

22 /44

The GRL modelling language

GRL environments: activation constraints

@ Environments control the degree of asynchrony in block
composition

@ Constraints on the activations of one or several blocks can be
described
— They permit or deny block activations at specific moments
of the system execution
— The history of block activations is stored in the
environment state

@ Various activation strategies can be implemented
— Abstract real-time properties in an asynchronous model
— e.g., relations between block paces, priorities, failure

23 /44

The GRL modelling language

Example: activation constraints

— Blocks Entrance, Exit, and Storey evolve at almost the pace
environment Same_Pace_3 (block Entrance, Exit, Storey) is
static var ok_N, ok X, okS: bool := true

select

if ok_N then enable Entrance; ok N := false end if (x 1 x)
[] if okX then enable Exit; ok X := false end if (x 3 %)
[] if ok=S then enable Storey; ok.S := false end if (* 2 x)
end select;

if not (ok_-N or okX or okS) then ok N := true; ok X := true; okS := true end if
end environment

Entrance

\%e

The activation strategy of blocks
Entrance, Exit, and Storey, induced
by the environment:

Entrance

24 /44

The GRL modelling language

Semantics of GRL

@ 140 static semantic rules (typing, binding, initialisation)
— Reject syntactically correct but semantically incorrect programs

@ 24 dynamic semantic rules
— Formally defined (Structural Operational Semantics)
@ Systems are represented by Labelled Transition Systems (LTSs)
e States correspond to static variables
e Transitions correspond to blocks steps (Esterel-like)
e A transition label indicates:
— The block under execution
— Its observable interactions with the outside world (process algebra)
A system LTS is the interleaving of the possible transitions
corresponding to the system blocks

25 /44

The GRL modelling language

Example: Semantics of a GRL block

— GRL code
block Exit (in Dmd.Out: bool, out Car-Out: bool) [send To_Entrance: bool] is

en(-i . i)lock

Exit (Dmd_Out= , Car_out=)1

Block name Hidden parameter /
Exit (Dmd_Out= , Car_out=)1
\ 4 Couples (parameter =)

Exit (Dmd_Out= true, Car_out= true) [_] Exit (Dmd_Out= true, Car_out= true) [_]
® '

Figure a: One step of block Exit

Exit (Dmd_Out= , Car_out=)1

Figure b: The behaviour of block Exit
26 /44

The GRL modelling language

Example: Semantics of a GRL system

, Car_out=) _L/I\Exit () []

< Car In

Figure c: The behaviour of system Car_Park (excerpt)
27/ 44

The GRL modelling language

GRL vs. Existing GALS approaches

Rich data Data Activation User-defined
types constraints constraints mediums (with
nondeterminism)
CRSM X X v X
SystemJ v X v X
Signal4+-Promela v X v X
SAM+LNT v/ X X v
GRL 4 v v v

28 /44

Translation into LNT

Translation from GRL into LNT

29 /44

Translation into LNT

Translation of systems

@ GRL systems — LNT processes

GRL top-level blocks, mediums, environments —> LNT processes

Block processes interleave
— A locking mechanism ensures their atomicity

Medium and environment processes interleave

Message-passing synchronisations are done between different processes

Example:

Entrance *Exit

Counter

Entrance " Exnt Locking
process process mechanism
" Message-passing
Mutex synchronisations
process

Pure interleaving

C t
IEED

30/44

Translation into LNT

Translation of blocks

@ GRL blocks — LNT functions implementing one step
@ GRL top-level blocks — LNT wrapper processes [Garavel]

e Implement the block synchronous loop:
(1) Value reception, (2) LNT function call, (3) Value emission

@ GRL internal state — LNT local variables

e Declared before the synchronous loop
e Propagated to functions as in out parameters

@ Example:

e B_And '
Value ..., S Value
reception emission
B_Edge | Next
state

31/ 44

Translation into LNT

Translation of environments and mediums

@ GRL environments & mediums — LNT processes

@ GRL data signals — LNT communication actions with
message-passing

@ GRL activation signals — LNT communication actions
synchronizing with block processes and the lock

@ GRL internal state is translated in the same way as in block
translation

32 /44

Translation into LNT

Tool support

@ GRL2LNT is a tool implementing:
e GRL static semantics rules
e The translation function from GRL to LNT
— 30,000 lines of Syntax & Lotos NT code
— Tested on 555 GRL programs
@ Each GRL transition — an LNT transition sequence
— Linear expansion in the number of transitions (locking mechanism)

@ Example:
Dmd_Out Car_Out
To_Entrance
()
. Start !Exit Finish
@Exlt (Dmd_Out= true, Car_out=)[_]>® . Dmd_out | @Cdtou! ; ‘ o
GRL transition - Atomic sequence of LNT transitions

33 /44

The muGRL property language

The muGRL property patterns

@ muGRL is a set of property patterns for GALS systems
— 42 patterns
@ It aims at reducing the complexity of using temporal logics
@ Property patterns include:
o General property patterns (safety, liveness, fairness)
o GALS property patterns
o Discrete real-time property patterns
@ They are are translated into MCL
@ The interpretation model is the LTSs of GRL2LNT

34 /44

The muGRL property language

GALS property patterns (1)

@ GALS property patterns include deadlocks (activation, data),
livelocks (activation, data), and instability [Caspi]
@ Example 1: data deadlock

“For block Exit, inputs and outputs carry infinitely the same values”

| muGRL pattern | Translation into MCL |

[truex.{DmdOut ?x:bool}.

truex.{Dmd.Out ?y:bool where x <> y}
] false

Idle (Dmd-Out)

| All_ldle (Dmd.Out, CarOut) | Idle (DmdOut) and Idle (CarOut) \

Figure a: Data deadlock situation in block Exit behaviour

35 /44

The muGRL property language

GALS property patterns (2)

@ Example 2: stability
“For block Entrance, if input Dmd_In stabilise, i.e., carry infinitely the

same value, output Car_In should stabilise in the future”

‘ muGRL pattern ‘ Translation into MCL ‘

[truex.{Dmd_In ?x:bool}.
truex.{Dmd_In ?y:bool where x <> y}

- false implies not
Stability (Dmd.n, Car-In) ltrue*.{Capr,In ?v:bool}.

truex.{Car_In w:bool where v <> w}
>0

@_} Entrance,

Figure b: Instability situation in block Entrance behaviour

36 /44

The muGRL property language

Discrete real-time property patterns

@ Discrete real-time property patterns include deadline, event sustain,
and boundedness

@ Example: boundedness
“Between two successive activations of Exit, Entrance is activated at most twice”

| muGRL pattern | Translation into MCL |

Not_To_Unless_More (truex. {Exit}, | [truex . {Exit} . (not ({Entrance}))x .
{Exit}, ({Entrance} . (not ({entrance} or {Exit}))x){3}
{Entrance}, 2)] false

Entrance

Storey

Entrance Storey

Figure c: Bounded activation ensured Figure d: Bounded activation not ensured 37/ 44

Applications

Real-life applications

38 /44

Applications

AutoFlight Control Systems

@ Work with IRT Saint-Exupéry, Thalés Avionics

@ Apply our work on systems with strict real-time constraints
@ Approximate real-time constraints in GRL

e On synchronous blocks, by counting block steps

e On asynchronous systems, by implementing activation strategies
o Altitude target acquisition function

@ 571 lines of GRL, 1988 lines of LNT, 438 line verification script

o Tractable state spaces (20 million states, 30 million transitions)
@ Results

e GRL, muGRL, and CADP are appropriate for theses systems

e Promising results on the verification of real-time properties
(comparison with the Tina toolbox)

e GRL will be evaluated at IRT Saint-Exupéry

39 /44

Applications

Networks of PLCs

@ Work with Crouzet Automatismes, Bluesky project

@ Apply our approach on systems with no real-time guaranties
e High degree of asynchronous parallelism
e Unreliable communication

@ Car park, among several distributed applications
e 463 lines of GRL, 1187 lines of LNT, 391 line verification script
o Large state spaces (800 million states, 1 billion transitions)

@ Results

e A compiler from Crouzet design language into GRL is developed by
Crouzet

o Libraries of reusable GRL components are built
e Crouzet investigates to use GRL as end-user language

40/ 44

Conclusion

Conclusion

41 /44

Conclusion

Conclusion: contributions

e Combine principles of synchronous languages and (asynchronous)
process algebra into a single, coherent language: GRL

@ Define property patterns to reduce the complexity of using
temporal logics: muGRL

@ Equip GRL and muGRL with verification tools by mapping to the
LNT and MCL languages supported by the CADP toolbox

@ Apply GRL and muGRL to realistic GALS problems and connect
GRL to industrial tools for PLCs

@ Positive feedback from industrial GALS users

42 /44

Conclusion

Conclusion: future work

Prove the translation function from GRL into LNT

Explore more CADP techniques, e.g., probabilistic and
compositional verification

@ Use GRL to connect synchronous languages, e.g., Lustre, to
CADP

Experiment other real-life applications

43 /44

Conclusion

References

1. F. Jebali, F. Lang, R. Mateescu. Formal Modelling and Verification of
GALS Systems Using GRL and CADP. Formal Aspects of Computing,
Springer Verlag, 2016, 28 (5), pp.767-804.

2. F. Jebali, F. Lang, and R. Mateescu. GRL: A Specification Language for
Globally Asynchronous Locally Synchronous Systems. Proceedings of the
16th International Conference on Formal Engineering Methods
(ICFEM’14), Luxembourg. Springer, 8829, pp.219-234, 2014, LNCS.

3. F. Jebali et al. Modélisation et validation formelle de systemes
globalement asynchrones et localement synchrones. Approches Formelles
dans I'Assistance au Développement de Logiciels, 2014, Paris, France.
pp.97-102, 2014.

4. F. Jebali, F. Lang, and R. Mateescu. GRL: A Specification Language for
Globally Asynchronous Locally Synchronous Systems (Syntax and Formal
Semantics). Research Report 8527, Inria, 84 pages, 2014.

44/ 44

	Introduction
	The GRL modelling language
	Translation into LNT
	The muGRL property language
	Applications
	Conclusion

