
From Abstract Distributed Model From Abstract Distributed Model
Checking to Concrete ImplementationChecking to Concrete Implementation

Christophe JoubertChristophe Joubert
PDMC’03PDMC’03

July 14, 2003July 14, 2003
INRIA RhôneINRIA Rhône--Alpes / VASYAlpes / VASY

1.1. IntroductionIntroduction

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 3

Introduction: PDMC problemsIntroduction: PDMC problems

• Task partitioning:
shared vs. distributed memory, multithreaded, …

• Load balancing:
dynamic vs. static, distributed disk-based, …

• (Canonical) state and graph representation:
explicit vs. implicit (BDD), game graphs, BES, XDR,
compaction, …

• Termination detection:
tree vs. ring, wave vs. acyclic, symmetric vs. central, …

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 4

Introduction: CommunicationIntroduction: Communication

• Communication problem
Low-overhead communication
Maintaining a good proportion between computation at each
process and communication

• Usually, communication is not a bottleneck, but it
affects all PDMC distributed memory computations, depending
on different orderings and communication mechanisms used
is traditionally experimented on small parallel architecture (<64
nodes), hiding possible scalability issues of existing solutions

• Automatic mechanisms to solve it
but pitfalls (resource limits, scalability, performance, …)
Communication layer not clearly described

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 5

Outline of the talkOutline of the talk

1. Introduction

2. Message Passing mechanisms

3. Distributed Model Checking (DMC) communication

4. Communication paradigms

5. Conclusion

2.2. Message passing mechanismsMessage passing mechanisms

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 7

• Aggregate power and memory of many computers
(massively parallel architectures):

Clusters of cheap PCs
Loosely-connected environments of workstations

• 3 widely used mechanisms:
TCP/UDP sockets over IP
PVM and MPI
RPC and Active Message

Message passing: StrengthsMessage passing: Strengths

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 8

• Low-overhead message passing is critical for performance:
Latency
Thread management
Data copying
Data buffering
Computation overlapping

Some message passing mechanisms present more avoidable
communication overhead for DMC than other,
Which one is the most appropriate to DMC ?

Message passing: WeaknessesMessage passing: Weaknesses

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 9

OutlineOutline

1. Introduction

2. Message Passing mechanisms

3. DMC communication

4. Communication paradigms

5. Conclusion

3.3. DMC communicationDMC communication

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 11

DMC communication: ExampleDMC communication: Example

• Distributed state space
generation

3 main interleaved
activities:

SEND
UPDATE
RECV

Overlapping
asynchronous sequential
multithreads ([])
deadlocks and overhead

Vi := ø; Ei:= ø; Ti:= ø
if h(x0) = i then Vi := {x0} endif

while
if then

if then
SEND

endif
[]
if h(s’)=i then

UPDATE
endif

endif
[]
RECV ; UPDATE

endwhile

() ()φφ ≠∨≠
== UU

n

i i
n

i i channelsV
11

iVx ∈∃
{ } { }xEExVV iiii ∪== :;\:

() ()xsuccsx a ∈′→∀

() ish ≠′
()()shsx a ′′→ ,

()sxTEV a
iii ′→,,,

()xs a→ ()xsTEV a
iii →,,,

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 12

DMC communication: TimeDMC communication: Time

• Data exchanged:
Number of messages (cross arcs, control messages)
Data type (handler address, aggregated messages, …)
Frequency of exchange (fine or coarse grained computing)
Size of messages (user defined, kernel dependent, …)

• Communication cost model: [G. Fox 1989]
Monothreaded: T = Tcompute+Tcommunicate,

Tcommunicate = Nc(Ts+LcTb),
Multithreaded: T = max(Tcompute+NcTs, NcLcTb),

where each of the Nc communications requires time linear in the
size of the message (LcTb), plus a start-up cost (Ts).

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 13

DMC communication: MemoryDMC communication: Memory

• Huge amount of memory (bottleneck of DMC)
to explore and store the state space

• Extensive computation
to traverse the graph and to evaluate nodes

Need to reduce the communication overhead to a
minimum

Buffering (network transport, aggregation)
Multiple communication operations at once (buffering,
marshalling, transmitting)
Asynchronous calls (sending)

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 14

OutlineOutline

1. Introduction

2. Message Passing mechanisms

3. DMC communication

4. Communication paradigms

5. Conclusion

4.4. Communication paradigmsCommunication paradigms

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 16

Paradigms: Modeling Paradigms: Modeling

• 4 criteria (15 possibilities):
Synchronous / asynchronous
Blocking / non blocking
Buffered / unbuffered
Bounded buffer / unbounded buffer

• Only 3 models (asynchronous):
Blocking communication
Non blocking communication with unbounded buffer
Non blocking communication with bounded buffer

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 17

Paradigms: Blocking communication Paradigms: Blocking communication

• Pros:
No buffering, no multiple copy, memory saving
More understandable program behavior
Short messages directly handled by kernel buffer

• Cons:
Complex computation ordering for overlapping
Difficult programming for processor cost/performance
Synchronization delays (rendez-vous)
High deadlock risk

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 18

Paradigms: UParadigms: Unbounded buffernbounded buffer

• Pros:
Maximal overlapping of communication and computation
Maximum flexibility (undelayed transmission calls)
Clear program behavior specification
Widespread communication mechanisms (MPI, PVM)
Majority of DMC papers written with this model

• Cons:
Uncontrolled memory resources consumption
Uncontrolled buffer overflow (unpredictable behavior,
deadlock)
Opposite to model checking interest

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 19

Paradigms: Paradigms: Bounded bufferBounded buffer

• Pros:
Interleaving of computations when communication fails
Fine use of memory resources
Flow control enabled
Well-adapted to TCP/UDP sockets over IP

• Cons:
Difficult and tricky programming
Complex specification
Not abstracted in most DMC algorithms

5.5. ConclusionConclusion

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 21

Conclusion: TaxonomyConclusion: Taxonomy

• Distributed computing
taxonomy:

Advances for each
element in DMC tools and
algorithms
Communication layer is
one of these elements
Many possible
communication
paradigms, few
practical

Computing

Sequential Concurrent

Distributed Parallel

Synchronous Asynchronous

Message passing Shared Memory

Blocking
(rendez-vous)

A

Non blocking
(unbounded buffer)

B

Non blocking
(bounded buffer)

C

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 22

Conclusion: EvaluationConclusion: Evaluation

• Gap between realistic modelization of process
interconnection and concrete implementation

Example of the generic distributed state space generation
algorithm

• Impact of message passing mechanisms over
implementation correctness and performance

• Bounded buffered non blocking communication
implemented with TCP/UDP sockets over IP is a good
candidate for DMC communication mechanism

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 23

Conclusion: Future workConclusion: Future work

• Basis for DMC communication library implementation
Constant evolution and improvements in message passing, but
few restrictions always true (installing an extra software,
compiling it for each architecture used, learning a new message
passing language with too many features for actual works, …)

• Basis for any DMC tools upon precise communication
paradigm

Subject to experiment different models and to argument
paradigm choices
Validation of theoretical solution to the problem of DMC
communication

PDMC'03 - Boulder (Colorado, USA) - July 14, 2003 24

Related workRelated work

• [A.S. Tanenbaum and M.van Steen, Distributed Systems: Principles and
Paradigms, Prentice Hall, 2002]

or any good (undergraduate) book on distributed computing

• [G.Ciardo and D.M. Nicol, Automated Parallelization of Discrete State-
space Generation, JPDC, 1997]

• [U. Stern and D.L. Dill, Parallelizing the Murphi Verifier, CAV’97]
• [B. Haverkort, H. Bohnenkamp and A. Bell, On the Efficient Sequential

and Distributed Evaluation of Very Large Stochastic Petri Nets,
PNPM’99]

• [H. Garavel, R. Mateescu and I. Smarandache, Parallel state space
construction for model-checking, SPIN’01]

►More information on:
http://www.inrialpes.fr/vasy/cadp

