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Introduction 

Goal: Formal verification of concurrent systems 

Action based models 

Asynchronous concurrency: interleaving & Hoare’s rendezvous 

Enumerative techniques: model checking, equivalence checking 

Generate a low-level model from a high-level description  

Compositional verification: “divide and conquer” 
approach to fight state explosion 

Exploit the decomposition of the system into local processes 

This talk:  Basic compositional verification 

   Refined approach of Graf & Steffen (and Lüttgen) 
   Applications in the CADP toolbox 
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Six ingredients to verify a system (1-3) 

1) Low-level model M 

State-transition formalism encoding the system’s behaviour  

Examples: labelled transition system, interactive Markov chain 

2) Parallel composition operator || 

Returns the composition M’ = M1||…||Mn of n components  
Complexity of M’ = product of the complexities of M1, …, Mn  

3) Equivalence relation   M  M 

Congruence for ||: Mi  Mi’  M1||…||Mn  M1’||…||Mn’  

Examples: strong bisimulation, branching bisimulation, … 
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Six ingredients to verify a system (4-6) 

4) Minimisation function min: M  M 

Maps each model to an element of its equivalence class in M/ 

Minimizes some complexity criterion (e.g., state space size) 

M1||…||Mn  min(M1)||…||min(Mn) 

5) High-level language L 

Realistic systems cannot be described directly in M 

L also has concepts of components C and parallel composition || 

6) Translation function [[.]]: L  M 

Maps a system S into a low level model [[S]] 

Morphism for ||: [[C1||…||Cn]]  [[C1]]||…||[[Cn]]  
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Basic compositional verification 

Problem: generate a low level model for S = C1||…||Cn 
where: 

[[S]] is excessively large (state explosion) 

But [[C1]], …, [[Cn]] are small enough to be generated 

Solution: 
Compute min([[C1]])||…||min([[Cn]]) instead of [[S]] 

Advocated in many research papers since end of the 80’s 

Functional verification setting: labelled transition systems 

Performance evaluation setting: interactive Markov chains 

Efficiency is inversely proportional to the size of the 
largest intermediate model that is generated 
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This is more complex in practice… 

 

Problem: Some [[Ci]] may be much larger than [[S]] 

Cause: components are tightly synchronised and Ci ’s behaviour 
is constrained by other components 

Examples: shared memories, hardware links, buses, … 

 

Solution: If S has a hierarchical structure, try different 
strategies 

Compose / minimize different subsets of components 
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Compositional verification strategies 

Static strategies 

min is applied to leaf components only, or 

min is applied to every intermediate level in the hierarchy  

Dynamic strategies 

Decide at each step which components to compose / minimize 

Use heuristics (finding an optimal strategy is too complex) 

Example: smart reduction (Crouzen & Lang, 2011) 
based on metrics considering both: 

The amount of synchronisations between components 

The % of transitions that can be hidden after composition 
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The CADP verification toolbox (cadp.inria.fr) 

Continuously developed & maintained since the late 80’s 

Provides all ingredients for compositional verification 
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Tool Description 

M BCG Compact format for LTS and IMC 

|| EXP.OPEN Labelled transition systems synchronised using the parallel 
composition operators of various process calculi 

 BCG_CMP Comparison wrt. various equivalence relations 

min BCG_MIN Minimisation wrt. various equivalence relations 

L LOTOS 
LNT 

ISO/IEC standard 8807 (historic) 
Modern specification language combining features from 
process calculi, and imperative / functional languages  

[[.]] CAESAR.ADT 
CAESAR 
LNT2LOTOS 

Compiler for the data part of LOTOS 
Compiler for the behaviour part of LOTOS 
Translator from LNT to LOTOS  



The SVL language and compiler 

A unique feature of CADP (Garavel & Lang, 2001) 

Makes compositional verification easily accessible 

Can be seen as a process calculus extended with 
operations on low level models 

Comparison and minimisation 

Hiding and renaming of transition labels 

Detection of deadlocks and livelocks 

Static and dynamic strategies (including smart reduction) 

Automated translation to shell scripts 

cadp.inria.fr/man/svl.html 

cadp.inria.fr/man/svl-lang.html 
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Example of SVL script 

% DEFAULT_PROCESS_FILE=“SCENARIO.lnt” 

 

“SCENARIO.bcg” = smart branching reduction of 

 hide “GET_[AB]”, “PUT_[AB]” in 

  par 

   SND_A, RCV_A  TFTP_A [PUT_A, GET_A, RCV_A, SND_A] 

  || SND_B, RCV_B  TFTP_B [PUT_B, GET_B, RCV_B, SND_B] 

  || SND_A, RCV_B  MEDIUM [SND_A, RCV_B] 

  || SND_B, RCV_A  MEDIUM [SND_B, RCV_A] 

  end par 

 end hide; 

 

“diagnostic.bcg” = deadlock of “SCENARIO.bcg”  
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Applications using CADP 

11 CADP demos  cadp.inria.fr/demos 

4 demos (5 to 20 components) 
direct generation fails but compositional verification succeeds  

7 demos (4 to 11 components) 
largest model is 1.7 to 24  smaller than using direct generation 

 

25 case-studies (out of 189) since 1991    [30 publications] 
including 3 in perf. evaluation      cadp.inria.fr/case-studies 
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bioinformatics: 1 

communication protocols: 9 

distributed systems: 4 

graphical user interfaces: 1 

hardware design: 5  

service-oriented computing: 2  
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The Graf & Steffen approach 

CAV’90 [154 citations], FACJ 1996 (with Lüttgen) [126 
citations]  + research reports 

Problem: Some [[Ci]] may be much larger than [[S]] 

But only a fraction of [[Ci]] is actually permitted by its 
environment C1||…||Ci-1||Ci+1||…||Cn 

Solution: Express constraints on Ci  as an interface 

In G&S’s work, || is CSP parallel composition with forced 
synchronisation on common actions 
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Graf & Steffen interfaces 

Set containing all traces allowed by the environment of 
some component Ci 

Concretely: the traces of a labelled transition system I 

The interface I may be provided by the user 

It is not necessarily exact 

If it has less traces than allowed by the environment, then I is 
incorrect 

If it has more traces than allowed by the environment, then I 
might not express enough constraints  performance problem 

Constraints represented by the interface are applied to Ci 
using a reduction operator (later called semi-composition) 
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Graf & Steffen semi-composition 

Operator I (Ci) defined as the projection of Ci || I onto Ci 

state (x, y) of Ci || I is mapped to x 

transition (x, y) –a–> (x’, y’) of Ci || I is 
 mapped to x –a–> x’ if a is an action of Ci,  
 ignored otherwise 

Semi-composition has nice properties 

I (Ci) is behaviourally included in and smaller than [[Ci]] 

I can be reduced wrt. any relation that preserves language 
equivalence without modifying the final model 

If I is correct then [[C1||…||Cn]] = [[C1||…||I (Ci)||…||Cn]] 
i.e., [[Ci]] can be replaced by I (Ci)  

14 



Detection of incorrect interfaces 

A key feature of the Graf & Steffen approach 

Fully automated mechanism 

Undefinedness predicates are put in I (Ci) to indicate 
which transitions have been cut off by I 

When recombining I (Ci) with its environment,  
predicates corresponding to impossible synchronisations 
are discharged 

I is correct if and only if all predicates are discharged in  
the result [[C1||…||I (Ci)||…||Cn]] 
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Example 
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Related approaches 

 

Following G&S, Cheung & Kramer (1993) and Valmari 
(2000) proposed alternative approaches, where Ci  is 
replaced by [[Ci || I]] instead of I (Ci) 

 

But interfaces can be counter-productive in these 
approches: 

[[Ci || I]] can be much larger than [[Ci]] 

Determinisation of the interface is (most often) necessary 
(potential blow up) 
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The Krimm & Mounier approach (1/2) 

Krimm & Mounier, TACAS’97 

1st complete implementation of the G&S approach 

Generalisation to LOTOS hiding and parallel composition 

operator |[g1, …, gn]| (forced synchronisation on gates g1, …, gn) 

Enables common yet non-synchronised actions 
e.g., C1|[]|C2 where C1 and C2 propose the same action 

Enables nondeterministic synchronisation 
e.g.,  (C1 |[]| C2) |[g]| C3 where g proposed by C1, C2, and C3 

Non-associative: (C1|[g]|C2)|[g’]|C3  C1|[g]|(C2|[g’]|C3) if g  g’ 
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The Krimm & Mounier approach (2/2) 

I (Ci) is generalised to an operator with four arguments 

A component Ci 

An  interface I 

A list of gates g1, …, gn  on which Ci  and I must synchronise 

A Boolean stating whether the interface is surely correct or not 

Useful properties of I (Ci) still hold 

Undefinedness predicates are encoded as fail transitions: 
s –fail(a) s if the interface has cut off a in s 

Parallel composition is modified to handle fail transitions 
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CADP tools for G&S interfaces 

PROJECTOR: On-the-fly semi-composition 

Generalisation to LOTOS parallel composition and hiding 

Initially a prototype developed by Krimm & Mounier 

Entirely rewritten and integrated in CADP (now in version 3.1) 

I is a labelled transition system in the BCG format (explicit) 

Ci may be expressed in any language connected to the 
Open/Cæsar API: BCG, LOTOS, LNT, EXP, etc.  

EXP.OPEN: Parallel compo. with undefinedness predicates 

SVL (abstraction operator) 

Example: 
 user abstraction “itf.bcg” sync SND_A, RCV_A of TFTP_A 
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Interface Synthesis (1/2) 

In S = C1||…||Cn, how can an interface be computed 
automatically for some [[Ci]] too large to be generated? 

Practical considerations must be taken into account 

Used operators are more general than CSP || 

Computing the exact interface may be intractable 

Krimm & Mounier, TACAS’97 

Automatic interface computation for a given component, given 
a (flat or hierarchical) component of its environment 

Based on algebraic rules defined in the framework of LOTOS  
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Interface Synthesis (2/2) 

Lang, FORTE’06: generalisation of K&M to networks  of 
communicating automata 

Compute a correct interface from a (user-given) subset of 
context components by analysing synchronisations 

Components are not necessarily connected in a PA expression 

Applicable to other languages than LOTOS 

Less permissive interfaces are generated when components 
synchronise nondeterministically 

Implementation in EXP.OPEN and SVL 
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Applications using CADP 

4 CADP demos  cadp.inria.fr/demos 

From 3 to 60 components 

Direct generation and compositional verification without 
interfaces fail 

With semi-composition, largest intermediate model has up to 
700,000 states 

 

8 case-studies     [8 publications] 

mostly industrial examples: Bull, HP, Tiempo, Scalagent  
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avionics/transport: 1 

cloud computing: 1 

communication protocols: 2 

hardware design: 4 

http://cadp.inria.fr/demos/demo_XX


Conclusion 

Compositional verification is effective vs. state explosion 
(many case studies since 30 years) 

Major breakthrough in the 90’s: Graf & Steffen 

Interfaces inspired other (inferior) approaches 

Semi-composition is not well understood: cited, rarely explained 

CADP exploits the G&S approach 

Generalisation to LOTOS and LNT, full implementation 

Application to several case-studies, with impressive results:  
Asynchronous circuit (660 concurrent processes) verified in a 
few hours by a novice industry engineer 
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