
Compositional Verification in Action

Frédéric Lang

Inria Grenoble – LIG
Université Grenoble Alpes

http://convecs.inria.fr

joint work with
Hubert Garavel and Laurent Mounier

http://convecs.inria.fr/

Introduction

Goal: Formal verification of concurrent systems

Action based models

Asynchronous concurrency: interleaving & Hoare’s rendezvous

Enumerative techniques: model checking, equivalence checking

Generate a low-level model from a high-level description

Compositional verification: “divide and conquer”
approach to fight state explosion

Exploit the decomposition of the system into local processes

This talk: Basic compositional verification

 Refined approach of Graf & Steffen (and Lüttgen)
 Applications in the CADP toolbox

2

Six ingredients to verify a system (1-3)

1) Low-level model M

State-transition formalism encoding the system’s behaviour

Examples: labelled transition system, interactive Markov chain

2) Parallel composition operator ||

Returns the composition M’ = M1||…||Mn of n components
Complexity of M’ = product of the complexities of M1, …, Mn

3) Equivalence relation M M

Congruence for ||: Mi Mi’ M1||…||Mn M1’||…||Mn’

Examples: strong bisimulation, branching bisimulation, …

3

Six ingredients to verify a system (4-6)

4) Minimisation function min: M M

Maps each model to an element of its equivalence class in M/

Minimizes some complexity criterion (e.g., state space size)

M1||…||Mn min(M1)||…||min(Mn)

5) High-level language L

Realistic systems cannot be described directly in M

L also has concepts of components C and parallel composition ||

6) Translation function [[.]]: L M

Maps a system S into a low level model [[S]]

Morphism for ||: [[C1||…||Cn]] [[C1]]||…||[[Cn]]

4

Basic compositional verification

Problem: generate a low level model for S = C1||…||Cn
where:

[[S]] is excessively large (state explosion)

But [[C1]], …, [[Cn]] are small enough to be generated

Solution:
Compute min([[C1]])||…||min([[Cn]]) instead of [[S]]

Advocated in many research papers since end of the 80’s

Functional verification setting: labelled transition systems

Performance evaluation setting: interactive Markov chains

Efficiency is inversely proportional to the size of the
largest intermediate model that is generated

5

This is more complex in practice…

Problem: Some [[Ci]] may be much larger than [[S]]

Cause: components are tightly synchronised and Ci ’s behaviour
is constrained by other components

Examples: shared memories, hardware links, buses, …

Solution: If S has a hierarchical structure, try different
strategies

Compose / minimize different subsets of components

6

Compositional verification strategies

Static strategies

min is applied to leaf components only, or

min is applied to every intermediate level in the hierarchy

Dynamic strategies

Decide at each step which components to compose / minimize

Use heuristics (finding an optimal strategy is too complex)

Example: smart reduction (Crouzen & Lang, 2011)
based on metrics considering both:

The amount of synchronisations between components

The % of transitions that can be hidden after composition

7

The CADP verification toolbox (cadp.inria.fr)

Continuously developed & maintained since the late 80’s

Provides all ingredients for compositional verification

8

Tool Description

M BCG Compact format for LTS and IMC

|| EXP.OPEN Labelled transition systems synchronised using the parallel
composition operators of various process calculi

 BCG_CMP Comparison wrt. various equivalence relations

min BCG_MIN Minimisation wrt. various equivalence relations

L LOTOS
LNT

ISO/IEC standard 8807 (historic)
Modern specification language combining features from
process calculi, and imperative / functional languages

[[.]] CAESAR.ADT
CAESAR
LNT2LOTOS

Compiler for the data part of LOTOS
Compiler for the behaviour part of LOTOS
Translator from LNT to LOTOS

The SVL language and compiler

A unique feature of CADP (Garavel & Lang, 2001)

Makes compositional verification easily accessible

Can be seen as a process calculus extended with
operations on low level models

Comparison and minimisation

Hiding and renaming of transition labels

Detection of deadlocks and livelocks

Static and dynamic strategies (including smart reduction)

Automated translation to shell scripts

cadp.inria.fr/man/svl.html

cadp.inria.fr/man/svl-lang.html
9

http://cadp.inria.fr/man/manl/svl-lang.html
http://cadp.inria.fr/man/manl/svl-lang.html
http://cadp.inria.fr/man/manl/svl-lang.html
http://cadp.inria.fr/man/manl/svl-lang.html
http://cadp.inria.fr/man/manl/svl-lang.html

Example of SVL script

% DEFAULT_PROCESS_FILE=“SCENARIO.lnt”

“SCENARIO.bcg” = smart branching reduction of

 hide “GET_[AB]”, “PUT_[AB]” in

 par

 SND_A, RCV_A TFTP_A [PUT_A, GET_A, RCV_A, SND_A]

 || SND_B, RCV_B TFTP_B [PUT_B, GET_B, RCV_B, SND_B]

 || SND_A, RCV_B MEDIUM [SND_A, RCV_B]

 || SND_B, RCV_A MEDIUM [SND_B, RCV_A]

 end par

 end hide;

“diagnostic.bcg” = deadlock of “SCENARIO.bcg”

10

Applications using CADP

11 CADP demos cadp.inria.fr/demos

4 demos (5 to 20 components)
direct generation fails but compositional verification succeeds

7 demos (4 to 11 components)
largest model is 1.7 to 24 smaller than using direct generation

25 case-studies (out of 189) since 1991 [30 publications]
including 3 in perf. evaluation cadp.inria.fr/case-studies

11

avionics/transport: 3

bioinformatics: 1

communication protocols: 9

distributed systems: 4

graphical user interfaces: 1

hardware design: 5

service-oriented computing: 2

http://cadp.inria.fr/case-studies
http://cadp.inria.fr/case-studies
http://cadp.inria.fr/case-studies

The Graf & Steffen approach

CAV’90 [154 citations], FACJ 1996 (with Lüttgen) [126
citations] + research reports

Problem: Some [[Ci]] may be much larger than [[S]]

But only a fraction of [[Ci]] is actually permitted by its
environment C1||…||Ci-1||Ci+1||…||Cn

Solution: Express constraints on Ci as an interface

In G&S’s work, || is CSP parallel composition with forced
synchronisation on common actions

12

Graf & Steffen interfaces

Set containing all traces allowed by the environment of
some component Ci

Concretely: the traces of a labelled transition system I

The interface I may be provided by the user

It is not necessarily exact

If it has less traces than allowed by the environment, then I is
incorrect

If it has more traces than allowed by the environment, then I
might not express enough constraints performance problem

Constraints represented by the interface are applied to Ci
using a reduction operator (later called semi-composition)

13

Graf & Steffen semi-composition

Operator I (Ci) defined as the projection of Ci || I onto Ci

state (x, y) of Ci || I is mapped to x

transition (x, y) –a–> (x’, y’) of Ci || I is
 mapped to x –a–> x’ if a is an action of Ci,
 ignored otherwise

Semi-composition has nice properties

I (Ci) is behaviourally included in and smaller than [[Ci]]

I can be reduced wrt. any relation that preserves language
equivalence without modifying the final model

If I is correct then [[C1||…||Cn]] = [[C1||…||I (Ci)||…||Cn]]
i.e., [[Ci]] can be replaced by I (Ci)

14

Detection of incorrect interfaces

A key feature of the Graf & Steffen approach

Fully automated mechanism

Undefinedness predicates are put in I (Ci) to indicate
which transitions have been cut off by I

When recombining I (Ci) with its environment,
predicates corresponding to impossible synchronisations
are discharged

I is correct if and only if all predicates are discharged in
the result [[C1||…||I (Ci)||…||Cn]]

15

Example

16

…

…

PUT

PUT

PUT

PUT GET

GET

GET

GET

[[C1]] [[C2]]

PUT

PUT

RUN

|| ||

GET FWD

[[C3]] Interface I (for C1)

PUT

PUT

PUT

PUT

I (C1)

GET

GET

{PUT}

[[C1||I]]

PUT

PUT GET

GET PUT

GET

[[I (C1) || C2 || C3]] = [[C1 || C2 || C3]]

{PUT}

PUT

GET RUN

PUT FWD

{PUT}

{PUT}

GET FWD

{PUT} {PUT}

PUT GET

Related approaches

Following G&S, Cheung & Kramer (1993) and Valmari
(2000) proposed alternative approaches, where Ci is
replaced by [[Ci || I]] instead of I (Ci)

But interfaces can be counter-productive in these
approches:

[[Ci || I]] can be much larger than [[Ci]]

Determinisation of the interface is (most often) necessary
(potential blow up)

17

The Krimm & Mounier approach (1/2)

Krimm & Mounier, TACAS’97

1st complete implementation of the G&S approach

Generalisation to LOTOS hiding and parallel composition

operator |[g1, …, gn]| (forced synchronisation on gates g1, …, gn)

Enables common yet non-synchronised actions
e.g., C1|[]|C2 where C1 and C2 propose the same action

Enables nondeterministic synchronisation
e.g., (C1 |[]| C2) |[g]| C3 where g proposed by C1, C2, and C3

Non-associative: (C1|[g]|C2)|[g’]|C3 C1|[g]|(C2|[g’]|C3) if g g’

18

The Krimm & Mounier approach (2/2)

I (Ci) is generalised to an operator with four arguments

A component Ci

An interface I

A list of gates g1, …, gn on which Ci and I must synchronise

A Boolean stating whether the interface is surely correct or not

Useful properties of I (Ci) still hold

Undefinedness predicates are encoded as fail transitions:
s –fail(a) s if the interface has cut off a in s

Parallel composition is modified to handle fail transitions

19

CADP tools for G&S interfaces

PROJECTOR: On-the-fly semi-composition

Generalisation to LOTOS parallel composition and hiding

Initially a prototype developed by Krimm & Mounier

Entirely rewritten and integrated in CADP (now in version 3.1)

I is a labelled transition system in the BCG format (explicit)

Ci may be expressed in any language connected to the
Open/Cæsar API: BCG, LOTOS, LNT, EXP, etc.

EXP.OPEN: Parallel compo. with undefinedness predicates

SVL (abstraction operator)

Example:
 user abstraction “itf.bcg” sync SND_A, RCV_A of TFTP_A

20

Interface Synthesis (1/2)

In S = C1||…||Cn, how can an interface be computed
automatically for some [[Ci]] too large to be generated?

Practical considerations must be taken into account

Used operators are more general than CSP ||

Computing the exact interface may be intractable

Krimm & Mounier, TACAS’97

Automatic interface computation for a given component, given
a (flat or hierarchical) component of its environment

Based on algebraic rules defined in the framework of LOTOS

21

Interface Synthesis (2/2)

Lang, FORTE’06: generalisation of K&M to networks of
communicating automata

Compute a correct interface from a (user-given) subset of
context components by analysing synchronisations

Components are not necessarily connected in a PA expression

Applicable to other languages than LOTOS

Less permissive interfaces are generated when components
synchronise nondeterministically

Implementation in EXP.OPEN and SVL

22

Applications using CADP

4 CADP demos cadp.inria.fr/demos

From 3 to 60 components

Direct generation and compositional verification without
interfaces fail

With semi-composition, largest intermediate model has up to
700,000 states

8 case-studies [8 publications]

mostly industrial examples: Bull, HP, Tiempo, Scalagent

23

avionics/transport: 1

cloud computing: 1

communication protocols: 2

hardware design: 4

http://cadp.inria.fr/demos/demo_XX

Conclusion

Compositional verification is effective vs. state explosion
(many case studies since 30 years)

Major breakthrough in the 90’s: Graf & Steffen

Interfaces inspired other (inferior) approaches

Semi-composition is not well understood: cited, rarely explained

CADP exploits the G&S approach

Generalisation to LOTOS and LNT, full implementation

Application to several case-studies, with impressive results:
Asynchronous circuit (660 concurrent processes) verified in a
few hours by a novice industry engineer

24

