
Hunting Superfluous Locks
with Model Checking

Viet-Anh Nguyen1, Wendelin Serwe2,
Radu Mateescu2, and Eric Jenn1

1 IRT Saint Exupéry, Toulouse
2 CONVECS, Inria / LIG, Grenoble

Stefania’s Inspiring Work

ACTL (Action-based Computation Tree Logic)
[De Nicola-Fantechi-Gnesi-Ristori-93]

Translation into modal µ-calculus [Stefania-et-al-92]

On-the-fly model checking for µ-ACTL (FMC)

Extensions with state and data-aware operators (UMC)

Action-based logics and bisimulations

µ-ACTL characteristic formulas [Stefania-et-al-96]

Adequacy of µ-ACTL fragments w.r.t. branching
bisimulation [Stefania-et-al-94]

2 SG @ FM 2019

Context and Motivation

Parallelization of software applications

Increase performance (many-core hardware architectures)

Avionics domain

Safety-critical applications

Legacy code (sequential, optimized, safe)

CAPHCA project (IRT Saint Exupéry, PIA)

Critical applications on predictable HPC architectures

OpenMP: “lightweight” parallelization approach

Annotate sequential code with parallelization constructs

Parallel implementation by compiler and execution framework

 Does not ensure absence of errors (data races, deadlocks, …)

3 SG @ FM 2019

!

OpenMP by Example

4 SG @ FM 2019

T0 T1 T2 T3 T4

potential
data races

team of
threads

Parallelization Workflow

5 SG @ FM 2019

CADP

Lockset Analysis

Dynamic approach to detect
potential data races

ERASER tool
[Savage-Burrows-Nelson-97]

Locking discipline: every access
to a shared variable is protected
by (at least) one lock

Compute the candidate lockset
C (v) for each program run

Safe (guarantees no data races)

Pessimistic (may report false
data races)

6 SG @ FM 2019

Lockset Analysis (simple)

7 SG @ FM 2019

potential
data races

  Detect spurious locks by model checking

OpenMP to LNT
Work unit graph

Work unit: uninterruptible block of code

Static analysis of the OpenMP code (similar to control flow)

(Rough) abstraction of the OpenMP application

Encoded in LNT

8 SG @ FM 2019

Sequentiality Detection

Two working units WUi and WUj cannot execute
concurrently (i.e., at the same time)

ACTL formula (checked on the LTS of the WU graph):

 Seq (WUi, WUj) = not EF true (EX WUi true and EX WUj true)

On-the-fly verification using CADP / EVALUATOR

Use the ACTL translation to µ-calculus [Stefania et al 1992]

9 SG @ FM 2019

. . .

WUi

WUj

Insertion of Locks

10 SG @ FM 2019

Seq (WU0, WUi)
Seq (WUi, WU6)
not Seq (WUi, WUj)
i, j  1..5

no need for
lock

Conclusion and Perspectives

Iterative method to ensure data race-free || programs

Combination of lockset analysis and model checking

OpenMP  work unit graph  LNT

Separation of concerns (parallelization and verification)

Tradeoff between quality of result and model checking cost

Perspectives

Apply to other languages equipped with LNT translator (AADL)

Refinement and further analysis of LNT model (deadlocks, …)

Compositional verification of sequentiality property

 Seq (WUi, WUj): ACTL formula with strong and weak modalities
[see the FM 2019 paper Lang-Mateescu-Mazzanti]

11 SG @ FM 2019

