Résolution générique "à la volée" de systèmes d'équations booléennes et applications

Radu Mateescu INRIA Rhône-Alpes / VASY

Plan

- Introduction
- Systèmes d'équations booléennes d'alternance 1
- Algorithmes de résolution "à la volée"
- Vérification par équivalence et logique temporelle
- Implémentation et expérimentation
- Conclusion et travaux futurs

Introduction

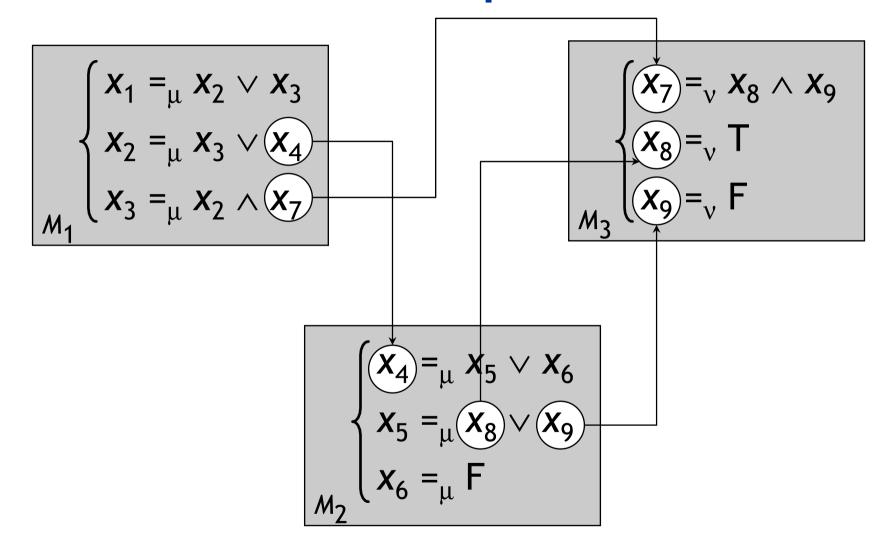
- Vérification énumérative :
 - Fiabilité des systèmes concurrents à nombre fini d'états
 - Construction de l'espace d'états par énumération explicite des états (≠ vérification symbolique)
 - Adaptée aux systèmes asynchrones non-déterministes
- Approches traditionnelles :
 - Vérification par équivalence (equivalence checking)
 - Vérification par logique temporelle (model checking)
- Solution adoptée :
 - Traduction du problème de vérification vers la résolution d'un système d'équations booléennes (SEB)
 - Génération de *diagnostics* (fragments de l'espace d'états) expliquant le résultat de la vérification

Systèmes d'équations booléennes (syntaxe)

Un SEB est un tuple $B = (x, M_1, ..., M_n)$, où

- $x \in X$: variable booléenne principale
- $M_i = \{ x_i = \sigma_i \circ p_i X_i \}_{i \text{ in } [1, \text{ mi]}} : \text{blocs d'équations} \}$
 - $\sigma_i \in \{ \mu, \nu \}$: signe (point fixe) du bloc i
 - $op_i \in \{ \lor, \land \}$: opérateur de l'équation j
 - $X_i \subseteq X$: variables en partie droite de l'équation j
 - F = $\vee \emptyset$ (disjonction vide) et T = $\wedge \emptyset$ (conjonction vide)
 - x_j dépend de x_k ssi $x_k \in X_j$
 - M_i dépend de M_l ssi une x_i de M_i dépend d'une x_k de M_l
 - Bloc fermé : ne dépend pas d'autres blocs
- SEB d'alternance 1 : M_i ne dépend que de M_{i+1} ... M_n

Exemple



Blocs particuliers

- Bloc acyclique:
 - Pas de dépendances cycliques entre les variables du bloc
- Var. x_i disjonctive (conjonctive) : $op_i = \langle (op_i = \land) \rangle$
- Bloc disjonctif:
 - Comporte des variables disjonctives
 - Et des variables conjonctives
 - avec un seul successeur non constant dans le bloc (le dernier en partie droite de l'équation)
 - les autres successeurs sont des constantes ou des variables libres (définies dans d'autres blocs)
- Bloc *conjonctif* : définition duale

Systèmes d'équations booléennes (sémantique)

- Contexte : fonction partielle $\delta: X \to Bool$
- Sémantique d'une formule booléenne :

- [[
$$op \{ x_1, ..., x_p \}]] \delta = op (\delta (x_1), ..., \delta (x_p))$$

Sémantique d'un bloc :

- [[{
$$\mathbf{x}_{j} = \sigma op_{j} \mathbf{X}_{j} }_{j \text{ in } [1, m]}]] \delta = \sigma \Phi_{\delta}$$

- Φ_{δ} : Bool^m → Bool^m
- $-\Phi_{\delta}(b_{1}, ..., b_{m}) = ([[op_{j} X_{j}]] (\delta \oplus [b_{1}/x_{1}, ..., b_{m}/x_{m}]))_{j \text{ in } [1, m]}$
- Sémantique d'un SEB :

- [[
$$(x, M_1, ..., M_n)$$
]] = $\delta_1(x)$

$$- \delta_{n} = [[M_{n}]][]$$

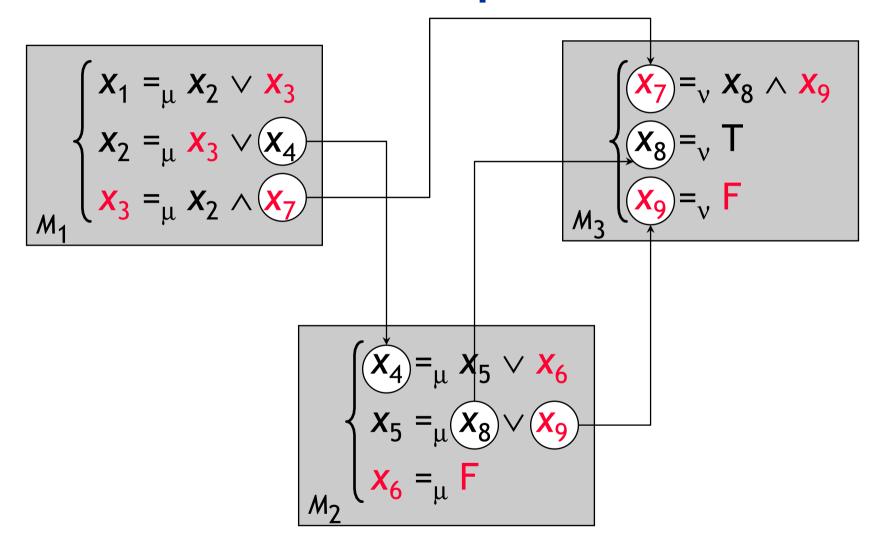
$$- \delta_{i} = ([[M_{i}]] \delta_{i+1}) \oplus \delta_{i+1}$$

$$(M_i \text{ dépend de } M_{i+1} \dots M_n)$$

Résolution globale

- SEB $B = (x, M_1, ..., M_n)$ d'alternance 1
- Primitive : calcul de la sémantique d'un bloc
 - Par ordre inverse des dépendances $\delta_n = [[M_n]][]$, $\delta_i = ([[M_i]]\delta_{i+1}) \oplus \delta_{i+1}$
 - Application « brutale » du théorème de Knaster-Tarski [[{ $x_j = \mu \ op_j \ X_j \}_{j \text{ in } [1, \text{ m}]}]] \delta = \mu \Phi_{\delta} = \bigcup_{k \geq 0} \Phi_{\delta}^k \text{ (F, ..., F)}$ [[{ $x_j = \nu \ op_j \ X_j \}_{j \text{ in } [1, \text{ m}]}]] \delta = \nu \Phi_{\delta} = \bigcap_{k \geq 0} \Phi_{\delta}^k \text{ (T, ..., T)}$
 - Prendre la valeur de x dans $M_1:\delta_1(x)$
- Inconvénients :
 - Nécessite la construction complète du SEB
 - Risque de calculer des informations « inutiles »

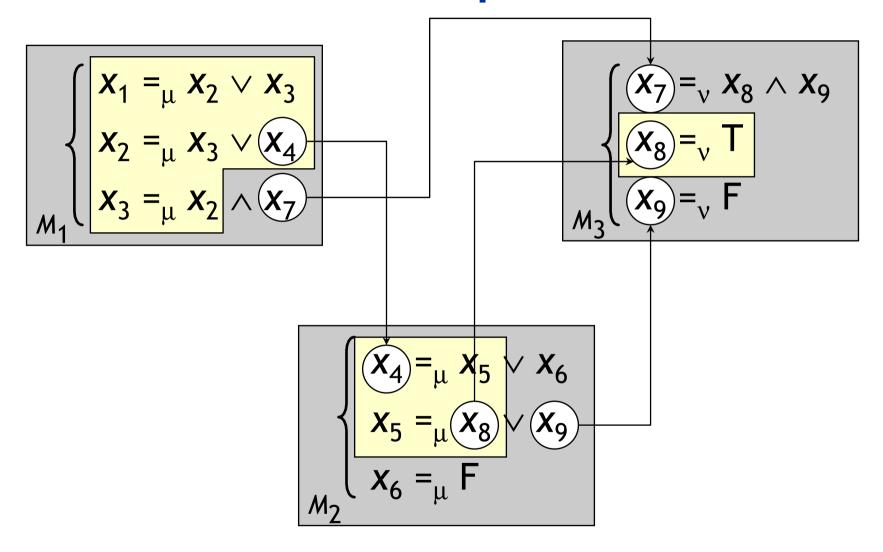
Exemple



Résolution locale

- SEB $B = (x, M_1, ..., M_n)$ d'alternance 1
- Primitive: calcul d'une variable d'un bloc
 - Une routine de résolution R_i associée à M_i
 - $R_i(x_i)$ calcule la valeur de xj dans Mi
 - Evaluation des parties droites des équations+ substitution
 - Pile des appels R_1 (x) \rightarrow ... \rightarrow R_n (x_k) bornée par la profondeur du graphe de dépendances entre blocs
 - Style « coroutine » : chaque Ri doit garder son contexte
- Avantages:
 - Permet de construire le SEB « à la volée »
 - Calcule uniquement des informations « utiles »

Exemple



Principe des algorithmes locaux

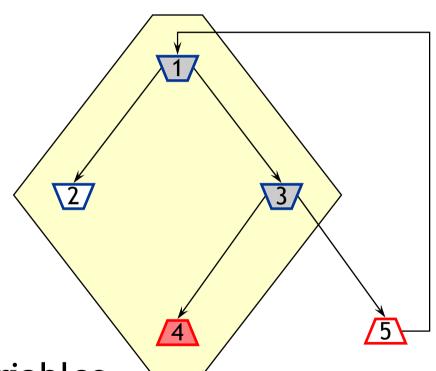
- Représentation des blocs comme graphes booléens
- Au bloc $M = \{ x_j =_{\mu} op_j X_j \}_{j \text{ in } [1, m]}$ on associe le graphe booléen $G = (V, E, L, \mu)$, où :
 - $V = \{x_1, ..., x_m\}$: ensemble de sommets (variables)
 - $E = \{ (x_i, x_i) \mid x_i \in X_i \}$: ensemble d'arcs (dépendances)
 - $L: V \rightarrow \{ \lor, \land \}, L(x_i) = op_i : \text{ \'etiquetage des sommets}$
- Principe des algorithmes :
 - Exploration *en avant* de G en partant de $x \in V$
 - Propagation en arrière des variables stables (calculées)
 - Terminaison : x est stable ou G est exploré totalement

Exemple

SEB (μ-bloc)

graphe booléen

$$\begin{cases} x_{1} =_{\mu} x_{2} \lor x_{3} \\ x_{2} =_{\mu} F \\ x_{3} =_{\mu} x_{4} \lor x_{5} \\ x_{4} =_{\mu} T \\ x_{5} =_{\mu} x_{1} \end{cases}$$



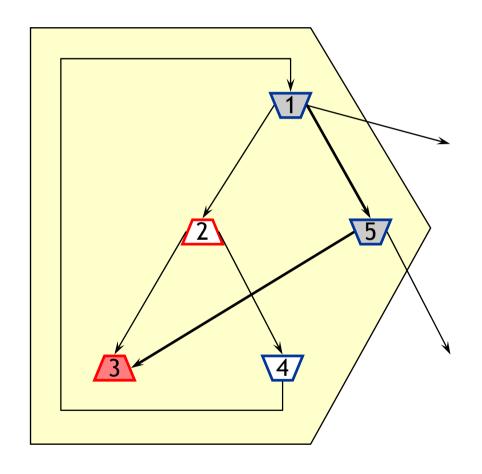
∵ : ∨-variables

∴ -variables

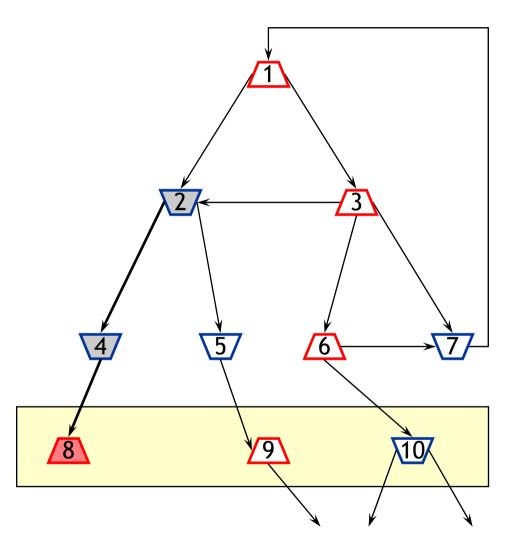
Trois critères d'efficacité

- Soit $B = (x, M_1, ..., M_n)$ un SEB d'alternance 1. Pour chaque routine R_i associée à M_i :
- La complexité en temps de $R_i(x_j)$ dans le pire des cas doit être O(|V|+|E|)
 - → complexité linéaire pour la résolution de B
- Pendant l'exécution de R_i (x_j), chaque nouvelle variable explorée doit être « reliée » à x_j par (au moins) une séquence de variables instables
 - → limiter l'exploration du graphe aux variables « utiles »
- Après la fin de R_i (x_j), toutes les variables explorées doivent être stables
 - \rightarrow mémoriser les résultats entre appels successifs de R_i (xj)

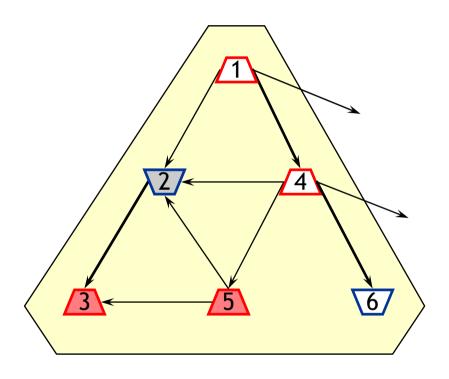
- S'applique à tous les types de blocs
- Parcours en profondeur (DFS) du graphe booléen
- Propagation en arrière des variables stables
- Pré-calcul de diagnostic
- Satisfait A, B, C
- Complexité en mémoire
 O (|V|+|E|)
- Version optimisée de [Andersen-94]
- Développé pour le μ-calcul régulier (EVALUATOR 3.0) [Mateescu-Sighireanu-00]



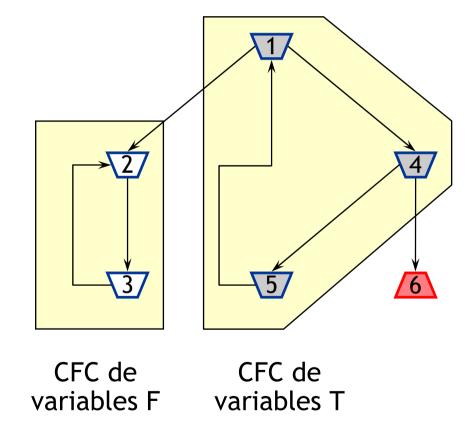
- S'applique à tous les types de blocs
- Parcours en largeur (BFS) du graphe booléen
- Propagation en arrière des variables stables
- Pré-calcul de diagnostic
- Satisfait A, C
- Complexité en mémoire
 O (|V|+|E|)
- Diagnostics de profondeur réduite



- S'applique uniquement aux blocs *acycliques*
- Parcours DFS du graphe booléen
- Propagation en arrière des variables stables
- Pré-calcul de diagnostic
- Satisfait A, B, C
- Pas de stockage des arcs
- Complexité en mémoire
 O(|V|)
- Développé pour vérifier des traces de simulation [Mateescu-02]



- S'applique uniquement aux blocs disjonctifs ou conjonctifs
- Parcours en profondeur (DFS) du graphe booléen
- Propagation en arrière des variables stables
- Détection et stabilisation des CFC
- Pas de stockage des arcs
- Satisfait A, B, C
- Complexité en mémoire
 O(|V|)



Récapitulatif

- A1 (DFS, général)
 - Satisfait A, B, C
 - Complexité en mémoire O(|V| + |E|)
- A2 (BFS, général)
 - Satisfait A, C + diagnostics « petits »
 - Complexité en mémoire O(|V| + |E|)
- A3 (DFS, acyclique)
 - Satisfait A, B, C
 - Complexité en mémoire O(|V|)
- A4 (DFS, disjonctif)
 - Satisfait A, B, C
 - Complexité en mémoire O (|V|)

Complexité en temps O(|V|+|E|)

19

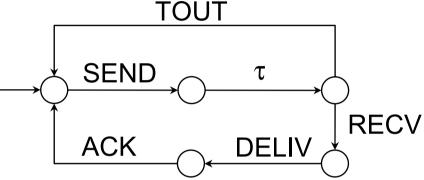
Applications

Vérification par équivalences/préordres
 à la volée
 Vérification par logiques temporelles

Systèmes de transitions étiquetées

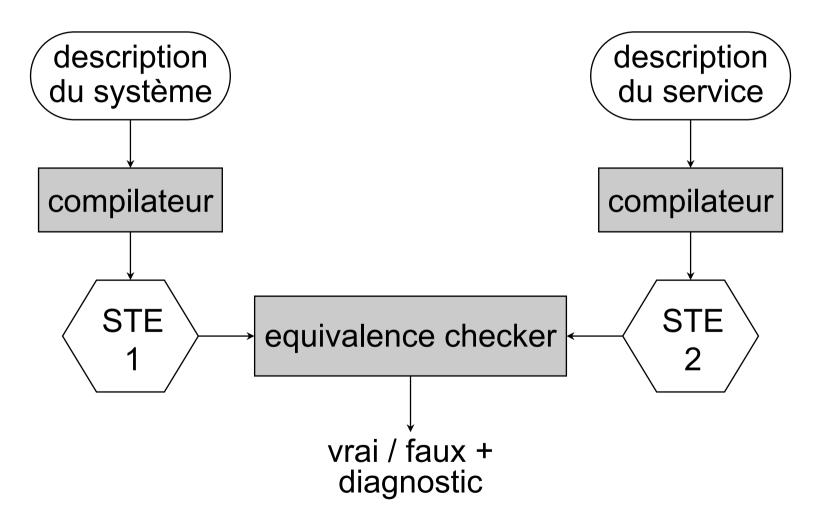
• STEs : modèles pour les systèmes parallèles asynchrones

• Un STE $M = (S, A, T, s_0)$



- Représentations d'un STE :
 - explicite (fonction « prédécesseur » et/ou « successeur »)
 - Calculs itératifs sur les ensembles d'états
 - Environnement BCG (Binary Coded Graphs) [Garavel-92]
 - implicite (fonction « successeur »)
 - Exploration à la volée de la relation de transition
 - Environnement Open / Caesar [Garavel-98]

Vérification par équivalence (equivalence checking)

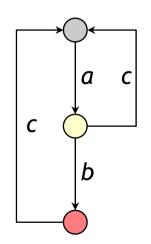


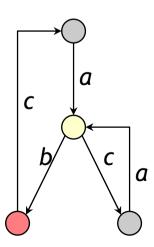
Equivalence forte

• Soit 2 STE $M_1 = (S_1, A, T_1, s_{01})$ et $M_2 = (S_2, A, T_2, s_{02})$ $\approx \subseteq S_1 \times S_2$ est la plus grande relation t.q. $s_1 \approx s_2$ ssi $\forall a \in A : \forall s_1 \rightarrow_a s_1' \in T_1 : \exists s_2 \rightarrow_a s_2' \in T_2 : s_1' \approx s_2'$ et

$$\forall a \in A : \forall s_2 \rightarrow_a s_2' \in T_2 : \exists s_1 \rightarrow_a s_1' \in T_1 : s_1' \approx s_2'$$

• $M_1 \approx M_2 \text{ ssi } s_{01} \approx s_{02}$





Traduction vers un SEB

- Principe: $s_1 \approx s_2$ ssi X_{s_1,s_2} est vraie
- SEB général :

$$\begin{cases} X_{s1,s2} =_{v} (\land_{s1 \rightarrow a \ s1}, \lor_{s2 \rightarrow a \ s2}, X_{s1',s2'}) \\ \land (\land_{s2 \rightarrow a \ s2}, \lor_{s1 \rightarrow a \ s1}, X_{s1',s2'}) \end{cases}$$

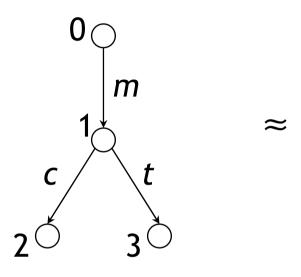
• SEB simplifié:

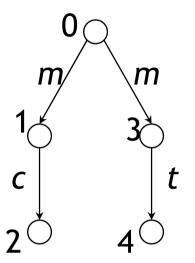
$$\begin{cases}
X_{s1,s2} =_{v} (\land_{s1 \to a s1}, Y_{a,s1',s2}) \land (\land_{s2 \to a s2}, Z_{a,s1,s2'}) \\
Y_{a,s1',s2} =_{v} \lor_{s2 \to a s2}, X_{s1',s2'}
\end{cases}$$

$$Z_{a,s1,s2'} =_{v} \lor_{s1 \to a s1}, X_{s1',s2'}$$

$$S_{1} \leq S_{2}$$
(préordre)

Exemple





SEB général:

$$\begin{cases} X_{00} =_{v} & (X_{11} \vee X_{13}) \wedge X_{11} \wedge X_{13} \\ X_{11} =_{v} & (X_{22} \wedge F) \wedge X_{22} \\ X_{13} =_{v} & (F \wedge X_{34}) \wedge X_{34} \end{cases} \begin{cases} X_{00} =_{v} & Y \wedge X_{11} \wedge X_{13} \\ Y =_{v} X_{11} \vee X_{13} \\ X_{11} =_{v} & (X_{22} \wedge F) \wedge X_{22} \\ X_{13} =_{v} & (F \wedge X_{34}) \wedge X_{34} \end{cases}$$

SEB simplifié:

$$\begin{cases} X_{00} =_{v} Y \wedge X_{11} \wedge X_{13} \\ Y =_{v} X_{11} \vee X_{13} \\ X_{11} =_{v} (X_{22} \wedge F) \wedge X_{22} \\ X_{13} =_{v} (F \wedge X_{34}) \wedge X_{34} \end{cases}$$

SEB acyclique

- Graphe booléen acyclique :
 - Un des deux STEs est acyclique (séquence, arbre, ...)
 - $-X_{s1,s2} \rightarrow^a X_{s1',s2'} \rightarrow^b X_{s1'',s2''} \rightarrow^c \dots$
- Application de l'algorithme A3 (mémoire \downarrow)
- Utile surtout pour la vérification par *préordre*
- Exemple : relecture de séquences d'exécution
 - STE 1 : modélisation d'un système
 - STE 2 : ensemble de scénarios d'exécution / simulation
 - Vérifier que STE 1 accepte STE 2

SEB conjonctif

- Graphe booléen *conjonctif* :
 - Préordre STE1 ≤ STE2 et STE2 déterministe (+ vice-versa)
 - Equivalence et un des deux STEs est déterministe

Application de l'algorithme A4 (mémoire ↓)

Equivalences faibles

- Soit 2 STE $M_1 = (S_1, A_{\tau}, T_1, s_{01}), M_2 = (S_2, A_{\tau}, T_2, s_{02})$ τ : action interne, $A_{\tau} = A \cup \{ \tau \}$
- Equivalence $\tau^*.a$:

$$\begin{cases} X_{s1,s2} =_{v} (\land_{s1 \to \tau^* a \ s1}, \lor_{s2 \to \tau^* a \ s2}, X_{s1}, s2},) \\ \land (\land_{s2 \to \tau^* a \ s2}, \lor_{s1 \to \tau^* a \ s1}, X_{s1}, s2},) \end{cases}$$

• Equivalence de sûreté :

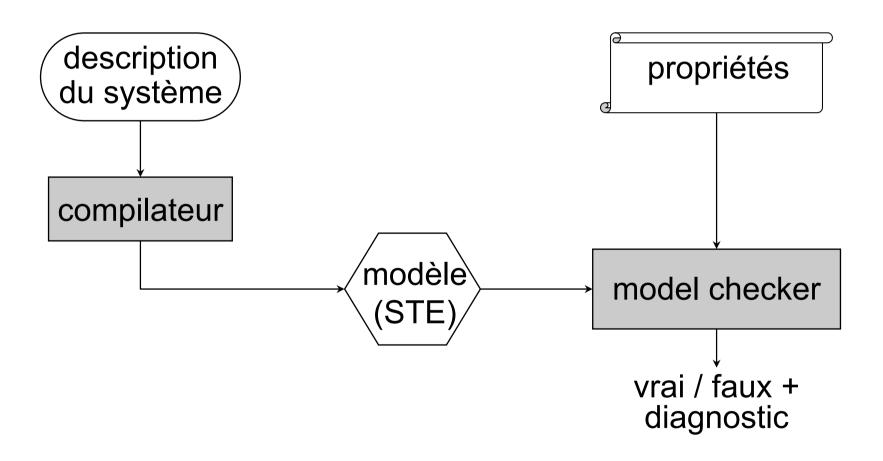
$$\begin{cases} X_{s1,s2} &=_{v} Y_{s1,s2} \land Y_{s2,s1} \\ Y_{s1,s2} &=_{v} (\land_{s1 \to \tau^* a \ s1}, \lor_{s2 \to \tau^* a \ s2}, Y_{s1,s2}) \end{cases}$$

- Schéma similaire :
 - équivalence observationnelle, de branchement, delay, ...

Récapitulatif

- Graphe booléen *général* :
 - Toutes les équivalences et leurs préordres
 - Algorithmes A1 et A2
- Graphe booléen acyclique :
 - Forte : un des deux STEs acyclique
 - τ^* . a et sûreté : un STE acyclique (circuits de τ autorisés)
 - Branching et observationnelle : les deux STEs acycliques
 - Algorithme A3 (mémoire ↓)
- Graphe booléen *conjonctif* :
 - Toutes les équivalences : un des deux STE déterministe
 - Algorithme A4 (mémoire ↓)

Vérification par logique temporelle (model checking)



30

Mu-calcul modal

- Soit $M = (S, A, T, s_0)$ un STE.
- Syntaxe du μ-calcul modal :

Formules sur actions

$$\alpha := a \mid \neg \alpha \mid \alpha_1 \vee \alpha_2$$

Formules sur états

$$\varphi ::= \mathsf{F} \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \langle \alpha \rangle \varphi \mid X \mid \mu X \cdot \varphi$$

Formules sur actions

Soit $M = (S, A, T, s_0)$. Sémantique $[[\alpha]] \subseteq A$:

- [[a]] = { a }
- $[[\neg \alpha]] = A \setminus [[\alpha]]$
- $[[\alpha_1 \vee \alpha_2]] = [[\alpha_1]] \cup [[\alpha_2]]$

Opérateurs dérivés :

• T =
$$a \vee \neg a$$

•
$$\alpha_1 \wedge \alpha_2 = \neg(\neg \alpha_1 \vee \neg \alpha_2)$$

•
$$\alpha_1 \Rightarrow \alpha_2 = \neg \alpha_1 \lor \alpha_2$$

•
$$\alpha_1 \Leftrightarrow \alpha_2 = (\alpha_1 \Rightarrow \alpha_2) \land (\alpha_2 \Rightarrow \alpha_1)$$

Formules sur états

Contexte $\rho: Y \to 2^{S}$. Sémantique [[ϕ]] $\rho \subseteq S$:

- [[F]]ρ = Ø
- $[[\phi_1 \vee \phi_2]] \rho = [[\phi_1]] \rho \cup [[\phi_2]] \rho$
- $[[\langle \alpha \rangle \phi]] \rho = \{ s \in S \mid \exists (s, a, s') \in T.$ $a \in [[\alpha]] \land s' \in [[\phi]]$
- [[Y]] $\rho = \rho (Y)$
- $[[\mu Y \cdot \varphi]] \rho = \bigcup_{k \geq 0} \Phi_{\rho}^{k} (\emptyset)$ $\Phi_{\rho}: 2^{\varsigma} \rightarrow 2^{\varsigma}$, $\Phi_{\rho}(U) = [[\phi]]\rho[U/Y]$

Opérateurs dérivés :

• [
$$\alpha$$
] $\phi = \neg \langle \alpha \rangle \neg \phi$

•
$$[\alpha] \phi = \neg \langle \alpha \rangle \neg \phi$$
 • νY . $\phi = \neg \mu Y$. $\neg \phi [\neg Y / Y]$

Exemples

Absence de blocage sur l'état courant

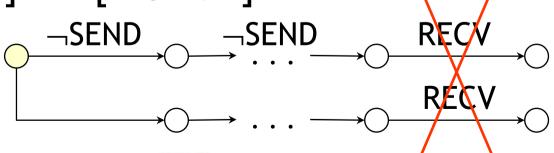
$$\langle \mathsf{T} \rangle \mathsf{T}$$

Accessibilité potentielle d'une action a

$$\mu X \cdot \langle a \rangle T \vee \langle T \rangle X$$

Pas de RECV avant un SEND

$$vX$$
. [RECV] F \wedge [\neg SEND] X



Mu-calcul d'alternance 1

- Absence de récursion mutuelle entre les formules de plus petit et de plus grand point fixe
- Exemple:

"après chaque SEND, il y aura potentiellement un RECV"

$$\vee X$$
 . [SEND] (μY . \langle RECV \rangle T \vee \langle T \rangle Y) \wedge [T] X

Variante équationnelle :

$$\{ X =_{v} [SEND] Y \wedge [T] X \}$$

$$\{ Y =_{u} \langle RECV \rangle T \vee \langle T \rangle Y \}$$

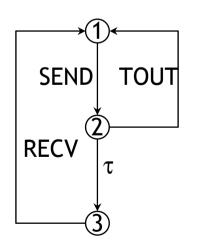
pas de dépendances cycliques entre les blocs

Traduction vers SEB d'alternance 1

- Principe : $s \mid = X$ ssi X_s est vraie
- Propriété : $\{X =_{V} [SEND] Y \land [T] X\}$

$$\{ Y =_{\mathfrak{u}} \langle RECV \rangle T \lor \langle T \rangle Y \}$$

• SEB: $\{ X_s =_{v} (\land_{s \to SEND s'} Y_{s'}) \land (\land_{s \to s'} X_{s'}) \}$ $\{ Y_s =_{u} (\lor_{s \to RECV s'} T) \lor (\lor_{s \to s'} Y_{s'}) \}$



$$\begin{cases} X_1 = \bigvee Y_2 \land X_2 \\ X_2 = \bigvee X_1 \land X_3 \\ X_3 = \bigvee X_1 \end{cases}$$

$$\begin{cases} Y_1 =_{\mu} Y_2 \\ Y_2 =_{\mu} Y_1 \lor Y_3 \\ Y_3 =_{\mu} T \end{cases}$$

SEB acyclique

- Graphe booléen acyclique :
 - STE *acyclique* et formules *gardées*
- Traductions des opérateurs de CTL (et ACTL) :
 - E $[\varphi_1 \cup \varphi_2] = \mu X \cdot \varphi_2 \vee (\varphi_1 \wedge \langle T \rangle X)$
 - A $[\varphi_1 \cup \varphi_2] = \mu X \cdot \varphi_2 \vee (\varphi_1 \wedge \langle T \rangle T \wedge [T] X)$
- Réduction pour le μ-calcul complet [Mateescu-02]
 - Elimination des opérateurs de plus grand point fixe
 - → formule d'alternance 1
 - Traduction en forme gardée (taille quadratique)
- Application de l'algorithme A3 (mémoire \downarrow)

SEB disjonctif

- Graphe booléen disjonctif:
 - Opérateur de *potentialité* de CTL

E [φ₁ U φ₂] = μX . φ₂ ∨ (φ₁ ∧ ⟨ T ⟩ X)
{
$$X =_{\mu} φ_2 ∨ Y$$
 , $Y =_{\mu} φ_1 ∧ Z$, $Z =_{\mu} ⟨ T ⟩ X$ }
{ $X_s =_{\mu} φ_{2s} ∨ Y_s$, $Y_s =_{\mu} φ_{1s} ∧ Z_s$, $Z_s =_{\mu} ∨_{s \to s} X_s$ }

- Modalité de *possibilité* de PDL

Application de l'algorithme A4 (mémoire ↓)

SEB conjonctif

- Graphe booléen conjonctif:
 - Opérateur d'inévitabilité de CTL

A
$$[\varphi_1 \cup \varphi_2] = \mu X \cdot \varphi_2 \vee (\varphi_1 \wedge \langle T \rangle T \wedge [T] X)$$

 $\{ X =_{\mu} \varphi_2 \vee Y , Y =_{\mu} \varphi_1 \wedge Z \wedge [T] X , Z =_{\mu} \langle T \rangle T \}$
 $\{ X_s =_{\mu} \varphi_{2s} \vee Y_s , Y_s =_{\mu} \varphi_{1s} \wedge Z_s \wedge (\wedge_{s \to s'} X_{s'}) , Z_s =_{\mu} \vee_{s \to s'} T \}$

- Modalité de *nécessité* de PDL

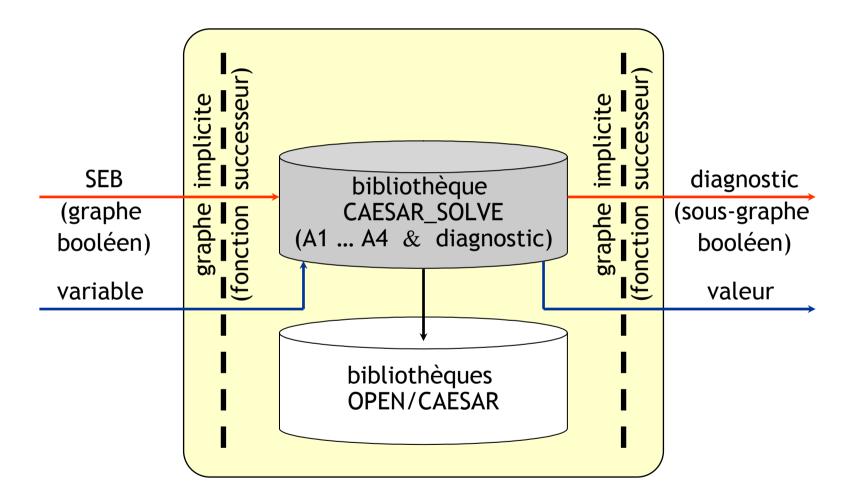
[
$$(a \mid b)^* \cdot c$$
] F
{ $X =_{\mu} [c] F \wedge [a] X \wedge [b] X$ }
{ $X_s =_{\mu} (\land_{s \to c}, F) \wedge (\land_{s \to a}, X_s) \wedge (\land_{s \to b}, X_s)$ }

Application de l'algorithme A4 (mémoire ↓)

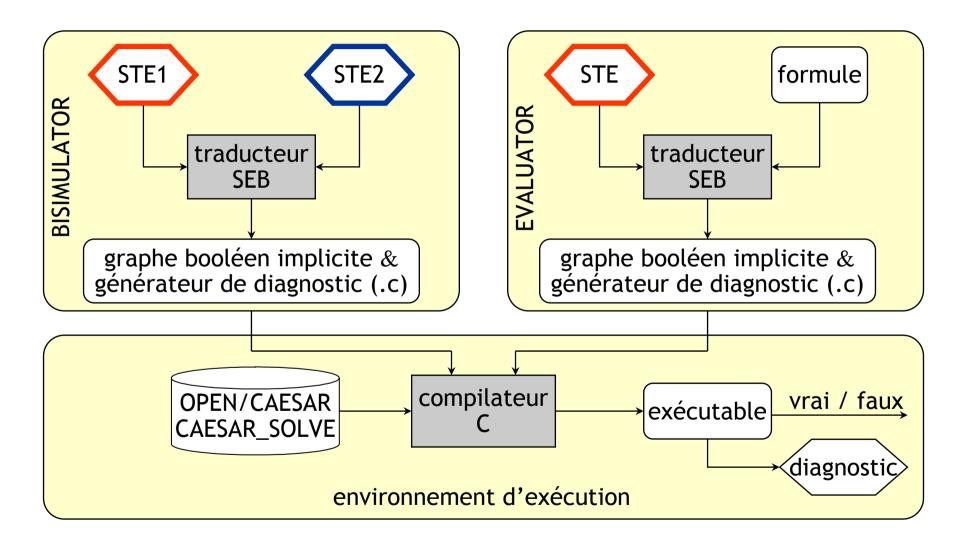
Récapitulatif

- Graphe booléen *général* :
 - STE quelconque et formule de μ -calcul d'alternance 1
 - Algorithmes A1 et A2
- Graphe booléen acyclique :
 - STE acyclique et formule gardée (CTL, ACTL)
 - STE acyclique et formule de μ-calcul (+ réduction)
 - Algorithme A3 (mémoire ↓)
- Graphe booléen disjonctif / conjonctif:
 - STE quelconque et formules de CTL, ACTL, PDL
 - Algorithme A4 (mémoire ↓)

Bibliothèque CAESAR_SOLVE



BISIMULATOR et EVALUATOR



Quelques mesures de performances

- Trois protocoles de communication (ABP, BRP, LEP)
- Algorithme A2 versus A1 :
 - Comparaison STE protocole STE erroné (strong)
 - Vérification propriété fausse sur STE protocole
 - Réductions de 75 % 99 % en profondeur du diagnostic
- Algorithme A3 versus A1:
 - Relecture de séquences (100000 transitions) dans le STE
 - Vérification de propriétés sur les séquences
 - Gains de 15 % 27 % en mémoire
- Algorithme A4 versus A1 :
 - Comparaison STE protocole STE service $(\tau^*.a)$
 - Vérification de propriétés (ACTL + PDL)
 - Gains de 12 % 63 % en mémoire

Conclusion et travaux futurs

Bilan:

- Algorithmes de résolution locale des SEBs
- Génération de diagnostics
- Deux applications : BISIMULATOR et EVALUATOR
- Bibliothèque générique CAESAR_SOLVE

Perspectives:

- Nouveaux algorithmes (« single-scan » sur traces)
- Nouvelles applications (génération de tests)
- Parallélisation sur grappes de PC