
Model Checking of Action-Based 
Concurrent Systems 

Radu
 

Mateescu
INRIA Rhône-Alpes / VASY

http://www.inrialpes.fr/vasy



VTSA'08 - Max Planck Institute, Saarbrücken 2

Why formal verification?

Therac-25 radiotherapy

 accidents (1985-1987)
Mars climate orbiter

 failure (1999)
Ariane-5 launch

 failure (1996)

Characteristics of these systems
–

 
Errors due to software

–
 

Complex, often involving parallelism
–

 
Safety-critical

formal verification is useful for early error detection
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Outline

Communicating automata

Process algebraic languages

Action-based temporal logics

On-the-fly verification

Case study

Discussion and perspectives
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Asynchronous concurrent systems

Characteristics:
Set of distributed processes
Message-passing communication
Nondeterminism

msg msg

ack

Applications:
Hardware
Software
Telecommunications
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CADP toolbox:
 Construction and Analysis of Distributed Processes

 (http://www.inrialpes.fr/vasy/cadp)
Description languages:
–

 
ISO standards (LOTOS, E-LOTOS)

–
 

Networks of communicating automata

Functionalities:
–

 
Compilation and rapid prototyping

–
 

Interactive and guided simulation
–

 
Equivalence checking and model checking

–
 

Test generation

Case-studies and applications:
–

 
>100 industrial case-studies

–
 

>30 derived tools

Distribution:
 

over 400 sites (2008)
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Communicating automata

Basic notions

Implicit and explicit representations

Parallel composition and synchronization

Hiding and renaming

Behavioural
 

equivalences
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Transformational
systems

Work by computing a result 
in function of the entries
Absence of termination 
undesirable
Upon termination, the 
result is unique

Sequential programming 
(sorting algorithms, graph 
traversals, syntax analysis, 
...)

Reactive
systems

Work by reacting to the 
stimuli of the environment
Absence of termination 
desirable
Different occurrences of 
the same request may 
produce different results
Parallel programming 
(operating systems, 
communication protocols, 
Web services, ...)

• Concurrent execution
• Communication + synchronization
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Communicating automata

Simple formalism describing the behaviour
 

of 
concurrent systems
Black-box

 
approach:

–
 

One cannot inspect directly the state of the system
–

 
The behaviour

 
of the system can be known only through 

its interactions with the environment

Synchronization on a gate requires the participation 
of the process and of its environment (rendezvous)

Serverreq res
process/automaton (black box)

gate (communication channel)
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Automaton
 

(LTS)

Labeled
 

Transition System
 

M
 

= 〈S, A, T, s0
 

〉
–

 
S: set of

 
states

 
(s1

 

, s2

 

, ...)
–

 
A: set of

 
visible actions

 
(a1

 

, a2

 

, ...)
–

 
T: transition

 
relation (s1

 

–a s2 ∈ T)
–

 
s0 ∈

 
S: initial state

Example:
 process

 
client1

Other
 

kinds
 

of
 

automata:
–

 
Kripke

 
strictures

 
(information associated

 
to states)

–
 

Input/output automata
 

[Lynch-Tuttle]

req1

res1

s0 s1
sequential

 
model

of
 

a reactive
 

system
behaviour

internal
 

action
(noted

 
i

 
or τ )

every
 

state is
 

reachable
from

 
the

 
initial state

deadlock
 

(sink) state:
no

 
outgoing

 
transitions
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LTS representations in CADP
 (http://www.inrialpes.fr/vasy/cadp)

Explicit
List of transitions
Allows forward and 
backward exploration
Suitable for global 
verification
BCG

 
(Binary Coded Graphs) 

environment
–

 
API in C for reading/writing

–
 

Tools and libraries for explicit 
graph manipulation (bcg_io, 
bcg_draw, bcg_info, 
bcg_edit, bcg_labels, ...)

–
 

Global verification tools (XTL)

Implicit
“Successor”

 
function

Allows forward exploration 
only
Suitable for local (or on-

 the-fly) verification
Open/Caesar

 
environment 

[Garavel-98]
–

 
API in C for LTS exploration

–
 

Libraries with data structures 
for implicit graph manipu-

 lation
 

(stacks, tables, edge 
lists, hash functions, ...)

–
 

On-the-fly verification tools 
(Bisimulator, Evaluator, ...)
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Server example
 (modeled

 
using

 
a single automaton)

Server able to process
 

two
 

requests
 

concurrently
State variables u1

 

, u2
 

storing
 

the
 

request
 

status:
–

 
Empty

 
(e)

–
 

Received
 

(r)
–

 
Handled

 
(h)

A state: couple <u1
 

, u2
 

>
Initial state: <e, e> (ee

 
for short)

Gates (actions):
–

 
req1, req2: receive

 
a request

–
 

res1, res2: send
 

a response
–

 
i: internal

 
action

Server
req2 res2

res1req1
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LTS of
 

the
 

server
 (9 states, 16 transitions)

ee

re

he

er

eh

rhhr

rr

hh

req1 req2

res1 res2

i ireq1

res1

i

i

req1

res1

req2

req2 i

i

res2

res2
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Remarks

All
 

the
 

theoretical
 

states are reachable:
| u1

 

| * | u2
 

| = 3 * 3 = 9
(no

 
synchronization

 
between

 
request

 
processings)

There
 

is
 

no
 

sink
 

state (the
 

system
 

is
 

deadlock-free)
From

 
every

 
state, it

 
is

 
possible to reach

 
the

 
initial 

state again
 

(the
 

server
 

can
 

be
 

re-initialized)
Shortcomings

 
of

 
modeling

 
with

 
a single automaton:

–
 

One
 

must predict
 

all
 

the
 

possible request
 

arrival
 

orders
–

 
For more complex

 
systems, the

 
LTS size

 
grows

 
rapidly

need of higher-level modeling features



VTSA'08 - Max Planck Institute, Saarbrücken 15

Server example
 (modeled

 
using

 
two

 
concurrent automata)

Decomposition
 

of
 

the
 

system
 

in two
 

subsystems
–

 
Every

 
type of

 
request

 
is

 
handled

 
by a subsystem

–
 

In the
 

server
 

example, subsystems
 

are independent

Simpler
 

description w.r.t.
 

single automaton:
 3 + 3 = 6 states

Server

req2 res2

res1req1

Server2

Server1

e

h

req1 res1
i

r

e

h

req2 res2
i

r



VTSA'08 - Max Planck Institute, Saarbrücken 16

Decomposition
 

in
 concurrent subsystems

Required
 

at
 

physical
 

level
–

 
Modeling

 
of

 
distributed

 activities
–

 
Multiprocessor/multitask

 ing
 

execution
 

platform

Chosen
 

at
 

logical
 

level
–

 
Simplified

 
design of

 
the

 system
–

 
Well-structured

 programs

Communication and
 

synchronization
 

between
 subsystems

 
may

 
introduce

 
behavioural

 
errors

 (e.g., deadlocks)
In practice, even

 
simple parallel

 
programs

 
may

 reveal
 

difficult
 

to analyze
need of computer-assisted verification
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Parallel composition (“product”)
 of automata

Goals:
–

 
Define internal composition laws

⊗
 

: LTS ×
 

... ×
 

LTS →
 

LTS
expressing the parallel composition of 2 (or more) LTSs

–
 

Allow synchronizations on one or several actions (gates)
–

 
Allow hierarchical decomposition of a system

Consequences:
–

 
A product of automata can always be translated into a 
single (sequential) automaton

–
 

The logical parallelism can be implemented sequentially 
(e.g., time-sharing OS)
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Binary
 

parallel
 

composition
 (syntax)

EXP language [Lang-05]
–

 
Description of communicating automata

–
 

Extensive set of operators
Parallel compositions (binary, general, ...) 
Synchronization vectors
Hiding / renaming, cutting, priority, ...

–
 

Exp.Open
 

compiler implicit LTS representation

Binary parallel composition:
“lts1.bcg”

 
|[G1, ..., Gn]|  “lts2.bcg”

“lts1.bcg”
 

|||          “lts2.bcg”

with synchronization
on G1, ..., Gn

without synchronization
(interleaving)
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Binary
 

parallel
 

composition
 (semantics)

Let M1

 

= 〈S1

 

, A1

 

, T1

 

, s01

 

〉, M2

 

= 〈S2

 

, A2

 

, T2

 

, s02

 

〉
 

and
L ⊆

 
A1

 

∩
 

A2

 

a set of
 

visible actions to be
 

synchronized.

M1

 

|[ L ]| M2

 

= 〈S, A, T, s0

 

〉
S = S1

 

×
 

S2

A = A1

 

∪
 

A2

s0

 

= 〈s01

 

, s02

 

〉
T ⊆

 
S ×

 
A ×

 
S

defined
 

by R1

 

-R3

s1 
a

 
s’1 ∧

 
a∉L

〈s1

 

, s2〉
 

a

 
〈s’1, s2〉

s2 
a

 
s’2 ∧

 
a∉L

〈s1

 

, s2〉
 

a

 
〈s1, s’2〉

s1 
a

 
s’1 ∧

 
s2 

a

 
s’2 ∧

 
a∈L

〈s1

 

, s2〉
 

a

 
〈s’1, s’2〉

(R1

 

)

(R2

 

)

(R3

 

)
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〈1〉

〈2〉 〈3〉

〈4〉

〈5〉 〈6〉

a b b c|[ b ]| =

〈1, 4〉

〈2, 4〉 〈1, 6〉

〈2, 6〉

〈3, 5〉

a

a

b c

c

(R1

 

)

(R1

 

)

(R2

 

)

(R2

 

)

(R3

 

)

Example
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Interleaving semantics

Hypothesis:
–

 
Every action is atomic

–
 

One can observe at most one action at a time

suitable paradigm for distributed systems

Parallelism can be expressed in terms of choice
 

and 
sequence

 
(expansion theorem

 
[Milner-89])

|||a b =

a

a

b

b

interleaving lozenge
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Internal and external choice

External
 

choice (the environment decides which 
branch of the choice will be executed)

Internal
 

choice (the system decides)

the environment can force the execution of a and b
by synchronizing on that actiona b

a a the environment may synchronize on a, but this will
not remove the nondeterminism
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Example of modeling with
 communicating automata

Mutual exclusion problem:
Given two parallel processes

 
P0

 

and P1
 

competing 
for a shared resource, guarantee that at most one 
process accesses the resource at a given time.
Several solutions were proposed at software level:
–

 
In centralized setting (Peterson, Dekker, Knuth, ...)

–
 

In distributed setting (Lamport, ...)

M. Raynal. Algorithmique du parallélisme: le 
problème de l’exclusion mutuelle.
Dunod Informatique, 1984.
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loop forever { P0 }
1 : { ncs0 }
2 : d0 := true
3 : t := 0
4 : wait

 
(d1 = false or

 
t = 1)

5 : { b_cs0 }
6 : { e_cs0 }
7 : d0 := false
endloop

loop forever { P1 }
1 : { ncs1 }
2 : d1 := true
3 : t := 1
4 : wait

 
(d0 = false or

 
t = 0)

5 : { b_cs1 }
6 : { e_cs1 }
7 : d1 := false
endloop

var
 

d0 : bool
 

:= false
 
{ read by P1, written by P0 }

var
 

d1 : bool
 

:= false
 
{ read by P0, written by P1 }

var
 

t ∈
 

{0, 1} := 0 { read/written by P0 and P1 }

Peterson’s algorithm [1968]
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Automata of P0
 

and P1

1

27

6 3

45

ncs0

“d0 := true”

“t := 0”

“d1 = false ?”

“t = 1 ?”

e_cs0

b_cs0

“d0 := false”

P0

1

27

6 3

45

ncs1

“d1 := true”

“t := 1”

“d0 = false ?”

“t = 0 ?”

e_cs1

b_cs1

“d1 := false”

P1
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Automata of d0
 

, d1
 

, and t

“d0 := true”

“d0 = false ?”

d0

false

true

“d0 := false”

“d1 := true”

“d1 = false ?”

d1

false

true

“d1 := false”

t

0 1

“t := 1”

“t := 0”

“t = 0 ?” “t = 1 ?”
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Architecture of the system
 (graphical)

Synchronized actions: «d0:=false», «d0:=true», ... 
Non synchronized actions: ncs0, b_cs0, e_cs0, ...

“d0 := true”
“d0 = false ?”

“d0 := false”
d0

t

d1

P0 P1

ncs0

b_cs0

e_cs0

ncs1

b_cs1

e_cs1“t = 0 ?”
“t = 1 ?”

“t := 1”

“t := 0”

“d1 = false ?” “d1 := false”

“d1 := true”
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Architecture of the system
 (textual)

Using binary parallel composition:
(P0 ||| P1)
|[ “d0:=false”, “d0:=true”, ... ]|
(d0 ||| d1 ||| t)

Using general parallel composition:
par

“d0:=false”, “d0:=true”, ... P0
||

 
“d1:=false”, “d1:=true”, ... P1

||
 

“d0:=false”, “d0:=true”, “d0=false?” d0
||

 
“d1:=false”, “d1:=true”, “d1=false?” d1

||
 

“t:=0”, “t:=1”, “t=0?”, “t=1?” t
end par
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Construction of the LTS
 (“product automaton”)

Explicit-state
 

method:
–

 
LTS construction by exploring forward the transition 
relation, starting at the initial state

–
 

Transitions are generated by using the R1

 

, R2

 

, R3 rules
–

 
Detect already visited states in order to avoid cycling

Several possible exploration strategies:
–

 
Breadth-first, depth-first

–
 

Guided by a criterion / property, ...

Several types of algorithms:
–

 
Sequential, parallel, distributed, ...
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FF011

FF012FF021

VF041

FV013FF022VF031

VF032 FV023 FF114

ncs0 ncs1

d0:=true d1:=truencs1 ncs0

t:=0 t:=1d0:=true d1:=truencs1 ncs0

………………………………………………………………...

Construction of the LTS

S = { F,V } ×
 

{ F,V } ×
 

{ 0,1 } ×
 

{ 1..7 } ×
 

{ 1..7 }
A = { ncs0, ncs1, ..., “d0:=true”, ... }
s0

 

= 〈
 

F, F, 0, 1, 1 〉
 

= FF011
T =
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Remarks

The LTS of Peterson’s algorithm is finite:
| S | ≅

 
50 ≤

 
2 ×

 
2 ×

 
2 ×

 
7 ×

 
7 = 392

In the presence of synchronizations, the number of 
reachable states is (much) smaller than the size of 
the cartesian

 
product of the variable domains

Some tools of CADP for LTS manipulation:
–

 
OCIS (step-by-step and guided simulation)

–
 

Executor (random exploration)
–

 
Exhibitor (search for regular sequences)

–
 

Terminator (search for deadlocks)

can be used in conjunction with Exp.Open
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Verification

Once the LTS is generated, one can formulate and 
verify automatically the desired properties of the 
system
For Peterson’s algorithm:
–

 
Deadlock freedom: each state has at least one successor

–
 

Mutual exclusion: at most one process can be in the 
critical section at a given time

–
 

Liveness: no process can indefinitely overtake the other 
when accessing its critical section

[see the chapter on temporal logics]
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Limitations of
 

binary
 

parallel
 composition

Several ways of modeling a process network:
–

 
Absence of canonical form

–
 

Difficult to determine whether two composition 
expressions denote the same process network

–
 

Difficult to retrieve the process network from a 
composition expression

The semantics of “|[G1
 

, ..., Gn
 

]|”
 

(rule R3
 

) does not 
prevent that other processes

 synchronize on G1
 

, ..., Gn
 (maximal cooperation)

Some networks cannot be
 modeled using “|[]|”: P2

P1

P3

G

G

G binary
 

synchro-
nization

 
on G
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Example
 (ring network [Garavel-Sighireanu-99])

Description using binary
 parallel composition:

(P1
 

|[G1
 

]|
 

P2
 

|[G2
 

]|
 

P3
 

|[G3
 

]| P4
 

)
|[G4

 

, G5
 

]|
P5

P2

P1

P3
G3

G1

G2

P4

P5

G5

G4

the composition expression
does not reflect the symmetry
of the process network
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General parallel composition
 [Garavel-Sighireanu-99]

“Graphical”
 

parallel composition operator allowing 
the composition of several

 
automata and their

 m
 

among n
 

synchronization:
par

 
[ g1

 

#m1
 

, ..., gp
 

#mp
 

in ]
G1 B1

||
 

G2 B2

. . .
||

 
Gn Bn

end par

automata (processes)

communication interfaces
(gate lists)

gates with their associated
synchronization degrees
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General parallel composition
 (semantics –

 
rules without synchronization degrees)

∃
 

a, i . Bi
 

–a Bi’ ∧ a ∉ Gi ∧ ∀ j ≠ i . Bj’ = Bj

par
 

G1 B1, …, Gn Bn –a par G1 B1’, …, Gn Bn’

∃
 

a. ∀
 

i . if a
 

∈
 

Gi
 

then Bi
 

–a Bi’ else Bj’ = Bj

par
 

G1 B1, …, Gn Bn –a par G1 B1’, …, Gn Bn’

(GR1)

(GR2)

mandatory interleaved execution of
non-synchronized actions

execution in maximal cooperation of
synchronized actions
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Example (1/3)

Process network unexpressible
 

using “|[]|”:

Description using general
 parallel composition:

par
 

G#2 in
G P1

|| G P2

|| G P3

end par

P2

P1

P3

G

G

G

maximal cooperation avoided by
means of synchronization degrees 
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Example (2/3)
 (ring network [Garavel-Sighireanu-99])

Description using general
 parallel composition:

par
G1

 

, G5 P1

||
 

G2
 

, G1 P2

||
 

G3
 

, G2 P3

||
 

G4
 

, G3 P4

||
 

G5
 

, G4 P5

end par

P2

P1

P3
G3

G1

G2

P4

P5

G5

G4

the symmetry of the process
network is also present in the
composition expression
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Example (3/3)
Definition of “|[]|”

 
in terms of “par”:

B1

 

|[G1

 

, ..., Gn

 

]|
 

B2

 

= par
 

G1

 

, ..., Gn B1

|| G1

 

, ..., Gn B2

end par
CREW (Concurrent Read / Exclusive Write):
par

 
W#2 in
R, W P1

||
 

R, W P2

||
 

R, W P3

||
 

R, W VAR
end par

VAR

P1 P2 P3

W W WR R R
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Parallel composition using 
synchronization vectors

Primitive form of n-ary
 

parallel composition
Proposed in various networks of automata: 
MEC [Arnold-Nivat], FC2 [deSimone-Bouali-Madelaine]
Synchronizations are made explicit by means of 
synchronization vectors
Syntax in the EXP language [Lang-05]:

par
 

V1
 

, ..., Vm
 

in
B1

 

|| ... || Bn

end par
V ::= (G1

 

| _) * ... * (Gn
 

| _) G0

synchronization vectors

wildcard
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Example
 (client-server with gate multiplexing)

Description using synchronization vectors:
par

 
req

 
* _    * req req,     rep * _    * rep rep,

_    * req
 

* req req,     _    * rep * rep rep
in

Client1

 

|| Client2

 

|| Server
end par

Client2

Server

Client1
req

res

req

res

binary synchronization
on gates req

 
and

 
res
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Behavioural
 

equivalence

Useful for determining whether two LTSs
 

denote 
the same behaviour
Allows to:
–

 
Understand the semantics of languages (communicating 
automata, process algebras) having LTS models

–
 

Define and assess translations between languages
–

 
Refine specifications whilst preserving the equivalence of 
their corresponding LTSs

–
 

Replace certain system components by other, equivalent 
ones (maintenance)

–
 

Exploit identities between behaviour
 

expressions 
(e.g., B1

 

|[G]|
 

B2

 

= B2

 

|[G]|
 

B1

 

) in analysis tools
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Equivalence relations between LTSs

A large spectrum of equivalence relations proposed:
–

 
Trace

 
equivalence (≅

 
language equivalence)

–
 

Strong
 

bisimulation
 

[Park-81]
–

 
Weak

 
bisimulation

 
[Milner-89]

–
 

Branching
 

bisimulation
 

[Bergstra-Klop-84]
–

 
Safety equivalence [Bouajjani-et-al-90]

–
 

...

a

c

a

b

a

cb
equivalent?
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Trace equivalence

Trace: sequence of visible actions
 (e.g., σ

 
= req1

 

res1
 

req2
 

res2
 

)
Notations (a

 
= visible action):

–
 

s
 

=a=>: there exists a transition sequence
 s

 
–i s1 –i s2 ... –a sk

–
 

s
 

=σ=>: there exists a transition sequence 
s

 
=a1

 

=> s1

 

... =an

 

=> sn

 

such that σ
 

= a1

 

... an

Two state are trace equivalents iff
 

they are the 
source of the same traces:

s ≈tr
 

s’
 

iff
 

∀σ
 

. (s =σ=>    iff
 

s =σ=>)
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Example
 (coffee machine)

The two LTSs
 

below are trace equivalent:

Traces (M1
 

) = Traces (M2
 

) =
 { ε, money, money coffee, money tea }

have the two coffee machines the same 
behaviour w.r.t. a user?

money

tea

money

coffee

money

teacoffee
≈tr

M1 M2

M1

 

: risk of deadlock
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Bisimulation

Trace equivalence is not sufficiently precise to 
characterize the behaviour

 
of a system w.r.t. its 

interaction with its environment
stronger relations (bisimulations) are necessary

Two states s1
 

et s2
 

are bisimilar
 

iff
 

they are the 
origin of the same behaviour

 
(execution tree):

∀
 

s1
 

–a s1’ . ∃ s2–a s2’ . s1’ ≈ s2’
∀

 
s2

 

–a s2’ . ∃ s1–a s1’ . s2’ ≈ s1’
Bisimulation

 
is an equivalence relation (reflexive, 

symmetric, and transitive) on states
Two LTSs

 
are bisimilar

 
iff

 
s01

 

≈
 

s02
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Strong bisimulation

Strong bisimulation: the largest bisimulation
to show that two LTSs are strongly bisimilar, it is 
sufficient to find a bisimulation between them

≈st

a
d

b
c

M1 M2

a

d
b
c

a
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Is strong bisimulation
 

sufficient?

Trace equivalence ignores internal actions (i) and 
does not capture the branching of transitions

does not distinguish the LTSs below

Strong bisimulation
 

captures the branching, but 
handles internal and visible actions in the same way

does not abstract away the internal behaviour

money

coffee tea

moneymoney

coffee tea
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Weak bisimulation
 (or observational equivalence)

In practice, it is necessary to compare LTSs
–

 
By abstracting away

 internal actions
–

 
By distinguishing the

 branching

Weak bisimulation
 [Milner-89]:

a τ

τ

. . .

a

. . .

τ τ

τ

. . .

every a-transition
corresponds to an
a-transition preceded and
followed by 0 or more
τ-transitions

every τ -transition 
corresponds to 0 or 
more τ-transitions
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Weak bisimulation
 (formal definition)

Let M1
 

= <S1
 

, A, T1
 

, s01
 

> and M2
 

= <S2
 

, A, T2
 

, s02
 

>
A weak bisimulation

 
is a relation ≈ ⊆ S1

 

×
 

S2
 

such 
that s1

 

≈
 

s2
 

iff:
∀

 
s1

 

–a s1’ . ∃ s2 –τ*.a.τ* s2’ . s1’ eq s2’
∀

 
s1

 

–τ s1’ . ∃ s2 –τ* s2’ . s1’ eq s2’
and

∀
 

s2
 

–a s2’ . ∃ s1 –τ*.a.τ* s1’ . s1’ eq s2’
∀

 
s2

 

–τ s2’ . ∃ s1 –τ* s1’ . s1’ eq s2’
≈obs

 

is the largest weak bisimulation
M1

 

≈obs
 

M2
 

iff
 

s01
 

≈obs
 

s02
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Example

To show that two LTSs
 

are weakly bisimilar, it is 
sufficient to find a weak bisimulation

 
between 

them

put

put

get

put

put
τ

τ
get
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Communicating automata
 (summary)

Advantages:
–

 
Simple model for describing concurrency

–
 

Powerful tools for manipulation
MEC (University of Bordeaux)
Auto/Autograph/FC2 (INRIA, Sophia-Antipolis)
CADP (INRIA, Grenoble)

–
 

Some industrial applications

Shortcomings:
–

 
Limited expressiveness

No dynamic creation and destruction of automata
Impossible to express: A then (B || C) then D
No handling of data (each variable = an automaton), unacceptable for 
complex types (numbers, lists, structures, ...)

–
 

Maintenance difficult and error-prone (large automata)
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Process algebraic languages

Basic notions

Parallel composition and hiding

Sequential composition and choice

Value-passing and guards

Process definition and instantiation
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Process algebras

PAs: theoretical formalisms for describing and 
studying concurrency and communication
Examples of PAs

 
for asynchronous systems:

–
 

CCS (Calculus of Communicating Systems) [Milner-89]

–
 

CSP (Communicating Sequential Processes) [Hoare-85]

–
 

ACP (Algebra of Communicating Processes) [Bergstra-Klop-84]

Basic idea of PAs:
–

 
Provide a small number of operators

–
 

Construct behaviours
 

by freely combining operators (lego)

Standardized specification languages:
–

 
LOTOS [ISO-1988], E-LOTOS [ISO-2001]



VTSA'08 - Max Planck Institute, Saarbrücken 55

LOTOS
 (Language Of Temporal Ordering Specification)

International standard [ISO 8807]
 

for the formal 
specification of telecommunication protocols and 
distributed systems

http://www.inrialpes.fr/vasy/cadp/tutorial

Enhanced LOTOS (E-LOTOS): revised standard [2001]
LOTOS contains two “orthogonal”

 
sublanguages:

–
 

data
 

part (for data structures)
–

 
process

 
part (for behaviours)

Handling data is necessary for describing realistic 
systems. “Basic LOTOS”

 
(the dataless

 
fragment of 

LOTOS) is useful only for small examples.
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LOTOS –
 

data part

Based on algebraic abstract data types (ActOne):

Caesar.Adt
 

compiler of CADP [Garavel-Turlier-92]
ADTs

 
tend to become cumbersome for complex data 

manipulations (removed in E-LOTOS).

type
 

Natural is
sorts

 
Nat

opns
 

0
 

: -> Nat
succ

 
: Nat -> Nat

+ : Nat, Nat -> Nat
eqns

 
forall

 
M, N : Nat

ofsort
 

Nat
0 + N = N;
succ(M) + N = succ(M

 
+ N);

endtype
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LOTOS –
 

process part

Combines the best features of the process algebras 
CCS [Milner-89]

 
and CSP [Hoare-85]

Terminal symbols (identifiers):
–

 
Variables: X1

 

, …, Xn

–
 

Gates: G1
 

, …, Gn

–
 

Processes: P1
 

, …, Pn

–
 

Sorts (≈
 

types): S1
 

, …, Sn

–
 

Functions: F1
 

, …, Fn 

–
 

Comments: (* …
 

*)
Caesar compiler of CADP [Garavel-Sifakis-90]
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Value expressions and offers

Value expressions: V1
 

, …, Vn

V
 

::= X
|   F

 
(V1

 

, …, Vn
 

)
|   V1

 

F V2 

Offers: O1
 

, …, On

O
 

::=  ! V
 

emission of a value V

|   ? X
 

: S
 

reception of a value to be stored
 in a variable X

 
of sort S
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Behaviour
 

expressions
 (Lots Of Terribly Obscure Symbols :-)

Behaviours: B1

 

, …, Bn

B
 

::=  stop
 

inaction

|   G0 O1

 

... On

 

[ V ] ; B0

 

action prefix

|   B1

 

[] B2

 

choice

|   B1

 

|[ G1

 

, ..., Gn

 

]| B2

 

parallel with synchroni-
 zation

 
on G1

 

, ..., Gn

|   B1

 

||| B2

 

interleaving

|   hide
 

G1

 

, ..., Gn

 

in
 

B0

 

hiding

|   [ V
 

] -> B0

 

guard

|   let
 

X
 

: S
 

= V
 

in
 

B0

 

variable definition

|   choice
 

X
 

: S
 

[] B0 choice over values

|   P [ G1

 

, ..., Gn

 

] (V1

 

, ..., Vn

 

)
 

process call
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Process definitions

process
 

P
 

[ G1
 

, …, Gn
 

] (X1
 

:S1
 

, …, Xn
 

:Sn
 

) :=
B

endproc

where:
P

 
= process name

G1
 

, …, Gn
 

= formal gate
 

parameters of P
X1

 

, …, Xn
 

= formal value
 

parameters of P,
 of sorts S1

 

, …, Sn

B
 

= body (behaviour) of P
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Remarks

LOTOS process: “black box”
 

equipped with 
communication points (gates) with the outside

process
 

P
 

[G1
 

, G2
 

, G3
 

] (...) :=
...

endproc
Each process has its own local (private) variables, 
which are not accessible from the outside

communication by rendezvous and
not by shared variables

Parallel composition and encapsulation of boxes: 
described using the |[…]|, |||, and hide

 
operators

PG1

G2

G3
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Example

(Sender [PUT, A, D] ||| Receiver
 

[GET, B, C])
|[A, B, C, D]|
(Medium1 [A, B] ||| Medium2 [C, D])

or
(Sender [PUT, A, D] |[A]| Medium1 [A, B])
|[B, D]|
(Receiver

 
[GET, B, C] |[C]| Medium2 [C, D])

A BMedium1

Medium2

ReceiverSender
PUT

C

GET

D
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Multiple rendezvous

LOTOS parallel operators allow to specify the 
synchronization of n

 
≥

 
2 processes on the same gate

Example (client-server):

C1 [A] |[A]| C2 [A] |[A]| C3 [A]
|[A]|

S [A]

the three client processes
synchronize with the server
on gate A (4-way rendezvous)

C1 C2 C3

S

A
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Binary
 

rendezvous

The
 

||| operator
 

allows
 

to specify
 

binary
 rendezvous

 
(2 among

 
n) on the

 
same

 
gate

Example
 

(client-server):

(C1 [A] ||| C2 [A] ||| C3 [A])
|[A]|
S [A]

C1 C2 C3

S

A

A A

the three client processes are
competing to access the server
on gate A but only one can get
access at a given moment
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Abstraction
 (hiding)

In LOTOS, when a synchronization takes place on a 
gate G between two processes, another one can 
also synchronize on G (maximal cooperation)
If this is undesirable, it can be forbidden by hiding 
the gate (renaming it into i) using the hide

 operator:
hide

 
G1

 

, …, Gn
 

in
 

B
which means that all actions performed by B

 
on 

gates G1
 

, …, Gn
 

are hidden
The gates G1

 

, …, Gn
 

are “abstracted away”
 

(hidden 
from the outside world)



VTSA'08 - Max Planck Institute, Saarbrücken 66

Example

process
 

Network [PUT, GET] :=
hide

 
A, B, C, D in

(Sender [PUT, A, D] ||| Receiver [GET, B, C])
|[A, B, C, D]|
(Medium1 [A, B] ||| Medium2 [C, D])

endproc

Medium1

Medium2

ReceiverSender
PUT

C

GET

A B

D
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Operational semantics

Notations:
–

 
G: gate list (or set)

–
 

L: action (transition label), of the form
G V1

 

, …, Vn

where G
 

is a gate and V1

 

, …, Vn

 

is the list of values 
exchanged on G

 
during the rendezvous

–
 

gate
 

(L) = G
–

 
B

 
[ v

 
/ X

 
]: syntactic substitution of all free occurrences 

of X
 

inside B
 

by a value v
 

(having the same sort as X)
–

 
V

 
[ v

 
/ X

 
]: idem, substitution of X

 
by v

 
in V
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Semantics of “|[...]|”

B1
 

→L
 

B1
 

’
 

∧
 

gate
 

(L) ∉
 

G
 

B1
 

evolves
B1

 

|[ G
 

]| B2
 

→L
 

B1
 

’
 

|[ G
 

]| B2

B2
 

→L
 

B2
 

’
 

∧
 

gate
 

(L) ∉
 

G
 

B2
 

evolves
B1

 

|[ G
 

]| B2
 

→L
 

B1
 

|[ G
 

]| B2
 

’

B1
 

→L
 

B1
 

’
 

∧
 

B2
 

→L
 

B2
 

’
 

∧
 

gate
 

(L) ∈
 

G
 
B1

 

and B2

B1
 

|[ G
 

]| B2
 

→L
 

B1
 

’
 

|[ G
 

]| B2
 

’
 

evolve

Gates have no direction of communication 
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Semantics of “hide”

B
 

→L
 

B’
 

∧
 

gate
 

(L) ∉
 

G
 

normal gate
hide

 
G

 
in

 
B

 
→L

 

hide
 

G
 

in
 

B’

B
 

→L
 

B’
 

∧
 

gate
 

(L) ∈
 

G
 

hidden gate
hide

 
G

 
in

 
B

 
→i

 

hide
 

G
 

in
 

B’

In LOTOS, i
 

is a keyword: use with care



VTSA'08 - Max Planck Institute, Saarbrücken 70

Sequential behaviours

LOTOS allows to encode sequential automata by 
means of the choice (“[]”) and sequence operators 
(“;”

 
and “stop”), and recursive processes

process
 

P [A, B, C, D, E] : noexit
 

:=
A; (

B; stop
[]
C; (

D ; stop
[]
E ; P [A, B, C, D, E]

)
)

endproc

A

B C

D

E
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Remarks

The description of automata in LOTOS is not far 
from regular expressions

 
(operators “.”, “|”, “*”), 

except that:
–

 
The “;”

 
operator of LOTOS is asymmetric

 
(≠

 
from “.”)

G O1

 

…
 

On

 

; B
 

but not        B1

 

; B2

–
 

There is no iteration operator “*”, one must use a 
recursive process call instead

LOTOS allows to describe automata with data 
values (≈

 
functions in sequential languages) by using 

processes with value parameters
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Semantics of “stop”

The “stop”
 

operator (inaction) has no associated 
semantic rule, because no transition can be derived 
from it

A call of a “pathological”
 

recursive process like
process

 
P [A] : noexit

 
:=

P [A]
endproc

has a behaviour
 

equivalent to stop
 

(unguarded 
recursion)
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Prefix operator (“;”)

Allows to describe:
–

 
Sequential composition of actions

–
 

Communication (emission / reception) of data values 

Simplest variant: actions on gates, without value-
 passing (basic LOTOS)

a
 

; b
 

; c
 

; d
 

; stop
a b c d
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Semantics of “;”

Case 1: action without reception offers (?X:S)

(∀1 ≤
 

i
 

≤
 

n
 

. Oi
 

≡
 

! Vi
 

) ∧
 

V
 

= true
G O1

 

…
 

On
 

[ V
 

] ; B
 

→G V1 …
 

Vn
 

B

The boolean
 

guard and the offers are optional
If the guard V

 
is false, the rendezvous does not 

happen (deadlock):

G O1
 

…
 

On
 

[ V
 

] ; B   ≈
 

stop
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Example (1/2)

Sequential composition:

A !true; B !4; stop

A !true; B !4; stop

B !4; stop

stop

A !true

B !4
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Example (2/2)

Synchronization by value matching: two processes 
send to each other the same values on a gate

G
 

!1; B1
 

|[ G
 

]|  G
 

!1; B2
 

RdV
 

OK

G
 

!1; B1
 

|[ G
 

]|  G
 

!2; B2
 

deadlock

(different values)

G
 

!1; B1
 

|[ G
 

]|  G
 

!true; B2
 

deadlock

(different types)

G
 

1
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Semantics of “;”

Case 2: action containing reception offer(s) (?X:S)

(v
 

∈
 

S ) ∧
 

(V
 

[ v
 

/ X
 

] = true)
G

 
?X:S

 
[ V

 
] ; B

 
→G v

 

B
 

[ v
 

/ X
 

]

The variables defined in the offers ?X:S are visible 
in the boolean

 
guard V

 
and inside B

An action can freely mix emission and reception 
offers
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Example (1/3)

G
 

?X:Bool;
stop

G
 

?X:Nat
 

[X
 

< 4];
H ! X;

stop

The semantics handles the reception by branching 
on all possible values that can be received

G
 

false G
 

true

G
 

0 G
 

3G
 

1 G
 

2

H
 

0 H
 

1 H
 

2 H
 

3



VTSA'08 - Max Planck Institute, Saarbrücken 79

Example (2/3)

Emission of a value = guarded reception:
G

 
!V

 
≡

 
G

 
?X:S

 
[ X

 
= V ]

where S
 

= type
 

(V )

Synchronization by value generation: two processes 
receive values of the same type on a gate

G
 

?n1
 

:Nat [ n1
 

<= 5 ]; B1

|[ G
 

]|
G

 
?n2

 

:Nat
 

[ n2
 

> 2]; B2

G V

G
 

3 G
 

5G
 

4
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Example (3/3)

Synchronization by value-passing:

G
 

?X:Bool
 

; stop
 

|[ G
 

]|   G
 

!true ; stop

G
 

?X:Bool
 

; stop
 

|[ G
 

]|   G
 

!3 ; stop

G
 

false G
 

true G
 

3|[ G
 

]|

G
 

true

deadlock: the semantics of the “|[...]|”

 
operator requires

that the two labels be identical (same type for the emitted
value and the reception offer)
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Rendezvous
 (summary)

General form:
G O1

 

…
 

Om
 

[V1
 

]; B1
 

|[ G
 

]|
 

G’
 

O1
 

’ … On
 

’[V2
 

]; B2

Conditions for the rendezvous:
–

 
G

 
= G’ and G

 
∈

 
G

–
 

m
 

= n
–

 
V1

 

and V2

 

are true in the context of O1

 

, ..., On

 

’
–

 
∀1 ≤

 
i

 
≤

 
n. type

 
(Oi

 

) = type
 

(Oi

 

’)
–

 
∀1 ≤

 
i

 
≤

 
n. prop

 
(Oi

 

) ∩
 

prop
 

(Oi

 

’) ≠ ∅

where prop(O) = set of values accepted by offer O
–

 
prop

 
(!V ) = { V

 
}

–
 

prop
 

(?X:S) = S
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Choice operator (“[]”)
”[]”: notation inherited from the programs with 
guarded commands [Dijkstra]
Allows to specify the choice between several 
alternatives:

( B1
 

[] B2
 

[] B3 )
can execute either B1

 

, or B2
 

, or B3 

Example:
a

 
;
(b

 
; stop

[]
c

 
; stop) 

a

b c
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Semantics of “[]”

B1
 

→L
 

B1
 

’
 

execution of B1

B1
 

[] B2
 

→L
 

B1
 

’

B2
 

→L
 

B2
 

’
 

execution of B2

B1
 

[] B2
 

→L
 

B2
 

’

After the choice, one of the two behaviours
 disappears (the execution was engaged on a branch 

of the choice and the other one is abandoned)
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Internal / external choice

(G1
 

; B1
 

[]   G2
 

; B2 )
–

 
External choice: the environment can decide which 
branch will be executed

–
 

Internal choice: the program decides

Example (coffee machine):

money

coffee tea

money

internal choice (machine)

money

coffee tea

external choice (user)
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Internal action (“i”)

In LOTOS, the special gate i
 

denotes an internal 
event on which the environment cannot act:

(i
 

; G1
 

; stop
[]
i

 
; G2

 

; stop)

(G1
 

; stop
[]
i

 
; G2

 

; stop)

G1

i

G2

i
internal choice

G1

G2

i
still internal choice
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Guard operator (“[…]
 

->”)

LOTOS does not possess an “if-then-else”
 

construct
Guards

 
(boolean

 
conditions) can be used instead

Informal semantics:

[ V
 

] ->
 

B
 

≈
 

if
 

V
 

then
 

B
 

else
 

stop
Frequent usage in conjunction with “[]”:

READ ?m,n:Nat
 

;
( [ m >= n ] -> PRINT !m; stop
[]
[ m < n ]   -> PRINT !n; stop )

emission of max (m,n)
on gate PRINT
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Semantics of “[…]
 

->”

(V
 

= true) ∧
 

B
 

→L
 

B’
[ V

 
] ->

 
B

 
→L

 

B’

If the boolean
 

expression V
 

evaluates to false, no 
semantic rule applies (deadlock):

[ false ] ->
 

B
 

≈
 

stop
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Examples

“if-then-else”:
 

“case”:
[ V

 
] ->

 
B1

 

[ X
 

< 0 ] ->
 

B1 

[]
 

[]
[ not (V ) ] ->

 
B2

 

[ X
 

= 0 ] ->
 

B2

[]
[ X

 
> 0 ] ->

 
B3

Beware of overlapping guards:
[ X ≤

 
0 ] ->

 
B1

[]
[ X ≥

 
0 ] ->

 
B2

if X = 0 then this is equivalent
to an unguarded choice B1 [] B2
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Operator “let”

LOTOS allows to define variables for storing the 
results of expressions
Variable definition: 

let
 

X:S
 

= V
 

in
 

B
declares variable X

 
and initializes it with the value 

of V. X
 

is visible in B.
Write-once

 
variables (no multiple assignments):

let
 

X:Bool
 

= true
 

in
 

G
 

!X
 

;     (* first X
 

*)
let

 
X:Bool

 
= false

 
in

 
G

 
!X

 
;     (* second X

 
*)

stop
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Semantics of “let”

B
 

[ V
 

/ X
 

] →L
 

B’
let

 
X:S

 
= V

 
in

 
B

 
→L

 

B’

Example:
let

 
X:NatList

 
= cons (0, nil) in

G
 

!X;
H

 
!cons (1, X );
stop
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Remarks

LOTOS is a functional
 

language:
No uninitialized

 
variable (forbidden by the syntax)

No assignment operator (“:=”), the value of a 
variable does not change after its initialization
No “global”

 
or “shared”

 
variables between 

functions or processes
Each process has its own local variables
Communication by rendezvous only
No side-effects
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Operator “choice”

Operator “choice”: similar to “let”, except that 
variable X

 
takes a nondeterministic value in the 

domain of its sort S
Semantics:
(v ∈

 
S)

 
∧

 
B

 
[ v

 
/ X

 
] →L

 

B’
choice

 
X:S

 
[] B

 
→L

 

B’

Example:
choice

 
X:Bool

 
[]

G
 

!X; stop
G

 
false G

 
true
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Examples

Reception of a value = particular case of “choice”:
G

 
?X:S

 
; B

 
=    choice

 
X:S

 
[] B

Iteration over the values of an enumerated type:
choice

 
A:Addr

 
[]

SEND
 

!m
 

!A ; stop

Generation of a random value:
choice

 
rand:Nat

 
[]

[ rand
 

<= 10 ] -> PRINT
 

!rand ; stop
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Operator “exit”

LOTOS allows to express normal termination
 

of a 
behaviour, possibly with the return of one or 
several values:

exit
 

( V1
 

, …, Vn
 

)
denotes a behaviour

 
that terminates and produces 

the values V1
 

, …, Vn

Example:

REC
 

?x:Nat
 

[ x
 

< 2 ] ;
exit

 
(x

 
+ 1)

REC
 

0 REC
 

1

exit
 

1 exit
 

2
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Semantics of “exit”

true
exit

 
( V1

 

, …, Vn
 

) →exit V1 …
 

Vn
 

stop

exit
 

= special gate, synchronized by the “|[…]|”
 operator (see later)

The values V1
 

, …, Vn
 

are optional (“exit” means 
normal termination without producing any value)
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Operator “>>”

LOTOS allows to express the sequential composition 
between a behaviour

 
B1

 

that terminates and a 
behaviour

 
B2

 

that begins:
B1

 

>> accept
 

X1
 

:S1
 

,…, Xn
 

:Sn
 

in
 

B2

means that when B1
 

terminates by producing values 
V1

 

,…, Vn
 

, the execution continues with B2
 

in which 
X1

 

,…, Xn
 

are replaced by the values V1
 

,…, Vn

Example:
exit (1) >> accept n:Nat

 
in

PRINT !n ; stop
PRINT

 
1i
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Semantics of “>>”

(B1
 

→L
 

B1
 

’
 

) ∧
 

(gate
 

(L) ≠
 

exit )
(B1

 

>> accept
 

X:S
 

in
 

B2
 

)
 

→L
 

(B1
 

’
 

>> accept
 

X:S
 

in
 

B2
 

)

B1
 

→exit V
 

B1
 

’
(B1

 

>> accept
 

X:S
 

in
 

B2
 

)
 

→i
 

B2
 

[ V
 

/ X
 

]

The V
 

values must belong pairwise
 

to the S
 

sorts
The exit

 
gate is hidden (renamed into i) when 

sequential composition takes place
The “>>”

 
operator is also called enabling

 
(B2

 

’s 
execution is made possible by B1

 

’s termination)
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Example (1/4)

Sequential composition without value-passing:

(In1; In2; exit
[]
In2; In1; exit)

>>
(Access; exit)
>>
(Out1; Out2; stop
[]
Out2; Out1; stop)

In1 In2

i
In2 In1

i

Access

i

Out1

Out1

Out2

Out2
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Example (2/4)

Sequential composition with value-passing:

READ ?m,n:Nat
 

;
( [ m >= n ] -> exit (m)
[]
[ m < n ] -> exit (n) )

>>
accept max:Nat

 
in

PRINT !max ; stop

PRINT
 

1

READ
 

0 1

i

READ
 

0 2

i

PRINT
 

2

. . .
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Example (3/4)

Definition of terminating process:
process

 
Login [LogReq, LogConf, LogAbort] : exit

 
:=

LogReq;
( i ; LogConf

 
; exit

[]
i ; LogAbort

 
; Login [LogReq, LogConf, LogAbort])

endproc

Example of call:
Login [Req,Conf,Abort] >> Transfer ; Logout ; stop
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Example (4/4)

Combination of “exit”
 

and parallel composition: the 
two behaviours

 
are synchronized on the exit

 
gate 

(they terminate simultaneously)

( a
 

; b
 

; exit ) ||| ( c
 

; exit )

a

exit

ac

c

c

b

b
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Sequential composition
 (summary)

In LOTOS, difference between
 “;”

 
(asymmetric)

 and
 “>>”

 
(symmetric):

i i
. . .

B1

B2

B1

 

>> B2

G

B

G
 

; B



VTSA'08 - Max Planck Institute, Saarbrücken 103

Process call

Let a process P
 

defined by:
process

 
P

 
[G1

 

, …, Gn
 

] (X1
 

:S1
 

, …, Xn
 

:Sn
 

) :=
B

endproc
Semantics of a call to P:
B

 
[ g1

 

/ G1
 

, …, gn
 

/ Gn
 

] [ v1
 

/ X1
 

, …, vn
 

/ Xn
 

] →L
 

B’
P

 
[g1

 

, …, gn
 

] (v1
 

, …, vn
 

)
 

→L
 

B’
This semantics explains why a call to

process
 

P[G] : noexit
 

:= P[G] endproc
is equivalent to stop.
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Example

Boolean variable:

process
 

VAR [READ, WRITE] (b:Bool) : noexit
 

:=
READ !b;

VAR [READ, WRITE] (b)
[]
WRITE ?b2:Bool;

VAR [READ, WRITE] (b2)
endproc

READ WRITE
VAR

READ tt

READ ff

WRITE ff WRITE tt
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Static semantics
 (summary)

Scope of variables inside behaviours:
B

 
::= G

 
!V0

 

?X:S
 

… [ V
 

] ; B0
 

p
 

(X) = { V, B0
 

}
|    hide G

 
in B0

 

p
 

(G) = { B0
 

}
|    let X:S

 
= V

 
in B0

 

p
 

(X) = { B0
 

}
|    choice X:S

 
[] B0

 

p
 

(X) = { B0
 

}
|    B1

 

>> accept X:S
 

in B0
 

p
 

(X) = { B0
 

}

Scope of process parameters:
process P [G] (X:S) :=

 
p

 
(G) = { B0

 

}
B0

 

p
 

(X) = { B0
 

}
endproc



VTSA'08 - Max Planck Institute, Saarbrücken 106

LOTOS specification

A LOTOS specification is similar to a process 
definition:

specification
 

Protocol [ SEND, RECEIVE ] : noexit
 

:=
(* ... type definitions *)

behaviour
(* ... behaviour

 
= body of the specification *)

where
(* ... process definitions *)

endspec
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loop forever { P0 }
1 : { ncs0 }
2 : d0 := true
3 : t := 0
4 : wait

 
(d1 = false or

 
t = 1)

5 : { cs0 }
6 : d0 := false
endloop

loop forever { P1 }
1 : { ncs1 }
2 : d1 := true
3 : t := 1
4 : wait

 
(d0 = false or

 
t = 0)

5 : { cs1 }
6 : d1 := false
endloop

var
 

d0 : bool
 

:= false
 
{ read by P1, written by P0 }

var
 

d1 : bool
 

:= false
 
{ read by P0, written by P1 }

var
 

t ∈
 

{0, 1} := 0 { read/written by P0 and P1}

Example:
 Peterson’s mutual exclusion algorithm
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Description of variables d0, d1

Each variable: instance of the same process D
Current value of the variable: parameter of D
Reading and writing: RdV

 
on gates R et W

process D [R, W] (b:Bool) : noexit
 

:=
R !b ; D [R, W] (b)
[]
W ?b2:Bool ; D [R, W] (b2)

endproc

d0 ≡
 

D [R0, W0] (false), d1 ≡
 

D [R1, W1] (false)
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Description of variable t

Variable t: instance of process T
Current value of the variable: parameter of T
Reading and writing: RdV

 
on gates R et W

process T [R, W] (n:Nat) : noexit
 

:=
R !n ; T [R, W] (n)
[]
W ?n2:Bool ; T [R, W] (n2)

endproc

t ≡
 

T [RT, WT] (0)
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Description of processes P0 and P1

Process Pm
 

: instance of the same process P
Index m of the process: parameter of P

process P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]
(m:Nat) : noexit

 
:=

NCS !m ; Wm !true ; WT !m ;
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)

endproc

P0 ≡
 

P [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
P1 ≡

 
P [R1, W1, R0, W0, RT, WT, NCS, CS] (1)
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Processes P0 et P1
 (continued)

Auxiliairy
 

process to describe busy waiting:
process P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]

(m:Nat) : noexit
 

:=
Rn

 
?dn:Bool

 
; RT ?t:Nat

 
;

( [ dn
 

and (t eq
 

m) ] ->
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)

[]
[ not (dn) or (t eq

 
((m + 1) mod 2)) ] ->

CS !m ; Wn
 

!false ;
P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m) )

endproc
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Architecture of the system
 (graphical)

R0W0
D (false)

T (0)

D (false)

P (0) P (1)

NCS

CS

NCS

CS
WT

RT RT

WT

R1 W1
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Architecture of the system
 (textual)

hide R0, W0, R1, W1, RT, WT in
(

P [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
|||
P [R1, W1, R0, W0, RT, WT, NCS, CS] (1)

)
|[ R0, W0, R1, W1, RT, WT ]|
(

T [RT, WT] (0)
|||
D [R0, W0] (false)
|||
D [R1, W1] (false)

)
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LTS model

55 states
110 transitions
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Process algebraic languages
 (summary)

More concise than communicating automata: 
process parameterization, value-passing 
communication (Exercise: model variables d0, d1, t 
using a single gate allowing both reading / writing)
In general, there are several ways of describing the 
parallel composition of processes (Exercise: write a 
different expression for the architecture of 
Peterson’s algorithm)
Modeling of nested loops: mutually recursive LOTOS 
processes (Exercise: model processes P0, P1 using a 
single LOTOS process)
But: E-LOTOS process part is much more convenient
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Action-based temporal logics

Introduction

Modal logics

Branching-time logics

Regular logics

Fixed point logics
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Why temporal logics?
Formalisms for high-level specification of systems

–
 

Example: all mutual exclusion protocols should satisfy
Mutual exclusion (at most one process in critical section)
Liveness (each process should eventually enter its critical section)

Temporal logics (TLs):
formalisms describing the ordering of states (or actions)

 during the execution of a concurrent program

TL specification = list of logical formulas, each one 
expressing a property of the program
Benefits of TL [Pnueli-77]:

–
 

Abstraction: properties expressed in TL are independent from the 
description/implementation of the system

–
 

Modularity: one can add/remove a property without impacting the 
other properties of the specification
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(Rough) classification of TLs

State-based Action-based
Linear-time

(properties 
about execution 
sequences)

LTL (SPIN tool)

linear mu-calculus

TLA (TLA+ tool)

action-based LTL
(LTSA tool)

Branching-time

(properties 
about execution 
trees)

CTL (nuSMV
 

tool)

CTL*

ACTL (JACK tool)
ACTL*
modal mu-calculus 
(CWB, Concurrency 
Factory, CADP tools)
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Example
 (coffee machine)

A linear-time TL cannot distinguish the two LTSs
 

M1
 and M2

 

, which have the same set of execution 
sequences, but are not behaviourally

 
equivalent 

(modulo strong bisimulation)
A branching-time TL can capture nondeterminism

 and thus can distinguish M1
 

and M2

moneymoney

coffee tea

money

coffee tea

M1 M2

L
 

(M1

 

) = L
 

(M2

 

) =
{ money.coffee, money.tea

 
}
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Interpretation of
 (branching-time) TLs

 
on LTSs

LTS model M
 

= 〈
 

S, A, T, s0
 

〉, where:
–

 
S: set of states

–
 

A: set of actions (events)
–

 
T

 
∈

 
S

 
×

 
A

 
×

 
S: transition relation

–
 

s0

 

∈
 

S: initial state

Interpretation of a formula ϕ
 

on M: 
[[ ϕ

 
]] = { s

 
∈

 
S

 
| s

 
|= ϕ

 
}

([[ ϕ
 

]] defined inductively on the structure of ϕ)
An LTS M

 
satisfies a TL formula ϕ

 
(M

 
|= ϕ)

iff
 

its initial state satisfies ϕ
 

:
M

 
|= ϕ ⇔ s0

 

|= ϕ ⇔ s0
 

∈
 

[[ ϕ
 

]]
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Running example:
 mutual exclusion with a semaphore

P0 P1S
REQ0

REL0

REL1

REQ1
NCS0
CS0

NCS1
CS1

NCS0

CS0
REQ0

REL0 REQ0
REL0

REQ1
REL1

NCS1

CS1
REQ1

REL1
NCS0

CS0

REQ0

REL0

REQ1

REL1

NCS1

CS1

Description using communicating automata
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LTS model

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Modal logics

They are the simplest logics allowing to reason 
about the sequencing and branching of transitions 
in an LTS
Basic modal operators:
–

 
Possibility
from a state, there exists (at least) an outgoing transition 
labeled by a certain action and leading to a certain state

–
 

Necessity
from a state, all the outgoing transitions labeled by a 
certain action lead to certain states

Hennessy-Milner Logic (HML) [Hennessy-Milner-85]
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Action predicates
 (syntax)

α
 

::=
 

a
 

atomic proposition (a∈A)

| tt
 

constant “true”

| ff constant “false”

|
 
α1

 

∨ α2
 

disjunction

|
 
α1

 

∧ α2
 

conjunction

|
 
¬α1

 

negation

|
 
α1

 

⇒ α2 implication (¬α1
 

∨ α2
 

)

|
 
α1

 

⇔ α2 equivalence (α1
 

⇒α2 ∧ α1
 

⇒α2
 

)
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Action predicates
 (semantics)

Let M
 

= (S, A, T, s0
 

). Interpretation [[ α
 

]] ⊆
 

A:
[[ a

 
]] = { a

 
}

[[ tt
 

]] = A
[[ ff ]] = ∅
[[ α1

 

∨ α2
 

]] = [[ α1
 

]] ∪
 

[[ α2
 

]]
[[ α1

 

∧ α2
 

]] = [[ α1
 

]] ∩
 

[[ α2
 

]]
[[ ¬α1 ]] = A

 
\ [[ α1

 

]]
[[ α1

 

⇒ α2 ]] = (A
 

\ [[ α1
 

]]) ∪
 

[[ α2
 

]]
[[ α1

 

⇔ α2 ]] = ((A
 

\
 

[[ α1
 

]]) ∪
 

[[ α2
 

]])                        
∩

 
((A

 
\

 
[[ α2

 

]]) ∪
 

[[ α1
 

]])
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Examples
A

 
= { NCS0

 

, NCS1

 

, CS0

 

, CS1

 

, REQ0

 

, REQ1

 

, REL0

 

, REL1

 

}

[[ tt
 

]] = { NCS0

 

, NCS1

 

, CS0

 

, CS1

 

, REQ0

 

, REQ1

 

, REL0

 

, REL1

 

}
[[ ff ]] = ∅
[[ NCS0

 

]] = { NCS0

 

}
[[ ¬NCS0

 

]] = { NCS1

 

, CS0

 

, CS1

 

, REQ0

 

, REQ1

 

, REL0

 

, REL1

 

}
[[ NCS0

 

∧ ¬NCS1

 

]] = { NCS0

 

} = [[ NCS0

 

]]
[[ NCS0

 

∨
 

NCS1

 

]] = { NCS0

 

, NCS1

 

}
[[ (NCS0

 

∨
 

NCS1

 

) ∧
 

(NCS0

 

∨
 

REQ0

 

) ]] = { NCS0

 

}
[[ NCS0

 

∧
 

NCS1

 

]] = ∅
 

= [[ ff ]]
[[ NCS0

 

∨ ¬NCS0

 

]] =
{ NCS0

 

, NCS1

 

, CS0

 

, CS1

 

, REQ0

 

, REQ1

 

, REL0

 

, REL1 } = [[ tt
 

]]
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HML logic
 (syntax)

ϕ
 

::= tt
 

constant “true”

| ff
 

constant “false”

|
 
ϕ1

 

∨ ϕ2 disjunction

|
 
ϕ1

 

∧ ϕ2 conjunction

|
 
¬ϕ1 negation

|
 
〈 α 〉 ϕ1

 

possibility

|
 
[ α ] ϕ1

 

necessity

Duality:
 

[ α ] ϕ = ¬〈
 

α
 

〉
 

¬ϕ
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HML logic
 (semantics)

Let M
 

= (S, A, T, s0
 

). Interpretation [[ ϕ
 

]] ⊆
 

S:
[[ tt

 
]] = S

[[ ff ]] = ∅
[[ ϕ1

 

∨ ϕ2
 

]] = [[ ϕ1
 

]] ∪
 

[[ ϕ2
 

]]
[[ ϕ1

 

∧ ϕ2
 

]] = [[ ϕ1
 

]] ∩
 

[[ ϕ2
 

]]
[[ ¬ϕ1 ]] = S

 
\ [[ ϕ1

 

]]
[[ 〈 α 〉 ϕ1

 

]] = { s
 

∈
 

S
 

| ∃
 

(s, a, s’) ∈
 

T
 

.           
a

 
∈

 
[[ α

 
]] ∧

 
s’

 
∈

 
[[ ϕ1

 

]] }
[[ [ α ] ϕ1

 

]] = { s
 

∈
 

S
 

| ∀
 

(s, a, s’) ∈
 

T
 

.           
a

 
∈

 
[[ α

 
]] ⇒

 
s’

 
∈

 
[[ ϕ1

 

]] }
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Example (1/4)
Deadlock freedom:

 
〈

 
tt

 
〉

 
tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (2/4)
Possible execution of a set of actions:

 
〈

 
CS0

 

∨
 

CS1

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (3/4)
Forbidden execution of a set of actions:

 
[ NCS0

 

∨
 

NCS1

 

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0



VTSA'08 - Max Planck Institute, Saarbrücken 132

Example (4/4)
Execution of an action sequence:

 
〈

 
REQ0

 

〉 〈 CS0

 

〉 〈 REL0

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Some identities
Tautologies:
–

 
〈 α 〉 ff = 〈

 
ff 〉 ϕ = ff

–
 

[ α ] tt
 

= [
 

ff ] ϕ = tt

Distributivity
 

of modalities over ∨
 

and ∧:
–

 
〈 α 〉 ϕ1 ∨ 〈 α 〉 ϕ2 = 〈 α 〉 (ϕ1 ∨ ϕ2

 

)
–

 
〈 α1

 

〉 ϕ ∨ 〈 α2

 

〉 ϕ = 〈 α1 ∨ α2

 

〉 ϕ
–

 
[ α

 
] ϕ1 ∧

 
[ α

 
] ϕ2 = [ α

 
] (ϕ1 ∧ ϕ2

 

)
–

 
[ α1

 

] ϕ ∧ [ α2

 

] ϕ
 

= [ α1 ∨ α2

 

] ϕ

Monotonicity
 

of modalities over ϕ
 

and α:
–

 
(ϕ1

 

⇒ ϕ2

 

)
 

⇒
 

(〈 α 〉 ϕ1 ⇒ 〈 α 〉 ϕ2

 

)
 

∧
 

([ α ] ϕ1 ⇒ [ α ] ϕ2

 

)
–

 
(α1

 

⇒ α2

 

)
 

⇒
 

(〈 α1

 

〉 ϕ ⇒ 〈 α2

 

〉 ϕ) ∧
 

([ α2

 

] ϕ ⇒ [ α1

 

] ϕ)



VTSA'08 - Max Planck Institute, Saarbrücken 134

Characterization of branching

Modal formula distinguishing between M1
 

and M2
 

:

ϕ
 

= [
 

money
 

]
 

( 〈
 

coffee
 

〉
 

tt
 

∧ 〈 tea
 

〉
 

tt
 

)

M1
 

|= ϕ
 

and
 

M2
 

|= ϕ

moneymoney

coffee tea

money

coffee tea

M1 M2



VTSA'08 - Max Planck Institute, Saarbrücken 135

Modal logics
 (summary)

Are able to express simple branching-time 
properties involving states s

 
∈

 
S

 
and actions a

 
∈

 
A

 of an LTS
But:
–

 
Take into account only a finite number of steps around a 
state (nesting of modalities)

–
 

Cannot express properties about transition sequences or 
subtrees

 
of arbitrary length

Example: the property
“from a state s, there exists a sequence leading to a state  

s’
 

where the action a
 

is executable”

cannot be expressed in modal logic
(it would need a formula 〈

 
tt

 
〉 〈 tt

 
〉

 
…

 
〈

 
tt

 
〉 〈 a

 
〉

 
tt)
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Branching-time logics

They are logics allowing to reason about the 
(infinite) execution trees contained in an LTS
Basic temporal operators:
–

 
Potentiality
from a state, there exists an outgoing, finite transition 
sequence leading to a certain state

–
 

Inevitability
from a state, all outgoing transition sequences lead, after 
a finite number of steps, to certain states

Action-based Computation Tree Logic (ACTL)
 [DeNicola-Vaandrager-90]
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ACTL logic
 (syntax)

ϕ
 

::= tt
 

|
 

ff
 

boolean
 

constants

| ϕ1 ∨ ϕ2
 

|
 

¬ϕ1 connectors

| E [ ϕ1α1
 

U ϕ2 ]  
potentiality 1

| E [ ϕ1α1
 

Uα2
 

ϕ2 ]  
potentiality 2

| A [ ϕ1α1
 

U ϕ2 ]  
inevitability 1

| A [ ϕ1α1
 

Uα2
 

ϕ2 ]  
inevitability 2
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ACTL logic
 (derived operators)

EFα
 

ϕ
 

= E [ ttα
 

U ϕ
 

]
 

basic potentiality

AFα
 

ϕ
 

= A [ ttα
 

U ϕ
 

]
 

basic inevitability

AGα
 

ϕ =
 

¬
 

EFα
 

¬ϕ
 

invariance

EGα
 

ϕ
 

= ¬
 

AFα
 

¬ϕ
 

trajectory

〈 α 〉 ϕ = E [ ttff
 

Uα
 

ϕ
 

]
 

possibility

[ α
 

] ϕ
 

= ¬ 〈 α 〉 ¬ ϕ
 

necessity

dualities
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ACTL logic
 (semantics –

 
potentiality operators)

Let M
 

= (S, A, T, s0
 

). Interpretation [[ ϕ
 

]] ⊆
 

S:

[[ E [ ϕ1α
 

U ϕ2 ]
 

]] = { s
 

∈
 

S
 

| ∃s(=s0
 

)→a0s1
 

→a1s2
 

→… .
 

 
∃k

 
≥

 
0. ∀0 ≤

 
i <

 
k. (si

 

∈
 

[[ ϕ1
 

]] ∧
 

ai
 

∈
 

[[ α ∨ τ ]]) ∧
 sk

 

∈
 

[[ ϕ2
 

]] }

[[ E [ ϕ1α1
 

Uα2
 

ϕ2 ]
 

]] = { s
 

∈
 

S
 

|∀s(=s0
 

)→a0s1
 

→a1s2
 

→… . 
∃k

 
≥

 
0. ∀0≤

 
i <

 
k. (si

 

∈
 

[[ ϕ1
 

]] ∧
 

ai
 

∈
 

[[ α1
 

∨ τ ]] ∧
 sk

 

∈
 

[[ ϕ1
 

]] ∧
 

ak
 

∈
 

[[ α2 ]] ∧
 

sk+1
 

∈
 

[[ ϕ2
 

]] }

. . .
ϕ1 ϕ1 ϕ1 ϕ1 ϕ2

α ∨ τ α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .
ϕ1 ϕ1 ϕ1 ϕ1 ϕ1

α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ
ϕ2

α2
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ACTL logic
 (semantics –

 
inevitability operators)

[[ A [ ϕ1α
 

U ϕ2 ] ]]:

[[ A [ ϕ1α1
 

Uα2
 

ϕ2 ]
 

]]:

. . .

ϕ1

ϕ1 ϕ1 ϕ1 ϕ2
α ∨ τ

α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .
ϕ1 ϕ1 ϕ1 ϕ2

α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .

. . .

ϕ1

ϕ1 ϕ1 ϕ1 ϕ1
α1

 

∨ τ
α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ
ϕ2

α2

. . .
ϕ1 ϕ1 ϕ1 ϕ1

α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ
ϕ2

α2
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Example (1/4)
Potential reachability:     EF¬

 

REL1

 

〈
 

CS0

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (2/4)
Inevitable reachability:     AF¬

 

(REL0 ∨

 

REL1)

 

〈
 

CS0

 

∨
 

CS1

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (3/4)
Invariance:     AG¬

 

(NCS0 ∨

 

NCS1)

 

〈
 

NCS0

 

∨
 

NCS1

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (4/4)
Trajectory:      EG¬

 

CS0

 

[ CS0

 

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Remark about inevitability
Inevitable reachability:

 
all sequences going out of a state 

lead to states where an action a
 

is executable
AFtt

 

〈
 

a
 

〉
 

tt
Inevitable execution:

 
all sequences going out of a state 

contain the action a
Inevitable execution ⇒

 
inevitable reachability

 but the converse does not hold:

s
 

|= AFtt

 

〈
 

a
 

〉
 

tt

Inevitable execution must be expressed using the 
inevitability operators of ACTL:

s
 

|= A [ tttt

 

Ua

 

tt
 

]

a
b

b
s
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Safety properties

Informally, safety properties specify that
 “something bad never happens”

 during the execution of the system
One way of expressing safety properties:
forbid undesirable execution sequences
–

 
Mutual exclusion:
¬ 〈 CS0

 

〉
 

EF¬REL0

 

〈
 

CS1

 

〉
 

tt
= [ CS0

 

] AG¬REL0

 

[ CS1

 

] ff

In ACTL, forbidding a sequence is expressed by 
combining the [ α ] ϕ and AGα

 

ϕ
 

operators

CS0 CS1. . .

¬REL0
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Liveness
 

properties

Informally liveness
 

properties specify that
 “something good eventually happens”

 during the execution of the system
One way of expressing liveness

 
properties:

require desirable execution sequences / trees
–

 
Potential release of the critical section: 
〈

 
NCS0

 

〉
 

EFtt

 

〈
 

REQ0

 

〉
 

EFtt

 

〈
 

REL0

 

〉
 

tt
–

 
Inevitable access to the critical section:
A [ tttt

 

UCS0

 

tt
 

]

In ACTL, the existence of a sequence is expressed 
by combining the 〈 α 〉 ϕ and EFα

 

ϕ
 

operators



VTSA'08 - Max Planck Institute, Saarbrücken 148

Branching-time logics
 (summary)

The temporal operators of ACTL: strictly more 
powerful than the HML modalities 〈 α 〉 ϕ and [ α ] ϕ
They allow to express branching-time properties on 
an unbounded depth in an LTS
But:
–

 
They do not allow to express the unbounded repetition of 
a subsequence

Example: the property
“from a state s, there exists a sequence a.b.a.b

 
... a.b

 leading to a state s’
 

where an action c is executable”

cannot be expressed in ACTL
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Regular logics

They allow to reason about the regular execution 
sequences of an LTS
Basic operators:
–

 
Regular formulas
two states are linked by a sequence whose concatenated 
actions form a word of a regular language

–
 

Modalities on sequences
from a state, some (all) outgoing regular transition 
sequences lead to certain states

Propositional Dynamic Logic (PDL)
 [Fischer-Ladner-79]
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Regular formulas
 (syntax)

β
 

::= α
 

one-step sequence

| nil
 

empty sequence

|
 
β1

 

. β2 concatenation

|
 
β1

 

| β2 choice

|
 
β1

 

* iteration (≥
 

0 times)

|
 
β1

+
 

iteration (≥
 

1 times)

Some identities: 
nil = ff *

 
β+

 
= β

 
. β* 



VTSA'08 - Max Planck Institute, Saarbrücken 151

Regular formulas
 (semantics)

Let M
 

= (S, A, T, s0
 

). Interpretation [[ β
 

]] ⊆
 

S
 

×
 

S:

[[ α ]] = { (s, s’) | ∃a
 

∈
 

[[ α ]] . (s, a, s’) ∈
 

T
 

}
[[ nil ]] = { (s, s) | s

 
∈

 
S

 
}

 
(identity)

[[ β1
 

. β2 ]] = [[ β1
 

]] о
 

[[ β2
 

]]
 

(composition)

[[ β1
 

| β2 ]] = [[ β1
 

]] ∪
 

[[ β2
 

]]
 

(union)

[[ β1
 

* ]] = [[ β1
 

]] *
 

(transitive refl. closure)

[[ β1
+

 
]] = [[ β1

 

]] +
 

(transitive closure)
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Example (1/3)
One-step sequences: NCS0 ∨

 
CS0

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (2/3)
Alternative sequences: (REQ0

 

. CS0

 

) | (REQ1

 

. CS1

 

)

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (3/3)
Sequences with repetition: NCS0

 

. (¬NCS1

 

)* . CS0

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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PDL logic
 (syntax)

ϕ
 

::= tt
 

| ff
 

boolean
 

constants

|
 
ϕ1

 

∨ ϕ2 disjunction

|
 
ϕ1

 

∧ ϕ2 conjunction

|
 
¬ϕ1 negation

|
 
〈

 
β

 
〉 ϕ1

 

possibility

|
 
[

 
β

 
] ϕ1

 

necessity

Duality:
 

[
 

β
 

] ϕ = ¬ 〈 β
 

〉 ¬ϕ
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PDL logic
 (semantics)

Let M
 

= (S, A, T, s0
 

). Interpretation [[ ϕ
 

]] ⊆
 

S:
[[ tt

 
]] = S

[[ ff ]] = ∅
[[ ϕ1

 

∨ ϕ2
 

]] = [[ ϕ1
 

]] ∪
 

[[ ϕ2
 

]]
[[ ϕ1

 

∧ ϕ2
 

]] = [[ ϕ1
 

]] ∩
 

[[ ϕ2
 

]]
[[ ¬ϕ1 ]] = S

 
\ [[ ϕ1

 

]]
[[ 〈 β 〉 ϕ1

 

]] = { s
 

∈
 

S
 

| ∃
 

s’
 

∈
 

S
 

.                                
(s, s’) ∈

 
[[ β

 
]] ∧

 
s’

 
∈

 
[[ ϕ1

 

]] }
[[ [ β ] ϕ1

 

]] = { s
 

∈
 

S
 

| ∀
 

s’
 

∈
 

S
 

.                               
(s, s’) ∈

 
[[ β

 
]] ⇒

 
s’

 
∈

 
[[ ϕ1

 

]] }
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Example (1/2)
Potential reachability

 
of critical section: 〈

 
NCS0

 

. tt
 

* . CS0

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (2/2)
Mutual exclusion: [ CS0

 

. (¬REL0

 

)* . CS1

 

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Some identities

Distributivity
 

of regular operators over 〈 〉 and [ ]:
–

 
〈 β1

 

. β2

 

〉 ϕ = 〈 β1

 

〉 〈 β2

 

〉 ϕ

–
 

〈 β1

 

| β2

 

〉 ϕ = 〈 β1

 

〉 ϕ ∨ 〈 β2

 

〉 ϕ

–
 

〈 β * 〉 ϕ = ϕ ∨ 〈 β 〉 〈 β * 〉 ϕ

–
 

[ β1

 

. β2

 

] ϕ
 

= [ β1

 

] [ β2

 

] ϕ

–
 

[ β1

 

| β2

 

] ϕ
 

= [ β1

 

] ϕ ∧ [ β2

 

] ϕ

–
 

[ β
 

* ] ϕ
 

= ϕ ∧ [ β
 

] [ β
 

* ] ϕ

Potentiality and invariance operators of ACTL:
–

 
EFα

 

ϕ
 

= 〈 α * 〉 ϕ

–
 

AGα

 

ϕ
 

= [ α
 

* ] ϕ
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Fairness properties

Problem: from the initial state of the LTS, there is 
no inevitable execution of action CS0

 

⇒ process P1
 can enter its critical section indefinitely often

s
 

|=  A [ tttt
 

Ua
 

tt
 

]

Fair execution
 

of an action a: from a state, all 
transition sequences that do not cycle indefinitely 
contain action a
Action-based counterpart of the fair reachability

 
of 

predicates
 

[Queille-Sifakis-82]

bb b
s

b

a
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Fair execution

Fair execution of an action a
 

expressed in PDL:

fair (a) = [ (¬a)* ] 〈
 

tt*. a
 

〉
 

tt

Equivalent formulation in ACTL:

fair (a) = AG¬a
 

EFtt
 

〈
 

a
 

〉
 

tt

bb b

b

a
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Example
Fair execution of critical section: [ (¬CS0

 

)* ] 〈
 

tt*. CS0

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Regular logics
 (summary)

They allow a direct and natural description of 
regular execution sequences in LTSs

More intuitive description of safety properties:
–

 
Mutual exclusion:
[ CS0

 

] AG¬REL0

 

[ CS1 ] ff    =
 

(in ACTL)
[ CS0

 

. (¬REL0

 

)* . CS1

 

] ff
 

(in PDL)

But:
–

 
Not sufficiently powerful to express inevitability 
operators (expressiveness uncomparable

 
with 

branching-time logics)
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Fixed point logics

Very expressive logics (“temporal logic assembly 
languages”) allowing to characterize finite or 
infinite tree-like patterns in LTSs
Basic temporal operators:
–

 
Minimal fixed point

 
(μ)

“recursive function”
 

defined over the LTS:                
finite

 
execution trees going out of a state

–
 

Maximal fixed point
 

(ν)
dual of the minimal fixed point operator:

 infinite
 

execution trees going out of a state

Modal mu-calculus [Kozen-83,Stirling-01]
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Modal mu-calculus
 (syntax)

ϕ
 

::=
 
tt

 
|  ff

 
boolean

 
constants

|
 
ϕ1

 

∨ ϕ2   |  ¬ϕ1 connectors

|
 
〈 α 〉 ϕ1

 

possibility

|
 
[ α ] ϕ1

 

necessity

|
 
X

 
propositional variable

|
 
μX

 
. ϕ1

 

minimal fixed point

|
 
νX

 
. ϕ1

 

maximal fixed point

Duality:
 
νX

 
. ϕ

 
= ¬ μX

 
. ¬ ϕ [¬

 
X

 
/ X ]
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Syntactic restrictions

Syntactic monotonicity
 

[Kozen-83]
–

 
Necessary to ensure the existence of fixed points

–
 

In every formula σX
 

. ϕ
 

(X), where σ ∈ { μ, ν
 

},
 

every free 
occurrence of X

 
in ϕ

 
falls in the scope of an even number 

of negations
μX

 
. 〈

 
a

 
〉

 
X

 
∨ ¬ 〈 b

 
〉

 
X

Alternation depth 1 [Emerson-Lei-86]
–

 
Necessary for efficient (linear-time) verification

–
 

In every formula μX
 

. ϕ
 

(X), every maximal subformula
 νY

 
. ϕ’ (Y) of ϕ

 
is closed

μX
 

. 〈
 

a
 

〉 νY
 

. ([ b
 

] Y
 

∧
 

[ c
 

] X)
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Modal mu-calculus
 (semantics)

Let M
 

= (S, A, T, s0
 

) and ρ
 

: X
 

→
 

2S
 

a context mapping 
propositional variables to state sets. Interpretation 
[[ ϕ

 
]] ⊆

 
S:

[[ X
 

]] ρ
 

= ρ
 

(X )

[[ μX
 

. ϕ
 

]] ρ
 

= ∪k≥0
 

Φρ
k

 
(∅)

[[ νX
 

. ϕ
 

]] ρ
 

= ∩k≥0
 

Φρ
k

 
(S)

where
 

Φρ
 

: 2S
 

→
 

2S
 

,

Φρ
 

(U) = [[ ϕ
 

]] ρ
 

[ U
 

/ X ]
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Minimal fixed point

Potential reachability
 

of an action a
 

(existence of a 
sequence leading to a transition labeled by a):

μX
 

. 〈
 

a
 

〉
 

tt
 

∨ 〈 tt
 

〉
 

X 
Associated functional:

Φ
 

(U) = [[ 〈
 

a
 

〉
 

tt
 

∨ 〈 tt
 

〉
 

X ]]  [ U
 

/ X ]
Evaluation on an LTS:

abb b

Φ
 

(∅)Φ2

 

(∅)Φ3

 

(∅)Φ4

 

(∅)

c
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Example
Potential reachability: µX

 
. 〈

 
CS0

 

〉
 

tt
 

∨ 〈 ¬(REL1 ∨
 

REL0

 

) 〉
 

X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Maximal fixed point

Infinite repetition of an action a
 

(existence of a 
cycle containing only transitions labeled by a):

νX
 

. 〈
 

a
 

〉
 

X 
Associated functional:

Φ
 

(U) = [[ 〈
 

a
 

〉
 

X ]]  [ U
 

/ X ]
Evaluation on an LTS:

aab b

Φ
 

(S)

a

a Φ2

 

(S)
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Example
Infinite repetition: νX

 
. 〈

 
NCS1

 

∨
 

REQ1

 

∨
 

CS1

 

∨
 

REL1

 

〉
 

X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Exercise
Evaluate the formula:  µX

 
. 〈

 
CS0

 

〉
 

tt
 

∨
 

([ NCS0 ] ff ∧ 〈 tt
 

〉
 

X )

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Some identities

Description of (some) ACTL operators:

–
 

E [ ϕ1α1

 

Uα2

 

ϕ2 ] = μX
 

. ϕ1

 

∧
 

(〈 α2

 

〉 ϕ2

 

∨ 〈 α1

 

〉
 

X)

–
 

A [ ϕ1α1

 

Uα2

 

ϕ2 ] = μX
 

. ϕ1

 

∧ 〈 tt
 

〉
 

tt
 

∧
 

[¬(α1

 

∨ α2

 

) ] ff

∧
 

[ ¬α1

 

∧ α2

 

] ϕ2

 

∧
 

[ ¬α2

 

] X
 

∧
 

[ α1

 

∧ α2

 

] (ϕ2

 

∨
 

X)

–
 

EFα

 

ϕ
 

= μX
 

. ϕ ∨ 〈 α 〉 X

–
 

AFα

 

ϕ
 

= μX
 

. ϕ ∨ (〈
 

tt
 

〉
 

tt
 

∧
 

[ ¬α
 

] ff ∧
 

[ α
 

] X)

Description of the PDL operators:
–

 
〈 β* 〉 ϕ = μX

 
. ϕ ∨ 〈 β 〉 X

–
 

[ β* ] ϕ
 

= νX
 

. ϕ ∧ [ β ] X
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Inevitable reachability

Inevitable reachability
 

of an action a:
access (a) = AFtt

 

〈
 

a
 

〉
 

tt
 

=
μX

 
. 〈

 
a

 
〉

 
tt

 
∨

 
(〈

 
tt

 
〉

 
tt

 
∧

 
[ tt

 
] X

 
)

Associated functional:
Φ

 
(U) = [[ 〈

 
a

 
〉

 
tt

 
∨

 
(〈

 
tt

 
〉

 
tt

 
∧

 
[ tt

 
] X

 
) ]]  [ U

 
/ X ]

Evaluation on an LTS:
b

ab b

a

c

Φ
 

(∅)Φ2

 

(∅)
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Inevitable execution

Inevitable execution of an action a:
inev

 
(a) = μX

 
. 〈

 
tt

 
〉

 
tt

 
∧

 
[ ¬a

 
] X

Associated functional:
Φ

 
(U) = [[ 〈

 
tt

 
〉

 
tt

 
∧

 
[ ¬a

 
] X ]]  [ U

 
/ X ]

Evaluation on an LTS:
b

ab b

a

c

Φ
 

(∅)
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Example
Inevitable execution: µX

 
. 〈

 
tt

 
〉

 
tt

 
∧

 
[ ¬CS0

 

] X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Fair execution

Fair execution of an action a:
fair (a) = [ (¬a)* ] 〈

 
tt*. a

 
〉

 
tt

= νX
 

. 〈
 

tt*. a
 

〉
 

tt
 

∧
 

[ ¬a ] X
Associated functional:

Φ
 

(U) = [[ 〈
 

tt*. a
 

〉
 

tt
 

∧
 

[ ¬a ] X ]]  [ U
 

/ X ]
Evaluation on an LTS:

bb b

a

b

a
Φ

 
(S)
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Example
Fair execution: [ (¬CS0

 

)* ] 〈
 

tt*. CS0

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Fixed point logics
 (summary)

They allow to encode virtually all TL proposed in 
the literature
Expressive power obtained by nesting

 
the fixed 

point operators:
〈

 
(a

 
. b*)* . c

 
〉

 
tt

 
=

μX
 

. 〈
 

c
 

〉
 

tt
 

∨ 〈 a
 

〉 μY
 

. (X
 

∨ 〈 b
 

〉
 

Y )
Alternation depth

 
of a formula: degree of mutual 

recursion between μ
 

and ν
 

fixed points
Example of alternation depth 2 formula:

νX
 

. 〈
 

a*. b
 

〉
 

X
 

=  νX
 

. μY
 

. 〈
 

b
 

〉
 

X
 

∨ 〈 a
 

〉
 

Y
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Some verification tools
 (for action-based logics)

CWB
 

(Edinburgh)
and
Concurrency Factory

 
(State University of New York)

–
 

Modal μ-calculus (fixed point operators)

JACK
 

(University of Pisa, Italy)
–

 
μ-ACTL (modal μ-calculus combined with ACTL)

CADP / Evaluator 3.x
 

(INRIA Rhône-Alpes / VASY)
–

 
Regular alternation-free μ-calculus (PDL modalities and 
fixed point operators)
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Extensions of µ-calculus with data

Temporal logics (ACTL, PDL, ...) and µ-calculi
–

 
No data manipulation (basic LOTOS, pure CCS, ...)

–
 

Too low-level operators (complex formulas)

Extended temporal logics are needed in practice

Several μ-calculus extensions with data:
–

 
For polyadic

 
pi-calculus [Dam-94]

–
 

For symbolic transition systems [Rathke-Hennessy-96]
–

 
For μCRL [Groote-Mateescu-99]

–
 

For full LOTOS [Mateescu-Thivolle-08]

VASY   181
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Why to handle data?

Some properties are cumbersome to express 
without data (e.g., action counting):

〈
 

b
 

〉 〈 b 〉 〈 b
 

〉 〈 a
 

〉
 

tt
 

or
 

〈
 

b
 

{3} . a
 

〉
 

tt
 

? 

LTSs
 

produced from value-passing process algebraic 
languages (full CCS, LOTOS, ...) contain values on 
transition labels

b abb

RECV 1 RECV 2ACK 1 ACK 2

value extraction
and propagation
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Model Checking Language 

Based on EVALUATOR 3.5 input language
•

 
standard µ-calculus

•
 

regular operators

Data-handling mechanisms
•

 
data extraction from LTS labels

•
 

regular operators with counters
•

 
variable declaration

•
 

parameterized fixed point operators
•

 
expressions

Constructs inspired from programming languages
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Parameterized modalities

Possibility:

< {SEND ?msg:Nat} > < {RECV !msg} > true

Necessity:

[ {RECV ?msg:Nat} ] (msg
 

< 6)

SEND 1 RECV 1

RECV 5

value extraction
and propagation

value extraction
and propagation
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Parameterized fixed points

(basic) syntax:
mu

 
X (y:T

 
:=

 
E) .

 
P

–
 

P contains «
 

calls »
 

X (E’)
–

 
Allows to perform computations and store intermediate 
results while exploring the PLTS

parameter initial value formula body
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Example (1/3)

Counting of actions (e.g., clock ticks):

[ {LEVEL ?l:Nat
 

where
 

l >
 

10} ]
nu

 
X (c:Nat

 
:=

 
15) .

[ not ALARM ] (c >
 

0 and
 

X (c -
 

1))

LEVEL 11 ALARM
. . .

. . .
ALARM

max. 15 transitions 
before the alarm
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Example (2/3)

Alternation of two actions and value propagation:

nu
 

X (s:Bool
 

:= true,
 

m:Msg
 

:=
 

nil) . (
[ {SEND ?p:Msg} ]

 
(s and

 
X (false,

 
p))

and
[ {RECV ?q:Msg} ] (not

 
s and

 
q =

 
m and

 
X (true,

 
nil))

and
[ not ({RECV any} or {SEND any}) ]

 
X (s,

 
m)

)

SEND m1 RECV m1ii i SEND m2 i RECV m2
. . .
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Example (3/3)

Syntax analysis on sequences:

mu
 

X (op_cl:nat
 

:=
 

0) . (
(([ true ] false) implies (op_cl

 
=

 
0))

 
and

<
 

“(”
 

>
 

X (op_cl
 

+
 

1)
 

and
<

 
“)”

 
> ((op_cl

 
>

 
0) and

 
X (op_cl

 
–

 
1))

)
Allows to simulate pushdown automata

 
(by storing 

the stack in a parameter)

« ( » « (» « )» « (» « (» « )» « )»« )»
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Quantifiers
Existential quantifier:

exists
 

x:T
 

among {
 

E1
 

...
 

E2
 

} .
 

P

Universal quantifier:
forall

 
x:T

 
among {

 
E1

 

...
 

E2
 

} .
 

P

shorthands for large disjunctions and conjunctions

limits of the subdomain
 

of T
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Example

Broadcast of messages:

forall
 

msg:Nat
 

among { 1
 

... 10
 

} .
mu

 
X . (< {SEND !msg} > true or < true >

 
X)

SEND
 

1i

. . .

. . .

. . .
SEND

 
2

SEND
 

10
. . .
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Conditional
 

operators
 

(1/2)
Branching

 
operator:

if
 

P1
 

then
 

P1
 

’
elsif

 
P2

 

then
 

P2
 

’
...
else

 
Pn

 

’
end

 
if

Semantics:
(P1

 

and
 

P1
 

’) or
((not

 
(P1

 

) and
 

P2
 

) and
 

P2
 

’) or ...
((not

 
(P1

 

or
 

P2
 

or
 

... Pn-1
 

)) and
 

Pn
 

’)

mandatory
 

clause
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Syntactic
 

restrictions
State formulas present

 
in conditions must be

 propositionally
 

closed
 

(to ensure
 

syntactic
 monotonicity)

Example
 

(illegal):
mu

 
X . (

 
...

if
 

X then
 

P1
 

else
 

P2
 

end
 

if
)

boolean
 

translation:
mu

 
X . (

 
...

(X and
 

P1
 

) or (not
 

X
 

and
 

P2
 

)
)

negative
occurrence of

 
X
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Example

Counting
 

of
 

actions (revisited):

[ {LEVEL ?l:Nat where
 

l >
 

10} ]
nu

 
X (c:Nat :=

 
0) .

if
 

c <
 

15 then
[ not ALARM ]

 
X (c +

 
1)

else
[ not

 
ALARM ] false

end
 

if
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Conditional
 

operators
 

(2/2)

Selection
 

operator:
case

 
E is

M1
 

->
 

P1

|
 

...
| any -> Pn

end
 

case
Semantics:

((E match
 

M1

 

) and
 

P1

 

) or
 

... or
(not

 
((E match

 
M1

 

) or
 

... or
 

(E match
 

Mn-1

 

)) and
 

Pn

 

)

mandatory
 

exhaustiveness
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Example
Message handling

 
(event/reaction):

[ {RECV ?m:Msg} ]
case

 
kind

 
(m) is

Norm
 

->
 

mu X
 

. < {HANDLE !m} > true
 

or < true
 

> X

|
 

Term
 

->
 

nu
 

Y . [ {SEND any} ] false
 

and
 

[ true
 

] Y

|
 

Abort
 

->
 

< true
 

> true
 

and
 

[ not
 

EXIT ] false
end

 
case

. . .
RECV m HANDLE m

RECV abort EXIT

. . .
RECV Term SEND p
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Variable definition
Initialisation operator:

let
 

x:T :=
 

E in
P

end
 

let

Example:
[ {RECV ?l:NatList} ]
let

 
n:Nat :=

 
sum

 
(l) in

< {DELIVER !n} > < {ACK !n} > true
end

 
let
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Extended regular formulas

Counting
 

operators:
R {

 
E }

 
repetition

 
E times

R {
 

E1
 

... }
 

repetition
 

at
 

least
 

E1
 

times
R {

 
E1

 

...
 

E2
 

}
 

repetition
 

between
 E1

 

and
 

E2
 

times

Some
 

identities:
nil

 
= false

 
*

 
R +

 
= R .

 
R*

R *
 

= R {
 

0 ... }
 
R ?

 
= R {

 
0 ...

 
1 }

R +
 

= R {
 

1 ... }
 
R {

 
E }

 
= R {

 
E ...

 
E }
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Translations to basic MCL

<
 

R {
 

E ... } >
 

P =
mu

 
X (c:Nat :=

 
0) .

if
 

c <
 

E then
<

 
R >

 
X (c+1)

else
P or <

 
R >

 
X (c)

end
 

if

•
 

<
 

R {
 

E1
 

...
 

E2
 

} >
 

P =
mu

 
X (c:Nat :=

 
0) .

if
 

c <
 

E1
 

then
<

 
R >

 
X (c+1)

elsif
 

c <
 

E2
 

then
P or

 
<

 
R >

 
X (c+1)

else
P

end
 

if
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Example
 (action counting revisited)

Formulation using counting operators:

[ {LEVEL ?l:Nat
 

where
 

l >
 

10} . (not
 

ALARM) {
 

16 } ] false

LEVEL 11 ALARM
. . .

. . .
ALARM

max. 15 transitions 
before the alarm
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Example
 (safety

 
of

 
a n-place

 
buffer)

Formulation using
 

extended
 

regular
 

operators:
[ true* . ((not

 
OUTPUT)* .

 
INPUT) {

 
n +

 
1 } ] false

Formulation using
 

parameterized
 

fixed
 

points:
nu

 
X . (nu

 
Y (c:Nat:=0) . (

 [not
 

OUTPUT]
 

Y (c) and
 if

 
c =

 
n+1 then

 
[INPUT] false

 else
 

[INPUT]
 

Y (c+1)
 end

 
if) 

and
 

[ true
 

]
 

X)

INPUT INPUTi
. . .

i INPUT

n+1 INPUTs
 

without
 

OUTPUTs

. . .
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Testing operator of PDL
PDL with tests

 
[Fischer-Ladner-79]:

–
 

Express properties of intermediate states of sequences 
denoted by a regular formula

–
 

Add a “test”
 

operator on regular formulas

Syntax (PDL):
 

P ?
Semantics:

 
<

 
P1

 

? >
 

P2
 

= P1
 

and
 

P2

Example:
 

<
 

P1
 

? .
 

a .
 

P1
 

? .
 

b >
 

P2 = 
P1

 

and <
 

a > (P1
 

and <
 

b >
 

P2
 

)

P ?
 

= if
 

P then nil else false end if

a b

P1 P1 P2
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Example
Operator E(.U.) of CTL:

E (P1
 

U
 

P2
 

)
 

=

mu
 

X . (P2
 

or
 

(P1
 

and < true >
 

X))
 

=

< if
 

P1
 

then true end if * >
 

P2

“else”
 

clause not mandatory:
if

 
P then

 
R end if

 
= if

 
P then

 
R else nil end if

...
P1 P2P1 P1
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Looping operator (from PDL-delta)

Δ R
 

operator added to PDL to specify infinite 
behaviours

 
[Streett-82]

MCL syntax: <
 

R > @

Examples:
–

 
process overtaking

[ REQ0 ] < (not
 

GET0

 

)* . REQ1 . (not
 

GET0

 

)* . GET1 > @
–

 
Büchi

 
acceptance condition

< true* . if
 

Paccepting

 

then true end if > @
allows to encode LTL model checking

. . .. . .
R*

R+

cycle containing one or
more repetitions of R
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Expressiveness
 (summary)

CTL* ⊆
 

PDL-Δ ⊆
 

MCL
[Wolper-82]

Lµ2
Lµ1

Δ

ACTL PDL

MCL

PDL-Δ

HML
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Adequacy with equivalence relations

A temporal logic L
 

is adequate with an equivalence 
relation ≈

 
iff

 
for all LTSs

 
M1

 

and M2

M1
 

≈
 

M2
 

iff
 

∀ϕ
 

∈
 

L
 

. (M1
 

|= ϕ ⇔ M2
 

|= ϕ)
HML:
–

 
Adequate with strong bisimulation

–
 

HMLU (HML with Until): weak bisimulation

ACTL-X (fragment presented here):
–

 
Adequate with branching bisimulation

PDL and modal mu-calculus:
–

 
Adequate with strong bisimulation

–
 

Weak mu-calculus: weak bisimulation

〈〈
 

〉〉
 

ϕ
 

= 〈 τ* 〉 ϕ

〈〈
 

a
 

〉〉
 

ϕ
 

= 〈 τ*. a
 

. τ* 〉 ϕ
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On-the-fly verification

Principles

Alternation-free boolean
 

equation systems

Local resolution algorithms

Applications:

–
 

Equivalence checking 

–
 

Model checking

–
 

Tau-confluence reduction

Implementation and use
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Principle of explicit-state verification

program desired
properties

compiler

model
(state space)

true / false
+

 diagnostic

verification
tool

Language
technology

Model
technology
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On-the-fly verification

Incremental construction of the state space
–

 
Way of fighting against state explosion

–
 

Detection of errors in complex systems

“Traditional”
 

methods:
–

 
Equivalence checking

–
 

Model checking

Solution adopted:
–

 
Translation of the verification problem into the 
resolution of a boolean

 
equation system

 
(BES)

–
 

Generation of diagnostics
 

(fragments of the state space) 
explaining the result of verification
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Boolean equation systems
 (syntax)

A BES is a tuple
 

B
 

= (x, M1
 

, …, Mn
 

), where
x

 
∈

 
X : main boolean

 
variable

Mi

 

= { xj

 

=σi

 

opj

 

Xj

 

}j ∈

 

[1, mi] : equation blocks
–

 
σi

 

∈
 

{ μ, ν
 

} : fixed point sign of block i 
–

 
opj

 

∈
 

{ ∨, ∧
 

} : operator of equation j
–

 
Xj

 

⊆
 

X
 

: variables in the right-hand side of equation j
–

 
F = ∨∅

 
(empty disjunction), T = ∧∅

 
(empty conjunction)

–
 

xj

 

depends upon xk

 

iff
 

xk

 

∈
 

Xj

–
 

Mi

 

depends upon Ml

 

iff
 

a xj

 

of Mi

 

depends upon a xk

 

of Ml

–
 

Closed
 

block: does not depend upon other blocks

Alternation-free
 

BES: Mi

 

depends upon Mi+1
 

…
 

Mn
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Example

x1
 

=μ
 

x2
 

∨
 

x3

x2
 

=μ
 

x3
 

∨
 

x4

x3
 

=μ
 

x2
 

∧
 

x7M1

x4
 

=μ
 

x5
 

∨
 

x6

x5
 

=μ
 

x8
 

∨
 

x9

x6
 

=μ
 

F
M2

x7
 

=ν
 

x8
 

∧
 

x9

x8
 

=ν
 

T

x9
 

=ν
 

F
M3
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Particular blocks

Acyclic
 

block:
–

 
No cyclic dependencies between variables of the block

Var. xi
 

disjunctive (conjunctive): opi
 

= ∨
 

(opi
 

= ∧)
Disjunctive

 
block:

–
 

contains disjunctive variables
–

 
and conjunctive variables

with a single non constant successor in the block (the 
last one in the right-hand side of the equation)
all other successors are constants or free variables 
(defined in other blocks)

Conjunctive
 

block: dual definition
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Boolean equation systems
 (semantics)

Context: partial function δ
 

: X Bool
Semantics of a boolean

 
formula:

–
 

[[ op
 

{ x1

 

, …, xp

 

} ]] δ
 

= op
 

(δ
 

(x1

 

), …, δ
 

(xp

 

))

Semantics of a block:
–

 
[[ { xj

 

=σ
 

opj

 

Xj

 

}j ∈

 

[1, m]

 

]] δ
 

= σΦδ

–
 

Φδ

 

: Boolm Boolm

–
 

Φδ

 

(b1

 

, …, bm

 

) = ([[ opj

 

Xj

 

]] (δ ⊕ [b1

 

/x1

 

, …, bm

 

/xm

 

]))j

 

∈

 

[1, m]

Semantics of a BES:
–

 
[[ (x, M1

 

, …, Mn

 

) ]] = δ1

 

(x)
–

 
δn

 

= [[ Mn

 

]] []
 

(Mn

 

closed)
–

 
δi

 

= ([[ Mi

 

]] δi+1

 

) ⊕ δi+1

 

(Mi

 

depends upon Mi+1

 

…
 

Mn

 

)
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Local resolution

Alternation-free BES B
 

= (x, M1
 

, …, Mn
 

)
Primitive: compute a variable of a block
–

 
A resolution routine Ri

 

associated to Mi

–
 

Ri

 

(xj

 

) computes the value of xj

 

in Mi

–
 

Evaluation of the rhs
 

of equations + substitution
–

 
Call stack R1

 

(x) … Rn (xk) bounded by the depth of 
the dependency graph between blocks

–
 

“Coroutine-like”
 

style: each Ri

 

must keep its context

Advantages:
–

 
Simple resolution routines (a single type of fixed point)

–
 

Easy to optimize for particular kinds of blocks
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Example

x1
 

=μ
 

x2
 

∨
 

x3

x2
 

=μ
 

x3
 

∨
 

x4

x3
 

=μ
 

x2
 

∧
 

x7M1

x4
 

=μ
 

x5
 

∨
 

x6

x5
 

=μ
 

x8
 

∨
 

x9

x6
 

=μ
 

F
M2

x7
 

=ν
 

x8
 

∧
 

x9

x8
 

=ν
 

T

x9
 

=ν
 

F
M3
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Local resolution algorithms

Representation of blocks as boolean
 

graphs
 [Andersen-94]

To a block M
 

= { xj

 

=μ
 

opj

 

Xj

 

}j in [1, m]

 

we associate the 
boolean

 
graph G

 
= (V, E, L, μ), where:

–
 

V
 

= { x1

 

, …, xm

 

}: set of vertices (variables)
–

 
E

 
= { (xi

 

, xj

 

) | xj

 

∈
 

Xi

 

}: set of edges (dependencies)
–

 
L

 
: V { ∨, ∧ }, L (xj) = opj: vertex labeling

Principle of the algorithms:
–

 
Forward

 
exploration of G

 
starting at x

 
∈

 
V

–
 

Backward
 

propagation of stable (computed) variables
–

 
Termination: x

 
is stable or G

 
is completely explored
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Example
BES (μ-block)

 
boolean

 
graph

x1
 

=μ
 

x2
 

∨
 

x3

x2
 

=μ
 

F
x3

 

=μ
 

x4
 

∨
 

x5

x4
 

=μ
 

T
x5

 

=μ
 

x1

: ∨-variables
: ∧-variables

1

4

2 3

5
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Three effectiveness criteria
 [Mateescu-06]

For each resolution routine R:

A.
 

The worst-case complexity of a call R
 

(x) must be 
O

 
(|V|+|E|)
linear-time complexity for the overall BES resolution

B.
 

While executing R
 

(x), every variable explored 
must be «

 
linked

 
»

 
to x

 
via unstable variables

graph exploration limited to “useful” variables

C.
 

After termination of R
 

(x), all variables explored 
must be stable

keep resolution results between subsequent calls of R
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Algorithm A0
 (general)

DFS of the boolean
 

graph
Satisfies A, B, C
Memory complexity

 O
 

(|V|+|E|)
Optimized version of 
[Andersen-94]
Developed for model 
checking regular 
alternation-free

 μ-calculus 
[Mateescu-Sighireanu-00,03]

1

5

3 4

2
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Algorithm A1 
(general)

BFS of the boolean
 

graph
Satisfies A, C

 (risk of computing 
useless variables)
Slightly slower than A0
Memory complexity

 O
 

(|V|+|E|)
Low-depth diagnostics

2

10

5

98

76

1

3

4
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Algorithm A2 
(acyclic)

DFS of the boolean
 

graph
Back-propagation of stable 
variables on the DFS stack 
only
Satisfies A, B, C
Avoids storing edges
Memory complexity

 O
 

(|V|)
Developed for trace-based 
verification [Mateescu-02]

53 6

4

1

2
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Algorithm A3 / A4 
(disjunctive / conjunctive)

DFS of the boolean
 

graph
Detection and 
stabilization of SCCs
Satisfies A, B, C
Avoids storing edges
Memory complexity

 O
 

(|V|)
Developed for model 
checking CTL, ACTL,

 and PDL

1

5

4

63

2

SCC of false 
variables

SCC of true
variables
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Resolution algorithms
 (summary)

A0 (DFS, general)
–

 
Satisfies A,

 
B,

 
C

–
 

Memory complexity O
 

(|V|+|E|)

A1 (BFS, general)
–

 
Satisfies A,

 
C

 
+ «

 
small

 
»

 
diagnostics

–
 

Memory complexity O
 

(|V|+|E|)   Time

A2 (DFS, acyclic)
 

complexity
–

 
Satisfies A,

 
B,

 
C O

 
(|V|+|E|)

–
 

Memory complexity O
 

(|V|)

A3/A4 (DFS, disjunctive/conjunctive)
–

 
Satisfies A,

 
B,

 
C

–
 

Memory complexity O
 

(|V|)
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Caesar_Solve
 

library of CADP
 [Mateescu-03,06]

15 000 lines of C
Integrated into 
CADP in Dec. 2004
Diagnostic generation 
features [Mateescu-00]
Used as verification back-end for 
Bisimulator, Evaluator 3.5 and 4.0, Reductor

 
5.0

OPEN/CAESAR
libraries

CAESAR_SOLVE
library

(A0 –

 
A4 &

 
diagnostic)

im
pl

ic
it

  
  

 g
ra

ph

(s
uc

ce
ss

or
  

 f
un

ct
io

n)

BES
(boolean
graph)

diagnostic
(boolean
subgraph)

variable value

im
pl

ic
it

  
  

 g
ra

ph

(s
uc

ce
ss

or
  

 f
un

ct
io

n)
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Equivalence checking
 (principle)

description
of system

compiler

LTS
1

equivalence checker

true / false 
+ 

diagnostic

description
of service

LTS
2

compiler
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Strong equivalence

M1
 

= (Q1
 

, A, T1
 

, q01
 

), M2
 

= (Q2
 

, A, T2
 

, q02
 

) 
≈ ⊆ Q1

 

×
 

Q2
 

is the maximal relation s.t. p
 

≈
 

q
 

iff

∀a∈A.∀p
 

→a
 

p’∈T1
 

. ∃q
 

→a
 

q’∈T2
 

. p’
 

≈
 

q’
and
∀a∈A.∀q

 
→a

 

q’∈T2
 

. ∃p
 

→a
 

p’∈T1
 

. p’
 

≈
 

q’

M1
 

≈
 

M2 iff
 

q01
 

≈
 

q02
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p
 

≤
 

q
(preorder)

Translation to a BES

Principle:
 

p
 

≈
 

q
 

iff
 

Xp,q
 

is true
General BES:

Xp,q
 

=ν
 

(∧p
 

→a
 

p’
 

∨q
 

→a
 

q’
 

Xp’,q’
 

) 
∧

 (∧q
 

→a
 

q’
 

∨p
 

→a
 

p’
 

Xp’,q’
 

) 

Simple BES:
Xp,q

 

=ν
 

(∧p
 

→a
 

p’
 

Ya,p’,q
 

) ∧
 

(∧q
 

→a
 

q’
 

Za,p,q’
 

)
Ya,p’,q

 

=ν
 

∨q
 

→a
 

q’
 

Xp’,q’

Za,p,q’
 

=ν
 

∨p
 

→a
 

p’
 

Xp’,q’
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Tau*.a and safety equivalences
M1

 

= (Q1
 

, Aτ
 

, T1
 

, q01
 

), M2
 

= (Q2
 

, Aτ
 

, T2
 

, q02
 

) 
Aτ

 

= A
 

∪
 

{ τ
 

}
Tau*.a equivalence:

Xp,q
 

=ν
 

(∧p
 

→τ*.a
 

p’
 

∨q
 

→τ*.a
 

q’
 

Xp’,q’
 

)
∧
(∧q

 
→τ*.a

 
q’

 

∨p
 

→τ*.a
 

p’
 

Xp’,q’
 

)

Safety equivalence:
Xp,q

 

=ν
 

Yp,q
 

∧
 

Yq,p

Yp,q
 

=ν ∧p
 

→τ*.a
 

p’
 

∨q
 

→τ*.a
 

q’
 

Yp’,q’
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Observational and branching 
equivalences

Observational equivalence:
Xp,q

 

=ν
 

(∧p
 

→τ
 

p’
 

∨q
 

→τ*
 

q’
 

Xp’,q’
 

) ∧
 

(∧p
 

→a
 

p’
 

∨q
 

→τ*.a.τ*
 

q’
 

Xp’,q’
 

)
 ∧

 (∧q
 

→τ
 

q’
 

∨p
 

→τ*
 

p’
 

Xp’,q’
 

) ∧
 

(∧q
 

→a
 

q’
 

∨p
 

→τ*.a.τ*
 

p’
 

Xp’,q’
 

)

Branching equivalence:
Xp,q

 

=ν ∧p
 

→b
 

p’
 

((b=τ ∧ Xp’,q
 

) ∨ ∨q
 

→τ*
 

q’
 

→b
 

q’’
 

(Xp,q’
 

∧
 

Xp’,q’’
 

)
∧

 ∧q
 

→b
 

q’
 

((b=τ ∧ Xp,q’
 

) ∨ ∨p
 

→τ*
 

p’
 

→b
 

p’’
 

(Xp’,q
 

∧
 

Xp’’,q’
 

)



VTSA'08 - Max Planck Institute, Saarbrücken 229

Example
 (coffee machine)

≈

0

31

42

tc

mmm
0

c t
1

2 3

X00

Zm03Ym10 Zm01

Yt31

X11

Yc21

X13

Zc12 Yc23

X22

Zt14Yt33

X34

∧

∨

∧

∧ ∧

∧

∨∨∨∨∨

∨ ∨ ∨

X00

Ym10

Yt31

X11 X13

Yc23

0

31

42
Absent in LTS2: c

Absent in LTS2: t

mm

Counterexample
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Equivalence
 

checking
 

(time)

19 LTSs

 
of

 
the

 
VLTS benchmark suite

www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html



VTSA'08 - Max Planck Institute, Saarbrücken 231

Equivalence
 

checking
 

(memory)
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Equivalence checking
 (summary)

General
 

boolean
 

graph: 
–

 
All equivalences and their preorders

–
 

Algorithms A0
 

and A1
 

(counterexample depth ↓)
Acyclic

 
boolean

 
graph:

–
 

Strong equivalence: one LTS acyclic
–

 
τ*.a

 
and safety: one LTS acyclic (τ-circuits allowed)

–
 

Branching and observational: both LTS acyclic
–

 
Algorithm A2

 
(memory ↓)

Conjunctive
 

boolean
 

graph:
–

 
Strong equivalence: one LTS deterministic

–
 

Weak equivalences: one LTS deterministic and τ-free
–

 
Algorithm A4

 
(memory ↓)
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Model checking
 (principle)

description
of system

compiler

LTS

properties

model checker

true / false
+

diagnostic
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On-the-fly model checking in CADP
 (Evaluator 3.x)

formulaLTS

BES

translation

resolution

yes / no + diagnostic

On-the-fly
activities

Model
checker
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Translation to Boolean
 

Equation
 Systems

formulaLTS

translation to PDLR

translation to HMLR

translation to BESs

PDLR spec

HMLR spec

BES
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Translation to PDL with recursion

State formula (expanded):
nu

 
Y0

 

. [ true* . SEND ]
mu

 
Y1

 

. 〈
 

true
 

〉
 

true
 

and
 

[ not
 

RECV ] Y1

PDLR specification [Mateescu-Sighireanu-03]:

Y0
 

=nu
 

[ true* .
 

SEND ] Y1

Y1
 

=mu
 

〈
 

true
 

〉
 

true
 

and
 

[ not
 

RECV ] Y1
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Simplification

PDLR specification:

Simple
 

PDLR specification:

Y0
 

=nu
 

[ true* .
 

SEND ] Y1

Y1
 

=mu
 

〈
 

true
 

〉
 

true
 

and
 

[ not
 

RECV ] Y1

Y0
 

=nu
 

[ true* .
 

SEND ] Y1 Y1
 

=mu
 

Y2
 

and
 

Y3

Y2
 

=mu 〈
 

true
 

〉
 

true
Y3

 

=mu [ not
 

RECV ] Y1
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Translation to BESs

s3

s1

s0

s2

SEND
RECV TIMEOUT

ii

Boolean
 

variables: xi, j
 

≡
 

si ⊨
 

Yj

x0,0

 

=ν

 

x0,4

 

∧
 

x0,5
x0,4

 

=ν

 

x1,1
x0,5

 

=ν

 

x1,0
x1,0

 

=ν

 

x1,4

 

∧
 

x1,5
x1,4

 

=ν

 

true
x1,5

 

=ν

 

x2,0

 

∧
 

x3,0
x2,0

 

=ν

 

x2,4

 

∧
 

x2,5
x2,4

 

=ν

 

true
x2,5

 

=ν

 

x0,0
x3,0

 

=ν

 

x3,4

 

∧
 

x3,5
x3,4

 

=ν

 

true
x3,5

 

=ν

 

x0,0

x1,1

 

=μ

 

x1,2

 

∧
 

x1,3
x1,2

 

=μ

 

true
x1,3

 

=μ

 

x2,1

 

∧
 

x3,1
x2,1

 

=μ

 

x2,2

 

∧
 

x2,3
x2,2

 

=μ

 

true
x2,3

 

=μ

 

true
x3,1

 

=μ

 

x3,2

 

∧
 

x3,3
x3,2

 

=μ

 

true
x3,3

 

=μ

 

x0,1
x0,1

 

=μ

 

x0,2

 

∧
 

x0,3
x0,2

 

=μ

 

true
x0,3

 

=μ

 

x1,1

Y0

 

=nu

 

Y4

 

and
 

Y5

Y4

 

=nu [ SEND ] Y1

Y5

 

=nu [ true
 

] Y0

Y1

 

=mu

 

Y2

 

and
 

Y3

Y2

 

=mu 〈
 

true
 

〉
 

true
Y3

 

=mu [ not
 

RECV ] Y1
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Local BES resolution with diagnostic

x0,0

x0,5 x0,4

x1,0

x1,1

x1,4 x1,5

x2,0 x3,0

x2,5x2,4 x3,4 x3,5

x1,2 x1,3

x2,1 x3,1

x2,3x2,2 x3,2 x3,3

x0,1

x0,3x0,2

x0,0

x0,4

x1,1

x1,3

x3,1

x3,3

x0,1

x0,3

Counterexample

SEND

i

TIMEOUT
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Additional operators
Mechanisms for macro-definition (overloaded) and 
library inclusion
Libraries encoding the operators of

 
CTL

 
and ACTL

EU (ϕ1

 

,
 

ϕ2

 

)
 

= mu
 

Y
 

.
 

ϕ2

 

or (ϕ1

 

and 〈
 

true 〉
 

Y)
EU (ϕ1

 

,
 

α1

 

,
 

α2 ,
 

ϕ2

 

)
 

= mu
 

Y
 

. 〈
 

α2

 

〉
 

ϕ2

 

or (ϕ1

 

and 〈
 

α1

 

〉
 

Y)

Libraries of high-level property patterns [Dwyer-99]
–

 
Property classes:

Absence, existence, universality, precedence, response

–
 

Property scopes:
Globally, before a, after a, between a and b, after a until b

–
 

More info:
http://www.inrialpes.fr/vasy/cadp/resources

http://www.inrialpes.fr/vasy/cadp/resources
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Disjunctive BES

Disjunctive
 

boolean
 

graph:
–

 
Potentiality

 
operator of CTL

E [ϕ1

 

U ϕ2

 

] = μX
 

. ϕ2

 

∨
 

(ϕ1

 

∧ 〈 T 〉
 

X)
{ X

 
=μ

 

ϕ2

 

∨
 

Y  , Y
 

=μ

 

ϕ1

 

∧
 

Z  , Z
 

=μ

 

〈
 

T 〉
 

X
 

}
{ Xs

 

=μ

 

ϕ2s

 

∨
 

Ys

 

, Ys

 

=μ

 

ϕ1s

 

∧
 

Zs

 

, Zs

 

=μ

 

∨s s’ Xs’ }
–

 
Possibility

 
modality of PDL

〈
 

(a
 

| b)* . c
 

〉
 

T
{ X

 
=μ

 

〈
 

c
 

〉
 

T ∨ 〈 a
 

〉
 

X
 

∨ 〈 b
 

〉
 

X
 

}
{ Xs

 

=μ

 

(∨s c s’ T) ∨ (∨s a s’ Xs’) ∨ (∨s b s’ Xs’) }

Algorithm A3
 

(memory ↓)



VTSA'08 - Max Planck Institute, Saarbrücken 242

Linear-time model checking
 (looping operator of PDL-delta)

Translation in mu-calculus of alternation
 depth 2 [Emerson-Lei-86]:

<
 

R > @
 

= nu
 

X . <
 

R >
 

X

But still checkable in linear-time:
–

 
Mark LTS states potentially satisfying X

–
 

Leads to marked variables in the disjunctive BES
–

 
Computation of boolean

 
SCCs

 
containing marked variables

–
 

A3cyc

 

algorithm [Mateescu-Thivolle-08]
Can serve for LTL model checking
Allows linear-time handling of repeated invocations

if R contains *-operators,
the formula is of

alternation depth 2
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Model checking
 of data-based

 properties
 (Evaluator 4.0)

Every SEND is followed by a RECV after 2 steps:

[ true* .
 

SEND ] < true {
 

2 } .
 

RECV > true
 

=
nu

 
X . ( [

 
SEND ] mu

 
Y (c:Nat

 
:=

 
2) .

if
 

c =
 

0 then <
 

RECV > true 
else < true >

 
Y (c –

 
1) 

end if
and 
[ true ]

 
X )

SEND i i RECV

ACK

ERROR
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Translation into HMLR

nu
 

X . [
 

SEND ] mu Y (c:Nat
 

:=
 

2) .
if

 
c =

 
0 then <

 
RECV > true 

else < true >
 

Y (c –
 

1)
and [ true ]

 
X

 
end if

{
 

X =nu

 

{
 

Y (c:Nat)
 

=mu

[
 

SEND ]
 

Y (2) if c =
 

0 then <
 

RECV > true
and

 
else < true >

 
Y (c –

 
1)

[ true ] X end if
} }
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Translation into
 BES and resolution

{
 

X =nu

 

{
 

Y (c:Nat)
 

=mu

[
 

SEND ]
 

Y (2) if c =
 

0 then <
 

RECV > true
and

 
else < true >

 
Y (c –

 
1)

[ true ]
 

X end if
} }

Principle:

SEND i i RECV

ACK

ERROR

0 1 2 3 4

X0 Y1

 

(2)

X1

Y2

 

(1) Y0

 

(0)

Y3

 

(0). . .

Xs
 

=  «
 

s |= X »
Ys

 

(c)  = «
 

s |= Y (c) »
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Divergence

In presence of data parameters of infinite types, 
termination of model checking is not guaranteed 
anymore
(pathological) property:

 
LTS:

mu
 

X (n:Nat
 

:=
 

0) . <
 

a
 

>
 

X (n +
 

1)

BES :
 

{
 

Xs
 

(n:Nat)
 

=mu
 

OR s ->a s’
 

Xs’
 

(n +
 

1) }
 

=
{

 
Xs

 

(n:Nat)
 

=mu
 

Xs
 

(n +
 

1) }

a

s

. . . . . .
Xs

 

(0) Xs

 

(1) Xs

 

(2) Xs

 

(n)
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Conjunctive BES

Conjunctive
 

boolean
 

graph:
–

 
Inevitability

 
operator of CTL

A [ϕ1

 

U ϕ2

 

] = μX
 

. ϕ2

 

∨
 

(ϕ1

 

∧ 〈 T 〉
 

T ∧ [ T ]
 

X)
{ X

 
=μ

 

ϕ2

 

∨
 

Y  , Y
 

=μ

 

ϕ1

 

∧
 

Z ∧ [ T ]
 

X , Z
 

=μ

 

〈
 

T 〉
 

T }
{ Xs

 

=μ

 

ϕ2s

 

∨
 

Ys

 

, Ys

 

=μ

 

ϕ1s

 

∧
 

Zs

 

∧
 

(∧s s’ Xs’) , Zs =μ ∨s s’ T }
–

 
Necessity

 
modality of PDL

[ (a
 

| b)* . c
 

] F
{ X

 
=μ

 

[ c
 

] F ∧
 

[ a
 

] X
 

∧
 

[ b
 

] X
 

}
{ Xs

 

=μ

 

(∧s c s’ F) ∧ (∧s a s’ Xs’) ∧ (∧s b s’ Xs’) }

Algorithm A4
 

(memory ↓)
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Acyclic BES

Acyclic
 

boolean
 

graph:
–

 
Acyclic

 
LTS and guarded formulas [Mateescu-02]

Handling of CTL (and ACTL) operators:
–

 
E [ϕ1

 

U ϕ2

 

] = μX
 

. ϕ2

 

∨
 

(ϕ1

 

∧ 〈 T 〉
 

X)
–

 
A [ϕ1

 

U ϕ2

 

] = μX
 

. ϕ2

 

∨
 

(ϕ1

 

∧ 〈 T 〉
 

T ∧ [ T ]
 

X)

Handling of full mu-calculus
–

 
Translation to guarded form

–
 

Conversion from maximal to minimal fixed points 
[Mateescu-02]

Algorithm A2
 

(memory ↓)



VTSA'08 - Max Planck Institute, Saarbrücken 249

Algorithm A1 vs. A3/A4
 (execution time –

 
CADP demos)

number of boolean

 

operators in the BES

tim
e 

(s
ec

)
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Algorithm A1 vs. A3/A4
 (memory consumption –

 
CADP demos)

number of boolean

 

operators in the BES

m
em

or
y 

(K
by

te
s)
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Algorithm A1 vs. A3/A4
 (diagnostic size –

 
BRP protocol)

message length (number of packets)

di
ag

no
st

ic
 s

iz
e 

 (n
um

be
r o

f t
ra

ns
iti

on
s)
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Model checking
 (summary)

General
 

boolean
 

graph:
–

 
Any LTS and any alternation-free μ-calculus formula

–
 

Algorithms A0
 

and A1
 

(diagnostic depth ↓)
Acyclic

 
boolean

 
graph:

–
 

Acyclic LTS and guarded formula (CTL, ACTL)
–

 
Acyclic LTS and μ-calculus formula (via reduction)

–
 

Algorithm A2
 

(memory ↓)

Disjunctive/conjunctive
 

boolean
 

graph:
–

 
Any LTS and any formula of CTL, ACTL, PDL

–
 

Algorithm A3/A4
 

(memory ↓)
–

 
Matches the best local algorithms dedicated to CTL 
[Vergauwen-Lewi-93]
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Partial order reduction
τ-confluence

 
[Groote-vandePol-00]

–
 

Form of partial-order reduction defined on LTSs
–

 
Preserves branching bisimulation

Principle
–

 
Detection of τ-confluent transitions

–
 

Elimination of “neighbour”
 

transitions (τ-prioritisation)

On-the-fly LTS reduction
–

 
Direct approach [Blom-vandePol-02]

–
 

BES-based approach
 

[Pace-Lang-Mateescu-03]
Define τ-confluence in terms of a BES
Detect τ-confluent transitions by locally solving the BES
Apply τ-prioritisation and compression on sequences
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Translation to a BES

Xp1,p2
 

=ν
 

∧p1
 

→b
 

p3
 

(
p2

 
→b

 
p3

 
∨

∨p2
 

→b
 

p4, p3→τ p4 Xp3,p4
 

∨
((b

 
= τ)

 
∧ ∨p3

 
→τ p2

 

Xp3,p2
 

)
)
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Tau-prioritisation
 

and compression

Original LTS
 

Reduced LTS
(exploration from s0

 

and s7
 

)

In practice: reductions of a factor 102
 

– 103 

[Mateescu-05]
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Model checking using A3/A4
 (effect of τ-confluence reduction –

 
time –

 
Erathostene’s

 
sieve)

number of units in the sieve

tim
e 

(s
ec

)

without τ-confluence         
with τ-confluence
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Model checking using A3/A4
 (effect of τ-confluence reduction –

 
memory –

 
Erathostene’s

 
sieve)

without τ-confluence
with τ-confluence

number of units in the sieve

m
em

ot
y

(K
by

te
s)
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Checking branching bisimulation
 (effect of τ-confluence reduction –

 
time –

 
BRP protocol)
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Checking branching bisimulation
 (effect of τ-confluence reduction –

 
memory –

 
BRP protocol)
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On-the-fly verification
 (summary)

Already available:
Generic Caesar_Solve

 
library [Mateescu-03,06]

9 local BES resolution algorithms (A8 added in 2008)
Diagnostic generation features
Applications: Bisimulator, Evaluator 3.5, Reductor

 
5.0

Ongoing:
Distributed BES resolution algorithms on clusters of machines 
[Joubert-Mateescu-04,05,06]
New applications

–
 

Test generation
–

 
Software adaptation

–
 

Discrete controller synthesis
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Case study

SCSI-2 bus arbitration protocol

Description in LOTOS

Specification of properties in TL

Verification using Evaluator 3.5 and 4.0

Interpretation of diagnostics
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SCSI-2 bus arbitration protocol

Prioritized
 

arbitration mechanism, based on static IDs on 
bus (devices numbered from 0 to n –

 
1)

Fairness
 

problem (starvation of low-priority disks)

CMD
ARB
REC

CMD
ARB
REC

...Disk Disk Disk

Controller

...
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Architecture of the system
(

DISK [ARB, CMD, REC] (0, 0)
|[ARB]|
DISK [ARB, CMD, REC] (1, 0)
|[ARB]|
...
|[ARB]|
DISK [ARB, CMD, REC] (6, 0)

)
|[ARB, CMD, REC]|
CONTROLLER [ARB, CMD, REC] (NC, ZERO)

8-ary rendezvous
on gate ARB

binary rendezvous
on gates CMD, REC
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Synchronization constraints
 (bus arbitration policy)

Synchronizations on gate ARB:
ARB ?r0, …,r7:Bool [C (r0, …, r7, n)] ; ...

where:
–

 
r0, …, r7 = values of the electric signals on the bus

–
 

n = index of the current device

Two particular cases for guard condition C:
–

 
P (r0, …, r7, n): device n does not ask the bus

–
 

A (r0, …, r7, n): device n asks and obtains access to bus
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Guard conditions

Predicate P (r0, ..., r7, n) = ¬rn

P (r0, ..., r7, 0) = not (r0)
P (r0, ..., r7, 1) = not (r1)
...
P (r0, ..., r7, 7) = not (r7)

Predicate A (r0, ..., r7, n) =
 

rn
 

∧ ∀i ∈
 

[n+1, 7] . ¬ri

A (r0, ..., r7, 0) = r0 and not (r1 or ... or r7)
A (r0, ..., r7, 1) = r1 and not (r2 or ... or r7)
...
A (r0, ..., r7, 7) = r7
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Controller process
process

 
Controller [ARB, CMD, REC] (C:Contents) : noexit

 
:=

(* communicate with disk N *)
choice

 
N:Nat

 
[]

[(N >= 0) and (N <= 6)] ->
Controller2 [ARB, CMD, REC] (C, N)

[]
(* does not request the bus *)
ARB ?r0, ..., r7:Bool [P (r0, ..., r7, 7)];

Controller [ARB, CMD, REC] (C)
endproc
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Controller process
process

 
Controller2 [ARB, CMD, REC] (C:Contents, N:Nat) :

noexit
 

:=
[not_full

 
(C, N)] ->

(* request and obtain the bus *)
ARB ?r0, ..., r7:Bool [A (r0, ..., r7, 7)];

CMD !N; (* send a command *)
Controller [ARB, CMD, REC] (incr

 
(C, N))

[]
REC !N;    (* receive an acknowledgement *)

Controller [ARB, CMD, REC] (decr
 

(C, N))
endproc
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Disk process
process

 
DISK [ARB, CMD, REC] (N, L:Nat) : noexit

 
:=

CMD !N;  DISK [ARB,CMD,REC] (N, L+1)
[]
[L > 0] -> (

ARB ?r0, ..., r7:Bool [A (r0, ..., r7, N)];
REC !N;  DISK [ARB, CMD, REC] (N, L-1)

[]
ARB ?r0, ..., r7:Bool [not (A (r0, ..., r7, N)) and

not (P (r0, ..., r7, N))];
DISK [ARB, CMD, REC] (N, L)

)
[]
[L = 0] ->  ARB ?r0, ..., r7:Bool [P (r0, ..., r7, N)];

DISK [ARB, CMD, REC] (N, L)
endproc
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Absence of starvation property
 (PDL+ACTL formulation)

“Every time a disk i
 

receives a command from the controller, 
it will be able to gain access to the bus in order to send the 
corresponding acknowledgement”

[ true* .
 

cmdi

 

] A [ truetrue

 

Ureci

 

true ]

Property fails
 for i <

 
nc

Counterexample
 produced by Evaluator 3.5

 for i
 

= 0 and nc
 

= 1:
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Starvation property
 (MCL formulation)

“Every time a disk i
 

with priority lower than the controller 
nc

 
receives a command, its access to the bus can be 

continuously preempted by any other disk j
 

with higher 
priority”

[ true*. {cmd
 

?i:Nat
 

where
 

i < nc} ]
forall

 
j:Nat

 
among {

 
i + 1 ...

 
n −

 
1 } .

(j <> nc) implies
< (not {rec

 
!i})*. {cmd

 
!j} .

(not {rec
 

!i})*. {rec
 

!j} > @
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Safety property
 (MCL formulation)

“The difference between the number of commands received 
and reconnections sent by a disk i

 
varies between 0

 
and 8

 (the size of the buffers associated to disks)”

forall
 

i:Nat
 

among {
 

0 …
 

n –
 

1 } .
nu

 
Y (c:Nat:=0) . (

[ {cmd
 

!i} ] ((c < 8) and
 

Y (c + 1))
and
[ {rec

 
!i} ] ((c > 0) and

 
Y (c −

 
1))

and
[ not ({cmd

 
!i} or {rec

 
!i}) ]

 
Y (c)

)
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Safety property
 (standard mu-calculus formulation)

nu

 

CMD_REC_0 . (
[ CMD_i

 

] nu

 

CMD_REC_1 . (
[ CMD_i

 

] nu

 

CMD_REC_2 . (
[ CMD_i

 

] nu

 

CMD_REC_3 . (
[ CMD_i

 

] nu

 

CMD_REC_4 . (
[ CMD_i

 

] nu

 

CMD_REC_5 . (
[ CMD_i

 

] nu

 

CMD_REC_6 . (
[ CMD_i

 

] nu

 

CMD_REC_7 . (
[ CMD_i

 

] nu

 

CMD_REC_8 . (
[ CMD_i

 

] false
and
[ REC_i

 

] CMD_REC_7
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_8

)
and
[ REC_i

 

] CMD_REC_6
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_7

)
and
[ REC_i

 

] CMD_REC_5
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_6

)

and
[ REC_i

 

] CMD_REC_4
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_5

)
and
[ REC_i

 

] CMD_REC_3
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_4

)
and
[ REC_i

 

] CMD_REC_2
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_3

)
and
[ REC_i

 

] CMD_REC_1
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_2

)
and
[ REC_i

 

] CMD_REC_0
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_1

)
and
[ REC_i

 

] false
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_0

)
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Discussion and perspectives
Model-based verification techniques:
–

 
Bug hunting, useful in early stages of the design process

–
 

Confronted with (very) large models
–

 
Temporal logics extended with data (XTL, Evaluator 4.0)

–
 

Machinery for on-the-fly verification (Open/Caesar)

Perspectives:
–

 
Parallel and distributed algorithms

State space construction
BES resolution

–
 

New applications
Analysis of genetic regulatory networks
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