Model Checking of Action-Based Concurrent Systems

Radu Mateescu
INRIA Rhône-Alpes / VASY
http://www.inrialpes.fr/vasy

I N R I A

Why formal verification?

Therac-25 radiotherapy accidents (1985-1987)

Ariane-5 launch failure (1996)

Mars climate orbiter failure (1999)

- Characteristics of these systems
- Errors due to software
- Complex, often involving parallelism
- Safety-critical
\rightarrow formal verification is useful for early error detection

Outline

- Communicating automata
- Process algebraic languages
- Action-based temporal logics
- On-the-fly verification
- Case study
- Discussion and perspectives

Asynchronous concurrent systems

Characteristics:

- Set of distributed processes
- Message-passing communication
- Nondeterminism

Applications:

- Hardware
- Software
- Telecommunications

CADP toolbox:

Construction and Analysis of Distributed Processes
(http://www.inrialpes.fr/vasy/cadp)

- Description languages:
- ISO standards (LOTOS, E-LOTOS)
- Networks of communicating automata
- Functionalities:
- Compilation and rapid prototyping
- Interactive and guided simulation
- Equivalence checking and model checking
- Test generation
- Case-studies and applications:
- >100 industrial case-studies
- >30 derived tools
- Distribution: over 400 sites (2008)

Communicating automata

- Basic notions
- Implicit and explicit representations
- Parallel composition and synchronization
- Hiding and renaming
- Behavioural equivalences

Transformational

systems

- Work by computing a result in function of the entries
- Absence of termination undesirable
- Upon termination, the result is unique
- Sequential programming (sorting algorithms, graph traversals, syntax analysis, ...)

Reactive

systems

- Work by reacting to the stimuli of the environment
- Absence of termination desirable
- Different occurrences of the same request may produce different results
- Parallel programming (operating systems, communication protocols, Web services, ...)
- Concurrent execution
- Communication + synchronization

Communicating automata

- Simple formalism describing the behaviour of concurrent systems
- Black-box approach:
- One cannot inspect directly the state of the system
- The behaviour of the system can be known only through its interactions with the environment

- Synchronization on a gate requires the participation of the process and of its environment (rendezvous)

Automaton (LTS)

- Labeled Transition System $M=\left\langle S, A, T, s_{0}\right\rangle$
- S: set of states (s_{1}, s_{2}, \ldots)
- A: set of visible actions (a_{1}, a_{2}, \ldots)
- T: transition relation $\left(s_{1}-a \rightarrow s_{2} \in T\right)$
- $s_{0} \in S$: initial state
- Example: process client ${ }_{1}$

- Other kinds of automata:
internal action (noted ior τ)
every state is reachable from the initial state
deadlock (sink) state:
no outgoing transitions
- Kripke strictures (information associated to states)
- Input/output automata [Lynch-Tuttle]

LTS representations in CADP

(http://www.inrialpes.fr/vasy/cadp)

Explicit

- List of transitions
- Allows forward and backward exploration
- Suitable for global verification
- BCG (Binary Coded Graphs) environment
- API in C for reading/writing
- Tools and libraries for explicit graph manipulation (bcg_io, bcg_draw, bcg_info, bcg_edit, bcg_labels, ...)
- Global verification tools (XTL)
- "Successor" function
- Allows forward exploration only
- Suitable for local (or on-the-fly) verification
- Open/Caesar environment [Garavel-98]
- API in C for LTS exploration
- Libraries with data structures for implicit graph manipulation (stacks, tables, edge lists, hash functions, ...)
- On-the-fly verification tools (Bisimulator, Evaluator, ...)

Server example

(modeled using a single automaton)

- Server able to process two requests concurrently
- State variables $\mathrm{u}_{1}, \mathrm{u}_{2}$ storing the request status:
- Empty (e)
- Received (r)
- Handled (h)
- A state: couple $<\mathrm{u}_{1}, \mathrm{u}_{2}>$

- Initial state: <e, e> (ee for short)
- Gates (actions):
- req1, req2: receive a request
- res1, res2: send a response
- \mathfrak{i} : internal action

LTS of the server

(9 states, 16 transitions)

Remarks

- All the theoretical states are reachable:

$$
\left|u_{1}\right|^{*}\left|u_{2}\right|=3 * 3=9
$$

(no synchronization between request processings)

- There is no sink state (the system is deadlock-free)
- From every state, it is possible to reach the initial state again (the server can be re-initialized)
- Shortcomings of modeling with a single automaton:
- One must predict all the possible request arrival orders
- For more complex systems, the LTS size grows rapidly
\rightarrow need of higher-level modeling features

Server example

(modeled using two concurrent automata)

- Decomposition of the system in two subsystems
- Every type of request is handled by a subsystem
- In the server example, subsystems are independent
- Simpler description w.r.t. single automaton: $3+3=6$ states

Decomposition in concurrent subsystems

Required at physical level

- Modeling of distributed activities
- Multiprocessor/multitask ing execution platform

Chosen at logical level

- Simplified design of the system
- Well-structured programs
- Communication and synchronization between subsystems may introduce behavioural errors (e.g., deadlocks)
- In practice, even simple parallel programs may reveal difficult to analyze
\rightarrow need of computer-assisted verification

Parallel composition ("product") of automata

- Goals:
- Define internal composition laws

$$
\otimes: \operatorname{LTS} \times \ldots \times \text { LTS } \rightarrow \text { LTS }
$$

expressing the parallel composition of 2 (or more) LTSs

- Allow synchronizations on one or several actions (gates)
- Allow hierarchical decomposition of a system
- Consequences:
- A product of automata can always be translated into a single (sequential) automaton
- The logical parallelism can be implemented sequentially (e.g., time-sharing OS)

Binary parallel composition

 (syntax)- EXP language [Lang-05]
- Description of communicating automata
- Extensive set of operators
- Parallel compositions (binary, general, ...)
- Synchronization vectors
- Hiding / renaming, cutting, priority, ...
- Exp.Open compiler \rightarrow implicit LTS representation
- Binary parallel composition:
"lts1.bcg" |[G1, ..., Gn]| "lts2.bcg"

"lts1.bcg"

"lts2.bcg"

Binary parallel composition

 (semantics)Let $M_{1}=\left\langle S_{1}, A_{1}, T_{1}, S_{01}\right\rangle, M_{2}=\left\langle S_{2}, A_{2}, T_{2}, S_{02}\right\rangle$ and
$\mathrm{L} \subseteq \mathrm{A}_{1} \cap \mathrm{~A}_{2}$ a set of visible actions to be synchronized.

$$
\begin{aligned}
& M_{1}|[L]| M_{2}=\left\langle S, A, T, s_{0}\right\rangle \\
& \text { - } S=S_{1} \times S_{2} \\
& \text { - } A=A_{1} \cup A_{2} \\
& \text { - } \mathrm{s}_{0}=\left\langle\mathrm{s}_{01}, \mathrm{~s}_{02}\right\rangle \\
& \text { - } \mathrm{T} \subseteq \mathrm{~S} \times \mathrm{A} \times \mathrm{S} \\
& \text { defined by } \mathrm{R}_{1}-\mathrm{R}_{3} \\
& \left(R_{1}\right) \xrightarrow[{s_{1} \xrightarrow{a} s^{\prime}{ }_{1} \wedge a \notin} L]{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{a}\left\langle s^{\prime}{ }_{1}, s_{2}\right\rangle} \\
& \left(R_{2}\right) \xrightarrow{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{a}\left\langle s_{1}, s^{\prime}{ }_{2}\right\rangle} \\
& \left(R_{3}\right) \xrightarrow{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{a}\left\langle S_{1}^{\prime}{ }_{1}, s^{\prime}{ }_{2}\right\rangle}
\end{aligned}
$$

Example

Interleaving semantics

- Hypothesis:
- Every action is atomic
- One can observe at most one action at a time
\rightarrow suitable paradigm for distributed systems

interleaving lozenge
- Parallelism can be expressed in terms of choice and sequence (expansion theorem [Milner-89])

Internal and external choice

- External choice (the environment decides which branch of the choice will be executed)

the environment can force the execution of a and b by synchronizing on that action
- Internal choice (the system decides)
 not remove the nondeterminism

Example of modeling with communicating automata

- Mutual exclusion problem:

Given two parallel processes P_{0} and P_{1} competing for a shared resource, guarantee that at most one process accesses the resource at a given time.

- Several solutions were proposed at software level:
- In centralized setting (Peterson, Dekker, Knuth, ...)
- In distributed setting (Lamport, ...)
\rightarrow M. Raynal. Algorithmique du parallélisme: le problème de l'exclusion mutuelle. Dunod Informatique, 1984.

Peterson's algorithm [1968]

var d0 : bool := false
var d1 : bool := false $\operatorname{var} \mathrm{t} \in\{0,1\}:=0$
loop forever \{ P0 \}
1 : \{ncs0 \}
2 : d0 := true
$3: t:=0$
4: wait (d1 = false or $t=1$)
5 : \{b_cs0 \}
6 : $\left\{\mathrm{e} _\right.$cs0 0
7 : d0 := false
endloop
\{ read by P1, written by P0 \}
\{ read by P0, written by P1 \}
\{ read/written by P0 and P1 \}

Automata of P_{0} and P_{1}

Automata of $\mathrm{d}_{0}, \mathrm{~d}_{1}$, and t

Architecture of the system

 (graphical)

- Synchronized actions: «d0:=false», «d0:=true», ...
- Non synchronized actions: ncs0, b_cs0, e_cs0, ...

Architecture of the system (textual)

- Using binary parallel composition:
(P0 ||| P1)
|["d0:=false", "d0:=true", ...]|
(d0 ||| d1 ||| t)
- Using general parallel composition:
par

$$
\begin{aligned}
& \text { "d0:=false", "d0:=true", ... } \rightarrow \text { P0 } \\
& \text { || "d1:=false", "d1:=true", ... } \rightarrow \text { P1 } \\
& \text { || "d0:=false", "d0:=true", "d0=false?" } \rightarrow \text { d0 } \\
& \text { || "d1:=false", "d1:=true", "d1=false?" } \rightarrow \text { d1 } \\
& \text { || "t:=0", "t:=1", "t=0?", "t=1?" } \rightarrow \text { t } \\
& \text { end par }
\end{aligned}
$$

Construction of the LTS ("product automaton")

- Explicit-state method:
- LTS construction by exploring forward the transition relation, starting at the initial state
- Transitions are generated by using the R_{1}, R_{2}, R_{3} rules
- Detect already visited states in order to avoid cycling
- Several possible exploration strategies:
- Breadth-first, depth-first
- Guided by a criterion / property, ...
- Several types of algorithms:
- Sequential, parallel, distributed, ...

Construction of the LTS

$$
\begin{aligned}
& S=\{F, V\} \times\{F, V\} \times\{0,1\} \times\{1 . .7\} \times\{1 . .7\} \\
& A=\{n c s 0, n c s 1, \ldots, " d 0:=\text { true", } . . .\} \\
& S_{0}=\langle F, F, 0,1,1\rangle=\mathrm{FF} 011 \\
& \mathrm{~T}=
\end{aligned}
$$

Remarks

- The LTS of Peterson's algorithm is finite:

$$
|S| \cong 50 \leq 2 \times 2 \times 2 \times 7 \times 7=392
$$

- In the presence of synchronizations, the number of reachable states is (much) smaller than the size of the cartesian product of the variable domains
- Some tools of CADP for LTS manipulation:
- OCIS (step-by-step and guided simulation)
- Executor (random exploration)
- Exhibitor (search for regular sequences)
- Terminator (search for deadlocks)
\rightarrow can be used in conjunction with Exp.Open

Verification

- Once the LTS is generated, one can formulate and verify automatically the desired properties of the system
- For Peterson's algorithm:
- Deadlock freedom: each state has at least one successor
- Mutual exclusion: at most one process can be in the critical section at a given time
- Liveness: no process can indefinitely overtake the other when accessing its critical section
[see the chapter on temporal logics]

Limitations of binary parallel composition

- Several ways of modeling a process network:
- Absence of canonical form
- Difficult to determine whether two composition expressions denote the same process network
- Difficult to retrieve the process network from a composition expression
- The semantics of " $\left|\left[G_{1}, \ldots, G_{n}\right]\right|$ " (rule R_{3}) does not prevent that other processes synchronize on $\mathrm{G}_{1}, \ldots, \mathrm{G}_{\mathrm{n}}$ (maximal cooperation)
- Some networks cannot be modeled using "|[]|":

binary synchronization on G

Example

(ring network [Garavel-Sighireanu-99])

- Description using binary parallel composition:

$\left(P_{1}\left|\left[G_{1}\right]\right| P_{2}\left|\left[G_{2}\right]\right| P_{3}\left|\left[G_{3}\right]\right| P_{4}\right)$
$\left|\left[G_{4}, G_{5}\right]\right|$
P_{5}

General parallel composition

[Garavel-Sighireanu-99]

- "Graphical" parallel composition operator allowing the composition of several automata and their m among n synchronization:
$\operatorname{par}\left[\mathrm{g}_{1} \# \mathrm{~m}_{1}, \ldots, \mathrm{~g}_{\mathrm{p}} \# \mathrm{~m}_{\mathrm{p}}\right.$ in]

General parallel composition

 (semantics - rules without synchronization degrees)$$
\begin{equation*}
\frac{\exists a, \mathrm{i} . \mathrm{B}_{\mathrm{i}}-a \rightarrow \mathrm{~B}_{\mathrm{i}}^{\prime} \wedge a \notin \mathrm{G}_{\mathrm{i}} \wedge \forall \mathrm{j} \neq \mathrm{i} . \mathrm{B}_{\mathrm{j}}^{\prime}=\mathrm{B}_{\mathrm{j}}}{\operatorname{par} \mathrm{G}_{1} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{G}_{\mathrm{n}} \rightarrow \mathrm{~B}_{\mathrm{n}}-a \rightarrow \operatorname{par} \mathrm{G}_{1} \rightarrow \mathrm{~B}_{1}^{\prime}, \ldots, \mathrm{G}_{\mathrm{n}} \rightarrow \mathrm{~B}_{\mathrm{n}}}, \tag{GR1}
\end{equation*}
$$

mandatory interleaved execution of non-synchronized actions

$\exists a . \forall$ i. if $a \in G_{i}$ then $B_{i}-a \rightarrow B_{i}^{\prime}$ else $B_{j}^{\prime}=B_{j}$
$\operatorname{par} \mathrm{G}_{1} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{G}_{\mathrm{n}} \rightarrow \mathrm{B}_{\mathrm{n}}-a \rightarrow \operatorname{par} \mathrm{G}_{1} \rightarrow \mathrm{~B}_{1}{ }^{\prime}, \ldots, \mathrm{G}_{\mathrm{n}} \rightarrow \mathrm{B}_{\mathrm{n}}{ }^{\prime}$
execution in maximal cooperation of synchronized actions

Example (1/3)

- Process network unexpressible using "|[]|":
- Description using general parallel composition:
par G\#2 in

$$
\begin{aligned}
& \quad G \rightarrow P_{1} \\
& \text { I| } G \rightarrow P_{2} \\
& \text { II } G \rightarrow P_{3} \\
& \text { end par }
\end{aligned}
$$

maximal cooperation avoided by means of synchronization degrees

Example (2/3)

(ring network [Garavel-Sighireanu-99])

- Description using general parallel composition:

par

$$
\begin{aligned}
& \text { l| } G_{5}, G_{4} \rightarrow P_{5} \\
& \text { end par }
\end{aligned}
$$

the symmetry of the process network is also present in the composition expression

Example (3/3)

- Definition of "|[]|" in terms of "par":

$$
\begin{aligned}
B_{1}\left|\left[G_{1}, \ldots, G_{n}\right]\right| B_{2}= & \text { par } G_{1}, \ldots, G_{n} \rightarrow B_{1} \\
& \text { I| } G_{1}, \ldots, G_{n} \rightarrow B_{2} \\
& \text { end par }
\end{aligned}
$$

- CREW (Concurrent Read / Exclusive Write): par W\#2 in
$\quad R, W \rightarrow P_{1}$
$\| R, W \rightarrow P_{2}$
$\| R, W \rightarrow P_{3}$
$\|$
\| $R, W \rightarrow$ VAR
end par

Parallel composition using synchronization vectors

- Primitive form of n -ary parallel composition
- Proposed in various networks of automata: MEC [Arnold-Nivat], FC2 [deSimone-Bouali-Madelaine]
- Synchronizations are made explicit by means of synchronization vectors
- Syntax in the EXP language [Lang-05]:
par $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}}$ in
$\mathrm{B}_{1}| | \ldots| | \mathrm{B}_{\mathrm{n}} \quad$ synchronization vectors
end par
$V::=\left(G_{1} \mid{ }_{-}\right){ }^{*} \ldots{ }^{*}\left(G_{n} \mid{ }_{-}\right) \rightarrow G_{0}$

Example

(client-server with gate multiplexing)

binary synchronization on gates req and res

- Description using synchronization vectors:

in

Client $_{1}$ || Client $_{2}$ || Server end par

Behavioural equivalence

- Useful for determining whether two LTSs denote the same behaviour
- Allows to:
- Understand the semantics of languages (communicating automata, process algebras) having LTS models
- Define and assess translations between languages
- Refine specifications whilst preserving the equivalence of their corresponding LTSs
- Replace certain system components by other, equivalent ones (maintenance)
- Exploit identities between behaviour expressions (e.g., $B_{1}|[G]| B_{2}=B_{2}|[G]| B_{1}$) in analysis tools

Equivalence relations between LTSs

equivalent?

- A large spectrum of equivalence relations proposed:
- Trace equivalence (\cong language equivalence)
- Strong bisimulation [Park-81]
- Weak bisimulation [Milner-89]
- Branching bisimulation [Bergstra-Klop-84]
- Safety equivalence [Bouajjani-et-al-90]

Trace equivalence

- Trace: sequence of visible actions (e.g., $\sigma=r e q_{1} r e s_{1} r e q_{2} r e s_{2}$)
- Notations ($a=$ visible action):
- $s=a=>$: there exists a transition sequence

$$
s-i \rightarrow s_{1}-i \rightarrow s_{2} \ldots-a \rightarrow s_{k}
$$

- $s=\sigma=>$: there exists a transition sequence

$$
s=a_{1}=>s_{1} \ldots=a_{n}=>s_{n} \text { such that } \sigma=a_{1} \ldots a_{n}
$$

- Two state are trace equivalents iff they are the source of the same traces:

$$
s \approx_{\text {tr }} s^{\prime} \quad \text { iff } \quad \forall \sigma .(s=\sigma=>\quad \text { iff } \quad s=\sigma=>)
$$

Example

(coffee machine)

- The two LTSs below are trace equivalent:

M_{1}

M_{2}

Traces $\left(M_{1}\right)=\operatorname{Traces}\left(M_{2}\right)=$ $\{\varepsilon$, money, money coffee, money tea \}
\rightarrow have the two coffee machines the same behaviour w.r.t. a user?
M_{1} : risk of deadlock

Bisimulation

- Trace equivalence is not sufficiently precise to characterize the behaviour of a system w.r.t. its interaction with its environment
\rightarrow stronger relations (bisimulations) are necessary
- Two states s_{1} et s_{2} are bisimilar iff they are the origin of the same behaviour (execution tree):

$$
\begin{aligned}
& \forall s_{1}-a \rightarrow s_{1}^{\prime} \cdot \exists s_{2}-a \rightarrow s_{2}^{\prime} \cdot s_{1}^{\prime} \approx s_{2}^{\prime} \\
& \forall s_{2}-a \rightarrow s_{2}^{\prime} \cdot \exists s_{1}-a \rightarrow s_{1}^{\prime} \cdot s_{2}^{\prime} \approx s_{1}^{\prime}
\end{aligned}
$$

- Bisimulation is an equivalence relation (reflexive, symmetric, and transitive) on states
- Two LTSs are bisimilar iff $s_{01} \approx s_{02}$

Strong bisimulation

- Strong bisimulation: the largest bisimulation
\rightarrow to show that two LTSs are strongly bisimilar, it is sufficient to find a bisimulation between them

Is strong bisimulation sufficient?

- Trace equivalence ignores internal actions (i) and does not capture the branching of transitions
\rightarrow does not distinguish the LTSs below

- Strong bisimulation captures the branching, but handles internal and visible actions in the same way
\rightarrow does not abstract away the internal behaviour

Weak bisimulation

(or observational equivalence)

- In practice, it is necessary to compare LTSs
- By abstracting away internal actions
- By distinguishing the branching
- Weak bisimulation [Milner-89]:

> every a-transition corresponds to an
> a-transition preceded and followed by 0 or more τ-transitions

every τ-transition corresponds to 0 or more τ-transitions

Weak bisimulation

(formal definition)

- Let $M_{1}=\left\langle S_{1}, A, T_{1}, S_{01}\right\rangle$ and $M_{2}=\left\langle S_{2}, A, T_{2}, s_{02}\right\rangle$
- A weak bisimulation is a relation $\approx \subseteq S_{1} \times S_{2}$ such that $s_{1} \approx s_{2}$ iff:

$$
\begin{aligned}
& \forall s_{1}-a \rightarrow s_{1}^{\prime} \cdot \exists s_{2}-\tau^{*} \cdot a \cdot \tau^{*} \rightarrow s_{2}^{\prime} \cdot s_{1}^{\prime} \text { eq } s_{2}^{\prime} \\
& \forall s_{1}-\tau \rightarrow s_{1}^{\prime} \cdot \exists s_{2}-\tau^{*} \rightarrow s_{2}^{\prime} \cdot s_{1}^{\prime} \text { eq } s_{2}^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
& \forall s_{2}-a \rightarrow s_{2}^{\prime} \cdot \exists s_{1}-\tau^{*} \cdot a \cdot \tau^{*} \rightarrow s_{1}^{\prime} \cdot s_{1}^{\prime} \text { eq } s_{2}^{\prime} \\
& \forall s_{2}-\tau \rightarrow s_{2}^{\prime} \cdot \exists s_{1}-\tau^{*} \rightarrow s_{1}^{\prime} \cdot s_{1}^{\prime} \text { eq } s_{2}^{\prime}
\end{aligned}
$$

$\bullet \approx_{o b s}$ is the largest weak bisimulation

- $M_{1} \approx_{o b s} M_{2}$ iff $s_{01} \approx_{o b s} s_{02}$

Example

- To show that two LTSs are weakly bisimilar, it is sufficient to find a weak bisimulation between them

Communicating automata (summary)

- Advantages:
- Simple model for describing concurrency
- Powerful tools for manipulation
- MEC (University of Bordeaux)
- Auto/Autograph/FC2 (INRIA, Sophia-Antipolis)
- CADP (INRIA, Grenoble)
- Some industrial applications
- Shortcomings:
- Limited expressiveness
- No dynamic creation and destruction of automata
- Impossible to express: A then (B || C) then D
- No handling of data (each variable = an automaton), unacceptable for complex types (numbers, lists, structures, ...)
- Maintenance difficult and error-prone (large automata)

Process algebraic languages

- Basic notions
- Parallel composition and hiding
- Sequential composition and choice
- Value-passing and guards
- Process definition and instantiation

Process algebras

- PAs: theoretical formalisms for describing and studying concurrency and communication
- Examples of PAs for asynchronous systems:
- CCS (Calculus of Communicating Systems) [Milner-89]
- CSP (Communicating Sequential Processes) [Hoare-85]
- ACP (Algebra of Communicating Processes) [Bergstra-Klop-84]
- Basic idea of PAs:
- Provide a small number of operators
- Construct behaviours by freely combining operators (lego)
- Standardized specification languages:
- LOTOS [ISO-1988], E-LOTOS [ISO-2001]

LOTOS
 (Language Of Temporal Ordering Specification)

- International standard [ISO 8807] for the formal specification of telecommunication protocols and distributed systems
http://www.inrialpes.fr/vasy/cadp/tutorial
- Enhanced LOTOS (E-LOTOS): revised standard [2001]
- LOTOS contains two "orthogonal" sublanguages:
- data part (for data structures)
- process part (for behaviours)
- Handling data is necessary for describing realistic systems. "Basic LOTOS" (the dataless fragment of LOTOS) is useful only for small examples.

LOTOS - data part

- Based on algebraic abstract data types (ActOne):

```
type Natural is
    sorts Nat
    opns 0:-> Nat
                succ : Nat -> Nat
                + : Nat, Nat -> Nat
    eqns forall M, N : Nat
        ofsort Nat
        O + N = N;
        succ(M) + N = succ(M + N);
endtype
```

- Caesar.Adt compiler of CADP [Garavel-Turlier-92]
- ADTs tend to become cumbersome for complex data manipulations (removed in E-LOTOS).

LOTOS - process part

- Combines the best features of the process algebras CCS [Milner-89] and CSP [Hoare-85]
- Terminal symbols (identifiers):
- Variables: X_{1}, \ldots, X_{n}
- Gates: G_{1}, \ldots, G_{n}
- Processes: $P_{1}, \ldots, P_{\mathrm{n}}$
- Sorts (\approx types): S_{1}, \ldots, S_{n}
- Functions: F_{1}, \ldots, F_{n}
- Comments: (* ... *)
- Caesar compiler of CADP [Garavel-Sifakis-90]

Value expressions and offers

- Value expressions: V_{1}, \ldots, V_{n}

$$
\begin{aligned}
V::= & X \\
\mid & F\left(V_{1}, \ldots, V_{n}\right) \\
& \mid V_{1} F V_{2}
\end{aligned}
$$

- Offers: O_{1}, \ldots, O_{n}

$$
\begin{aligned}
O::=!V & \text { emission of a value } V \\
& ? X: S
\end{aligned} \begin{aligned}
& \text { reception of a value to be stored } \\
&
\end{aligned}
$$

Behaviour expressions (Lots Of Terribly Obscure Symbols :-)

- Behaviours: $B_{1}, \ldots, B_{\mathrm{n}}$

$$
\begin{array}{rll}
B::= & \text { stop } & \text { inaction } \\
\text { | } & G_{0} O_{1} \ldots O_{\mathrm{n}}[V] ; B_{0} & \text { action prefix } \\
\text { | } & B_{1}[] B_{2} & \text { choice } \\
\text { | } & B_{1}\left|\left[G_{1}, \ldots, G_{\mathrm{n}}\right]\right| B_{2} & \begin{array}{l}
\text { parallel with synchroni- } \\
\text { zation on } G_{1}, \ldots, G_{\mathrm{n}}
\end{array} \\
\mid & B_{1}| | \mid B_{2} & \text { interleaving } \\
\text { | } & \text { hide } G_{1}, \ldots, G_{\mathrm{n}} \text { in } B_{0} & \text { hiding } \\
\mid & {[V]->B_{0}} & \text { guard } \\
\text { | let } X: S=V \text { in } B_{0} & \text { variable definition } \\
\text { | } & \operatorname{choice} X: S[] B_{0} & \text { choice over values } \\
\text { | } & P\left[G_{1}, \ldots, G_{n}\right]\left(V_{1}, \ldots, V_{n}\right) & \text { process call }
\end{array}
$$

Process definitions

process $P\left[G_{1}, \ldots, G_{n}\right]\left(X_{1}: S_{1}, \ldots, X_{n}: S_{n}\right):=$ B
endproc
where:

- $P=$ process name
- $G_{1}, \ldots, G_{\mathrm{n}}=$ formal gate parameters of P
- $X_{1}, \ldots, X_{\mathrm{n}}=$ formal value parameters of P, of sorts S_{1}, \ldots, S_{n}
- $B=$ body (behaviour) of P

Remarks

- LOTOS process: "black box" equipped with communication points (gates) with the outside

- Each process has its own local (private) variables, which are not accessible from the outside
\rightarrow communication by rendezvous and not by shared variables
- Parallel composition and encapsulation of boxes: described using the $|[\ldots]|,|| |$, and hide operators

Example

(Sender [PUT, A, D] I\| Receiver [GET, B, C])
| [A, B, C, D]|
(Medium1 [A, B] | || Medium2 [C, D])
or
(Sender [PUT, A, D] $|[A]|$ Medium1 [A, B])
| [B, D]|
(Receiver [GET, B, C] |[C]| Medium2 [C, D])

Multiple rendezvous

- LOTOS parallel operators allow to specify the synchronization of $n \geq 2$ processes on the same gate

Binary rendezvous

- The I|| operator allows to specify binary rendezvous (2 among n) on the same gate

Example (client-server):
(C1 [A] ||| C2 [A] ||| C3 [A]) |[A]|
S [A]
the three client processes are competing to access the server on gate A but only one can get access at a given moment

Abstraction

(hiding)

- In LOTOS, when a synchronization takes place on a gate G between two processes, another one can also synchronize on G (maximal cooperation)
- If this is undesirable, it can be forbidden by hiding the gate (renaming it into i) using the hide operator:

$$
\text { hide } G_{1}, \ldots, G_{\mathrm{n}} \text { in } B
$$

which means that all actions performed by B on gates G_{1}, \ldots, G_{n} are hidden

- The gates $G_{1}, \ldots, G_{\mathrm{n}}$ are "abstracted away" (hidden from the outside world)

Example

process Network [PUT, GET] :=
hide A, B, C, D in
(Sender [PUT, A, D] I\| Receiver [GET, B, C])
| [A, B, C, D] |
(Medium1 [A, B] ||| Medium2 [C, D])
endproc

Operational semantics

- Notations:
- G: gate list (or set)
- L: action (transition label), of the form

$$
G V_{1}, \ldots, V_{n}
$$

where G is a gate and V_{1}, \ldots, V_{n} is the list of values exchanged on G during the rendezvous

- gate $(L)=G$
- B [v/X]: syntactic substitution of all free occurrences of X inside B by a value v (having the same sort as X)
- $V[v / X]$: idem, substitution of X by v in V

Semantics of "|[...]|"

$$
\begin{array}{ll}
\frac{B_{1} \rightarrow_{L} B_{1}^{\prime} \wedge \text { gate }(L) \notin \underline{G}}{B_{1}|[\underline{G}]| B_{2} \rightarrow_{L} B_{1}^{\prime}|[\underline{G}]| B_{2}} & B_{1} \text { evolves } \\
\frac{B_{2} \rightarrow_{L} B_{2}^{\prime} \wedge \text { gate }(L) \notin \underline{G}}{B_{1}|[\underline{G}]| B_{2} \rightarrow_{L} B_{1}|[\underline{G}]| B_{2}^{\prime}} & B_{2} \text { evolves } \\
B_{1} \rightarrow_{L} B_{1}^{\prime} \wedge B_{2} \rightarrow_{L} B_{2}^{\prime} \wedge \text { gate }(L) \in \underline{G} & B_{1} \text { and } B_{2} \\
\hline B_{1}|[\underline{G}]| B_{2} \rightarrow_{L} B_{1}^{\prime}|[\underline{G}]| B_{2}^{\prime} & \text { evolve }
\end{array}
$$

- Gates have no direction of communication

Semantics of "hide"

$B \rightarrow_{L} B^{\prime} \wedge$ gate $(L) \notin \underline{G}$

hide \underline{G} in $B \rightarrow_{L}$ hide \underline{G} in B^{\prime}
$B \rightarrow_{L} B^{\prime} \wedge$ gate $(L) \in \underline{G}$
hide \underline{G} in $B \rightarrow_{\mathrm{i}}$ hide \underline{G} in B^{\prime}

normal gate

hidden gate

- In LOTOS, i is a keyword: use with care

Sequential behaviours

- LOTOS allows to encode sequential automata by means of the choice ("[]") and sequence operators (";" and "stop"), and recursive processes

```
process P [A, B, C, D, E] : noexit :=
```


A; (
B; stop
[]
C; (
D ; stop

)
)
endproc

Remarks

- The description of automata in LOTOS is not far from regular expressions (operators ".", "|", "*"), except that:
- The ";" operator of LOTOS is asymmetric (\neq from ".")

$$
G O_{1} \ldots O_{n} ; B \quad \text { but not } \quad B_{1} ; B_{2}
$$

- There is no iteration operator "*", one must use a recursive process call instead
- LOTOS allows to describe automata with data values (\approx functions in sequential languages) by using processes with value parameters

Semantics of "stop"

- The "stop" operator (inaction) has no associated semantic rule, because no transition can be derived from it
- A call of a "pathological" recursive process like
process P [A] : noexit := P [A]
endproc
has a behaviour equivalent to stop (unguarded recursion)

Prefix operator (";")

- Allows to describe:
- Sequential composition of actions
- Communication (emission / reception) of data values
- Simplest variant: actions on gates, without valuepassing (basic LOTOS)
$a ; b ; c ; d ;$ stop

Semantics of ";"

Case 1: action without reception offers (?X:S)
$\left(\forall 1 \leq i \leq n . O_{i} \equiv!V_{i}\right) \wedge V=$ true
$G O_{1} \ldots O_{\mathrm{n}}[V] ; B \rightarrow_{G V 1 \ldots{ }^{\prime}} B$

- The boolean guard and the offers are optional
- If the guard V is false, the rendezvous does not happen (deadlock):

$$
G O_{1} \ldots O_{\mathrm{n}}[V] ; B \approx \text { stop }
$$

Example (1/2)

Sequential composition:

A !true; B !4; stop

A !true; B !4; stop

A !true

B !4; stop

B!4
stop

Example (2/2)

- Synchronization by value matching: two processes send to each other the same values on a gate

$$
G!1 ; B_{1}|[G]| \mid G!1 ; B_{2}
$$

$G!1 ; B_{1}|[G]| \quad G!2 ; B_{2}$
deadlock (different values)
deadlock
(different types)
$G!1 ; B_{1}|[G]| \quad G!t r u e ; B_{2}$

Semantics of ";"

Case 2: action containing reception offer(s) (?X:S)
$(v \in S) \wedge(V[v / X]=$ true $)$
G ? $X: S[V] ; B \rightarrow_{G v} B[v / X]$

- The variables defined in the offers ?X:S are visible in the boolean guard V and inside B
- An action can freely mix emission and reception offers

Example (1/3)

G ?X:Bool; stop

G ? X :Nat $[\mathrm{X}<4]$;
H! X;
stop

- The semantics handles the reception by branching on all possible values that can be received

Example (2/3)

- Emission of a value $=$ guarded reception:

$$
G!V \equiv G ? X: S[X=V]
$$

where S = type (V)

- Synchronization by value generation: two processes receive values of the same type on a gate
$G ? n_{1}: \operatorname{Nat}\left[n_{1}<=5\right] ; B_{1}$
[G]|
G ? n_{2} :Nat $\left[n_{2}>2\right] ; B_{2}$

Example (3/3)

- Synchronization by value-passing:

G ?X:Bool ; stop |[G]| G !true; stop

G ?X:Bool ; stop |[G]| G!3; stop

deadlock: the semantics of the "|[...]|" operator requires that the two labels be identical (same type for the emitted value and the reception offer)

Rendezvous

(summary)

- General form:

$$
G O_{1} \ldots O_{\mathrm{m}}\left[V_{1}\right] ; B_{1} \quad|[\underline{G}]| \quad G^{\prime} O_{1}^{\prime} \ldots O_{\mathrm{n}}^{\prime}\left[V_{2}\right] ; B_{2}
$$

- Conditions for the rendezvous:
- $G=G^{\prime}$ and $G \in \underline{G}$
- $m=n$
- V_{1} and V_{2} are true in the context of $O_{1}, \ldots, O_{n}{ }^{\prime}$
$-\forall 1 \leq i \leq n$. type $\left(O_{i}\right)=$ type $\left(O_{i}{ }^{\prime}\right)$
- $\forall 1 \leq i \leq n . \operatorname{prop}\left(O_{i}\right) \cap \operatorname{prop}\left(O_{i}{ }^{\prime}\right) \neq \varnothing$
where $\operatorname{prop}(0)=$ set of values accepted by offer 0
- prop $(!V)=\{V\}$
- prop (?X:S) = S

Choice operator ("[]")

- "[]": notation inherited from the programs with guarded commands [Dijkstra]
- Allows to specify the choice between several alternatives:

$$
\left(B_{1}[] B_{2}[] B_{3}\right)
$$

can execute either B_{1}, or B_{2}, or B_{3}

- Example:

$$
\begin{aligned}
& a ; \\
& (b ; \text { stop } \\
& {[]} \\
& c \text {; stop })
\end{aligned}
$$

Semantics of "[]"

$$
\begin{array}{ll}
\frac{B_{1} \rightarrow_{L} B_{1}^{\prime}}{B_{1}[] B_{2} \rightarrow_{L} B_{1}^{\prime}} & \text { execution of } B_{1} \\
\frac{B_{2} \rightarrow_{L} B_{2}^{\prime}}{B_{1}[] B_{2} \rightarrow_{L} B_{2}^{\prime}} & \text { execution of } B_{2}
\end{array}
$$

- After the choice, one of the two behaviours disappears (the execution was engaged on a branch of the choice and the other one is abandoned)

Internal / external choice

$\left(G_{1} ; B_{1}[] \quad G_{2} ; B_{2}\right)$

- External choice: the environment can decide which branch will be executed
- Internal choice: the program decides
- Example (coffee machine):

Internal action ("i")

- In LOTOS, the special gate i denotes an internal event on which the environment cannot act:

$$
\begin{aligned}
& \left(\mathbf{i} ; G_{1} ;\right. \text { stop } \\
& {[]} \\
& \left.\mathbf{i} ; G_{2} ; \text { stop }\right)
\end{aligned}
$$

(G_{1}; stop
[]
$\mathbf{i} ; G_{2}$; stop)

still internal choice

Guard operator ("[...] ->")

- LOTOS does not possess an "if-then-else" construct
- Guards (boolean conditions) can be used instead
- Informal semantics:
$[V]->B \approx$ if V then B else stop
- Frequent usage in conjunction with "[]":

READ ?m,n:Nat ;
([m >= n] -> PRINT !m; stop
$\left[\begin{array}{l}{[\mathrm{m}<\mathrm{n}] \quad \text {-> PRINT ! } n \text {; stop) }}\end{array}\right.$

emission of max (m, n) on gate PRINT

Semantics of "[...] ->"

$$
(V=\text { true }) \wedge B \rightarrow_{L} B^{\prime}
$$

[V] $->B \rightarrow_{L} B^{\prime}$

- If the boolean expression V evaluates to false, no semantic rule applies (deadlock):
[false] ->B \approx stop

Examples

- "if-then-else":

$$
[V]->B_{1}
$$

[]

$$
[\operatorname{not}(V)]->B_{2}
$$

"case":

$$
[X<0]->B_{1}
$$

[]
[$X=0]$-> B_{2}
[]
[$X>0$] -> B_{3}

- Beware of overlapping guards:

$$
\begin{aligned}
& {[X \leq 0]->B_{1}} \\
& {[]}
\end{aligned}
$$

if $X=0$ then this is equivalent to an unguarded choice B1 [] B2

Operator "let"

- LOTOS allows to define variables for storing the results of expressions
- Variable definition:
let $X: S=V$ in B
declares variable X and initializes it with the value of V. X is visible in B.
- Write-once variables (no multiple assignments):
let X :Bool $=$ true in $G!X ; \quad\left({ }^{*}\right.$ first $\left.X^{*}\right)$
let X :Bool $=$ false in $G!X ; \quad\left(*\right.$ second $\left.X^{*}\right)$
stop

Semantics of "let"

$B[V / X] \rightarrow_{L} B^{\prime}$
let $X: S=V$ in $B \rightarrow_{L} B^{\prime}$

- Example:
let X :NatList $=$ cons (0 , nil) in
$G!X ;$
H !cons (1, X); stop

Remarks

LOTOS is a functional language:

- No uninitialized variable (forbidden by the syntax)
- No assignment operator (":="), the value of a variable does not change after its initialization
- No "global" or "shared" variables between functions or processes
- Each process has its own local variables
- Communication by rendezvous only
- No side-effects

Operator "choice"

- Operator "choice": similar to "let", except that variable X takes a nondeterministic value in the domain of its sort S
- Semantics:

$$
(v \in S) \wedge B[v / X] \rightarrow_{L} B^{\prime}
$$

choice $X: S[] B \rightarrow_{L} B^{\prime}$

- Example:
choice X :Bool []
$G!X$; stop

Examples

- Reception of a value = particular case of "choice":
G ? $X: S$; $B=$ choice $X: S[] B$
- Iteration over the values of an enumerated type:
choice A:Addr []

SEND !m ! A; stop

- Generation of a random value:
choice rand:Nat []

$$
\text { [rand <= } 10 \text {] -> PRINT !rand ; stop }
$$

Operator "exit"

- LOTOS allows to express normal termination of a behaviour, possibly with the return of one or several values:
exit (V_{1}, \ldots, V_{n})
denotes a behaviour that terminates and produces the values V_{1}, \ldots, V_{n}
- Example:

$$
\begin{aligned}
& \text { REC ?x:Nat }[x<2] ; \\
& \quad \text { exit }(x+1)
\end{aligned}
$$

Semantics of "exit"

true
exit $\left(V_{1}, \ldots, V_{n}\right) \rightarrow_{\text {exit } V 1 \ldots V_{n}}$ stop

- exit = special gate, synchronized by the "|[...]|" operator (see later)
- The values V_{1}, \ldots, V_{n} are optional ("exit" means normal termination without producing any value)

Operator ">>"

- LOTOS allows to express the sequential composition between a behaviour B_{1} that terminates and a behaviour B_{2} that begins:

$$
B_{1} \gg \text { accept } X_{1}: S_{1}, \ldots, X_{n}: S_{n} \text { in } B_{2}
$$

means that when B_{1} terminates by producing values V_{1}, \ldots, V_{n}, the execution continues with B_{2} in which $X_{1}, \ldots, X_{\mathrm{n}}$ are replaced by the values $V_{1}, \ldots, V_{\mathrm{n}}$

- Example:
exit (1) >> accept $\mathrm{n}:$ Nat in
PRINT !n ; stop

Semantics of ">>"

$\left(B_{1} \rightarrow_{L} B_{1}{ }^{\prime}\right) \wedge($ gate $(L) \neq$ exit)
$\left(B_{1} \gg\right.$ accept $\underline{X}: \underline{S}$ in $\left.B_{2}\right) \rightarrow_{L}\left(B_{1}^{\prime} \gg\right.$ accept $\underline{X}: \underline{S}$ in $\left.B_{2}\right)$
$B_{1} \rightarrow_{\text {exit } \underline{v}} B_{1}{ }^{\prime}$
$\left(B_{1} \gg\right.$ accept $\underline{X}: \underline{S}$ in $\left.B_{2}\right) \rightarrow_{i} B_{2}[\underline{V} / \underline{X}]$

- The \underline{V} values must belong pairwise to the \underline{S} sorts
- The exit gate is hidden (renamed into i) when sequential composition takes place
- The ">>" operator is also called enabling (B_{2} 's execution is made possible by B_{1} 's termination)

Example (1/4)

- Sequential composition without value-passing:
($\ln 1 ; \ln 2 ;$ exit [] In2; In1; exit)
>>
>>
(Out1; Out2; stop [] Out2; Out1; stop)

Example (2/4)

- Sequential composition with value-passing:

READ ?m, n:Nat ;
([m >= n] -> exit (m)
[]
[m < n] -> exit (n))
>>
accept max:Nat in
PRINT !max ; stop

Example (3/4)

- Definition of terminating process: process Login [LogReq, LogConf, LogAbort] : exit := LogReq;
(i ; LogConf ; exit
[]
i ; LogAbort ; Login [LogReq, LogConf, LogAbort]) endproc
- Example of call:

Login [Req,Conf,Abort] >> Transfer ; Logout ; stop

Example (4/4)

- Combination of "exit" and parallel composition: the two behaviours are synchronized on the exit gate (they terminate simultaneously)
($a ; b$; exit) \|\| (c; exit)

Sequential composition

 (summary)- In LOTOS, difference between ";" (asymmetric)
and
">>" (symmetric):

$G ; B$

$$
B_{1} \gg B_{2}
$$

Process call

- Let a process P defined by: process $P\left[G_{1}, \ldots, G_{n}\right]\left(X_{1}: S_{1}, \ldots, X_{n}: S_{n}\right):=$ B
endproc
- Semantics of a call to P :

$$
B\left[g_{1} / G_{1}, \ldots, g_{n} / G_{n}\right]\left[v_{1} / X_{1}, \ldots, v_{n} / X_{n}\right] \rightarrow_{L} B^{\prime}
$$

$P\left[g_{1}, \ldots, g_{n}\right]\left(v_{1}, \ldots, v_{n}\right) \rightarrow_{L} B^{\prime}$

- This semantics explains why a call to process P[G] : noexit := P[G] endproc is equivalent to stop.

Example

- Boolean variable:

process VAR [READ, WRITE] (b:Bool) : noexit :=
READ !b;
VAR [READ, WRITE] (b)
[]
WRITE ?b2:Bool;
VAR [READ, WRITE] (b2)
endproc

Static semantics

(summary)

- Scope of variables inside behaviours:
$B::=G!V_{0} ? X: S \ldots[V] ; B_{0}$
$\mid \quad$ hide G in B_{0}
| let $X: S=V$ in B_{0}
| choice $X: S$ [] B_{0}
| $\quad B_{1} \gg$ accept $X: S$ in B_{0}
$p(X)=\left\{V, B_{0}\right\}$
$p(G)=\left\{B_{0}\right\}$
$p(X)=\left\{B_{0}\right\}$
$p(X)=\left\{B_{0}\right\}$
$p(X)=\left\{B_{0}\right\}$
- Scope of process parameters: process P [G] (X:S) := B_{0}
$p(G)=\left\{B_{0}\right\}$
$p(X)=\left\{B_{0}\right\}$
endproc

LOTOS specification

- A LOTOS specification is similar to a process definition:
specification Protocol [SEND, RECEIVE] : noexit := (* ... type definitions *)
behaviour
(* ... behaviour = body of the specification *)
where
(* ... process definitions *)
endspec

Example: Peterson's mutual exclusion algorithm

var d0 : bool := false
var d1 : bool := false
$\operatorname{var} \mathrm{t} \in\{0,1\}:=0$

```
loop forever \{P0 \}
1 : \(\{\mathrm{ncs} 0\}\)
2 : d0 := true
\(3: t:=0\)
4: wait (d1 = false or \(t=1\) )
\(5:\{\operatorname{cs} 0\}\)
6 : d0 := false
endloop
loop forever { P0 }
1:{ncs0 }
2:d0 := true
3:t:=0
4 : wait (d1 = false or t=1)
5:{ cs0 }
6 : d0 := false
endloop
```

\{ read by P1, written by P0 \}
\{ read by P0, written by P1 \}
\{ read/written by P0 and P1\}

1 : \{ncs1 \}
2 : d1 := true
$3: t:=1$
4 : wait (d0 = false or $t=0$)
$5:\{\operatorname{cs1}\}$
6 : d1 := false
endloop

Description of variables d0, d1

- Each variable: instance of the same process D
- Current value of the variable: parameter of D
\bullet Reading and writing: RdV on gates R et W

process $D[R, W]$ (b:Bool) : noexit := R !b ; D [R, W] (b)
 []
 W ?b2:Bool ; D [R, W] (b2)
 endproc

$\bullet d 0 \equiv D[R 0, W 0]$ (false), d1 $\equiv D[R 1, W 1]$ (false)

Description of variable t

- Variable t : instance of process T
- Current value of the variable: parameter of T
- Reading and writing: RdV on gates R et W

$$
\begin{aligned}
& \text { process T }[R, W](n: \text { Nat }): \text { noexit := } \\
& \text { R !n ; T }[R, W](n) \\
& \quad[] \\
& \quad W \text { ?n2: Bool ; T }[R, W](n 2) \\
& \text { endproc }
\end{aligned}
$$

$\bullet t \equiv T[R T, W T](0)$

Description of processes P0 and P1

- Process P_{m} : instance of the same process P - Index m of the process: parameter of P
process P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m:Nat) : noexit :=
NCS !m ; Wm !true ; WT !m ;
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)
endproc
- P0 ミP [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
- P1 $\equiv \mathrm{P}[\mathrm{R} 1, \mathrm{~W} 1, \mathrm{R} 0, \mathrm{~W} 0, \mathrm{RT}, \mathrm{WT}, \mathrm{NCS}, \mathrm{CS}]$ (1)

Processes P0 et P1
 (continued)

- Auxiliairy process to describe busy waiting:
process P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]
(m:Nat) : noexit :=
Rn ?dn:Bool ; RT ?t:Nat ;
([dn and (t eq m)] ->
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)
[]
[not (dn) or (t eq ((m+1) mod 2))] ->
CS !m ; Wn !false ;
P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m))
endproc

Architecture of the system

 (graphical)

Architecture of the system

 (textual)hide R0, W0, R1, W1, RT, WT in
P [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
|||
P [R1, W1, R0, W0, RT, WT, NCS, CS] (1)
)
|[R0, W0, R1, W1, RT, WT]|
(
T [RT, WT] (0)
|||
D [R0, W0] (false)
|||
D [R1, W1] (false)
)

LTS model

- 55 states
- 110 transitions

Process algebraic languages (summary)

- More concise than communicating automata: process parameterization, value-passing communication (Exercise: model variables d0, d1, t using a single gate allowing both reading / writing)
- In general, there are several ways of describing the parallel composition of processes (Exercise: write a different expression for the architecture of Peterson's algorithm)
- Modeling of nested loops: mutually recursive LOTOS processes (Exercise: model processes P0, P1 using a single LOTOS process)
- But: E-LOTOS process part is much more convenient

Action-based temporal logics

- Introduction
- Modal logics
- Branching-time logics
- Regular logics
- Fixed point logics

Why temporal logics?

- Formalisms for high-level specification of systems
- Example: all mutual exclusion protocols should satisfy
- Mutual exclusion (at most one process in critical section)
- Liveness (each process should eventually enter its critical section)
- Temporal logics (TLs):
formalisms describing the ordering of states (or actions) during the execution of a concurrent program
- TL specification = list of logical formulas, each one expressing a property of the program
- Benefits of TL [Pnueli-77]:
- Abstraction: properties expressed in TL are independent from the description/implementation of the system
- Modularity: one can add/remove a property without impacting the other properties of the specification

(Rough) classification of TLs

	State-based	Action-based
Linear-time (properties about execution sequences)	LTL (SPIN tool)	TLA (TLA+ tool)
Branching-time	CTL (nuSMV tool)	ACTL (JACK tool) ACTL*
(properties about execution trees)	CTL*	modal mu-calculus (LTSA tool)

Example

(coffee machine)

M_{1}

M_{2}
$L\left(M_{1}\right)=L\left(M_{2}\right)=$
\{ money.coffee, money.tea \}

- A linear-time TL cannot distinguish the two LTSs M_{1} and M_{2}, which have the same set of execution sequences, but are not behaviourally equivalent (modulo strong bisimulation)
- A branching-time TL can capture nondeterminism and thus can distinguish M_{1} and M_{2}

Interpretation of (branching-time) TLs on LTSs

- LTS model $M=\left\langle S, A, T, s_{0}\right\rangle$, where:
- S: set of states
- A: set of actions (events)
- $T \in S \times A \times S$: transition relation
$-s_{0} \in S:$ initial state
- Interpretation of a formula φ on M :

$$
[[\varphi]]=\{s \in S|s|=\varphi\}
$$

([[φ]] defined inductively on the structure of φ)

- An LTS M satisfies a TL formula $\varphi(M \quad=\varphi$)
iff its initial state satisfies φ :

$$
M\left|=\varphi \quad \Leftrightarrow \quad s_{0}\right|=\varphi \quad \Leftrightarrow \quad s_{0} \in[[\varphi]]
$$

Running example: mutual exclusion with a semaphore

Description using communicating automata

LTS model

Modal logics

- They are the simplest logics allowing to reason about the sequencing and branching of transitions in an LTS
- Basic modal operators:
- Possibility
from a state, there exists (at least) an outgoing transition labeled by a certain action and leading to a certain state
- Necessity
from a state, all the outgoing transitions labeled by a certain action lead to certain states
- Hennessy-Milner Logic (HML) [Hennessy-Milner-85]

Action predicates

(syntax)
$\alpha::=\quad a$
tt
ff
$\alpha_{1} \vee \alpha_{2}$
$\alpha_{1} \wedge \alpha_{2}$
$\neg \alpha_{1}$
$\alpha_{1} \Rightarrow \alpha_{2}$
$\alpha_{1} \Leftrightarrow \alpha_{2}$
atomic proposition $(a \in A)$
constant "true"
constant "false"
disjunction
conjunction
negation
implication $\left(\neg \alpha_{1} \vee \alpha_{2}\right)$
equivalence $\left(\alpha_{1} \Rightarrow \alpha_{2} \wedge \alpha_{1} \Rightarrow \alpha_{2}\right)$

Action predicates

(semantics)
Let $M=\left(S, A, T, s_{0}\right)$. Interpretation $[[\alpha]] \subseteq A$:

- [[$a]]=\{a\}$
- $[[\mathrm{tt}]]=A$
- [[ff]] = \varnothing
- $\left[\left[\alpha_{1} \vee \alpha_{2}\right]\right]=\left[\left[\alpha_{1}\right]\right] \cup\left[\left[\alpha_{2}\right]\right]$
- $\left[\left[\alpha_{1} \wedge \alpha_{2}\right]\right]=\left[\left[\alpha_{1}\right]\right] \cap\left[\left[\alpha_{2}\right]\right]$
- [[$\left.\left.\neg \alpha_{1}\right]\right]=A \backslash\left[\left[\alpha_{1}\right]\right]$
- $\left[\left[\alpha_{1} \Rightarrow \alpha_{2}\right]\right]=\left(A \backslash\left[\left[\alpha_{1}\right]\right]\right) \cup\left[\left[\alpha_{2}\right]\right]$
$\begin{aligned} \bullet\left[\left[\alpha_{1} \Leftrightarrow \alpha_{2}\right]\right] & =\left(\left(A \backslash\left[\left[\alpha_{1}\right]\right]\right) \cup\left[\left[\alpha_{2}\right]\right]\right) \\ \cap & \left(\left(A \backslash\left[\left[\alpha_{2}\right]\right]\right) \cup\left[\left[\alpha_{1}\right]\right]\right)\end{aligned}$

Examples

$A=\left\{\mathrm{NCS}_{0}, \mathrm{NCS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \mathrm{REQ}_{0}, \mathrm{REQ}_{1}, \mathrm{REL}_{0}, \mathrm{REL}_{1}\right\}$

- [[tt]] = $\left.\mathrm{NCS}_{0}, \mathrm{NCS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \mathrm{REQ}_{0}, \mathrm{REQ}_{1}, \mathrm{REL}_{0}, \mathrm{REL}_{1}\right\}$
- [[ff]] = \varnothing
- [[NCS $\left.\left.{ }_{0}\right]\right]=\left\{\mathrm{NCS}_{0}\right\}$
- [$\left.\left[\neg \mathrm{NCS}_{0}\right]\right]=\left\{\mathrm{NCS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \mathrm{REQ}_{0}, \mathrm{REQ}_{1}, \mathrm{REL}_{0}, \mathrm{REL}_{1}\right\}$
$\bullet\left[\left[\mathrm{NCS}_{0} \wedge \neg \mathrm{NCS}_{1}\right]\right]=\left\{\mathrm{NCS}_{0}\right\}=\left[\left[\mathrm{NCS}_{0}\right]\right]$
- [[$\left.\left.\mathrm{NCS}_{0} \vee \mathrm{NCS}_{1}\right]\right]=\left\{\mathrm{NCS}_{0}, \mathrm{NCS}_{1}\right\}$
- [[$\left.\left.\left(\mathrm{NCS}_{0} \vee \mathrm{NCS}_{1}\right) \wedge\left(\mathrm{NCS}_{0} \vee \mathrm{REQ}_{0}\right)\right]\right]=\left\{\mathrm{NCS}_{0}\right\}$
- [[$\left.\left.\mathrm{NCS}_{0} \wedge \mathrm{NCS}_{1}\right]\right]=\varnothing=[[\mathrm{ff}]]$
- [[$\left.\left.\mathrm{NCS}_{0} \vee \neg \mathrm{NCS}_{0}\right]\right]=$ $\left\{\mathrm{NCS}_{0}, \mathrm{NCS}_{1}, \mathrm{CS}_{0}, \mathrm{CS}_{1}, \mathrm{REQ}_{0}, \mathrm{REQ}_{1}, \mathrm{REL}_{0}, \mathrm{REL}_{1}\right\}=[[\mathrm{tt}]]$

HML logic

(syntax)

$\varphi::=\quad$ tt
ff
$\varphi_{1} \vee \varphi_{2}$
$\varphi_{1} \wedge \varphi_{2}$
$\neg \varphi_{1}$
$\langle\alpha\rangle \varphi_{1}$
$[\alpha] \varphi_{1}$
constant "true"
constant "false"
disjunction
conjunction
negation
possibility
necessity

- Duality: $\quad[\alpha] \varphi=\neg\langle\alpha\rangle \neg \varphi$

HML logic (semantics)

Let $M=\left(S, A, T, s_{0}\right)$. Interpretation $[[\varphi]] \subseteq S$:

- [$[\mathrm{tt}]]=\mathrm{S}$
- [[ff $]]=\varnothing$
- [[$\left.\left.\varphi_{1} \vee \varphi_{2}\right]\right]=\left[\left[\varphi_{1}\right]\right] \cup\left[\left[\varphi_{2}\right]\right]$
- [[$\left.\left.\varphi_{1} \wedge \varphi_{2}\right]\right]=\left[\left[\varphi_{1}\right]\right] \cap\left[\left[\varphi_{2}\right]\right]$
- [[$\left.\left.\neg \varphi_{1}\right]\right]=S \backslash\left[\left[\varphi_{1}\right]\right]$
$\cdot\left[\left[\langle\alpha\rangle \varphi_{1}\right]\right]=\left\{s \in S \mid \exists\left(s, a, s^{\prime}\right) \in T\right.$. $\left.a \in[[\alpha]] \wedge s^{\prime} \in\left[\left[\varphi_{1}\right]\right]\right\}$
$\cdot\left[\left[[\alpha] \varphi_{1}\right]\right]=\left\{s \in S \mid \forall\left(s, a, s^{\prime}\right) \in T\right.$.

$$
\left.a \in[[\alpha]] \Rightarrow s^{\prime} \in\left[\left[\varphi_{1}\right]\right]\right\}
$$

Example (1/4)

Deadlock freedom: 〈 tt > tt

Example (2/4)

Possible execution of a set of actions: $\left\langle\mathrm{CS}_{0} \vee \mathrm{CS}_{1}\right\rangle \mathrm{tt}$

Example (3/4)

Forbidden execution of a set of actions: [$\mathrm{NCS}_{0} \vee \mathrm{NCS}_{1}$] ff

Example (4/4)

Execution of an action sequence: $\left\langle\mathrm{REQ}_{0}\right\rangle\left\langle\mathrm{CS}_{0}\right\rangle\left\langle\mathrm{REL}_{0}\right\rangle \mathrm{tt}$

Some identities

- Tautologies:

$$
\begin{aligned}
& -\langle\alpha\rangle \mathrm{ff}=\langle\mathrm{ff}\rangle \varphi=\mathrm{ff} \\
& -[\alpha] \mathrm{tt}=[\mathrm{ff}] \varphi=\mathrm{tt}
\end{aligned}
$$

- Distributivity of modalities over \vee and \wedge :
$-\langle\alpha\rangle \varphi_{1} \vee\langle\alpha\rangle \varphi_{2}=\langle\alpha\rangle\left(\varphi_{1} \vee \varphi_{2}\right)$
$-\left\langle\alpha_{1}\right\rangle \varphi \vee\left\langle\alpha_{2}\right\rangle \varphi=\left\langle\alpha_{1} \vee \alpha_{2}\right\rangle \varphi$
$-[\alpha] \varphi_{1} \wedge[\alpha] \varphi_{2}=[\alpha]\left(\varphi_{1} \wedge \varphi_{2}\right)$
- $\left[\alpha_{1}\right] \varphi \wedge\left[\alpha_{2}\right] \varphi=\left[\alpha_{1} \vee \alpha_{2}\right] \varphi$
- Monotonicity of modalities over φ and α :

$$
\begin{aligned}
& -\left(\varphi_{1} \Rightarrow \varphi_{2}\right) \Rightarrow\left(\langle\alpha\rangle \varphi_{1} \Rightarrow\langle\alpha\rangle \varphi_{2}\right) \wedge\left([\alpha] \varphi_{1} \Rightarrow[\alpha] \varphi_{2}\right) \\
& -\left(\alpha_{1} \Rightarrow \alpha_{2}\right) \Rightarrow\left(\left\langle\alpha_{1}\right\rangle \varphi \Rightarrow\left\langle\alpha_{2}\right\rangle \varphi\right) \wedge\left(\left[\alpha_{2}\right] \varphi \Rightarrow\left[\alpha_{1}\right] \varphi\right)
\end{aligned}
$$

Characterization of branching

M_{1}

M_{2}

- Modal formula distinguishing between M_{1} and M_{2} :

$$
\begin{gathered}
\varphi=[\text { money }](\langle\text { coffee }\rangle \mathrm{tt} \wedge\langle\text { tea }\rangle \mathrm{tt}) \\
M_{1} \mid=\varphi \text { and } M_{2} \mid \neq \varphi
\end{gathered}
$$

Modal logics

(summary)

- Are able to express simple branching-time properties involving states $s \in S$ and actions $a \in A$ of an LTS
- But:
- Take into account only a finite number of steps around a state (nesting of modalities)
- Cannot express properties about transition sequences or subtrees of arbitrary length
- Example: the property
"from a state s, there exists a sequence leading to a state s^{\prime} where the action a is executable"
cannot be expressed in modal logic
(it would need a formula $\langle\mathrm{tt}\rangle\langle\mathrm{tt}\rangle \ldots \mathrm{tt}\rangle\langle a\rangle \mathrm{tt}$)

Branching-time logics

- They are logics allowing to reason about the (infinite) execution trees contained in an LTS
- Basic temporal operators:
- Potentiality
from a state, there exists an outgoing, finite transition sequence leading to a certain state
- Inevitability
from a state, all outgoing transition sequences lead, after a finite number of steps, to certain states
- Action-based Computation Tree Logic (ACTL) [DeNicola-Vaandrager-90]

ACTL logic

(syntax)
$\varphi::=\quad$ tt $\mid f f$
boolean constants

$$
\varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1}
$$

$E\left[\varphi_{1 \alpha 1} U \varphi_{2}\right.$]
$\mathrm{E}\left[\varphi_{1 \alpha 1} \mathrm{U}_{\alpha 2} \varphi_{2}\right]$
$\mathrm{A}\left[\varphi_{1 \alpha 1} \mathrm{U} \varphi_{2}\right.$]
$\mathrm{A}\left[\varphi_{1 \alpha 1} \mathrm{U}_{\alpha 2} \varphi_{2}\right]$

connectors

potentiality 1
potentiality 2 inevitability 1 inevitability 2

ACTL logic

(derived operators)

- $\mathrm{EF}_{\alpha} \varphi=\mathrm{E}\left[\mathrm{tt}_{\alpha} \mathrm{U} \varphi\right]$
- $\mathrm{AF}_{\alpha} \varphi=\mathrm{A}\left[\mathrm{tt}_{\alpha} \mathrm{U} \varphi\right]$
basic potentiality
basic inevitability
- $\mathrm{AG}_{\alpha} \varphi=\neg \mathrm{EF}_{\alpha} \neg \varphi$
- $\mathrm{EG}_{\alpha} \varphi=\neg \mathrm{AF}_{\alpha} \neg \varphi$
- $\langle\alpha\rangle \varphi=\mathrm{E}\left[\mathrm{tt}_{\mathrm{ff}} \mathrm{U}_{\alpha} \varphi\right.$]
- $[\alpha] \varphi=\neg\langle\alpha\rangle \neg \varphi$
invariance
trajectory
possibility
necessity

dualities

ACTL logic

(semantics - potentiality operators)

Let $M=\left(S, A, T, S_{0}\right)$. Interpretation $[[\varphi]] \subseteq S$:

- [[E $\left.\left.\left[\varphi_{1 \alpha} U \varphi_{2}\right]\right]\right]=\left\{s \in S \mid \exists s\left(=s_{0}\right) \rightarrow{ }^{a 0} s_{1} \rightarrow^{a 1} s_{2} \rightarrow \ldots\right.$. $\exists k \geq 0 . \forall 0 \leq \mathrm{i}<\mathrm{k} .\left(s_{i} \in\left[\left[\varphi_{1}\right]\right] \wedge a_{i} \in[[\alpha \vee \tau]]\right) \wedge$ $\left.s_{k} \in\left[\left[\varphi_{2}\right]\right]\right\}$

- [[$\left.\left.E\left[\varphi_{1 \alpha 1} U_{\alpha 2} \varphi_{2}\right]\right]\right]=\left\{s \in S \mid \forall s\left(=s_{0}\right) \rightarrow{ }^{a 0} s_{1} \rightarrow{ }^{a 1} s_{2} \rightarrow \ldots\right.$. $\exists k \geq 0 . \forall 0 \leq \mathrm{i}<\mathrm{k} .\left(s_{i} \in\left[\left[\varphi_{1}\right]\right] \wedge a_{i} \in\left[\left[\alpha_{1} \vee \tau\right]\right] \wedge\right.$ $\left.s_{k} \in\left[\left[\varphi_{1}\right]\right] \wedge a_{k} \in\left[\left[\alpha_{2}\right]\right] \wedge s_{k+1} \in\left[\left[\varphi_{2}\right]\right]\right\}$

ACTL logic

(semantics - inevitability operators)

- [[A [$\left.\left.\left.\varphi_{1 \alpha} \mathrm{U} \varphi_{2}\right]\right]\right]:$

- [[A [$\left.\left.\left.\varphi_{1 \alpha 1} \mathrm{U}_{\alpha 2} \varphi_{2}\right]\right]\right]:$

Example (1/4)

Potential reachability:

$E F_{- \text {REL }}\left\langle\mathrm{CS}_{0}\right\rangle \mathrm{tt}$

Example (2/4)

Inevitable reachability: $\quad \mathrm{AF}_{\neg \text { (RELO } \vee \mathrm{REL} 1)}\left\langle\mathrm{CS}_{0} \vee \mathrm{CS}_{1}\right\rangle \mathrm{tt}$

Example (3/4)

Invariance: $\quad A G_{\neg\left(\mathrm{NCSO}_{0} \vee \mathrm{NCS} 1\right)}\left\langle\mathrm{NCS}_{0} \vee \mathrm{NCS}_{1}\right\rangle \mathrm{tt}$

Example (4/4)

Trajectory: $\quad E G_{\neg \operatorname{cso}}\left[\mathrm{CS}_{0}\right] \mathrm{ff}$

Remark about inevitability

- Inevitable reachability: all sequences going out of a state lead to states where an action a is executable

$$
\mathrm{AF}_{\mathrm{tt}}\langle a\rangle \mathrm{tt}
$$

- Inevitable execution: all sequences going out of a state contain the action a
- Inevitable execution \Rightarrow inevitable reachability but the converse does not hold:

$$
s \mid=A F_{\mathrm{tt}}\langle a\rangle \mathrm{tt}
$$

- Inevitable execution must be expressed using the inevitability operators of ACTL:

$$
s \mid \neq \mathrm{A}\left[\mathrm{tt}_{\mathrm{tt}} \mathrm{U}_{a} \mathrm{tt}\right]
$$

Safety properties

- Informally, safety properties specify that "something bad never happens" during the execution of the system
- One way of expressing safety properties:
forbid undesirable execution sequences
- Mutual exclusion:

$$
\begin{aligned}
& \neg\left\langle\mathrm{CS}_{0}\right\rangle \mathrm{EF}_{\text {-RELO }}\left\langle\mathrm{CS}_{1}\right\rangle \mathrm{tt} \\
& =\left[\mathrm{CS}_{0}\right] \mathrm{AG}_{-R E L O}\left[\mathrm{CS}_{1}\right] \mathrm{ff}
\end{aligned}
$$

- In ACTL, forbidding a sequence is expressed by combining the $[\alpha] \varphi$ and $\mathrm{AG}_{\alpha} \varphi$ operators

Liveness properties

- Informally liveness properties specify that "something good eventually happens" during the execution of the system
- One way of expressing liveness properties:
require desirable execution sequences / trees
- Potential release of the critical section: $\left\langle\mathrm{NCS}_{0}\right\rangle \mathrm{EF}_{\mathrm{tt}}\left\langle\mathrm{REQ}_{0}\right\rangle \mathrm{EF}_{\mathrm{tt}}\left\langle\mathrm{REL}_{0}\right\rangle \mathrm{tt}$
- Inevitable access to the critical section:
$\mathrm{A}\left[\mathrm{tt}_{\mathrm{tt}} \mathrm{U}_{\mathrm{Cso}} \mathrm{tt}\right]$
- In ACTL, the existence of a sequence is expressed by combining the $\langle\alpha\rangle \varphi$ and $\mathrm{EF}_{\alpha} \varphi$ operators

Branching-time logics

(summary)

- The temporal operators of ACTL: strictly more powerful than the HML modalities $\langle\alpha\rangle \varphi$ and $[\alpha] \varphi$
- They allow to express branching-time properties on an unbounded depth in an LTS
- But:
- They do not allow to express the unbounded repetition of a subsequence
- Example: the property
"from a state s, there exists a sequence a.b.a.b ... a.b leading to a state s' where an action c is executable" cannot be expressed in ACTL

Regular logics

- They allow to reason about the regular execution sequences of an LTS
- Basic operators:
- Regular formulas two states are linked by a sequence whose concatenated actions form a word of a regular language
- Modalities on sequences
from a state, some (all) outgoing regular transition sequences lead to certain states
- Propositional Dynamic Logic (PDL) [Fischer-Ladner-79]

Regular formulas

(syntax)

$\beta::=\quad \alpha$
| nil
| $\quad \beta_{1} \cdot \beta_{2}$ | $\beta_{1} \mid \beta_{2}$ | $\quad \beta_{1}{ }^{*}$ $\mid \quad \beta_{1}{ }^{+}$

one-step sequence empty sequence concatenation choice
iteration (≥ 0 times)
iteration (≥ 1 times)

- Some identities:

$$
\text { nil }=\mathrm{ff} \text { * }
$$

$$
\beta^{+}=\beta \cdot \beta^{*}
$$

Regular formulas

(semantics)
Let $M=\left(S, A, T, s_{0}\right)$. Interpretation $[[\beta]] \subseteq S \times S$:
$\bullet[[\alpha]]=\left\{\left(s, s^{\prime}\right) \mid \exists a \in[[\alpha]] .\left(s, a, s^{\prime}\right) \in T\right\}$
$-[[$ nil $]]=\{(s, s) \mid s \in S\}$ (identity)

- [[$\left.\left.\beta_{1} \cdot \beta_{2}\right]\right]=\left[\left[\beta_{1}\right]\right] \circ\left[\left[\beta_{2}\right]\right] \quad$ (composition)
- [[$\left.\left.\beta_{1} \mid \beta_{2}\right]\right]=\left[\left[\beta_{1}\right]\right] \cup\left[\left[\beta_{2}\right]\right] \quad$ (union)
- $\left[\left[\beta_{1}{ }^{*}\right]\right]=\left[\left[\beta_{1}\right]\right]$ *
$\bullet\left[\left[\beta_{1}{ }^{+}\right]\right]=\left[\left[\beta_{1}\right]\right]{ }^{+}$
(transitive refl. closure)
(transitive closure)

Example (1/3)

One-step sequences: $\mathrm{NCS}_{0} \vee \mathrm{CS}_{0}$

Example (2/3)

Alternative sequences: $\left(\mathrm{REQ}_{0} \cdot \mathrm{CS}_{0}\right) \mid\left(\mathrm{REQ}_{1} . \mathrm{CS}_{1}\right)$

Example (3/3)

Sequences with repetition: $\mathrm{NCS}_{0} \cdot\left(\neg \mathrm{NCS}_{1}\right)^{*} . \mathrm{CS}_{0}$

PDL logic

(syntax)

$\varphi::=\quad$ tt | ff
 $\varphi_{1} \vee \varphi_{2}$
 $\varphi_{1} \wedge \varphi_{2}$
 $\neg \varphi_{1}$
 $\langle\beta\rangle \varphi_{1}$
 $[\beta] \varphi_{1}$
 boolean constants
 disjunction
 conjunction
 negation
 possibility
 necessity

- Duality: $\quad[\beta] \varphi=\neg\langle\beta\rangle \neg \varphi$

PDL logic

(semantics)
Let $M=\left(S, A, T, s_{0}\right)$. Interpretation $[[\varphi]] \subseteq S$:

- $[[\mathrm{tt}]]=\mathrm{S}$
- [[ff]] = \varnothing
- $\left[\left[\varphi_{1} \vee \varphi_{2}\right]\right]=\left[\left[\varphi_{1}\right]\right] \cup\left[\left[\varphi_{2}\right]\right]$
- [[$\left.\left.\varphi_{1} \wedge \varphi_{2}\right]\right]=\left[\left[\varphi_{1}\right]\right] \cap\left[\left[\varphi_{2}\right]\right]$
- [[$\left.\left.\neg \varphi_{1}\right]\right]=S \backslash\left[\left[\varphi_{1}\right]\right]$
$-\left[\left[\langle\beta\rangle \varphi_{1}\right]\right]=\left\{s \in S \mid \exists s^{\prime} \in S\right.$.
$\left.\left(s, s^{\prime}\right) \in[[\beta]] \wedge s^{\prime} \in\left[\left[\varphi_{1}\right]\right]\right\}$
$\bullet\left[\left[[\beta] \varphi_{1}\right]\right]=\left\{s \in S \mid \forall s^{\prime} \in S\right.$.
$\left.\left(s, s^{\prime}\right) \in[[\beta]] \Rightarrow s^{\prime} \in\left[\left[\varphi_{1}\right]\right]\right\}$

Example (1/2)

Potential reachability of critical section: $\left\langle\mathrm{NCS}_{0} . \mathrm{tt}{ }^{*} . \mathrm{CS}_{0}\right\rangle \mathrm{tt}$

Example (2/2)

Mutual exclusion: $\left[\mathrm{CS}_{0} \cdot\left(\neg \mathrm{REL}_{0}\right)^{*} \cdot \mathrm{CS}_{1}\right] \mathrm{ff}$

Some identities

- Distributivity of regular operators over < > and []:
$-\left\langle\beta_{1} \cdot \beta_{2}\right\rangle \varphi=\left\langle\beta_{1}\right\rangle\left\langle\beta_{2}\right\rangle \varphi$
$-\left\langle\beta_{1} \mid \beta_{2}\right\rangle \varphi=\left\langle\beta_{1}\right\rangle \varphi \vee\left\langle\beta_{2}\right\rangle \varphi$
$-\left\langle\beta^{*}\right\rangle \varphi=\varphi \vee\langle\beta\rangle\left\langle\beta^{*}\right\rangle \varphi$
$-\left[\beta_{1} \cdot \beta_{2}\right] \varphi=\left[\beta_{1}\right]\left[\beta_{2}\right] \varphi$
$-\left[\beta_{1} \mid \beta_{2}\right] \varphi=\left[\beta_{1}\right] \varphi \wedge\left[\beta_{2}\right] \varphi$
$-\left[\beta^{*}\right] \varphi=\varphi \wedge[\beta]\left[\beta^{*}\right] \varphi$
- Potentiality and invariance operators of ACTL:
$-\mathrm{EF}_{\alpha} \varphi=\left\langle\alpha^{*}\right\rangle \varphi$
$-\mathrm{AG}_{\alpha} \varphi=\left[\alpha^{*}\right] \varphi$

Fairness properties

- Problem: from the initial state of the LTS, there is no inevitable execution of action $\mathrm{CS}_{0} \Rightarrow$ process P_{1} can enter its critical section indefinitely often

- Fair execution of an action a: from a state, all transition sequences that do not cycle indefinitely contain action a
- Action-based counterpart of the fair reachability of predicates [Queille-Sifakis-82]

Fair execution

- Fair execution of an action a expressed in PDL:
fair $(a)=\left[(\neg a)^{*}\right]\left\langle\mathrm{tt}^{*}, a\right\rangle \mathrm{tt}$

- Equivalent formulation in ACTL:

$$
\text { fair }(a)=\mathrm{AG}_{\neg a} \mathrm{EF}_{\mathrm{tt}}\langle a\rangle \mathrm{tt}
$$

Example

Fair execution of critical section: $\left[\left(\neg \mathrm{CS}_{0}\right)^{*}\right]\left\langle\mathrm{tt}^{*} . \mathrm{CS}_{0}\right\rangle \mathrm{tt}$

Regular logics
 (summary)

- They allow a direct and natural description of regular execution sequences in LTSs
- More intuitive description of safety properties:
- Mutual exclusion:

$$
\begin{array}{ll}
{\left[\mathrm{CS}_{0}\right] \mathrm{AG}_{\rightarrow \text { RELO }}\left[\mathrm{CS}_{1}\right] \mathrm{ff}=} & \text { (in ACTL } \tag{inACTL}\\
{\left[\mathrm{CS}_{0} \cdot\left(\neg \mathrm{REL}_{0}\right)^{*} \cdot \mathrm{CS}_{1}\right] \mathrm{ff}} & \text { (in PDL) }
\end{array}
$$

- But:
- Not sufficiently powerful to express inevitability operators (expressiveness uncomparable with branching-time logics)

Fixed point logics

- Very expressive logics ("temporal logic assembly languages") allowing to characterize finite or infinite tree-like patterns in LTSs
- Basic temporal operators:
- Minimal fixed point (μ)
"recursive function" defined over the LTS:
finite execution trees going out of a state
- Maximal fixed point (v)
dual of the minimal fixed point operator: infinite execution trees going out of a state
- Modal mu-calculus [Kozen-83,Stirling-01]

Modal mu-calculus

(syntax)

$\varphi::=$	tt \| ff
\mid	$\varphi_{1} \vee \varphi_{2} \mid \neg \varphi_{1}$
\mid	$\langle\alpha\rangle \varphi_{1}$
\mid	$[\alpha] \varphi_{1}$
\mid	X
\mid	$\mu X \cdot \varphi_{1}$
\mid	$v X \cdot \varphi_{1}$

boolean constants
connectors
possibility
necessity
propositional variable minimal fixed point maximal fixed point

- Duality: $\quad v X . \varphi=\neg \mu X . \neg \varphi[\neg X / X]$

Syntactic restrictions

- Syntactic monotonicity [Kozen-83]
- Necessary to ensure the existence of fixed points
- In every formula $\sigma X . \varphi(X)$, where $\sigma \in\{\mu, v\}$, every free occurrence of X in φ falls in the scope of an even number of negations

$$
\mu X .\langle a\rangle X \vee \neg\langle b\rangle X
$$

- Alternation depth 1 [Emerson-Lei-86]
- Necessary for efficient (linear-time) verification
- In every formula $\mu X . \varphi(X)$, every maximal subformula $v Y . \varphi^{\prime}(Y)$ of φ is closed

$$
\mu X .\langle a\rangle v Y .([b] Y \wedge[c] X)
$$

Modal mu-calculus

(semantics)

Let $M=\left(S, A, T, s_{0}\right)$ and $\rho: X \rightarrow 2^{S}$ a context mapping propositional variables to state sets. Interpretation $[[\varphi]] \subseteq S:$

- [[$X]] \rho=\rho(X)$
- [[$\mu X . \varphi]] \rho=\bigcup_{k \geq 0} \Phi_{\rho}{ }^{k}(\varnothing)$
- [[$v X . \varphi]] \rho=\bigcap_{k \geq 0} \Phi_{\rho}{ }^{k}(S)$
where $\Phi_{\rho}: 2^{S} \rightarrow 2^{S}$,

$$
\Phi_{\rho}(U)=[[\varphi]] \rho[U / X]
$$

Minimal fixed point

- Potential reachability of an action a (existence of a sequence leading to a transition labeled by a):

$$
\mu X .\langle a\rangle \mathrm{tt} \vee\langle\mathrm{tt}\rangle X
$$

- Associated functional:

$$
\Phi(U)=[[\langle a\rangle \mathrm{tt} \vee\langle\mathrm{tt}\rangle X]][U / X]
$$

- Evaluation on an LTS:

Example

Potential reachability: $\mu X .\left\langle\mathrm{CS}_{0}\right\rangle \mathrm{tt} \vee\left\langle\neg\left(\mathrm{REL}_{1} \vee \mathrm{REL}_{0}\right)\right\rangle X$

Maximal fixed point

- Infinite repetition of an action a (existence of a cycle containing only transitions labeled by a):

$$
v X .\langle a\rangle X
$$

- Associated functional:

$$
\Phi(U)=[[\langle a\rangle X]][U / X]
$$

- Evaluation on an LTS:

Example

Infinite repetition: $v X .\left\langle\mathrm{NCS}_{1} \vee \mathrm{REQ}_{1} \vee \mathrm{CS}_{1} \vee \mathrm{REL}_{1}\right\rangle X$

Exercise

Evaluate the formula: $\mu X .\left\langle\mathrm{CS}_{0}\right\rangle \mathrm{tt} \vee\left(\left[\mathrm{NCS}_{0}\right] \mathrm{ff} \wedge\langle\mathrm{tt}\rangle X\right)$

Some identities

- Description of (some) ACTL operators:

$$
\begin{aligned}
& -\mathrm{E}\left[\varphi_{1 \alpha 1} \mathrm{U}_{\alpha 2} \varphi_{2}\right]=\mu X \cdot \varphi_{1} \wedge\left(\left\langle\alpha_{2}\right\rangle \varphi_{2} \vee\left\langle\alpha_{1}\right\rangle X\right) \\
& -\mathrm{A}\left[\varphi_{1 \alpha 1} \mathrm{U}_{\alpha 2} \varphi_{2}\right]=\mu X \cdot \varphi_{1} \wedge\langle\mathrm{tt}\rangle \mathrm{tt} \wedge\left[\neg\left(\alpha_{1} \vee \alpha_{2}\right)\right] \mathrm{ff} \\
& \quad \wedge\left[\neg \alpha_{1} \wedge \alpha_{2}\right] \varphi_{2} \wedge\left[\neg \alpha_{2}\right] X \wedge\left[\alpha_{1} \wedge \alpha_{2}\right]\left(\varphi_{2} \vee X\right) \\
& -\mathrm{EF}_{\alpha} \varphi=\mu X \cdot \varphi \vee\langle\alpha\rangle X \\
& -\mathrm{AF}_{\alpha} \varphi=\mu X . \varphi \vee(\langle\mathrm{tt}\rangle \mathrm{tt} \wedge[\neg \alpha] \mathrm{ff} \wedge[\alpha] X)
\end{aligned}
$$

- Description of the PDL operators:

$$
\begin{aligned}
& -\left\langle\beta^{*}\right\rangle \varphi=\mu X . \varphi \vee\langle\beta\rangle X \\
& -\left[\beta^{*}\right] \varphi=v X \cdot \varphi \wedge[\beta] X
\end{aligned}
$$

Inevitable reachability

- Inevitable reachability of an action a :
$\operatorname{access}(a)=\mathrm{AF}_{\mathrm{tt}}\langle a\rangle \mathrm{tt}=$ $\mu X .\langle a\rangle \mathrm{tt} \vee(\langle\mathrm{tt}\rangle \mathrm{tt} \wedge[\mathrm{tt}] X)$
- Associated functional:
$\Phi(U)=[[\langle a\rangle \mathrm{tt} \vee(\langle\mathrm{tt}\rangle \mathrm{tt} \wedge[\mathrm{tt}] X)]][U / X]$
- Evaluation on an LTS:

Inevitable execution

- Inevitable execution of an action a :

$$
\operatorname{inev}(a)=\mu X .\langle\mathrm{tt}\rangle \mathrm{tt} \wedge[\neg a] X
$$

- Associated functional:

$$
\Phi(U)=[[\langle\mathrm{tt}\rangle \mathrm{tt} \wedge[\neg a] X]][U / X]
$$

- Evaluation on an LTS:

Example

Inevitable execution: $\mu X .\langle\mathrm{tt}\rangle \mathrm{tt} \wedge\left[\neg \mathrm{CS}_{0}\right] X$

Fair execution

- Fair execution of an action a :
fair $(a)=\left[(\neg a)^{*}\right]\left\langle\mathrm{tt}^{*} . a\right\rangle \mathrm{tt}$

$$
=v X .\left\langle\mathrm{tt}^{*} . a\right\rangle \mathrm{tt} \wedge[\neg a] X
$$

- Associated functional:

$$
\Phi(U)=\left[\left[\left\langle\mathrm{tt}^{*} . a\right\rangle \mathrm{tt} \wedge[\neg a] X\right]\right][U / X]
$$

- Evaluation on an LTS:

Example

Fair execution: $\left[\left(\neg \mathrm{CS}_{0}\right)^{*}\right]\left\langle\mathrm{tt}^{*} . \mathrm{CS}_{0}\right\rangle \mathrm{tt}$

Fixed point logics

(summary)

- They allow to encode virtually all TL proposed in the literature
- Expressive power obtained by nesting the fixed point operators:

$$
\begin{aligned}
& \left\langle\left(a \cdot b^{*}\right)^{*} \cdot c\right\rangle \mathrm{tt}= \\
& \mu X .\langle c\rangle \mathrm{tt} \vee\langle a\rangle \mu Y .(X \vee\langle b\rangle Y)
\end{aligned}
$$

- Alternation depth of a formula: degree of mutual recursion between μ and v fixed points
Example of alternation depth 2 formula:

$$
v X .\left\langle a^{*} . b\right\rangle X=v X \cdot \mu Y \cdot\langle b\rangle X \vee\langle a\rangle Y
$$

Some verification tools
 (for action-based logics)

- CWB (Edinburgh)
and
- Concurrency Factory (State University of New York)
- Modal μ-calculus (fixed point operators)
- JACK (University of Pisa, Italy)
- μ-ACTL (modal μ-calculus combined with ACTL)
- CADP / Evaluator 3.x (INRIA Rhône-Alpes / VASY)
- Regular alternation-free μ-calculus (PDL modalities and fixed point operators)

Extensions of μ-calculus with data

- Temporal logics (ACTL, PDL, ...) and μ-calculi
- No data manipulation (basic LOTOS, pure CCS, ...)
- Too low-level operators (complex formulas)
\rightarrow Extended temporal logics are needed in practice
- Several μ-calculus extensions with data:
- For polyadic pi-calculus [Dam-94]
- For symbolic transition systems [Rathke-Hennessy-96]
- For μ CRL [Groote-Mateescu-99]
- For full LOTOS [Mateescu-Thivolle-08]

Why to handle data?

- Some properties are cumbersome to express without data (e.g., action counting):

$$
\langle b\rangle\langle b\rangle\langle b\rangle\langle a\rangle \mathrm{tt} \quad \text { or } \quad\langle b\{3\} . a\rangle \mathrm{tt} \quad ?
$$

- LTSs produced from value-passing process algebraic languages (full CCS, LOTOS, ...) contain values on transition labels

value extraction and propagation

Model Checking Language

- Based on EVALUATOR 3.5 input language
- standard μ-calculus
- regular operators
- Data-handling mechanisms
- data extraction from LTS labels
- regular operators with counters
- variable declaration
- parameterized fixed point operators
- expressions
- Constructs inspired from programming languages

Parameterized modalities

- Possibility:

< \{SEND ?msg:Nat $\}><$ RECV !msg $\}$ > true

- Necessity:

[\{RECV ?msg:Nat\}] (msg < 6)

Parameterized fixed points

- (basic) syntax:

- P contains «calls » X (E^{\prime})
- Allows to perform computations and store intermediate results while exploring the PLTS

Example (1/3)

- Counting of actions (e.g., clock ticks):

[\{LEVEL ?!:Nat where l > 10\}]

> nu X (c:Nat := 15).
[not ALARM] (c > 0 and X (c-1))

Example (2/3)

- Alternation of two actions and value propagation:

nu X (s:Bool := true, m:Msg := nil) . (
[\{SEND ?p:Msg\}] (s and X (false, p))
and
[\{RECV ?q:Msg\}] (not s and $q=m$ and $X($ true, nil) $)$ and
[not (\{RECV any\} or \{SEND any\})] X (s, m)
)

Example (3/3)

- Syntax analysis on sequences:

mu X (op_cl:nat := 0) . (
(([true] false) implies (op_cl = 0)) and
<"(" > X (op_cl + 1)
and
<")" > ((op_cl > 0) and X (op_cl-1))
)
- Allows to simulate pushdown automata (by storing the stack in a parameter)

Quantifiers

- Existential quantifier:
exists $\mathrm{x}: \mathrm{T}$ among $\left\{\mathrm{E}_{1} \ldots \mathrm{E}_{2}\right\} . \mathrm{P}$

$$
\text { limits of the subdomain of } T
$$

- Universal quantifier: forall x : T among $\left\{\mathrm{E}_{1} \ldots \mathrm{E}_{2}\right\}$. P
\rightarrow shorthands for large disjunctions and conjunctions

Example

- Broadcast of messages:

forall msg:Nat among $\{1$... 10$\}$. mu X . $(<\{$ SEND $!m s g\}>$ true or $<$ true $>X)$

Conditional operators (1/2)

- Branching operator:
if P_{1} then $P_{1}{ }^{\prime}$
elsif P_{2} then P_{2},
else $P_{n}{ }^{\prime}$

end if
- Semantics:
(P_{1} and $\mathrm{P}_{1}{ }^{\prime}$) or
$\left(\left(\operatorname{not}\left(P_{1}\right)\right.\right.$ and $\left.P_{2}\right)$ and $\left.P_{2}^{\prime}\right)$ or ...
$\left(\left(\operatorname{not}\left(P_{1}\right.\right.\right.$ or P_{2} or $\left.\left.\ldots P_{n-1}\right)\right)$ and $\left.P_{n}{ }^{\prime}\right)$

Syntactic restrictions

- State formulas present in conditions must be propositionally closed (to ensure syntactic monotonicity)
- Example (illegal):

$$
\begin{aligned}
& \text { mu } X \text {. (} \ldots \\
& \quad \text { if } X \text { then } P_{1} \text { else } P_{2} \text { end if }
\end{aligned}
$$

)
boolean translation:

$$
\left(X \text { and } P_{1}\right) \text { or }\left(\text { not } X \text { and } P_{2}\right)
$$

)

Example

- Counting of actions (revisited):
[\{LEVEL ?l:Nat where l > 10\}] nu X (c:Nat :=0) .
if $\mathrm{c}<15$ then
[not ALARM] X ($\mathrm{c}+1$)
else
[not ALARM] false
end if

Conditional operators (2/2)

- Selection operator: case E is

$$
M_{1}->P_{1}
$$

...
| any -> P_{n}
end case

- Semantics:
($\left(E\right.$ match $\left.M_{1}\right)$ and P_{1}) or \ldots or
(not ($\left(E\right.$ match M_{1}) or \ldots or $\left(E\right.$ match $\left.M_{n-1}\right)$) and P_{n})

Example

- Message handling (event/reaction):
[\{RECV ?m:Msg\}]
case kind (m) is

Norm -> mu X . < \{HANDLE !m\} > true or < true > X

Term -> nu Y . [\{SEND any\}] false and [true] Y $\xrightarrow{\text { RECV abort }}$ EXIT
| Abort -> < true > true and [not EXIT] false end case

Variable definition

- Initialisation operator:
let x : $\mathrm{T}:=\mathrm{E}$ in
P
end let
- Example:
[\{RECV ?l:NatList\}]
let n :Nat := sum (l) in
< \{DELIVER !n\} > < \{ACK !n\} > true end let

Extended regular formulas

- Counting operators:

$$
\begin{aligned}
& \operatorname{R}\{E\} \\
& R\left\{E_{1} \ldots\right\} \\
& R\left\{E_{1} \ldots E_{2}\right\}
\end{aligned}
$$

repetition E times repetition at least E_{1} times
repetition between
E_{1} and E_{2} times

- Some identities:

$$
\begin{array}{ll}
\text { nil }=\text { false * } & \mathrm{R}+=\mathrm{R} \cdot \mathrm{R}^{*} \\
\mathrm{R}^{*}=\mathrm{R}\{0 \ldots\} & \mathrm{R} ?=\mathrm{R}\{0 \ldots 1\} \\
\mathrm{R}+=\mathrm{R}\{1 \ldots\} & \mathrm{R}\{\mathrm{E}\}=\mathrm{R}\{\mathrm{E} \ldots \mathrm{E}\}
\end{array}
$$

Translations to basic MCL

- $<\mathrm{R}\{\mathrm{E} \ldots \mathrm{F}$ \} $\mathrm{P}=$ mu X (c:Nat:=0).
if $c<E$ then
$<\mathrm{R}>\mathrm{X}(\mathrm{c}+1)$
else
Por < R > X (c)
end if
- $<R\left\{E_{1} \ldots E_{2}\right\}>P=$ mu X (c:Nat:=0). if $\mathrm{c}<\mathrm{E}_{1}$ then $<R>X(c+1)$
elsif $\mathrm{c}<\mathrm{E}_{2}$ then
Por $<R>X(c+1)$
else
P
end if

Example
 (action counting revisited)

- Formulation using counting operators:
[\{LEVEL ?!:Nat where l > 10\} . (not ALARM) \{ 16 \}] false

Example
 (safety of a n-place buffer)

- Formulation using extended regular operators:
[true* . ((not OUTPUT)* . INPUT) \{n+1\}] false

- Formulation using parameterized fixed points:

```
nu X . (nu Y (c:Nat:=0) . (
    [not OUTPUT] Y (c) and
    if c = n+1 then [INPUT] false
                        else [INPUT] Y (c+1)
    end if)
and [ true ] X)
```


Testing operator of PDL

- PDL with tests [Fischer-Ladner-79]:
- Express properties of intermediate states of sequences denoted by a regular formula
- Add a "test" operator on regular formulas
- Syntax (PDL): P ?
- Semantics

$$
\begin{aligned}
& <P_{1} ?>P_{2}=P_{1} \text { and } P_{2} \\
& <P_{1} ? . a \cdot P_{1} ? . b>P_{2}= \\
& P_{1} \text { and }<a>\left(P_{1} \text { and }P_{2}\right)
\end{aligned}
$$

P ? = if P then nil else false end if

Example

- Operator E(.U.) of CTL:

$E\left(P_{1} \cup P_{2}\right)=$
mu $X .\left(P_{2}\right.$ or $\left(P_{1}\right.$ and $<$ true $\left.\left.>X\right)\right)=$
< if P_{1} then true end if * $>P_{2}$
- "else" clause not mandatory: if P then R end if $=$ if P then R else nil end if

Looping operator (from PDL-delta)

- Δ R operator added to PDL to specify infinite behaviours [Streett-82]
- MCL syntax: < R > @
- Examples:

cycle containing one or more repetitions of R
- process overtaking
$\left[\mathrm{REQ}_{0}\right]<\left(\operatorname{not} \mathrm{GET}_{0}\right)^{*} \cdot \mathrm{REQ}_{1} \cdot\left(\operatorname{not} \mathrm{GET}_{0}\right)^{*} \cdot \mathrm{GET}_{1}>$ @
- Büchi acceptance condition
< true* . if $\mathrm{P}_{\text {accepting }}$ then true end if > @
\rightarrow allows to encode LTL model checking

Expressiveness
(summary)

PDL- Δ

$\mathrm{CTL}^{*} \subseteq \mathrm{PDL}-\Delta \subseteq \mathrm{MCL}$ [Wolper-82]

Adequacy with equivalence relations

- A temporal logic L is adequate with an equivalence relation \approx iff for all LTSs M_{1} and M_{2}

$$
M_{1} \approx M_{2} \quad \text { iff } \quad \forall \varphi \in L .\left(M_{1}\left|=\varphi \quad \Leftrightarrow \quad M_{2}\right|=\varphi\right)
$$

- ML:
- Adequate with strong bisimulation
- HMLU (HML with Until): weak bisimulation
- ACTL-X (fragment presented here):
- Adequate with branching bisimulation
- PDL and modal mu-calculus:
- Adequate with strong bisimulation
- Weak mu-calculus: weak bisimulation

$$
\begin{aligned}
& \left\langle\rangle\rangle \varphi=\left\langle\tau^{*}\right\rangle \varphi\right. \\
& \langle\langle a\rangle\rangle \varphi=\left\langle\tau^{*} \cdot a \cdot \tau^{*}\right\rangle \varphi
\end{aligned}
$$

On-the-fly verification

- Principles
- Alternation-free boolean equation systems
- Local resolution algorithms
- Applications:
- Equivalence checking
- Model checking
- Tau-confluence reduction
- Implementation and use

Principle of explicit-state verification

On-the-fly verification

- Incremental construction of the state space
- Way of fighting against state explosion
- Detection of errors in complex systems
- "Traditional" methods:
- Equivalence checking
- Model checking
- Solution adopted:
- Translation of the verification problem into the resolution of a boolean equation system (BES)
- Generation of diagnostics (fragments of the state space) explaining the result of verification

Boolean equation systems (syntax)

A BES is a tuple $B=\left(x, M_{1}, \ldots, M_{n}\right)$, where

- $x \in X$: main boolean variable
- $M_{i}=\left\{x_{j}=\sigma_{i} o p_{j} X_{j}\right\}_{j \in[1, \text { mij }}$: equation blocks
- $\sigma_{i} \in\{\mu, v\}$: fixed point sign of block i
- op $p_{j} \in\{\vee, \wedge\}$: operator of equation j
- $X_{j} \subseteq X$: variables in the right-hand side of equation j
- $\mathrm{F}=\vee \varnothing$ (empty disjunction), $\mathrm{T}=\wedge \varnothing$ (empty conjunction)
- x_{j} depends upon x_{k} iff $x_{k} \in X_{j}$
- M_{i} depends upon M_{l} iff a x_{j} of M_{i} depends upon a x_{k} of M_{l}
- Closed block: does not depend upon other blocks
- Alternation-free BES: M_{i} depends upon $M_{\mathrm{i}+1} \ldots M_{\mathrm{n}}$

Example

Particular blocks

- Acyclic block:
- No cyclic dependencies between variables of the block
- Var. x_{i} disjunctive (conjunctive): $o p_{i}=\vee\left(o p_{i}=\wedge\right)$
- Disjunctive block:
- contains disjunctive variables
- and conjunctive variables
- with a single non constant successor in the block (the last one in the right-hand side of the equation)
- all other successors are constants or free variables (defined in other blocks)
- Conjunctive block: dual definition

Boolean equation systems

(semantics)

- Context: partial function $\delta: X \rightarrow$ Bool
- Semantics of a boolean formula:

$$
-\left[\left[\text { op }\left\{x_{1}, \ldots, x_{p}\right\}\right]\right] \delta=o p\left(\delta\left(x_{1}\right), \ldots, \delta\left(x_{p}\right)\right)
$$

- Semantics of a block:
- [[$\left.\left.\left\{X_{j}=\sigma o p_{j} X_{j}\right\}_{j \in[1, m]}\right]\right] \delta=\sigma \Phi_{\delta}$
- $\Phi_{\delta}:$ Bool $^{m} \rightarrow$ Bool m
$-\Phi_{\delta}\left(b_{1}, \ldots, b_{m}\right)=\left(\left[\left[o p_{j} X_{j}\right]\right]\left(\delta \oplus\left[b_{1} / x_{1}, \ldots, b_{m} / x_{m}\right]\right)\right)_{j \in[1, m]}$
- Semantics of a BES:
- [[$\left.\left.\left(x, M_{1}, \ldots, M_{n}\right)\right]\right]=\delta_{1}(x)$
- $\delta_{n}=\left[\left[M_{n}\right]\right][]$
(M_{n} closed)
- $\delta_{i}=\left(\left[\left[M_{i}\right]\right] \delta_{i+1}\right) \oplus \delta_{i+1}$
(M_{i} depends upon $M_{i+1} \ldots M_{n}$)

Local resolution

- Alternation-free BES $B=\left(x, M_{1}, \ldots, M_{n}\right)$
- Primitive: compute a variable of a block
- A resolution routine R_{i} associated to M_{i}
- $R_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right)$ computes the value of x_{j} in M_{i}
- Evaluation of the rhs of equations + substitution
- Call stack $R_{1}(x) \rightarrow \ldots \rightarrow R_{\mathrm{n}}\left(x_{\mathrm{k}}\right)$ bounded by the depth of the dependency graph between blocks
- "Coroutine-like" style: each R_{i} must keep its context
- Advantages:
- Simple resolution routines (a single type of fixed point)
- Easy to optimize for particular kinds of blocks

Example

Local resolution algorithms

- Representation of blocks as boolean graphs [Andersen-94]
- To a block $M=\left\{x_{j}={ }_{\mu} o p_{j} X_{j}\right\}_{j \text { in }[1, \mathrm{~m}]}$ we associate the boolean graph $G=(V, E, L, \mu)$, where:
- $V=\left\{x_{1}, \ldots, x_{m}\right\}$: set of vertices (variables)
$-E=\left\{\left(x_{i}, x_{j}\right) \mid x_{j} \in X_{i}\right\}$: set of edges (dependencies)
- $L: V \rightarrow\{\vee, \wedge\}, L\left(x_{j}\right)=o p_{j}$: vertex labeling
- Principle of the algorithms:
- Forward exploration of G starting at $x \in V$
- Backward propagation of stable (computed) variables
- Termination: x is stable or G is completely explored

Example

BES (μ-block)

$$
\left\{\begin{array}{l}
x_{1}={ }_{\mu} x_{2} \vee x_{3} \\
x_{2}={ }_{\mu} F \\
x_{3}={ }_{\mu} x_{4} \vee x_{5} \\
x_{4}={ }_{\mu} \mathrm{T} \\
x_{5}={ }_{\mu} x_{1}
\end{array}\right.
$$

boolean graph

\square : ^-variables

Three effectiveness criteria [Mateescu-06]

For each resolution routine R :
A. The worst-case complexity of a call $R(x)$ must be $0(|V|+|E|)$
\rightarrow linear-time complexity for the overall BES resolution
B. While executing $R(x)$, every variable explored must be «linked» to x via unstable variables \rightarrow graph exploration limited to "useful" variables
C. After termination of $R(x)$, all variables explored must be stable
\rightarrow keep resolution results between subsequent calls of R

Algorithm A0
 (general)

- DFS of the boolean graph
- Satisfies A, B, C
- Memory complexity $O(|V|+|E|)$
- Optimized version of [Andersen-94]
- Developed for model checking regular alternation-free μ-calculus
[Mateescu-Sighireanu-00,03]

Algorithm A1
 (general)

- BFS of the boolean graph
- Satisfies A, C (risk of computing useless variables)
- Slightly slower than A0
- Memory complexity $O(|V|+|E|)$
- Low-depth diagnostics

Algorithm A2
 (acyclic)

- DFS of the boolean graph
- Back-propagation of stable variables on the DFS stack only
- Satisfies A, B, C
- Avoids storing edges
- Memory complexity O (|V|)
- Developed for trace-based verification [Mateescu-02]

Algorithm A3 / A4

(disjunctive / conjunctive)

- DFS of the boolean graph
- Detection and stabilization of SCCs
- Satisfies A, B, C
- Avoids storing edges
- Memory complexity 0 (|V|)
- Developed for model checking CTL, ACTL, and PDL

SCC of false variables

SCC of true variables

Resolution algorithms

(summary)

- A0 (DFS, general)
- Satisfies A, B, C
- Memory complexity $0(|V|+|E|)$
- A1 (BFS, general)
- Satisfies A, C + « small » diagnostics
- Memory complexity $O(|V|+|E|)$
- A2 (DFS, acyclic)
- Satisfies A, B, C
- Memory complexity 0 (|V|)
- A3/A4 (DFS, disjunctive/conjunctive)
- Satisfies A, B, C
- Memory complexity 0 (|V|)

Time
complexity
$0(|V|+|E|)$

Caesar_Solve library of CADP [Mateescu-03,06]

- 15000 lines of C
- Integrated into CADP in Dec. 2004

- Diagnostic generation features [Mateescu-00]
- Used as verification back-end for Bisimulator, Evaluator 3.5 and 4.0, Reductor 5.0

Equivalence checking

 (principle)

Strong equivalence

- $M_{1}=\left(Q_{1}, A, T_{1}, q_{01}\right), M_{2}=\left(Q_{2}, A, T_{2}, q_{02}\right)$
$\approx \subseteq Q_{1} \times Q_{2}$ is the maximal relation s.t. $p \approx q$ iff
$\forall a \in A . \forall p \rightarrow{ }_{a} p^{\prime} \in T_{1} . \exists q \rightarrow_{a} q^{\prime} \in T_{2} . p^{\prime} \approx q^{\prime}$ and
$\forall a \in A . \forall q \rightarrow_{a} q^{\prime} \in T_{2} . \exists p \rightarrow_{a} p^{\prime} \in T_{1} . p^{\prime} \approx q^{\prime}$
- $M_{1} \approx M_{2} \quad$ iff $\quad q_{01} \approx q_{02}$

Translation to a BES

- Principle: $\quad p \approx q$ iff $X_{p, q}$ is true
- General BES:

$$
\left\{\frac{X_{p, q} \quad=_{v}\left(\wedge_{p \rightarrow a p^{\prime}} \vee_{q \rightarrow a q^{\prime}} X_{p^{\prime}, q^{\prime}}\right)}{\wedge^{\left(\wedge_{q \rightarrow a q^{\prime}} \vee_{p \rightarrow a p^{\prime}} X_{p^{\prime}, q^{\prime}}\right)}}\right.
$$

- Simple BES:

Tau*.a and safety equivalences

- $M_{1}=\left(Q_{1}, A_{\tau}, T_{1}, q_{01}\right), M_{2}=\left(Q_{2}, A_{\tau}, T_{2}, q_{02}\right)$
$A_{\tau}=A \cup\{\tau\}$
- Tau*.a equivalence:

$$
\left\{\begin{aligned}
X_{p, q}= & \left(\wedge_{p \rightarrow \tau^{*} . a p^{\prime}} \vee_{q \rightarrow \tau^{*} . a q^{\prime}} X_{p^{\prime}, q^{\prime}}\right) \\
& { }^{\prime} \\
& \left(\wedge_{q \rightarrow \tau^{*} . a q^{\prime}} \vee_{p \rightarrow \tau^{*} . a p^{\prime}} X_{p^{\prime}, q^{\prime}}\right)
\end{aligned}\right.
$$

- Safety equivalence:

$$
\left\{\begin{array}{l}
X_{p, q}=Y_{p, q} \wedge Y_{q, p} \\
Y_{p, q}=v \wedge p \rightarrow \tau^{*} . a p^{\prime} \vee_{q \rightarrow \tau^{*} . a q^{\prime}} Y_{p^{\prime}, q}
\end{array}\right.
$$

Observational and branching equivalences

- Observational equivalence:
$\left\{\begin{aligned} X_{p, q}= & \left(\wedge_{p \rightarrow \tau} p^{\prime} \vee_{q \rightarrow \tau^{*}} q^{\prime^{\prime}}\right. \\ & \left.X_{p^{\prime}, q^{\prime}}\right) \wedge \\ & \left(\wedge_{p \rightarrow a p^{\prime}} \vee_{q \rightarrow \tau^{*} . a . \tau^{*}}, X_{p^{\prime}, q^{\prime}}\right) \\ & \left(\wedge_{q \rightarrow \tau} q^{\prime} \vee_{p \rightarrow \tau^{*}}, X_{p^{\prime}, q^{\prime}}\right) \wedge\left(\wedge_{q \rightarrow a q^{\prime}} \vee_{p \rightarrow \tau^{*} . a . \tau^{*}}, X_{p^{\prime}, q^{\prime}}\right)\end{aligned}\right.$
- Branching equivalence:
$\left\{\begin{aligned} X_{p, q}= & \wedge_{p \rightarrow b p^{\prime}}\left(\left(b=\tau \wedge X_{p^{\prime}, q}\right) \vee \vee_{q \rightarrow \tau^{*} q^{\prime} \rightarrow b q^{\prime \prime}}\left(X_{p, q^{\prime}} \wedge X_{p^{\prime}, q^{\prime \prime}}\right)\right. \\ & \wedge \\ & \wedge_{q \rightarrow b q^{\prime}}\left(\left(b=\tau \wedge X_{p, q^{\prime}}\right) \vee \vee_{p \rightarrow \tau^{*} p^{\prime} \rightarrow b p^{\prime \prime}}\left(X_{p^{\prime}, q} \wedge X_{p^{\prime \prime}, q^{\prime}}\right)\right.\end{aligned}\right.$

Example (coffee machine)

Equivalence checking (time)

Equivalence checking (memory)

Equivalence checking (summary)

- General boolean graph:
- All equivalences and their preorders
- Algorithms A0 and A1 (counterexample depth \downarrow)
- Acyclic boolean graph:
- Strong equivalence: one LTS acyclic
- $\tau^{*} . a$ and safety: one LTS acyclic (τ-circuits allowed)
- Branching and observational: both LTS acyclic
- Algorithm A2 (memory \downarrow)
- Conjunctive boolean graph:
- Strong equivalence: one LTS deterministic
- Weak equivalences: one LTS deterministic and τ-free
- Algorithm A4 (memory \downarrow)

Model checking

 (principle)

On-the-fly model checking in CADP

(Evaluator 3.x)

Translation to Boolean Equation Systems

Translation to PDL with recursion

- State formula (expanded): nu Y_{0}. [true* . SEND]
$\mathrm{mu} Y_{1} \cdot\langle$ true \rangle true and [not RECV] Y_{1}
- PDLR specification [Mateescu-Sighireanu-03]:

$$
\begin{aligned}
& Y_{0}={ }_{n u}[\text { true* } \cdot \text { SEND }] Y_{1} \\
& \sqrt{ } \\
& \left.Y_{1}={ }_{m u}\langle\text { true }\rangle \text { true and [not RECV }\right] Y_{1}
\end{aligned}
$$

Simplification

- PDLR specification:

$$
\begin{aligned}
& Y_{0}={ }_{\mathrm{nu}}[\text { true* } \cdot \text { SEND }] Y_{1} \\
& \left.\sqrt{Y_{1}=\mathrm{mu}}\langle\text { true }\rangle \text { true and [not RECV }\right] Y_{1}
\end{aligned}
$$

- Simple PDLR specification:

$$
\begin{aligned}
& Y_{0}=_{\mathrm{nu}}[\text { true* } . \mathrm{SEND}] Y_{1}
\end{aligned} \rightarrow \begin{aligned}
& Y_{1}={ }_{m u} Y_{2} \text { and } Y_{3} \\
& Y_{2}={ }_{m u}\langle\text { true }\rangle \text { true } \\
& Y_{3}={ }_{\mathrm{mu}}[\text { not RECV }] Y_{1}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{0}={ }_{n u} Y_{4} \text { and } Y_{5} \\
& Y_{4}={ }_{n u}[\text { SEND }] Y_{1} \\
& Y_{5}={ }_{n u}[\text { true }] Y_{0} \\
& \qquad \quad \\
& Y_{1}= \\
& Y_{2 u} Y_{2} \text { and } Y_{3} \\
& \left.Y_{3}={ }_{m u}[\text { true }\rangle \text { not RECV }\right] Y_{1} \\
& \hline
\end{aligned}
$$

Translation to BESs

Boolean variables: $x_{i, j} \equiv s_{i} \models Y_{j}$

$$
\begin{aligned}
& x_{0,0}=_{v} x_{0,4} \wedge x_{0,5} \\
& x_{0,4}=_{v} x_{1,1} \\
& x_{0,5}=_{v} x_{1,0} \\
& x_{1,0}=_{v} x_{1,4} \wedge x_{1,5} \\
& x_{1,4}=_{v} \text { true } \\
& x_{1,5}=_{v} x_{2,0} \wedge x_{3,0} \\
& x_{2,0}=_{v} x_{2,4} \wedge x_{2,5} \\
& x_{2,4}=_{v} \text { true } \\
& x_{2,5}=_{v} x_{0,0} \\
& x_{3,0}=_{v} x_{3,4} \wedge x_{3,5} \\
& x_{3,4}=_{v} \text { true } \\
& x_{3,5}=_{v} x_{0,0}
\end{aligned} \quad \left\lvert\, \begin{aligned}
& x_{1,1} x_{\mu} x_{1,2} \wedge x_{1,3} \\
& x_{1,2}=_{\mu} \text { true } \\
& x_{1,3}=_{\mu} x_{2,1} \wedge x_{3,1} \\
& x_{2,1}{ }_{\mu} x_{2,2} \wedge x_{2,3} \\
& x_{2,2}=_{\mu} \text { true } \\
& x_{2,3}=_{\mu} \text { true } \\
& x_{3,1}=_{\mu} x_{3,2} \wedge x_{3,3} \\
& x_{3,2}=_{\mu} \text { true } \\
& x_{3,3}=_{\mu} x_{0,1} \\
& x_{0,1}=_{\mu} x_{0,2} \wedge x_{0,3} \\
& x_{0,2}=_{\mu} \text { true } \\
& x_{0,3}=_{\mu} x_{1,1} \\
& \hline
\end{aligned}\right.
$$

Local BES resolution with diagnostic

Additional operators

- Mechanisms for macro-definition (overloaded) and library inclusion
- Libraries encoding the operators of CTL and ACTL
$\operatorname{EU}\left(\varphi_{1}, \varphi_{2}\right)=m u Y . \varphi_{2}$ or $\left(\varphi_{1}\right.$ and \langle true $\left.\rangle Y\right)$
$\operatorname{EU}\left(\varphi_{1}, \alpha_{1}, \alpha_{2}, \varphi_{2}\right)=m u Y .\left\langle\alpha_{2}\right\rangle \varphi_{2}$ or $\left(\varphi_{1}\right.$ and $\left.\left\langle\alpha_{1}\right\rangle Y\right)$
- Libraries of high-level property patterns [Dwyer-99]
- Property classes:
- Absence, existence, universality, precedence, response
- Property scopes:
- Globally, before a, after a, between a and b, after a until b
- More info:
- http://www.inrialpes.fr/vasy/cadp/resources

Disjunctive BES

- Disjunctive boolean graph:
- Potentiality operator of CTL

$$
\begin{aligned}
& \mathrm{E}\left[\varphi_{1} \cup \varphi_{2}\right]=\mu X . \varphi_{2} \vee\left(\varphi_{1} \wedge\langle\mathrm{~T}\rangle X\right) \\
& \left\{X==_{\mu} \varphi_{2} \vee Y, Y=_{\mu} \varphi_{1} \wedge Z, Z={ }_{\mu}\langle\mathrm{T}\rangle X\right\} \\
& \left\{X_{\mathrm{s}}=_{\mu} \varphi_{2 \mathrm{~s}} \vee Y_{\mathrm{s}}, Y_{\mathrm{s}}=_{\mu} \varphi_{1 \mathrm{~s}} \wedge Z_{\mathrm{s}}, Z_{\mathrm{s}}={ }_{\mu} \vee_{s \rightarrow s^{\prime}} X_{s^{\prime}}\right\}
\end{aligned}
$$

- Possibility modality of PDL
$\left\langle(a \mid b)^{*} . c\right\rangle \mathrm{T}$
$\left\{X={ }_{\mu}\langle c\rangle T \vee\langle a\rangle X \vee\langle b\rangle X\right\}$ $\left\{X_{s}=\mu\left(\vee_{s \rightarrow c s^{\prime}} T\right) \vee\left(\vee_{s \rightarrow a s^{\prime}} X_{s^{\prime}}\right) \vee\left(\vee_{s \rightarrow b s^{\prime}} X_{s^{\prime}}\right)\right\}$
- Algorithm A3 (memory \downarrow)

Linear-time model checking (looping operator of PDL-delta)

- Translation in mu-calculus of alternation depth 2 [Emerson-Lei-86]:

$$
<R>@=n u X .<R>X
$$

if R contains *-operators, the formula is of alternation depth 2

- But still checkable in linear-time:
- Mark LTS states potentially satisfying X
- Leads to marked variables in the disjunctive BES
- Computation of boolean SCCs containing marked variables
- A3 cyc algorithm [Mateescu-Thivolle-08]
- Can serve for LTL model checking
- Allows linear-time handling of repeated invocations

Model checking

 of data-based propertiesERROR

(Evaluator 4.0)

- Every SEND is followed by a RECV after 2 steps:
[true* . SEND] < true \{ 2 \}. RECV > true = nu X . ([SEND] mu Y (c:Nat := 2) .

$$
\begin{aligned}
& \text { if } c=0 \text { then < RECV > true } \\
& \quad \text { else < true > } Y(c-1) \\
& \text { end if }
\end{aligned}
$$

and
[true] X)

Translation into HMLR

$$
\begin{aligned}
& \text { nu X . [SEND] } \\
& \text { and [true] X } \\
& \text { end if }
\end{aligned}
$$

Translation into BES and resolution

ERROR

$\{X=$ nu
[SEND] Y (2) and
[true] X
$\}$

- Principle:

$$
\begin{aligned}
& X_{s}=<s \mid=X » \\
& Y_{s}(c)=<S \mid=Y(c) »
\end{aligned}
$$

\{ $Y(\mathrm{c}: \mathrm{Nat})={ }_{\mathrm{mu}}$
if $c=0$ then < RECV > true else < true > Y (c - 1)
end if
\}
都

Divergence

- In presence of data parameters of infinite types, termination of model checking is not guaranteed anymore
- (pathological) property:

$$
\operatorname{mu} X(\mathrm{n}: \text { Nat }:=0) .<a>X(\mathrm{n}+1)
$$

- BES : $\left\{X_{s}(n: N a t)=_{m u}\right.$ OR $\left._{s \rightarrow a s^{\prime}} X_{s^{\prime}}(n+1)\right\}=$ $\left\{X_{s}(n: N a t)={ }_{m u} X_{s}(n+1)\right\}$

Conjunctive BES

- Conjunctive boolean graph:
- Inevitability operator of CTL

$$
\begin{aligned}
& \mathrm{A}\left[\varphi_{1} \cup \varphi_{2}\right]=\mu X . \varphi_{2} \vee\left(\varphi_{1} \wedge\langle\mathrm{~T}\rangle \mathrm{T} \wedge[\mathrm{~T}] X\right) \\
& \left\{X={ }_{\mu} \varphi_{2} \vee Y, Y==_{\mu} \varphi_{1} \wedge Z \wedge[\mathrm{~T}] X, Z={ }_{\mu}\langle\mathrm{T}\rangle \mathrm{T}\right\} \\
& \left\{X_{s}={ }_{\mu} \varphi_{2 s} \vee Y_{s}, Y_{\mathrm{s}}=_{\mu} \varphi_{1 s} \wedge Z_{s} \wedge\left(\wedge_{s \rightarrow s^{\prime}} X_{s^{\prime}}\right), Z_{s}={ }_{\mu} \vee_{s \rightarrow s^{\prime}} \mathrm{T}\right\}
\end{aligned}
$$

- Necessity modality of PDL

$$
\begin{aligned}
& {\left[(a \mid b)^{*} \cdot c\right] F} \\
& \left\{X==_{\mu}[c] F \wedge[a] X \wedge[b] X\right\} \\
& \left\{X_{s}={ }_{\mu}\left(\wedge_{s \rightarrow c s}, F\right) \wedge\left(\wedge_{s \rightarrow a s^{\prime}} X_{s^{\prime}}\right) \wedge\left(\wedge_{s \rightarrow b s^{\prime}} X_{s^{\prime}}\right)\right\}
\end{aligned}
$$

- Algorithm A4 (memory \downarrow)

Acyclic BES

- Acyclic boolean graph:
- Acyclic LTS and guarded formulas [Mateescu-02]
- Handling of CTL (and ACTL) operators:
$-\mathrm{E}\left[\varphi_{1} \cup \varphi_{2}\right]=\mu X . \varphi_{2} \vee\left(\varphi_{1} \wedge\langle\mathrm{~T}\rangle X\right)$
$-\mathrm{A}\left[\varphi_{1} \cup \varphi_{2}\right]=\mu X . \varphi_{2} \vee\left(\varphi_{1} \wedge\langle\mathrm{~T}\rangle \mathrm{T} \wedge[\mathrm{T}] X\right)$
- Handling of full mu-calculus
- Translation to guarded form
- Conversion from maximal to minimal fixed points [Mateescu-02]
- Algorithm A2 (memory \downarrow)

Algorithm A1 vs. A3/A4

 (execution time - CADP demos)

Algorithm A1 vs. A3/A4 (memory consumption - CADP demos)

Algorithm A1 vs. A3/A4 (diagnostic size - BRP protocol)

Model checking (summary)

- General boolean graph:
- Any LTS and any alternation-free μ-calculus formula
- Algorithms A0 and A1 (diagnostic depth \downarrow)
- Acyclic boolean graph:
- Acyclic LTS and guarded formula (CTL, ACTL)
- Acyclic LTS and μ-calculus formula (via reduction)
- Algorithm A2 (memory \downarrow)
- Disjunctive / conjunctive boolean graph:
- Any LTS and any formula of CTL, ACTL, PDL
- Algorithm A3/A4 (memory \downarrow)
- Matches the best local algorithms dedicated to CTL [Vergauwen-Lewi-93]

Partial order reduction

- t-confluence [Groote-vandePol-00]
- Form of partial-order reduction defined on LTSs
- Preserves branching bisimulation
- Principle
- Detection of τ-confluent transitions
- Elimination of "neighbour" transitions (τ-prioritisation)
- On-the-fly LTS reduction
- Direct approach [Blom-vandePol-02]
- BES-based approach [Pace-Lang-Mateescu-03]
- Define τ-confluence in terms of a BES
- Detect τ-confluent transitions by locally solving the BES
- Apply τ-prioritisation and compression on sequences

Translation to a BES

Tau-prioritisation and compression

Original LTS

Reduced LTS
(exploration from s_{0} and s_{7})

- In practice: reductions of a factor $10^{2}-10^{3}$ [Mateescu-05]

Model checking using A3/A4 (effect of τ-confluence reduction - time - Erathostene's sieve)

Model checking using A3/A4 (effect of τ-confluence reduction - memory - Erathostene's sieve)

Checking branching bisimulation

 (effect of τ-confluence reduction - time - BRP protocol)

Checking branching bisimulation

 (effect of t-confluence reduction - memory - BRP protocol)

On-the-fly verification (summary)

Already available:

- Generic Caesar_Solve library [Mateescu-03,06]
- 9 local BES resolution algorithms (A8 added in 2008)
- Diagnostic generation features
- Applications: Bisimulator, Evaluator 3.5, Reductor 5.0

Ongoing:

- Distributed BES resolution algorithms on clusters of machines [Joubert-Mateescu-04,05,06]
- New applications
- Test generation
- Software adaptation
- Discrete controller synthesis

Case study

- SCSI-2 bus arbitration protocol
- Description in LOTOS
- Specification of properties in TL
- Verification using Evaluator 3.5 and 4.0
- Interpretation of diagnostics

SCSI-2 bus arbitration protocol

- Prioritized arbitration mechanism, based on static IDs on bus (devices numbered from 0 to $\mathrm{n}-1$)
- Fairness problem (starvation of low-priority disks)

Architecture of the system

DISK [ARB, CMD, REC] (0,0) |[ARB]|
DISK [ARB, CMD, REC] $(1,0)$
|[ARB]|
|[ARB]|
DISK [ARB, CMD, REC] $(6,0)$
8-ary rendezvous on gate ARB
)
|[ARB, CMD, REC]|
binary rendezvous on gates CMD, REC
CONTROLLER [ARB, CMD, REC] (NC, ZERO)

Synchronization constraints (bus arbitration policy)

- Synchronizations on gate ARB:

> ARB ?r0, ...,r7:Bool [C (r0, ..., r7, n)] ; ...
where:

- $\mathrm{rO}, \ldots, r 7=$ values of the electric signals on the bus
- $\mathrm{n}=$ index of the current device
- Two particular cases for guard condition C:
- P (r0, ..., r7, n): device n does not ask the bus
- A (r0, ..., r7, n): device n asks and obtains access to bus

Guard conditions

- Predicate $\mathrm{P}(\mathrm{rO}, \ldots, \mathrm{r} 7, \mathrm{n})=\neg \mathrm{r}_{\mathrm{n}}$

P (r0, ..., r7, 0) = not (r0)
P(r0, ..., r7, 1) = not (r1)

P (r0, ..., r7, 7) = not (r7)

- Predicate A $(r 0, \ldots, r 7, n)=r_{n} \wedge \forall i \in[n+1,7] . \neg r_{i}$
$A(r 0, \ldots, r 7,0)=r 0$ and not (r 1 or \ldots or r 7)
$\mathrm{A}(\mathrm{r} 0, \ldots, r 7,1)=r 1$ and not (r 2 or \ldots or r 7)
$\mathrm{A}(\mathrm{rO}, \ldots, \mathrm{r} 7,7)=\mathrm{r} 7$

Controller process

process Controller [ARB, CMD, REC] (C:Contents) : noexit := (* communicate with disk N *)
choice $\mathrm{N}:$ Nat []

$$
\begin{aligned}
& {[(\mathrm{N}>=0) \text { and }(\mathrm{N}<=6)]->} \\
& \quad \text { Controller2 [ARB, CMD, REC] }(\mathrm{C}, \mathrm{~N})
\end{aligned}
$$

[]
(* does not request the bus *)
ARB ?r0, ..., r7:Bool [P (r0, ..., r7, 7)];
Controller [ARB, CMD, REC] (C)
endproc

Controller process

process Controller2 [ARB, CMD, REC] (C:Contents, $\mathrm{N}: \mathrm{Nat})$: noexit :=
[not_full (C, N)] ->
(* request and obtain the bus *) ARB ?r0, ..., r7:Bool [A (r0, ..., r7, 7)];

CMD ! N ; (* send a command *)
Controller [ARB, CMD, REC] (incr (C, N))
[]
REC ! N ; (* receive an acknowledgement *) Controller [ARB, CMD, REC] (decr (C, N)) endproc

Disk process

process DISK [ARB, CMD, REC] (N, L:Nat) : noexit := CMD !N; DISK [ARB,CMD,REC] (N, L+1)
[]
[L>0]-> (
ARB ?r0, ..., r7:Bool [A (rO, ..., r7, N)];
REC ! N ; DISK [ARB, CMD, REC] (N, L-1)
[]
ARB ? $\mathrm{rO}, \ldots, \mathrm{r} 7: \operatorname{Bool}[\operatorname{not}(\mathrm{A}(\mathrm{rO}, \ldots, \mathrm{r} 7, \mathrm{~N}))$ and not (P (r0, ..., r7, N))]; DISK [ARB, CMD, REC] (N, L)
[L = 0] -> ARB ?r0, ..., r7:Bool [P (r0, ..., r7, N)]; DISK [ARB, CMD, REC] (N, L)
endproc

Absence of starvation property (PDL+ACTL formulation)

"Every time a disk i receives a command from the controller, it will be able to gain access to the bus in order to send the corresponding acknowledgement"
[true*. $\mathrm{cmd}_{\mathrm{i}}$] A [true ${ }_{\text {true }} \mathrm{U}_{\text {reci }}$ true]

- Property fails for $i<n c$
- Counterexample produced by Evaluator 3.5 for $i=0$ and $n c=1$:

Starvation property

 (MCL formulation)"Every time a disk i with priority lower than the controller nc receives a command, its access to the bus can be continuously preempted by any other disk j with higher priority"
[true*. \{cmd ?i:Nat where $\mathrm{i}<\mathrm{nc}\}$]
forall j:Nat among $\{i+1 \ldots n-1\}$.
(j <> nc) implies
$<(\text { not }\{r e c!i\})^{*}$. \{cmd ! j\} . (not \{rec !i\})*. \{rec ! $\}$

Safety property

(MCL formulation)
"The difference between the number of commands received and reconnections sent by a disk i varies between 0 and 8 (the size of the buffers associated to disks)"
forall i:Nat among \{ 0 ... n-1 $\}$.

```
nu Y (c:Nat:=0) . (
    [ {cmd !i}] ((c < 8) and Y (c + 1))
    and
    [{rec !i}] ((c > 0) and Y (c-1))
    and
    [ not ({cmd !i} or {rec !i})] Y (c)
```

)

Safety property (standard mu-calculus formulation)

```
nu CMD_REC_0.(
    [ CMD_i] nu CMD_REC_1 . (
        [ CMD_i] nu CMD_REC_2.(
        [ CMD_i] nu CMD_REC_3.(
            [ CMD_i] nu CMD_REC_4.(
                [ CMD_i] nu CMD_REC_5.(
                [ CMD_i] nu CMD_REC_6 . (
                    [CMD_i] nu CMD_REC_7. (
                    [ CMD_i] nu CMD_REC_8.(
                [ CMD_i] false
                    and
                    [ REC_i ] CMD_REC_7
                    and
                    [ not ((CMD_i) or (REC_i))] CMD_REC_8
            )
            and
            [ REC_i ] CMD_REC_6
            and
                            [ not ((CMD_i) or (REC_i))] CMD_REC_7
                    )
                            and
                    [ REC_i] CMD_REC_5
                    and
                    [ not ((CMD_i) or (REC_i)) ] CMD_REC_6
                )
```

```
and
[ REC_i ]CMD_REC_4
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_5
)
and
[ REC_i] CMD_REC_3
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_4
)
and
[ REC_i ] CMD_REC_2
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_3
)
and
[ REC_i ] CMD_REC_1
and
[ not ((CMD_i) or (REC_i))] CMD_REC_2
)
and
[ REC_i ] CMD_REC_0
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_1
)
and
[ REC_i] false
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_0
)
```


Discussion and perspectives

- Model-based verification techniques:
- Bug hunting, useful in early stages of the design process
- Confronted with (very) large models
- Temporal logics extended with data (XTL, Evaluator 4.0)
- Machinery for on-the-fly verification (Open/Caesar)
- Perspectives:
- Parallel and distributed algorithms
- State space construction
- BES resolution
- New applications
- Analysis of genetic regulatory networks

