
Model Checking of Action-Based
Concurrent Systems

Radu

Mateescu
INRIA Rhône-Alpes / VASY

http://www.inrialpes.fr/vasy

VTSA'08 - Max Planck Institute, Saarbrücken 2

Why formal verification?

Therac-25 radiotherapy

 accidents (1985-1987)
Mars climate orbiter

 failure (1999)
Ariane-5 launch

 failure (1996)

Characteristics of these systems
–

Errors due to software

–

Complex, often involving parallelism
–

Safety-critical

formal verification is useful for early error detection

VTSA'08 - Max Planck Institute, Saarbrücken 3

informal
requirements

implementation

formal
specification

traces

expected
properties

model

modeling

system

verification
(model checking,

equivalence checking,
visual checking)

testing

requirements
capture

rapid
proto-
typing

VTSA'08 - Max Planck Institute, Saarbrücken 4

Outline

Communicating automata

Process algebraic languages

Action-based temporal logics

On-the-fly verification

Case study

Discussion and perspectives

VTSA'08 - Max Planck Institute, Saarbrücken 5

Asynchronous concurrent systems

Characteristics:
Set of distributed processes
Message-passing communication
Nondeterminism

msg msg

ack

Applications:
Hardware
Software
Telecommunications

VTSA'08 - Max Planck Institute, Saarbrücken 6

CADP toolbox:
 Construction and Analysis of Distributed Processes

 (http://www.inrialpes.fr/vasy/cadp)
Description languages:
–

ISO standards (LOTOS, E-LOTOS)

–

Networks of communicating automata

Functionalities:
–

Compilation and rapid prototyping

–

Interactive and guided simulation
–

Equivalence checking and model checking

–

Test generation

Case-studies and applications:
–

>100 industrial case-studies

–

>30 derived tools

Distribution:

over 400 sites (2008)

VTSA'08 - Max Planck Institute, Saarbrücken 7

Communicating automata

Basic notions

Implicit and explicit representations

Parallel composition and synchronization

Hiding and renaming

Behavioural

equivalences

VTSA'08 - Max Planck Institute, Saarbrücken 8

Transformational
systems

Work by computing a result
in function of the entries
Absence of termination
undesirable
Upon termination, the
result is unique

Sequential programming
(sorting algorithms, graph
traversals, syntax analysis,
...)

Reactive
systems

Work by reacting to the
stimuli of the environment
Absence of termination
desirable
Different occurrences of
the same request may
produce different results
Parallel programming
(operating systems,
communication protocols,
Web services, ...)

• Concurrent execution
• Communication + synchronization

VTSA'08 - Max Planck Institute, Saarbrücken 9

Communicating automata

Simple formalism describing the behaviour

of
concurrent systems
Black-box

approach:

–

One cannot inspect directly the state of the system
–

The behaviour

of the system can be known only through

its interactions with the environment

Synchronization on a gate requires the participation
of the process and of its environment (rendezvous)

Serverreq res
process/automaton (black box)

gate (communication channel)

VTSA'08 - Max Planck Institute, Saarbrücken 10

Automaton

(LTS)

Labeled

Transition System

M

= 〈S, A, T, s0

〉
–

S: set of

states

(s1

, s2

, ...)
–

A: set of

visible actions

(a1

, a2

, ...)
–

T: transition

relation (s1

–a s2 ∈ T)
–

s0 ∈

S: initial state

Example:
 process

client1

Other

kinds

of

automata:
–

Kripke

strictures

(information associated

to states)

–

Input/output automata

[Lynch-Tuttle]

req1

res1

s0 s1
sequential

model

of

a reactive

system
behaviour

internal

action
(noted

i

or τ)

every

state is

reachable
from

the

initial state

deadlock

(sink) state:
no

outgoing

transitions

VTSA'08 - Max Planck Institute, Saarbrücken 11

LTS representations in CADP
 (http://www.inrialpes.fr/vasy/cadp)

Explicit
List of transitions
Allows forward and
backward exploration
Suitable for global
verification
BCG

(Binary Coded Graphs)

environment
–

API in C for reading/writing

–

Tools and libraries for explicit
graph manipulation (bcg_io,
bcg_draw, bcg_info,
bcg_edit, bcg_labels, ...)

–

Global verification tools (XTL)

Implicit
“Successor”

function

Allows forward exploration
only
Suitable for local (or on-

 the-fly) verification
Open/Caesar

environment

[Garavel-98]
–

API in C for LTS exploration

–

Libraries with data structures
for implicit graph manipu-

 lation

(stacks, tables, edge
lists, hash functions, ...)

–

On-the-fly verification tools
(Bisimulator, Evaluator, ...)

VTSA'08 - Max Planck Institute, Saarbrücken 12

Server example
 (modeled

using

a single automaton)

Server able to process

two

requests

concurrently
State variables u1

, u2

storing

the

request

status:
–

Empty

(e)

–

Received

(r)
–

Handled

(h)

A state: couple <u1

, u2

>
Initial state: <e, e> (ee

for short)

Gates (actions):
–

req1, req2: receive

a request

–

res1, res2: send

a response
–

i: internal

action

Server
req2 res2

res1req1

VTSA'08 - Max Planck Institute, Saarbrücken 13

LTS of

the

server
 (9 states, 16 transitions)

ee

re

he

er

eh

rhhr

rr

hh

req1 req2

res1 res2

i ireq1

res1

i

i

req1

res1

req2

req2 i

i

res2

res2

VTSA'08 - Max Planck Institute, Saarbrücken 14

Remarks

All

the

theoretical

states are reachable:
| u1

| * | u2

| = 3 * 3 = 9
(no

synchronization

between

request

processings)

There

is

no

sink

state (the

system

is

deadlock-free)
From

every

state, it

is

possible to reach

the

initial

state again

(the

server

can

be

re-initialized)
Shortcomings

of

modeling

with

a single automaton:

–

One

must predict

all

the

possible request

arrival

orders
–

For more complex

systems, the

LTS size

grows

rapidly

need of higher-level modeling features

VTSA'08 - Max Planck Institute, Saarbrücken 15

Server example
 (modeled

using

two

concurrent automata)

Decomposition

of

the

system

in two

subsystems
–

Every

type of

request

is

handled

by a subsystem

–

In the

server

example, subsystems

are independent

Simpler

description w.r.t.

single automaton:
 3 + 3 = 6 states

Server

req2 res2

res1req1

Server2

Server1

e

h

req1 res1
i

r

e

h

req2 res2
i

r

VTSA'08 - Max Planck Institute, Saarbrücken 16

Decomposition

in
 concurrent subsystems

Required

at

physical

level
–

Modeling

of

distributed

 activities
–

Multiprocessor/multitask

 ing

execution

platform

Chosen

at

logical

level
–

Simplified

design of

the

 system
–

Well-structured

 programs

Communication and

synchronization

between
 subsystems

may

introduce

behavioural

errors

 (e.g., deadlocks)
In practice, even

simple parallel

programs

may

 reveal

difficult

to analyze
need of computer-assisted verification

VTSA'08 - Max Planck Institute, Saarbrücken 17

Parallel composition (“product”)
 of automata

Goals:
–

Define internal composition laws

⊗

: LTS ×

... ×

LTS →

LTS
expressing the parallel composition of 2 (or more) LTSs

–

Allow synchronizations on one or several actions (gates)
–

Allow hierarchical decomposition of a system

Consequences:
–

A product of automata can always be translated into a
single (sequential) automaton

–

The logical parallelism can be implemented sequentially
(e.g., time-sharing OS)

VTSA'08 - Max Planck Institute, Saarbrücken 18

Binary

parallel

composition
 (syntax)

EXP language [Lang-05]
–

Description of communicating automata

–

Extensive set of operators
Parallel compositions (binary, general, ...)
Synchronization vectors
Hiding / renaming, cutting, priority, ...

–

Exp.Open

compiler implicit LTS representation

Binary parallel composition:
“lts1.bcg”

|[G1, ..., Gn]| “lts2.bcg”

“lts1.bcg”

||| “lts2.bcg”

with synchronization
on G1, ..., Gn

without synchronization
(interleaving)

VTSA'08 - Max Planck Institute, Saarbrücken 19

Binary

parallel

composition
 (semantics)

Let M1

= 〈S1

, A1

, T1

, s01

〉, M2

= 〈S2

, A2

, T2

, s02

〉

and
L ⊆

A1

∩

A2

a set of

visible actions to be

synchronized.

M1

|[L]| M2

= 〈S, A, T, s0

〉
S = S1

×

S2

A = A1

∪

A2

s0

= 〈s01

, s02

〉
T ⊆

S ×

A ×

S

defined

by R1

-R3

s1
a

s’1 ∧

a∉L

〈s1

, s2〉

a

〈s’1, s2〉

s2
a

s’2 ∧

a∉L

〈s1

, s2〉

a

〈s1, s’2〉

s1
a

s’1 ∧

s2

a

s’2 ∧

a∈L

〈s1

, s2〉

a

〈s’1, s’2〉

(R1

)

(R2

)

(R3

)

VTSA'08 - Max Planck Institute, Saarbrücken 20

〈1〉

〈2〉 〈3〉

〈4〉

〈5〉 〈6〉

a b b c|[b]| =

〈1, 4〉

〈2, 4〉 〈1, 6〉

〈2, 6〉

〈3, 5〉

a

a

b c

c

(R1

)

(R1

)

(R2

)

(R2

)

(R3

)

Example

VTSA'08 - Max Planck Institute, Saarbrücken 21

Interleaving semantics

Hypothesis:
–

Every action is atomic

–

One can observe at most one action at a time

suitable paradigm for distributed systems

Parallelism can be expressed in terms of choice

and
sequence

(expansion theorem

[Milner-89])

|||a b =

a

a

b

b

interleaving lozenge

VTSA'08 - Max Planck Institute, Saarbrücken 22

Internal and external choice

External

choice (the environment decides which
branch of the choice will be executed)

Internal

choice (the system decides)

the environment can force the execution of a and b
by synchronizing on that actiona b

a a the environment may synchronize on a, but this will
not remove the nondeterminism

VTSA'08 - Max Planck Institute, Saarbrücken 23

Example of modeling with
 communicating automata

Mutual exclusion problem:
Given two parallel processes

P0

and P1

competing
for a shared resource, guarantee that at most one
process accesses the resource at a given time.
Several solutions were proposed at software level:
–

In centralized setting (Peterson, Dekker, Knuth, ...)

–

In distributed setting (Lamport, ...)

M. Raynal. Algorithmique du parallélisme: le
problème de l’exclusion mutuelle.
Dunod Informatique, 1984.

VTSA'08 - Max Planck Institute, Saarbrücken 24

loop forever { P0 }
1 : { ncs0 }
2 : d0 := true
3 : t := 0
4 : wait

(d1 = false or

t = 1)

5 : { b_cs0 }
6 : { e_cs0 }
7 : d0 := false
endloop

loop forever { P1 }
1 : { ncs1 }
2 : d1 := true
3 : t := 1
4 : wait

(d0 = false or

t = 0)

5 : { b_cs1 }
6 : { e_cs1 }
7 : d1 := false
endloop

var

d0 : bool

:= false

{ read by P1, written by P0 }

var

d1 : bool

:= false

{ read by P0, written by P1 }

var

t ∈

{0, 1} := 0 { read/written by P0 and P1 }

Peterson’s algorithm [1968]

VTSA'08 - Max Planck Institute, Saarbrücken 25

Automata of P0

and P1

1

27

6 3

45

ncs0

“d0 := true”

“t := 0”

“d1 = false ?”

“t = 1 ?”

e_cs0

b_cs0

“d0 := false”

P0

1

27

6 3

45

ncs1

“d1 := true”

“t := 1”

“d0 = false ?”

“t = 0 ?”

e_cs1

b_cs1

“d1 := false”

P1

VTSA'08 - Max Planck Institute, Saarbrücken 26

Automata of d0

, d1

, and t

“d0 := true”

“d0 = false ?”

d0

false

true

“d0 := false”

“d1 := true”

“d1 = false ?”

d1

false

true

“d1 := false”

t

0 1

“t := 1”

“t := 0”

“t = 0 ?” “t = 1 ?”

VTSA'08 - Max Planck Institute, Saarbrücken 27

Architecture of the system
 (graphical)

Synchronized actions: «d0:=false», «d0:=true», ...
Non synchronized actions: ncs0, b_cs0, e_cs0, ...

“d0 := true”
“d0 = false ?”

“d0 := false”
d0

t

d1

P0 P1

ncs0

b_cs0

e_cs0

ncs1

b_cs1

e_cs1“t = 0 ?”
“t = 1 ?”

“t := 1”

“t := 0”

“d1 = false ?” “d1 := false”

“d1 := true”

VTSA'08 - Max Planck Institute, Saarbrücken 28

Architecture of the system
 (textual)

Using binary parallel composition:
(P0 ||| P1)
|[“d0:=false”, “d0:=true”, ...]|
(d0 ||| d1 ||| t)

Using general parallel composition:
par

“d0:=false”, “d0:=true”, ... P0
||

“d1:=false”, “d1:=true”, ... P1

||

“d0:=false”, “d0:=true”, “d0=false?” d0
||

“d1:=false”, “d1:=true”, “d1=false?” d1

||

“t:=0”, “t:=1”, “t=0?”, “t=1?” t
end par

VTSA'08 - Max Planck Institute, Saarbrücken 29

Construction of the LTS
 (“product automaton”)

Explicit-state

method:
–

LTS construction by exploring forward the transition
relation, starting at the initial state

–

Transitions are generated by using the R1

, R2

, R3 rules
–

Detect already visited states in order to avoid cycling

Several possible exploration strategies:
–

Breadth-first, depth-first

–

Guided by a criterion / property, ...

Several types of algorithms:
–

Sequential, parallel, distributed, ...

VTSA'08 - Max Planck Institute, Saarbrücken 30

FF011

FF012FF021

VF041

FV013FF022VF031

VF032 FV023 FF114

ncs0 ncs1

d0:=true d1:=truencs1 ncs0

t:=0 t:=1d0:=true d1:=truencs1 ncs0

………………………………………………………………...

Construction of the LTS

S = { F,V } ×

{ F,V } ×

{ 0,1 } ×

{ 1..7 } ×

{ 1..7 }
A = { ncs0, ncs1, ..., “d0:=true”, ... }
s0

= 〈

F, F, 0, 1, 1 〉

= FF011
T =

VTSA'08 - Max Planck Institute, Saarbrücken 31

Remarks

The LTS of Peterson’s algorithm is finite:
| S | ≅

50 ≤

2 ×

2 ×

2 ×

7 ×

7 = 392

In the presence of synchronizations, the number of
reachable states is (much) smaller than the size of
the cartesian

product of the variable domains

Some tools of CADP for LTS manipulation:
–

OCIS (step-by-step and guided simulation)

–

Executor (random exploration)
–

Exhibitor (search for regular sequences)

–

Terminator (search for deadlocks)

can be used in conjunction with Exp.Open

VTSA'08 - Max Planck Institute, Saarbrücken 32

Verification

Once the LTS is generated, one can formulate and
verify automatically the desired properties of the
system
For Peterson’s algorithm:
–

Deadlock freedom: each state has at least one successor

–

Mutual exclusion: at most one process can be in the
critical section at a given time

–

Liveness: no process can indefinitely overtake the other
when accessing its critical section

[see the chapter on temporal logics]

VTSA'08 - Max Planck Institute, Saarbrücken 33

Limitations of

binary

parallel
 composition

Several ways of modeling a process network:
–

Absence of canonical form

–

Difficult to determine whether two composition
expressions denote the same process network

–

Difficult to retrieve the process network from a
composition expression

The semantics of “|[G1

, ..., Gn

]|”

(rule R3

) does not
prevent that other processes

 synchronize on G1

, ..., Gn
 (maximal cooperation)

Some networks cannot be
 modeled using “|[]|”: P2

P1

P3

G

G

G binary

synchro-
nization

on G

VTSA'08 - Max Planck Institute, Saarbrücken 34

Example
 (ring network [Garavel-Sighireanu-99])

Description using binary
 parallel composition:

(P1

|[G1

]|

P2

|[G2

]|

P3

|[G3

]| P4

)
|[G4

, G5

]|
P5

P2

P1

P3
G3

G1

G2

P4

P5

G5

G4

the composition expression
does not reflect the symmetry
of the process network

VTSA'08 - Max Planck Institute, Saarbrücken 35

General parallel composition
 [Garavel-Sighireanu-99]

“Graphical”

parallel composition operator allowing
the composition of several

automata and their

 m

among n

synchronization:
par

[g1

#m1

, ..., gp

#mp

in]
G1 B1

||

G2 B2

. . .
||

Gn Bn

end par

automata (processes)

communication interfaces
(gate lists)

gates with their associated
synchronization degrees

VTSA'08 - Max Planck Institute, Saarbrücken 36

General parallel composition
 (semantics –

rules without synchronization degrees)

∃

a, i . Bi

–a Bi’ ∧ a ∉ Gi ∧ ∀ j ≠ i . Bj’ = Bj

par

G1 B1, …, Gn Bn –a par G1 B1’, …, Gn Bn’

∃

a. ∀

i . if a

∈

Gi

then Bi

–a Bi’ else Bj’ = Bj

par

G1 B1, …, Gn Bn –a par G1 B1’, …, Gn Bn’

(GR1)

(GR2)

mandatory interleaved execution of
non-synchronized actions

execution in maximal cooperation of
synchronized actions

VTSA'08 - Max Planck Institute, Saarbrücken 37

Example (1/3)

Process network unexpressible

using “|[]|”:

Description using general
 parallel composition:

par

G#2 in
G P1

|| G P2

|| G P3

end par

P2

P1

P3

G

G

G

maximal cooperation avoided by
means of synchronization degrees

VTSA'08 - Max Planck Institute, Saarbrücken 38

Example (2/3)
 (ring network [Garavel-Sighireanu-99])

Description using general
 parallel composition:

par
G1

, G5 P1

||

G2

, G1 P2

||

G3

, G2 P3

||

G4

, G3 P4

||

G5

, G4 P5

end par

P2

P1

P3
G3

G1

G2

P4

P5

G5

G4

the symmetry of the process
network is also present in the
composition expression

VTSA'08 - Max Planck Institute, Saarbrücken 39

Example (3/3)
Definition of “|[]|”

in terms of “par”:

B1

|[G1

, ..., Gn

]|

B2

= par

G1

, ..., Gn B1

|| G1

, ..., Gn B2

end par
CREW (Concurrent Read / Exclusive Write):
par

W#2 in
R, W P1

||

R, W P2

||

R, W P3

||

R, W VAR
end par

VAR

P1 P2 P3

W W WR R R

VTSA'08 - Max Planck Institute, Saarbrücken 40

Parallel composition using
synchronization vectors

Primitive form of n-ary

parallel composition
Proposed in various networks of automata:
MEC [Arnold-Nivat], FC2 [deSimone-Bouali-Madelaine]
Synchronizations are made explicit by means of
synchronization vectors
Syntax in the EXP language [Lang-05]:

par

V1

, ..., Vm

in
B1

|| ... || Bn

end par
V ::= (G1

| _) * ... * (Gn

| _) G0

synchronization vectors

wildcard

VTSA'08 - Max Planck Institute, Saarbrücken 41

Example
 (client-server with gate multiplexing)

Description using synchronization vectors:
par

req

* _ * req req, rep * _ * rep rep,

_ * req

* req req, _ * rep * rep rep
in

Client1

|| Client2

|| Server
end par

Client2

Server

Client1
req

res

req

res

binary synchronization
on gates req

and

res

VTSA'08 - Max Planck Institute, Saarbrücken 42

Behavioural

equivalence

Useful for determining whether two LTSs

denote
the same behaviour
Allows to:
–

Understand the semantics of languages (communicating
automata, process algebras) having LTS models

–

Define and assess translations between languages
–

Refine specifications whilst preserving the equivalence of
their corresponding LTSs

–

Replace certain system components by other, equivalent
ones (maintenance)

–

Exploit identities between behaviour

expressions
(e.g., B1

|[G]|

B2

= B2

|[G]|

B1

) in analysis tools

VTSA'08 - Max Planck Institute, Saarbrücken 43

Equivalence relations between LTSs

A large spectrum of equivalence relations proposed:
–

Trace

equivalence (≅

language equivalence)

–

Strong

bisimulation

[Park-81]
–

Weak

bisimulation

[Milner-89]

–

Branching

bisimulation

[Bergstra-Klop-84]
–

Safety equivalence [Bouajjani-et-al-90]

–

...

a

c

a

b

a

cb
equivalent?

VTSA'08 - Max Planck Institute, Saarbrücken 44

Trace equivalence

Trace: sequence of visible actions
 (e.g., σ

= req1

res1

req2

res2

)
Notations (a

= visible action):

–

s

=a=>: there exists a transition sequence
 s

–i s1 –i s2 ... –a sk

–

s

=σ=>: there exists a transition sequence
s

=a1

=> s1

... =an

=> sn

such that σ

= a1

... an

Two state are trace equivalents iff

they are the
source of the same traces:

s ≈tr

s’

iff

∀σ

. (s =σ=> iff

s =σ=>)

VTSA'08 - Max Planck Institute, Saarbrücken 45

Example
 (coffee machine)

The two LTSs

below are trace equivalent:

Traces (M1

) = Traces (M2

) =
 { ε, money, money coffee, money tea }

have the two coffee machines the same
behaviour w.r.t. a user?

money

tea

money

coffee

money

teacoffee
≈tr

M1 M2

M1

: risk of deadlock

VTSA'08 - Max Planck Institute, Saarbrücken 46

Bisimulation

Trace equivalence is not sufficiently precise to
characterize the behaviour

of a system w.r.t. its

interaction with its environment
stronger relations (bisimulations) are necessary

Two states s1

et s2

are bisimilar

iff

they are the
origin of the same behaviour

(execution tree):

∀

s1

–a s1’ . ∃ s2–a s2’ . s1’ ≈ s2’
∀

s2

–a s2’ . ∃ s1–a s1’ . s2’ ≈ s1’
Bisimulation

is an equivalence relation (reflexive,

symmetric, and transitive) on states
Two LTSs

are bisimilar

iff

s01

≈

s02

VTSA'08 - Max Planck Institute, Saarbrücken 47

Strong bisimulation

Strong bisimulation: the largest bisimulation
to show that two LTSs are strongly bisimilar, it is
sufficient to find a bisimulation between them

≈st

a
d

b
c

M1 M2

a

d
b
c

a

VTSA'08 - Max Planck Institute, Saarbrücken 48

Is strong bisimulation

sufficient?

Trace equivalence ignores internal actions (i) and
does not capture the branching of transitions

does not distinguish the LTSs below

Strong bisimulation

captures the branching, but
handles internal and visible actions in the same way

does not abstract away the internal behaviour

money

coffee tea

moneymoney

coffee tea

VTSA'08 - Max Planck Institute, Saarbrücken 49

Weak bisimulation
 (or observational equivalence)

In practice, it is necessary to compare LTSs
–

By abstracting away

 internal actions
–

By distinguishing the

 branching

Weak bisimulation
 [Milner-89]:

a τ

τ

. . .

a

. . .

τ τ

τ

. . .

every a-transition
corresponds to an
a-transition preceded and
followed by 0 or more
τ-transitions

every τ -transition
corresponds to 0 or
more τ-transitions

VTSA'08 - Max Planck Institute, Saarbrücken 50

Weak bisimulation
 (formal definition)

Let M1

= <S1

, A, T1

, s01

> and M2

= <S2

, A, T2

, s02

>
A weak bisimulation

is a relation ≈ ⊆ S1

×

S2

such
that s1

≈

s2

iff:
∀

s1

–a s1’ . ∃ s2 –τ*.a.τ* s2’ . s1’ eq s2’
∀

s1

–τ s1’ . ∃ s2 –τ* s2’ . s1’ eq s2’
and

∀

s2

–a s2’ . ∃ s1 –τ*.a.τ* s1’ . s1’ eq s2’
∀

s2

–τ s2’ . ∃ s1 –τ* s1’ . s1’ eq s2’
≈obs

is the largest weak bisimulation
M1

≈obs

M2

iff

s01

≈obs

s02

VTSA'08 - Max Planck Institute, Saarbrücken 51

Example

To show that two LTSs

are weakly bisimilar, it is
sufficient to find a weak bisimulation

between

them

put

put

get

put

put
τ

τ
get

VTSA'08 - Max Planck Institute, Saarbrücken 52

Communicating automata
 (summary)

Advantages:
–

Simple model for describing concurrency

–

Powerful tools for manipulation
MEC (University of Bordeaux)
Auto/Autograph/FC2 (INRIA, Sophia-Antipolis)
CADP (INRIA, Grenoble)

–

Some industrial applications

Shortcomings:
–

Limited expressiveness

No dynamic creation and destruction of automata
Impossible to express: A then (B || C) then D
No handling of data (each variable = an automaton), unacceptable for
complex types (numbers, lists, structures, ...)

–

Maintenance difficult and error-prone (large automata)

VTSA'08 - Max Planck Institute, Saarbrücken 53

Process algebraic languages

Basic notions

Parallel composition and hiding

Sequential composition and choice

Value-passing and guards

Process definition and instantiation

VTSA'08 - Max Planck Institute, Saarbrücken 54

Process algebras

PAs: theoretical formalisms for describing and
studying concurrency and communication
Examples of PAs

for asynchronous systems:

–

CCS (Calculus of Communicating Systems) [Milner-89]

–

CSP (Communicating Sequential Processes) [Hoare-85]

–

ACP (Algebra of Communicating Processes) [Bergstra-Klop-84]

Basic idea of PAs:
–

Provide a small number of operators

–

Construct behaviours

by freely combining operators (lego)

Standardized specification languages:
–

LOTOS [ISO-1988], E-LOTOS [ISO-2001]

VTSA'08 - Max Planck Institute, Saarbrücken 55

LOTOS
 (Language Of Temporal Ordering Specification)

International standard [ISO 8807]

for the formal
specification of telecommunication protocols and
distributed systems

http://www.inrialpes.fr/vasy/cadp/tutorial

Enhanced LOTOS (E-LOTOS): revised standard [2001]
LOTOS contains two “orthogonal”

sublanguages:

–

data

part (for data structures)
–

process

part (for behaviours)

Handling data is necessary for describing realistic
systems. “Basic LOTOS”

(the dataless

fragment of

LOTOS) is useful only for small examples.

VTSA'08 - Max Planck Institute, Saarbrücken 56

LOTOS –

data part

Based on algebraic abstract data types (ActOne):

Caesar.Adt

compiler of CADP [Garavel-Turlier-92]
ADTs

tend to become cumbersome for complex data

manipulations (removed in E-LOTOS).

type

Natural is
sorts

Nat

opns

0

: -> Nat
succ

: Nat -> Nat

+ : Nat, Nat -> Nat
eqns

forall

M, N : Nat

ofsort

Nat
0 + N = N;
succ(M) + N = succ(M

+ N);

endtype

VTSA'08 - Max Planck Institute, Saarbrücken 57

LOTOS –

process part

Combines the best features of the process algebras
CCS [Milner-89]

and CSP [Hoare-85]

Terminal symbols (identifiers):
–

Variables: X1

, …, Xn

–

Gates: G1

, …, Gn

–

Processes: P1

, …, Pn

–

Sorts (≈

types): S1

, …, Sn

–

Functions: F1

, …, Fn

–

Comments: (* …

*)
Caesar compiler of CADP [Garavel-Sifakis-90]

VTSA'08 - Max Planck Institute, Saarbrücken 58

Value expressions and offers

Value expressions: V1

, …, Vn

V

::= X
| F

(V1

, …, Vn

)
| V1

F V2

Offers: O1

, …, On

O

::= ! V

emission of a value V

| ? X

: S

reception of a value to be stored
 in a variable X

of sort S

VTSA'08 - Max Planck Institute, Saarbrücken 59

Behaviour

expressions
 (Lots Of Terribly Obscure Symbols :-)

Behaviours: B1

, …, Bn

B

::= stop

inaction

| G0 O1

... On

[V] ; B0

action prefix

| B1

[] B2

choice

| B1

|[G1

, ..., Gn

]| B2

parallel with synchroni-
 zation

on G1

, ..., Gn

| B1

||| B2

interleaving

| hide

G1

, ..., Gn

in

B0

hiding

| [V

] -> B0

guard

| let

X

: S

= V

in

B0

variable definition

| choice

X

: S

[] B0 choice over values

| P [G1

, ..., Gn

] (V1

, ..., Vn

)

process call

VTSA'08 - Max Planck Institute, Saarbrücken 60

Process definitions

process

P

[G1

, …, Gn

] (X1

:S1

, …, Xn

:Sn

) :=
B

endproc

where:
P

= process name

G1

, …, Gn

= formal gate

parameters of P
X1

, …, Xn

= formal value

parameters of P,
 of sorts S1

, …, Sn

B

= body (behaviour) of P

VTSA'08 - Max Planck Institute, Saarbrücken 61

Remarks

LOTOS process: “black box”

equipped with
communication points (gates) with the outside

process

P

[G1

, G2

, G3

] (...) :=
...

endproc
Each process has its own local (private) variables,
which are not accessible from the outside

communication by rendezvous and
not by shared variables

Parallel composition and encapsulation of boxes:
described using the |[…]|, |||, and hide

operators

PG1

G2

G3

VTSA'08 - Max Planck Institute, Saarbrücken 62

Example

(Sender [PUT, A, D] ||| Receiver

[GET, B, C])
|[A, B, C, D]|
(Medium1 [A, B] ||| Medium2 [C, D])

or
(Sender [PUT, A, D] |[A]| Medium1 [A, B])
|[B, D]|
(Receiver

[GET, B, C] |[C]| Medium2 [C, D])

A BMedium1

Medium2

ReceiverSender
PUT

C

GET

D

VTSA'08 - Max Planck Institute, Saarbrücken 63

Multiple rendezvous

LOTOS parallel operators allow to specify the
synchronization of n

≥

2 processes on the same gate

Example (client-server):

C1 [A] |[A]| C2 [A] |[A]| C3 [A]
|[A]|

S [A]

the three client processes
synchronize with the server
on gate A (4-way rendezvous)

C1 C2 C3

S

A

VTSA'08 - Max Planck Institute, Saarbrücken 64

Binary

rendezvous

The

||| operator

allows

to specify

binary
 rendezvous

(2 among

n) on the

same

gate

Example

(client-server):

(C1 [A] ||| C2 [A] ||| C3 [A])
|[A]|
S [A]

C1 C2 C3

S

A

A A

the three client processes are
competing to access the server
on gate A but only one can get
access at a given moment

VTSA'08 - Max Planck Institute, Saarbrücken 65

Abstraction
 (hiding)

In LOTOS, when a synchronization takes place on a
gate G between two processes, another one can
also synchronize on G (maximal cooperation)
If this is undesirable, it can be forbidden by hiding
the gate (renaming it into i) using the hide

 operator:
hide

G1

, …, Gn

in

B
which means that all actions performed by B

on

gates G1

, …, Gn

are hidden
The gates G1

, …, Gn

are “abstracted away”

(hidden
from the outside world)

VTSA'08 - Max Planck Institute, Saarbrücken 66

Example

process

Network [PUT, GET] :=
hide

A, B, C, D in

(Sender [PUT, A, D] ||| Receiver [GET, B, C])
|[A, B, C, D]|
(Medium1 [A, B] ||| Medium2 [C, D])

endproc

Medium1

Medium2

ReceiverSender
PUT

C

GET

A B

D

VTSA'08 - Max Planck Institute, Saarbrücken 67

Operational semantics

Notations:
–

G: gate list (or set)

–

L: action (transition label), of the form
G V1

, …, Vn

where G

is a gate and V1

, …, Vn

is the list of values
exchanged on G

during the rendezvous

–

gate

(L) = G
–

B

[v

/ X

]: syntactic substitution of all free occurrences

of X

inside B

by a value v

(having the same sort as X)
–

V

[v

/ X

]: idem, substitution of X

by v

in V

VTSA'08 - Max Planck Institute, Saarbrücken 68

Semantics of “|[...]|”

B1

→L

B1

’

∧

gate

(L) ∉

G

B1

evolves
B1

|[G

]| B2

→L

B1

’

|[G

]| B2

B2

→L

B2

’

∧

gate

(L) ∉

G

B2

evolves
B1

|[G

]| B2

→L

B1

|[G

]| B2

’

B1

→L

B1

’

∧

B2

→L

B2

’

∧

gate

(L) ∈

G

B1

and B2

B1

|[G

]| B2

→L

B1

’

|[G

]| B2

’

evolve

Gates have no direction of communication

VTSA'08 - Max Planck Institute, Saarbrücken 69

Semantics of “hide”

B

→L

B’

∧

gate

(L) ∉

G

normal gate
hide

G

in

B

→L

hide

G

in

B’

B

→L

B’

∧

gate

(L) ∈

G

hidden gate
hide

G

in

B

→i

hide

G

in

B’

In LOTOS, i

is a keyword: use with care

VTSA'08 - Max Planck Institute, Saarbrücken 70

Sequential behaviours

LOTOS allows to encode sequential automata by
means of the choice (“[]”) and sequence operators
(“;”

and “stop”), and recursive processes

process

P [A, B, C, D, E] : noexit

:=
A; (

B; stop
[]
C; (

D ; stop
[]
E ; P [A, B, C, D, E]

)
)

endproc

A

B C

D

E

VTSA'08 - Max Planck Institute, Saarbrücken 71

Remarks

The description of automata in LOTOS is not far
from regular expressions

(operators “.”, “|”, “*”),

except that:
–

The “;”

operator of LOTOS is asymmetric

(≠

from “.”)

G O1

…

On

; B

but not B1

; B2

–

There is no iteration operator “*”, one must use a
recursive process call instead

LOTOS allows to describe automata with data
values (≈

functions in sequential languages) by using

processes with value parameters

VTSA'08 - Max Planck Institute, Saarbrücken 72

Semantics of “stop”

The “stop”

operator (inaction) has no associated
semantic rule, because no transition can be derived
from it

A call of a “pathological”

recursive process like
process

P [A] : noexit

:=

P [A]
endproc

has a behaviour

equivalent to stop

(unguarded
recursion)

VTSA'08 - Max Planck Institute, Saarbrücken 73

Prefix operator (“;”)

Allows to describe:
–

Sequential composition of actions

–

Communication (emission / reception) of data values

Simplest variant: actions on gates, without value-
 passing (basic LOTOS)

a

; b

; c

; d

; stop
a b c d

VTSA'08 - Max Planck Institute, Saarbrücken 74

Semantics of “;”

Case 1: action without reception offers (?X:S)

(∀1 ≤

i

≤

n

. Oi

≡

! Vi

) ∧

V

= true
G O1

…

On

[V

] ; B

→G V1 …

Vn

B

The boolean

guard and the offers are optional
If the guard V

is false, the rendezvous does not

happen (deadlock):

G O1

…

On

[V

] ; B ≈

stop

VTSA'08 - Max Planck Institute, Saarbrücken 75

Example (1/2)

Sequential composition:

A !true; B !4; stop

A !true; B !4; stop

B !4; stop

stop

A !true

B !4

VTSA'08 - Max Planck Institute, Saarbrücken 76

Example (2/2)

Synchronization by value matching: two processes
send to each other the same values on a gate

G

!1; B1

|[G

]| G

!1; B2

RdV

OK

G

!1; B1

|[G

]| G

!2; B2

deadlock

(different values)

G

!1; B1

|[G

]| G

!true; B2

deadlock

(different types)

G

1

VTSA'08 - Max Planck Institute, Saarbrücken 77

Semantics of “;”

Case 2: action containing reception offer(s) (?X:S)

(v

∈

S) ∧

(V

[v

/ X

] = true)
G

?X:S

[V

] ; B

→G v

B

[v

/ X

]

The variables defined in the offers ?X:S are visible
in the boolean

guard V

and inside B

An action can freely mix emission and reception
offers

VTSA'08 - Max Planck Institute, Saarbrücken 78

Example (1/3)

G

?X:Bool;
stop

G

?X:Nat

[X

< 4];
H ! X;

stop

The semantics handles the reception by branching
on all possible values that can be received

G

false G

true

G

0 G

3G

1 G

2

H

0 H

1 H

2 H

3

VTSA'08 - Max Planck Institute, Saarbrücken 79

Example (2/3)

Emission of a value = guarded reception:
G

!V

≡

G

?X:S

[X

= V]

where S

= type

(V)

Synchronization by value generation: two processes
receive values of the same type on a gate

G

?n1

:Nat [n1

<= 5]; B1

|[G

]|
G

?n2

:Nat

[n2

> 2]; B2

G V

G

3 G

5G

4

VTSA'08 - Max Planck Institute, Saarbrücken 80

Example (3/3)

Synchronization by value-passing:

G

?X:Bool

; stop

|[G

]| G

!true ; stop

G

?X:Bool

; stop

|[G

]| G

!3 ; stop

G

false G

true G

3|[G

]|

G

true

deadlock: the semantics of the “|[...]|”

operator requires

that the two labels be identical (same type for the emitted
value and the reception offer)

VTSA'08 - Max Planck Institute, Saarbrücken 81

Rendezvous
 (summary)

General form:
G O1

…

Om

[V1

]; B1

|[G

]|

G’

O1

’ … On

’[V2

]; B2

Conditions for the rendezvous:
–

G

= G’ and G

∈

G

–

m

= n
–

V1

and V2

are true in the context of O1

, ..., On

’
–

∀1 ≤

i

≤

n. type

(Oi

) = type

(Oi

’)
–

∀1 ≤

i

≤

n. prop

(Oi

) ∩

prop

(Oi

’) ≠ ∅

where prop(O) = set of values accepted by offer O
–

prop

(!V) = { V

}

–

prop

(?X:S) = S

VTSA'08 - Max Planck Institute, Saarbrücken 82

Choice operator (“[]”)
”[]”: notation inherited from the programs with
guarded commands [Dijkstra]
Allows to specify the choice between several
alternatives:

(B1

[] B2

[] B3)
can execute either B1

, or B2

, or B3

Example:
a

;
(b

; stop

[]
c

; stop)

a

b c

VTSA'08 - Max Planck Institute, Saarbrücken 83

Semantics of “[]”

B1

→L

B1

’

execution of B1

B1

[] B2

→L

B1

’

B2

→L

B2

’

execution of B2

B1

[] B2

→L

B2

’

After the choice, one of the two behaviours
 disappears (the execution was engaged on a branch

of the choice and the other one is abandoned)

VTSA'08 - Max Planck Institute, Saarbrücken 84

Internal / external choice

(G1

; B1

[] G2

; B2)
–

External choice: the environment can decide which
branch will be executed

–

Internal choice: the program decides

Example (coffee machine):

money

coffee tea

money

internal choice (machine)

money

coffee tea

external choice (user)

VTSA'08 - Max Planck Institute, Saarbrücken 85

Internal action (“i”)

In LOTOS, the special gate i

denotes an internal
event on which the environment cannot act:

(i

; G1

; stop
[]
i

; G2

; stop)

(G1

; stop
[]
i

; G2

; stop)

G1

i

G2

i
internal choice

G1

G2

i
still internal choice

VTSA'08 - Max Planck Institute, Saarbrücken 86

Guard operator (“[…]

->”)

LOTOS does not possess an “if-then-else”

construct
Guards

(boolean

conditions) can be used instead

Informal semantics:

[V

] ->

B

≈

if

V

then

B

else

stop
Frequent usage in conjunction with “[]”:

READ ?m,n:Nat

;
([m >= n] -> PRINT !m; stop
[]
[m < n] -> PRINT !n; stop)

emission of max (m,n)
on gate PRINT

VTSA'08 - Max Planck Institute, Saarbrücken 87

Semantics of “[…]

->”

(V

= true) ∧

B

→L

B’
[V

] ->

B

→L

B’

If the boolean

expression V

evaluates to false, no
semantic rule applies (deadlock):

[false] ->

B

≈

stop

VTSA'08 - Max Planck Institute, Saarbrücken 88

Examples

“if-then-else”:

“case”:
[V

] ->

B1

[X

< 0] ->

B1

[]

[]
[not (V)] ->

B2

[X

= 0] ->

B2

[]
[X

> 0] ->

B3

Beware of overlapping guards:
[X ≤

0] ->

B1

[]
[X ≥

0] ->

B2

if X = 0 then this is equivalent
to an unguarded choice B1 [] B2

VTSA'08 - Max Planck Institute, Saarbrücken 89

Operator “let”

LOTOS allows to define variables for storing the
results of expressions
Variable definition:

let

X:S

= V

in

B
declares variable X

and initializes it with the value

of V. X

is visible in B.
Write-once

variables (no multiple assignments):

let

X:Bool

= true

in

G

!X

; (* first X

*)
let

X:Bool

= false

in

G

!X

; (* second X

*)

stop

VTSA'08 - Max Planck Institute, Saarbrücken 90

Semantics of “let”

B

[V

/ X

] →L

B’
let

X:S

= V

in

B

→L

B’

Example:
let

X:NatList

= cons (0, nil) in

G

!X;
H

!cons (1, X);
stop

VTSA'08 - Max Planck Institute, Saarbrücken 91

Remarks

LOTOS is a functional

language:
No uninitialized

variable (forbidden by the syntax)

No assignment operator (“:=”), the value of a
variable does not change after its initialization
No “global”

or “shared”

variables between

functions or processes
Each process has its own local variables
Communication by rendezvous only
No side-effects

VTSA'08 - Max Planck Institute, Saarbrücken 92

Operator “choice”

Operator “choice”: similar to “let”, except that
variable X

takes a nondeterministic value in the

domain of its sort S
Semantics:
(v ∈

S)

∧

B

[v

/ X

] →L

B’
choice

X:S

[] B

→L

B’

Example:
choice

X:Bool

[]

G

!X; stop
G

false G

true

VTSA'08 - Max Planck Institute, Saarbrücken 93

Examples

Reception of a value = particular case of “choice”:
G

?X:S

; B

= choice

X:S

[] B

Iteration over the values of an enumerated type:
choice

A:Addr

[]

SEND

!m

!A ; stop

Generation of a random value:
choice

rand:Nat

[]

[rand

<= 10] -> PRINT

!rand ; stop

VTSA'08 - Max Planck Institute, Saarbrücken 94

Operator “exit”

LOTOS allows to express normal termination

of a
behaviour, possibly with the return of one or
several values:

exit

(V1

, …, Vn

)
denotes a behaviour

that terminates and produces

the values V1

, …, Vn

Example:

REC

?x:Nat

[x

< 2] ;
exit

(x

+ 1)

REC

0 REC

1

exit

1 exit

2

VTSA'08 - Max Planck Institute, Saarbrücken 95

Semantics of “exit”

true
exit

(V1

, …, Vn

) →exit V1 …

Vn

stop

exit

= special gate, synchronized by the “|[…]|”
 operator (see later)

The values V1

, …, Vn

are optional (“exit” means
normal termination without producing any value)

VTSA'08 - Max Planck Institute, Saarbrücken 96

Operator “>>”

LOTOS allows to express the sequential composition
between a behaviour

B1

that terminates and a
behaviour

B2

that begins:
B1

>> accept

X1

:S1

,…, Xn

:Sn

in

B2

means that when B1

terminates by producing values
V1

,…, Vn

, the execution continues with B2

in which
X1

,…, Xn

are replaced by the values V1

,…, Vn

Example:
exit (1) >> accept n:Nat

in

PRINT !n ; stop
PRINT

1i

VTSA'08 - Max Planck Institute, Saarbrücken 97

Semantics of “>>”

(B1

→L

B1

’

) ∧

(gate

(L) ≠

exit)
(B1

>> accept

X:S

in

B2

)

→L

(B1

’

>> accept

X:S

in

B2

)

B1

→exit V

B1

’
(B1

>> accept

X:S

in

B2

)

→i

B2

[V

/ X

]

The V

values must belong pairwise

to the S

sorts
The exit

gate is hidden (renamed into i) when

sequential composition takes place
The “>>”

operator is also called enabling

(B2

’s
execution is made possible by B1

’s termination)

VTSA'08 - Max Planck Institute, Saarbrücken 98

Example (1/4)

Sequential composition without value-passing:

(In1; In2; exit
[]
In2; In1; exit)

>>
(Access; exit)
>>
(Out1; Out2; stop
[]
Out2; Out1; stop)

In1 In2

i
In2 In1

i

Access

i

Out1

Out1

Out2

Out2

VTSA'08 - Max Planck Institute, Saarbrücken 99

Example (2/4)

Sequential composition with value-passing:

READ ?m,n:Nat

;
([m >= n] -> exit (m)
[]
[m < n] -> exit (n))

>>
accept max:Nat

in

PRINT !max ; stop

PRINT

1

READ

0 1

i

READ

0 2

i

PRINT

2

. . .

VTSA'08 - Max Planck Institute, Saarbrücken 100

Example (3/4)

Definition of terminating process:
process

Login [LogReq, LogConf, LogAbort] : exit

:=

LogReq;
(i ; LogConf

; exit

[]
i ; LogAbort

; Login [LogReq, LogConf, LogAbort])

endproc

Example of call:
Login [Req,Conf,Abort] >> Transfer ; Logout ; stop

VTSA'08 - Max Planck Institute, Saarbrücken 101

Example (4/4)

Combination of “exit”

and parallel composition: the
two behaviours

are synchronized on the exit

gate

(they terminate simultaneously)

(a

; b

; exit) ||| (c

; exit)

a

exit

ac

c

c

b

b

VTSA'08 - Max Planck Institute, Saarbrücken 102

Sequential composition
 (summary)

In LOTOS, difference between
 “;”

(asymmetric)

 and
 “>>”

(symmetric):

i i
. . .

B1

B2

B1

>> B2

G

B

G

; B

VTSA'08 - Max Planck Institute, Saarbrücken 103

Process call

Let a process P

defined by:
process

P

[G1

, …, Gn

] (X1

:S1

, …, Xn

:Sn

) :=
B

endproc
Semantics of a call to P:
B

[g1

/ G1

, …, gn

/ Gn

] [v1

/ X1

, …, vn

/ Xn

] →L

B’
P

[g1

, …, gn

] (v1

, …, vn

)

→L

B’
This semantics explains why a call to

process

P[G] : noexit

:= P[G] endproc
is equivalent to stop.

VTSA'08 - Max Planck Institute, Saarbrücken 104

Example

Boolean variable:

process

VAR [READ, WRITE] (b:Bool) : noexit

:=
READ !b;

VAR [READ, WRITE] (b)
[]
WRITE ?b2:Bool;

VAR [READ, WRITE] (b2)
endproc

READ WRITE
VAR

READ tt

READ ff

WRITE ff WRITE tt

VTSA'08 - Max Planck Institute, Saarbrücken 105

Static semantics
 (summary)

Scope of variables inside behaviours:
B

::= G

!V0

?X:S

… [V

] ; B0

p

(X) = { V, B0

}
| hide G

in B0

p

(G) = { B0

}
| let X:S

= V

in B0

p

(X) = { B0

}
| choice X:S

[] B0

p

(X) = { B0

}
| B1

>> accept X:S

in B0

p

(X) = { B0

}

Scope of process parameters:
process P [G] (X:S) :=

p

(G) = { B0

}
B0

p

(X) = { B0

}
endproc

VTSA'08 - Max Planck Institute, Saarbrücken 106

LOTOS specification

A LOTOS specification is similar to a process
definition:

specification

Protocol [SEND, RECEIVE] : noexit

:=
(* ... type definitions *)

behaviour
(* ... behaviour

= body of the specification *)

where
(* ... process definitions *)

endspec

VTSA'08 - Max Planck Institute, Saarbrücken 107

loop forever { P0 }
1 : { ncs0 }
2 : d0 := true
3 : t := 0
4 : wait

(d1 = false or

t = 1)

5 : { cs0 }
6 : d0 := false
endloop

loop forever { P1 }
1 : { ncs1 }
2 : d1 := true
3 : t := 1
4 : wait

(d0 = false or

t = 0)

5 : { cs1 }
6 : d1 := false
endloop

var

d0 : bool

:= false

{ read by P1, written by P0 }

var

d1 : bool

:= false

{ read by P0, written by P1 }

var

t ∈

{0, 1} := 0 { read/written by P0 and P1}

Example:
 Peterson’s mutual exclusion algorithm

VTSA'08 - Max Planck Institute, Saarbrücken 108

Description of variables d0, d1

Each variable: instance of the same process D
Current value of the variable: parameter of D
Reading and writing: RdV

on gates R et W

process D [R, W] (b:Bool) : noexit

:=
R !b ; D [R, W] (b)
[]
W ?b2:Bool ; D [R, W] (b2)

endproc

d0 ≡

D [R0, W0] (false), d1 ≡

D [R1, W1] (false)

VTSA'08 - Max Planck Institute, Saarbrücken 109

Description of variable t

Variable t: instance of process T
Current value of the variable: parameter of T
Reading and writing: RdV

on gates R et W

process T [R, W] (n:Nat) : noexit

:=
R !n ; T [R, W] (n)
[]
W ?n2:Bool ; T [R, W] (n2)

endproc

t ≡

T [RT, WT] (0)

VTSA'08 - Max Planck Institute, Saarbrücken 110

Description of processes P0 and P1

Process Pm

: instance of the same process P
Index m of the process: parameter of P

process P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]
(m:Nat) : noexit

:=

NCS !m ; Wm !true ; WT !m ;
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)

endproc

P0 ≡

P [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
P1 ≡

P [R1, W1, R0, W0, RT, WT, NCS, CS] (1)

VTSA'08 - Max Planck Institute, Saarbrücken 111

Processes P0 et P1
 (continued)

Auxiliairy

process to describe busy waiting:
process P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]

(m:Nat) : noexit

:=
Rn

?dn:Bool

; RT ?t:Nat

;

([dn

and (t eq

m)] ->
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)

[]
[not (dn) or (t eq

((m + 1) mod 2))] ->

CS !m ; Wn

!false ;
P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m))

endproc

VTSA'08 - Max Planck Institute, Saarbrücken 112

Architecture of the system
 (graphical)

R0W0
D (false)

T (0)

D (false)

P (0) P (1)

NCS

CS

NCS

CS
WT

RT RT

WT

R1 W1

VTSA'08 - Max Planck Institute, Saarbrücken 113

Architecture of the system
 (textual)

hide R0, W0, R1, W1, RT, WT in
(

P [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
|||
P [R1, W1, R0, W0, RT, WT, NCS, CS] (1)

)
|[R0, W0, R1, W1, RT, WT]|
(

T [RT, WT] (0)
|||
D [R0, W0] (false)
|||
D [R1, W1] (false)

)

VTSA'08 - Max Planck Institute, Saarbrücken 114

LTS model

55 states
110 transitions

VTSA'08 - Max Planck Institute, Saarbrücken 115

Process algebraic languages
 (summary)

More concise than communicating automata:
process parameterization, value-passing
communication (Exercise: model variables d0, d1, t
using a single gate allowing both reading / writing)
In general, there are several ways of describing the
parallel composition of processes (Exercise: write a
different expression for the architecture of
Peterson’s algorithm)
Modeling of nested loops: mutually recursive LOTOS
processes (Exercise: model processes P0, P1 using a
single LOTOS process)
But: E-LOTOS process part is much more convenient

VTSA'08 - Max Planck Institute, Saarbrücken 116

Action-based temporal logics

Introduction

Modal logics

Branching-time logics

Regular logics

Fixed point logics

VTSA'08 - Max Planck Institute, Saarbrücken 117

Why temporal logics?
Formalisms for high-level specification of systems

–

Example: all mutual exclusion protocols should satisfy
Mutual exclusion (at most one process in critical section)
Liveness (each process should eventually enter its critical section)

Temporal logics (TLs):
formalisms describing the ordering of states (or actions)

 during the execution of a concurrent program

TL specification = list of logical formulas, each one
expressing a property of the program
Benefits of TL [Pnueli-77]:

–

Abstraction: properties expressed in TL are independent from the
description/implementation of the system

–

Modularity: one can add/remove a property without impacting the
other properties of the specification

VTSA'08 - Max Planck Institute, Saarbrücken 118

(Rough) classification of TLs

State-based Action-based
Linear-time

(properties
about execution
sequences)

LTL (SPIN tool)

linear mu-calculus

TLA (TLA+ tool)

action-based LTL
(LTSA tool)

Branching-time

(properties
about execution
trees)

CTL (nuSMV

tool)

CTL*

ACTL (JACK tool)
ACTL*
modal mu-calculus
(CWB, Concurrency
Factory, CADP tools)

VTSA'08 - Max Planck Institute, Saarbrücken 119

Example
 (coffee machine)

A linear-time TL cannot distinguish the two LTSs

M1
 and M2

, which have the same set of execution
sequences, but are not behaviourally

equivalent

(modulo strong bisimulation)
A branching-time TL can capture nondeterminism

 and thus can distinguish M1

and M2

moneymoney

coffee tea

money

coffee tea

M1 M2

L

(M1

) = L

(M2

) =
{ money.coffee, money.tea

}

VTSA'08 - Max Planck Institute, Saarbrücken 120

Interpretation of
 (branching-time) TLs

on LTSs

LTS model M

= 〈

S, A, T, s0

〉, where:
–

S: set of states

–

A: set of actions (events)
–

T

∈

S

×

A

×

S: transition relation

–

s0

∈

S: initial state

Interpretation of a formula ϕ

on M:
[[ϕ

]] = { s

∈

S

| s

|= ϕ

}

([[ϕ

]] defined inductively on the structure of ϕ)
An LTS M

satisfies a TL formula ϕ

(M

|= ϕ)

iff

its initial state satisfies ϕ

:
M

|= ϕ ⇔ s0

|= ϕ ⇔ s0

∈

[[ϕ

]]

VTSA'08 - Max Planck Institute, Saarbrücken 121

Running example:
 mutual exclusion with a semaphore

P0 P1S
REQ0

REL0

REL1

REQ1
NCS0
CS0

NCS1
CS1

NCS0

CS0
REQ0

REL0 REQ0
REL0

REQ1
REL1

NCS1

CS1
REQ1

REL1
NCS0

CS0

REQ0

REL0

REQ1

REL1

NCS1

CS1

Description using communicating automata

VTSA'08 - Max Planck Institute, Saarbrücken 122

LTS model

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 123

Modal logics

They are the simplest logics allowing to reason
about the sequencing and branching of transitions
in an LTS
Basic modal operators:
–

Possibility
from a state, there exists (at least) an outgoing transition
labeled by a certain action and leading to a certain state

–

Necessity
from a state, all the outgoing transitions labeled by a
certain action lead to certain states

Hennessy-Milner Logic (HML) [Hennessy-Milner-85]

VTSA'08 - Max Planck Institute, Saarbrücken 124

Action predicates
 (syntax)

α

::=

a

atomic proposition (a∈A)

| tt

constant “true”

| ff constant “false”

|

α1

∨ α2

disjunction

|

α1

∧ α2

conjunction

|

¬α1

negation

|

α1

⇒ α2 implication (¬α1

∨ α2

)

|

α1

⇔ α2 equivalence (α1

⇒α2 ∧ α1

⇒α2

)

VTSA'08 - Max Planck Institute, Saarbrücken 125

Action predicates
 (semantics)

Let M

= (S, A, T, s0

). Interpretation [[α

]] ⊆

A:
[[a

]] = { a

}

[[tt

]] = A
[[ff]] = ∅
[[α1

∨ α2

]] = [[α1

]] ∪

[[α2

]]
[[α1

∧ α2

]] = [[α1

]] ∩

[[α2

]]
[[¬α1]] = A

\ [[α1

]]
[[α1

⇒ α2]] = (A

\ [[α1

]]) ∪

[[α2

]]
[[α1

⇔ α2]] = ((A

\

[[α1

]]) ∪

[[α2

]])
∩

((A

\

[[α2

]]) ∪

[[α1

]])

VTSA'08 - Max Planck Institute, Saarbrücken 126

Examples
A

= { NCS0

, NCS1

, CS0

, CS1

, REQ0

, REQ1

, REL0

, REL1

}

[[tt

]] = { NCS0

, NCS1

, CS0

, CS1

, REQ0

, REQ1

, REL0

, REL1

}
[[ff]] = ∅
[[NCS0

]] = { NCS0

}
[[¬NCS0

]] = { NCS1

, CS0

, CS1

, REQ0

, REQ1

, REL0

, REL1

}
[[NCS0

∧ ¬NCS1

]] = { NCS0

} = [[NCS0

]]
[[NCS0

∨

NCS1

]] = { NCS0

, NCS1

}
[[(NCS0

∨

NCS1

) ∧

(NCS0

∨

REQ0

)]] = { NCS0

}
[[NCS0

∧

NCS1

]] = ∅

= [[ff]]
[[NCS0

∨ ¬NCS0

]] =
{ NCS0

, NCS1

, CS0

, CS1

, REQ0

, REQ1

, REL0

, REL1 } = [[tt

]]

VTSA'08 - Max Planck Institute, Saarbrücken 127

HML logic
 (syntax)

ϕ

::= tt

constant “true”

| ff

constant “false”

|

ϕ1

∨ ϕ2 disjunction

|

ϕ1

∧ ϕ2 conjunction

|

¬ϕ1 negation

|

〈 α 〉 ϕ1

possibility

|

[α] ϕ1

necessity

Duality:

[α] ϕ = ¬〈

α

〉

¬ϕ

VTSA'08 - Max Planck Institute, Saarbrücken 128

HML logic
 (semantics)

Let M

= (S, A, T, s0

). Interpretation [[ϕ

]] ⊆

S:
[[tt

]] = S

[[ff]] = ∅
[[ϕ1

∨ ϕ2

]] = [[ϕ1

]] ∪

[[ϕ2

]]
[[ϕ1

∧ ϕ2

]] = [[ϕ1

]] ∩

[[ϕ2

]]
[[¬ϕ1]] = S

\ [[ϕ1

]]
[[〈 α 〉 ϕ1

]] = { s

∈

S

| ∃

(s, a, s’) ∈

T

.
a

∈

[[α

]] ∧

s’

∈

[[ϕ1

]] }
[[[α] ϕ1

]] = { s

∈

S

| ∀

(s, a, s’) ∈

T

.
a

∈

[[α

]] ⇒

s’

∈

[[ϕ1

]] }

VTSA'08 - Max Planck Institute, Saarbrücken 129

Example (1/4)
Deadlock freedom:

〈

tt

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 130

Example (2/4)
Possible execution of a set of actions:

〈

CS0

∨

CS1

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 131

Example (3/4)
Forbidden execution of a set of actions:

[NCS0

∨

NCS1

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 132

Example (4/4)
Execution of an action sequence:

〈

REQ0

〉 〈 CS0

〉 〈 REL0

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 133

Some identities
Tautologies:
–

〈 α 〉 ff = 〈

ff 〉 ϕ = ff

–

[α] tt

= [

ff] ϕ = tt

Distributivity

of modalities over ∨

and ∧:
–

〈 α 〉 ϕ1 ∨ 〈 α 〉 ϕ2 = 〈 α 〉 (ϕ1 ∨ ϕ2

)
–

〈 α1

〉 ϕ ∨ 〈 α2

〉 ϕ = 〈 α1 ∨ α2

〉 ϕ
–

[α

] ϕ1 ∧

[α

] ϕ2 = [α

] (ϕ1 ∧ ϕ2

)
–

[α1

] ϕ ∧ [α2

] ϕ

= [α1 ∨ α2

] ϕ

Monotonicity

of modalities over ϕ

and α:
–

(ϕ1

⇒ ϕ2

)

⇒

(〈 α 〉 ϕ1 ⇒ 〈 α 〉 ϕ2

)

∧

([α] ϕ1 ⇒ [α] ϕ2

)
–

(α1

⇒ α2

)

⇒

(〈 α1

〉 ϕ ⇒ 〈 α2

〉 ϕ) ∧

([α2

] ϕ ⇒ [α1

] ϕ)

VTSA'08 - Max Planck Institute, Saarbrücken 134

Characterization of branching

Modal formula distinguishing between M1

and M2

:

ϕ

= [

money

]

(〈

coffee

〉

tt

∧ 〈 tea

〉

tt

)

M1

|= ϕ

and

M2

|= ϕ

moneymoney

coffee tea

money

coffee tea

M1 M2

VTSA'08 - Max Planck Institute, Saarbrücken 135

Modal logics
 (summary)

Are able to express simple branching-time
properties involving states s

∈

S

and actions a

∈

A

 of an LTS
But:
–

Take into account only a finite number of steps around a
state (nesting of modalities)

–

Cannot express properties about transition sequences or
subtrees

of arbitrary length

Example: the property
“from a state s, there exists a sequence leading to a state

s’

where the action a

is executable”

cannot be expressed in modal logic
(it would need a formula 〈

tt

〉 〈 tt

〉

…

〈

tt

〉 〈 a

〉

tt)

VTSA'08 - Max Planck Institute, Saarbrücken 136

Branching-time logics

They are logics allowing to reason about the
(infinite) execution trees contained in an LTS
Basic temporal operators:
–

Potentiality
from a state, there exists an outgoing, finite transition
sequence leading to a certain state

–

Inevitability
from a state, all outgoing transition sequences lead, after
a finite number of steps, to certain states

Action-based Computation Tree Logic (ACTL)
 [DeNicola-Vaandrager-90]

VTSA'08 - Max Planck Institute, Saarbrücken 137

ACTL logic
 (syntax)

ϕ

::= tt

|

ff

boolean

constants

| ϕ1 ∨ ϕ2

|

¬ϕ1 connectors

| E [ϕ1α1

U ϕ2]
potentiality 1

| E [ϕ1α1

Uα2

ϕ2]
potentiality 2

| A [ϕ1α1

U ϕ2]
inevitability 1

| A [ϕ1α1

Uα2

ϕ2]
inevitability 2

VTSA'08 - Max Planck Institute, Saarbrücken 138

ACTL logic
 (derived operators)

EFα

ϕ

= E [ttα

U ϕ

]

basic potentiality

AFα

ϕ

= A [ttα

U ϕ

]

basic inevitability

AGα

ϕ =

¬

EFα

¬ϕ

invariance

EGα

ϕ

= ¬

AFα

¬ϕ

trajectory

〈 α 〉 ϕ = E [ttff

Uα

ϕ

]

possibility

[α

] ϕ

= ¬ 〈 α 〉 ¬ ϕ

necessity

dualities

VTSA'08 - Max Planck Institute, Saarbrücken 139

ACTL logic
 (semantics –

potentiality operators)

Let M

= (S, A, T, s0

). Interpretation [[ϕ

]] ⊆

S:

[[E [ϕ1α

U ϕ2]

]] = { s

∈

S

| ∃s(=s0

)→a0s1

→a1s2

→… .

∃k

≥

0. ∀0 ≤

i <

k. (si

∈

[[ϕ1

]] ∧

ai

∈

[[α ∨ τ]]) ∧
 sk

∈

[[ϕ2

]] }

[[E [ϕ1α1

Uα2

ϕ2]

]] = { s

∈

S

|∀s(=s0

)→a0s1

→a1s2

→… .
∃k

≥

0. ∀0≤

i <

k. (si

∈

[[ϕ1

]] ∧

ai

∈

[[α1

∨ τ]] ∧
 sk

∈

[[ϕ1

]] ∧

ak

∈

[[α2]] ∧

sk+1

∈

[[ϕ2

]] }

. . .
ϕ1 ϕ1 ϕ1 ϕ1 ϕ2

α ∨ τ α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .
ϕ1 ϕ1 ϕ1 ϕ1 ϕ1

α1

∨ τ α1

∨ τ α1

∨ τ α1

∨ τ α1

∨ τ
ϕ2

α2

VTSA'08 - Max Planck Institute, Saarbrücken 140

ACTL logic
 (semantics –

inevitability operators)

[[A [ϕ1α

U ϕ2]]]:

[[A [ϕ1α1

Uα2

ϕ2]

]]:

. . .

ϕ1

ϕ1 ϕ1 ϕ1 ϕ2
α ∨ τ

α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .
ϕ1 ϕ1 ϕ1 ϕ2

α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .

. . .

ϕ1

ϕ1 ϕ1 ϕ1 ϕ1
α1

∨ τ
α1

∨ τ α1

∨ τ α1

∨ τ α1

∨ τ
ϕ2

α2

. . .
ϕ1 ϕ1 ϕ1 ϕ1

α1

∨ τ α1

∨ τ α1

∨ τ α1

∨ τ
ϕ2

α2

VTSA'08 - Max Planck Institute, Saarbrücken 141

Example (1/4)
Potential reachability: EF¬

REL1

〈

CS0

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 142

Example (2/4)
Inevitable reachability: AF¬

(REL0 ∨

REL1)

〈

CS0

∨

CS1

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 143

Example (3/4)
Invariance: AG¬

(NCS0 ∨

NCS1)

〈

NCS0

∨

NCS1

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 144

Example (4/4)
Trajectory: EG¬

CS0

[CS0

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 145

Remark about inevitability
Inevitable reachability:

all sequences going out of a state

lead to states where an action a

is executable
AFtt

〈

a

〉

tt
Inevitable execution:

all sequences going out of a state

contain the action a
Inevitable execution ⇒

inevitable reachability

 but the converse does not hold:

s

|= AFtt

〈

a

〉

tt

Inevitable execution must be expressed using the
inevitability operators of ACTL:

s

|= A [tttt

Ua

tt

]

a
b

b
s

VTSA'08 - Max Planck Institute, Saarbrücken 146

Safety properties

Informally, safety properties specify that
 “something bad never happens”

 during the execution of the system
One way of expressing safety properties:
forbid undesirable execution sequences
–

Mutual exclusion:
¬ 〈 CS0

〉

EF¬REL0

〈

CS1

〉

tt
= [CS0

] AG¬REL0

[CS1

] ff

In ACTL, forbidding a sequence is expressed by
combining the [α] ϕ and AGα

ϕ

operators

CS0 CS1. . .

¬REL0

VTSA'08 - Max Planck Institute, Saarbrücken 147

Liveness

properties

Informally liveness

properties specify that
 “something good eventually happens”

 during the execution of the system
One way of expressing liveness

properties:

require desirable execution sequences / trees
–

Potential release of the critical section:
〈

NCS0

〉

EFtt

〈

REQ0

〉

EFtt

〈

REL0

〉

tt
–

Inevitable access to the critical section:
A [tttt

UCS0

tt

]

In ACTL, the existence of a sequence is expressed
by combining the 〈 α 〉 ϕ and EFα

ϕ

operators

VTSA'08 - Max Planck Institute, Saarbrücken 148

Branching-time logics
 (summary)

The temporal operators of ACTL: strictly more
powerful than the HML modalities 〈 α 〉 ϕ and [α] ϕ
They allow to express branching-time properties on
an unbounded depth in an LTS
But:
–

They do not allow to express the unbounded repetition of
a subsequence

Example: the property
“from a state s, there exists a sequence a.b.a.b

... a.b

 leading to a state s’

where an action c is executable”

cannot be expressed in ACTL

VTSA'08 - Max Planck Institute, Saarbrücken 149

Regular logics

They allow to reason about the regular execution
sequences of an LTS
Basic operators:
–

Regular formulas
two states are linked by a sequence whose concatenated
actions form a word of a regular language

–

Modalities on sequences
from a state, some (all) outgoing regular transition
sequences lead to certain states

Propositional Dynamic Logic (PDL)
 [Fischer-Ladner-79]

VTSA'08 - Max Planck Institute, Saarbrücken 150

Regular formulas
 (syntax)

β

::= α

one-step sequence

| nil

empty sequence

|

β1

. β2 concatenation

|

β1

| β2 choice

|

β1

* iteration (≥

0 times)

|

β1

+

iteration (≥

1 times)

Some identities:
nil = ff *

β+

= β

. β*

VTSA'08 - Max Planck Institute, Saarbrücken 151

Regular formulas
 (semantics)

Let M

= (S, A, T, s0

). Interpretation [[β

]] ⊆

S

×

S:

[[α]] = { (s, s’) | ∃a

∈

[[α]] . (s, a, s’) ∈

T

}
[[nil]] = { (s, s) | s

∈

S

}

(identity)

[[β1

. β2]] = [[β1

]] о

[[β2

]]

(composition)

[[β1

| β2]] = [[β1

]] ∪

[[β2

]]

(union)

[[β1

*]] = [[β1

]] *

(transitive refl. closure)

[[β1
+

]] = [[β1

]] +

(transitive closure)

VTSA'08 - Max Planck Institute, Saarbrücken 152

Example (1/3)
One-step sequences: NCS0 ∨

CS0

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 153

Example (2/3)
Alternative sequences: (REQ0

. CS0

) | (REQ1

. CS1

)

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 154

Example (3/3)
Sequences with repetition: NCS0

. (¬NCS1

)* . CS0

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 155

PDL logic
 (syntax)

ϕ

::= tt

| ff

boolean

constants

|

ϕ1

∨ ϕ2 disjunction

|

ϕ1

∧ ϕ2 conjunction

|

¬ϕ1 negation

|

〈

β

〉 ϕ1

possibility

|

[

β

] ϕ1

necessity

Duality:

[

β

] ϕ = ¬ 〈 β

〉 ¬ϕ

VTSA'08 - Max Planck Institute, Saarbrücken 156

PDL logic
 (semantics)

Let M

= (S, A, T, s0

). Interpretation [[ϕ

]] ⊆

S:
[[tt

]] = S

[[ff]] = ∅
[[ϕ1

∨ ϕ2

]] = [[ϕ1

]] ∪

[[ϕ2

]]
[[ϕ1

∧ ϕ2

]] = [[ϕ1

]] ∩

[[ϕ2

]]
[[¬ϕ1]] = S

\ [[ϕ1

]]
[[〈 β 〉 ϕ1

]] = { s

∈

S

| ∃

s’

∈

S

.
(s, s’) ∈

[[β

]] ∧

s’

∈

[[ϕ1

]] }
[[[β] ϕ1

]] = { s

∈

S

| ∀

s’

∈

S

.
(s, s’) ∈

[[β

]] ⇒

s’

∈

[[ϕ1

]] }

VTSA'08 - Max Planck Institute, Saarbrücken 157

Example (1/2)
Potential reachability

of critical section: 〈

NCS0

. tt

* . CS0

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 158

Example (2/2)
Mutual exclusion: [CS0

. (¬REL0

)* . CS1

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 159

Some identities

Distributivity

of regular operators over 〈 〉 and []:
–

〈 β1

. β2

〉 ϕ = 〈 β1

〉 〈 β2

〉 ϕ

–

〈 β1

| β2

〉 ϕ = 〈 β1

〉 ϕ ∨ 〈 β2

〉 ϕ

–

〈 β * 〉 ϕ = ϕ ∨ 〈 β 〉 〈 β * 〉 ϕ

–

[β1

. β2

] ϕ

= [β1

] [β2

] ϕ

–

[β1

| β2

] ϕ

= [β1

] ϕ ∧ [β2

] ϕ

–

[β

*] ϕ

= ϕ ∧ [β

] [β

*] ϕ

Potentiality and invariance operators of ACTL:
–

EFα

ϕ

= 〈 α * 〉 ϕ

–

AGα

ϕ

= [α

*] ϕ

VTSA'08 - Max Planck Institute, Saarbrücken 160

Fairness properties

Problem: from the initial state of the LTS, there is
no inevitable execution of action CS0

⇒ process P1
 can enter its critical section indefinitely often

s

|= A [tttt

Ua

tt

]

Fair execution

of an action a: from a state, all
transition sequences that do not cycle indefinitely
contain action a
Action-based counterpart of the fair reachability

of

predicates

[Queille-Sifakis-82]

bb b
s

b

a

VTSA'08 - Max Planck Institute, Saarbrücken 161

Fair execution

Fair execution of an action a

expressed in PDL:

fair (a) = [(¬a)*] 〈

tt*. a

〉

tt

Equivalent formulation in ACTL:

fair (a) = AG¬a

EFtt

〈

a

〉

tt

bb b

b

a

VTSA'08 - Max Planck Institute, Saarbrücken 162

Example
Fair execution of critical section: [(¬CS0

)*] 〈

tt*. CS0

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 163

Regular logics
 (summary)

They allow a direct and natural description of
regular execution sequences in LTSs

More intuitive description of safety properties:
–

Mutual exclusion:
[CS0

] AG¬REL0

[CS1] ff =

(in ACTL)
[CS0

. (¬REL0

)* . CS1

] ff

(in PDL)

But:
–

Not sufficiently powerful to express inevitability
operators (expressiveness uncomparable

with

branching-time logics)

VTSA'08 - Max Planck Institute, Saarbrücken 164

Fixed point logics

Very expressive logics (“temporal logic assembly
languages”) allowing to characterize finite or
infinite tree-like patterns in LTSs
Basic temporal operators:
–

Minimal fixed point

(μ)

“recursive function”

defined over the LTS:
finite

execution trees going out of a state

–

Maximal fixed point

(ν)
dual of the minimal fixed point operator:

 infinite

execution trees going out of a state

Modal mu-calculus [Kozen-83,Stirling-01]

VTSA'08 - Max Planck Institute, Saarbrücken 165

Modal mu-calculus
 (syntax)

ϕ

::=

tt

| ff

boolean

constants

|

ϕ1

∨ ϕ2 | ¬ϕ1 connectors

|

〈 α 〉 ϕ1

possibility

|

[α] ϕ1

necessity

|

X

propositional variable

|

μX

. ϕ1

minimal fixed point

|

νX

. ϕ1

maximal fixed point

Duality:

νX

. ϕ

= ¬ μX

. ¬ ϕ [¬

X

/ X]

VTSA'08 - Max Planck Institute, Saarbrücken 166VASY 166

Syntactic restrictions

Syntactic monotonicity

[Kozen-83]
–

Necessary to ensure the existence of fixed points

–

In every formula σX

. ϕ

(X), where σ ∈ { μ, ν

},

every free
occurrence of X

in ϕ

falls in the scope of an even number

of negations
μX

. 〈

a

〉

X

∨ ¬ 〈 b

〉

X

Alternation depth 1 [Emerson-Lei-86]
–

Necessary for efficient (linear-time) verification

–

In every formula μX

. ϕ

(X), every maximal subformula
 νY

. ϕ’ (Y) of ϕ

is closed

μX

. 〈

a

〉 νY

. ([b

] Y

∧

[c

] X)

VTSA'08 - Max Planck Institute, Saarbrücken 167

Modal mu-calculus
 (semantics)

Let M

= (S, A, T, s0

) and ρ

: X

→

2S

a context mapping
propositional variables to state sets. Interpretation
[[ϕ

]] ⊆

S:

[[X

]] ρ

= ρ

(X)

[[μX

. ϕ

]] ρ

= ∪k≥0

Φρ
k

(∅)

[[νX

. ϕ

]] ρ

= ∩k≥0

Φρ
k

(S)

where

Φρ

: 2S

→

2S

,

Φρ

(U) = [[ϕ

]] ρ

[U

/ X]

VTSA'08 - Max Planck Institute, Saarbrücken 168

Minimal fixed point

Potential reachability

of an action a

(existence of a
sequence leading to a transition labeled by a):

μX

. 〈

a

〉

tt

∨ 〈 tt

〉

X
Associated functional:

Φ

(U) = [[〈

a

〉

tt

∨ 〈 tt

〉

X]] [U

/ X]
Evaluation on an LTS:

abb b

Φ

(∅)Φ2

(∅)Φ3

(∅)Φ4

(∅)

c

VTSA'08 - Max Planck Institute, Saarbrücken 169

Example
Potential reachability: µX

. 〈

CS0

〉

tt

∨ 〈 ¬(REL1 ∨

REL0

) 〉

X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 170

Maximal fixed point

Infinite repetition of an action a

(existence of a
cycle containing only transitions labeled by a):

νX

. 〈

a

〉

X
Associated functional:

Φ

(U) = [[〈

a

〉

X]] [U

/ X]
Evaluation on an LTS:

aab b

Φ

(S)

a

a Φ2

(S)

VTSA'08 - Max Planck Institute, Saarbrücken 171

Example
Infinite repetition: νX

. 〈

NCS1

∨

REQ1

∨

CS1

∨

REL1

〉

X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 172

Exercise
Evaluate the formula: µX

. 〈

CS0

〉

tt

∨

([NCS0] ff ∧ 〈 tt

〉

X)

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 173

Some identities

Description of (some) ACTL operators:

–

E [ϕ1α1

Uα2

ϕ2] = μX

. ϕ1

∧

(〈 α2

〉 ϕ2

∨ 〈 α1

〉

X)

–

A [ϕ1α1

Uα2

ϕ2] = μX

. ϕ1

∧ 〈 tt

〉

tt

∧

[¬(α1

∨ α2

)] ff

∧

[¬α1

∧ α2

] ϕ2

∧

[¬α2

] X

∧

[α1

∧ α2

] (ϕ2

∨

X)

–

EFα

ϕ

= μX

. ϕ ∨ 〈 α 〉 X

–

AFα

ϕ

= μX

. ϕ ∨ (〈

tt

〉

tt

∧

[¬α

] ff ∧

[α

] X)

Description of the PDL operators:
–

〈 β* 〉 ϕ = μX

. ϕ ∨ 〈 β 〉 X

–

[β*] ϕ

= νX

. ϕ ∧ [β] X

VTSA'08 - Max Planck Institute, Saarbrücken 174

Inevitable reachability

Inevitable reachability

of an action a:
access (a) = AFtt

〈

a

〉

tt

=
μX

. 〈

a

〉

tt

∨

(〈

tt

〉

tt

∧

[tt

] X

)

Associated functional:
Φ

(U) = [[〈

a

〉

tt

∨

(〈

tt

〉

tt

∧

[tt

] X

)]] [U

/ X]

Evaluation on an LTS:
b

ab b

a

c

Φ

(∅)Φ2

(∅)

VTSA'08 - Max Planck Institute, Saarbrücken 175

Inevitable execution

Inevitable execution of an action a:
inev

(a) = μX

. 〈

tt

〉

tt

∧

[¬a

] X

Associated functional:
Φ

(U) = [[〈

tt

〉

tt

∧

[¬a

] X]] [U

/ X]

Evaluation on an LTS:
b

ab b

a

c

Φ

(∅)

VTSA'08 - Max Planck Institute, Saarbrücken 176

Example
Inevitable execution: µX

. 〈

tt

〉

tt

∧

[¬CS0

] X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 177

Fair execution

Fair execution of an action a:
fair (a) = [(¬a)*] 〈

tt*. a

〉

tt

= νX

. 〈

tt*. a

〉

tt

∧

[¬a] X
Associated functional:

Φ

(U) = [[〈

tt*. a

〉

tt

∧

[¬a] X]] [U

/ X]
Evaluation on an LTS:

bb b

a

b

a
Φ

(S)

VTSA'08 - Max Planck Institute, Saarbrücken 178

Example
Fair execution: [(¬CS0

)*] 〈

tt*. CS0

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 179

Fixed point logics
 (summary)

They allow to encode virtually all TL proposed in
the literature
Expressive power obtained by nesting

the fixed

point operators:
〈

(a

. b*)* . c

〉

tt

=

μX

. 〈

c

〉

tt

∨ 〈 a

〉 μY

. (X

∨ 〈 b

〉

Y)
Alternation depth

of a formula: degree of mutual

recursion between μ

and ν

fixed points
Example of alternation depth 2 formula:

νX

. 〈

a*. b

〉

X

= νX

. μY

. 〈

b

〉

X

∨ 〈 a

〉

Y

VTSA'08 - Max Planck Institute, Saarbrücken 180

Some verification tools
 (for action-based logics)

CWB

(Edinburgh)
and
Concurrency Factory

(State University of New York)

–

Modal μ-calculus (fixed point operators)

JACK

(University of Pisa, Italy)
–

μ-ACTL (modal μ-calculus combined with ACTL)

CADP / Evaluator 3.x

(INRIA Rhône-Alpes / VASY)
–

Regular alternation-free μ-calculus (PDL modalities and
fixed point operators)

VTSA'08 - Max Planck Institute, Saarbrücken 181

Extensions of µ-calculus with data

Temporal logics (ACTL, PDL, ...) and µ-calculi
–

No data manipulation (basic LOTOS, pure CCS, ...)

–

Too low-level operators (complex formulas)

Extended temporal logics are needed in practice

Several μ-calculus extensions with data:
–

For polyadic

pi-calculus [Dam-94]

–

For symbolic transition systems [Rathke-Hennessy-96]
–

For μCRL [Groote-Mateescu-99]

–

For full LOTOS [Mateescu-Thivolle-08]

VASY 181

VTSA'08 - Max Planck Institute, Saarbrücken 182

Why to handle data?

Some properties are cumbersome to express
without data (e.g., action counting):

〈

b

〉 〈 b 〉 〈 b

〉 〈 a

〉

tt

or

〈

b

{3} . a

〉

tt

?

LTSs

produced from value-passing process algebraic
languages (full CCS, LOTOS, ...) contain values on
transition labels

b abb

RECV 1 RECV 2ACK 1 ACK 2

value extraction
and propagation

VTSA'08 - Max Planck Institute, Saarbrücken 183

Model Checking Language

Based on EVALUATOR 3.5 input language
•

standard µ-calculus

•

regular operators

Data-handling mechanisms
•

data extraction from LTS labels

•

regular operators with counters
•

variable declaration

•

parameterized fixed point operators
•

expressions

Constructs inspired from programming languages

VTSA'08 - Max Planck Institute, Saarbrücken 184

Parameterized modalities

Possibility:

< {SEND ?msg:Nat} > < {RECV !msg} > true

Necessity:

[{RECV ?msg:Nat}] (msg

< 6)

SEND 1 RECV 1

RECV 5

value extraction
and propagation

value extraction
and propagation

VTSA'08 - Max Planck Institute, Saarbrücken 185

Parameterized fixed points

(basic) syntax:
mu

X (y:T

:=

E) .

P

–

P contains «

calls »

X (E’)
–

Allows to perform computations and store intermediate
results while exploring the PLTS

parameter initial value formula body

VTSA'08 - Max Planck Institute, Saarbrücken 186

Example (1/3)

Counting of actions (e.g., clock ticks):

[{LEVEL ?l:Nat

where

l >

10}]
nu

X (c:Nat

:=

15) .

[not ALARM] (c >

0 and

X (c -

1))

LEVEL 11 ALARM
. . .

. . .
ALARM

max. 15 transitions
before the alarm

VTSA'08 - Max Planck Institute, Saarbrücken 187

Example (2/3)

Alternation of two actions and value propagation:

nu

X (s:Bool

:= true,

m:Msg

:=

nil) . (
[{SEND ?p:Msg}]

(s and

X (false,

p))

and
[{RECV ?q:Msg}] (not

s and

q =

m and

X (true,

nil))

and
[not ({RECV any} or {SEND any})]

X (s,

m)

)

SEND m1 RECV m1ii i SEND m2 i RECV m2
. . .

VTSA'08 - Max Planck Institute, Saarbrücken 188

Example (3/3)

Syntax analysis on sequences:

mu

X (op_cl:nat

:=

0) . (
(([true] false) implies (op_cl

=

0))

and

<

“(”

>

X (op_cl

+

1)

and
<

“)”

> ((op_cl

>

0) and

X (op_cl

–

1))

)
Allows to simulate pushdown automata

(by storing

the stack in a parameter)

« (» « (» «)» « (» « (» «)» «)»«)»

VTSA'08 - Max Planck Institute, Saarbrücken 189

Quantifiers
Existential quantifier:

exists

x:T

among {

E1

...

E2

} .

P

Universal quantifier:
forall

x:T

among {

E1

...

E2

} .

P

shorthands for large disjunctions and conjunctions

limits of the subdomain

of T

VTSA'08 - Max Planck Institute, Saarbrücken 190

Example

Broadcast of messages:

forall

msg:Nat

among { 1

... 10

} .
mu

X . (< {SEND !msg} > true or < true >

X)

SEND

1i

. . .

. . .

. . .
SEND

2

SEND

10
. . .

VTSA'08 - Max Planck Institute, Saarbrücken 191

Conditional

operators

(1/2)
Branching

operator:

if

P1

then

P1

’
elsif

P2

then

P2

’
...
else

Pn

’
end

if

Semantics:
(P1

and

P1

’) or
((not

(P1

) and

P2

) and

P2

’) or ...
((not

(P1

or

P2

or

... Pn-1

)) and

Pn

’)

mandatory

clause

VTSA'08 - Max Planck Institute, Saarbrücken 192

Syntactic

restrictions
State formulas present

in conditions must be

 propositionally

closed

(to ensure

syntactic
 monotonicity)

Example

(illegal):
mu

X . (

...

if

X then

P1

else

P2

end

if
)

boolean

translation:
mu

X . (

...

(X and

P1

) or (not

X

and

P2

)
)

negative
occurrence of

X

VTSA'08 - Max Planck Institute, Saarbrücken 193

Example

Counting

of

actions (revisited):

[{LEVEL ?l:Nat where

l >

10}]
nu

X (c:Nat :=

0) .

if

c <

15 then
[not ALARM]

X (c +

1)

else
[not

ALARM] false

end

if

VTSA'08 - Max Planck Institute, Saarbrücken 194

Conditional

operators

(2/2)

Selection

operator:
case

E is

M1

->

P1

|

...
| any -> Pn

end

case
Semantics:

((E match

M1

) and

P1

) or

... or
(not

((E match

M1

) or

... or

(E match

Mn-1

)) and

Pn

)

mandatory

exhaustiveness

VTSA'08 - Max Planck Institute, Saarbrücken 195

Example
Message handling

(event/reaction):

[{RECV ?m:Msg}]
case

kind

(m) is

Norm

->

mu X

. < {HANDLE !m} > true

or < true

> X

|

Term

->

nu

Y . [{SEND any}] false

and

[true

] Y

|

Abort

->

< true

> true

and

[not

EXIT] false
end

case

. . .
RECV m HANDLE m

RECV abort EXIT

. . .
RECV Term SEND p

VTSA'08 - Max Planck Institute, Saarbrücken 196

Variable definition
Initialisation operator:

let

x:T :=

E in
P

end

let

Example:
[{RECV ?l:NatList}]
let

n:Nat :=

sum

(l) in

< {DELIVER !n} > < {ACK !n} > true
end

let

VTSA'08 - Max Planck Institute, Saarbrücken 197

Extended regular formulas

Counting

operators:
R {

E }

repetition

E times

R {

E1

... }

repetition

at

least

E1

times
R {

E1

...

E2

}

repetition

between
 E1

and

E2

times

Some

identities:
nil

= false

*

R +

= R .

R*

R *

= R {

0 ... }

R ?

= R {

0 ...

1 }

R +

= R {

1 ... }

R {

E }

= R {

E ...

E }

Séminaire VASY (10-13 juin 2003) 198

Translations to basic MCL

<

R {

E ... } >

P =
mu

X (c:Nat :=

0) .

if

c <

E then
<

R >

X (c+1)

else
P or <

R >

X (c)

end

if

•

<

R {

E1

...

E2

} >

P =
mu

X (c:Nat :=

0) .

if

c <

E1

then
<

R >

X (c+1)

elsif

c <

E2

then
P or

<

R >

X (c+1)

else
P

end

if

VTSA'08 - Max Planck Institute, Saarbrücken 199

Example
 (action counting revisited)

Formulation using counting operators:

[{LEVEL ?l:Nat

where

l >

10} . (not

ALARM) {

16 }] false

LEVEL 11 ALARM
. . .

. . .
ALARM

max. 15 transitions
before the alarm

VTSA'08 - Max Planck Institute, Saarbrücken 200

Example
 (safety

of

a n-place

buffer)

Formulation using

extended

regular

operators:
[true* . ((not

OUTPUT)* .

INPUT) {

n +

1 }] false

Formulation using

parameterized

fixed

points:
nu

X . (nu

Y (c:Nat:=0) . (

 [not

OUTPUT]

Y (c) and
 if

c =

n+1 then

[INPUT] false

 else

[INPUT]

Y (c+1)
 end

if)

and

[true

]

X)

INPUT INPUTi
. . .

i INPUT

n+1 INPUTs

without

OUTPUTs

. . .

VTSA'08 - Max Planck Institute, Saarbrücken 201

Testing operator of PDL
PDL with tests

[Fischer-Ladner-79]:

–

Express properties of intermediate states of sequences
denoted by a regular formula

–

Add a “test”

operator on regular formulas

Syntax (PDL):

P ?
Semantics:

<

P1

? >

P2

= P1

and

P2

Example:

<

P1

? .

a .

P1

? .

b >

P2 =
P1

and <

a > (P1

and <

b >

P2

)

P ?

= if

P then nil else false end if

a b

P1 P1 P2

VTSA'08 - Max Planck Institute, Saarbrücken 202

Example
Operator E(.U.) of CTL:

E (P1

U

P2

)

=

mu

X . (P2

or

(P1

and < true >

X))

=

< if

P1

then true end if * >

P2

“else”

clause not mandatory:
if

P then

R end if

= if

P then

R else nil end if

...
P1 P2P1 P1

VTSA'08 - Max Planck Institute, Saarbrücken 203

Looping operator (from PDL-delta)

Δ R

operator added to PDL to specify infinite
behaviours

[Streett-82]

MCL syntax: <

R > @

Examples:
–

process overtaking

[REQ0] < (not

GET0

)* . REQ1 . (not

GET0

)* . GET1 > @
–

Büchi

acceptance condition

< true* . if

Paccepting

then true end if > @
allows to encode LTL model checking

.
R*

R+

cycle containing one or
more repetitions of R

VTSA'08 - Max Planck Institute, Saarbrücken 204

Expressiveness
 (summary)

CTL* ⊆

PDL-Δ ⊆

MCL
[Wolper-82]

Lµ2
Lµ1

Δ

ACTL PDL

MCL

PDL-Δ

HML

VTSA'08 - Max Planck Institute, Saarbrücken 205

Adequacy with equivalence relations

A temporal logic L

is adequate with an equivalence
relation ≈

iff

for all LTSs

M1

and M2

M1

≈

M2

iff

∀ϕ

∈

L

. (M1

|= ϕ ⇔ M2

|= ϕ)
HML:
–

Adequate with strong bisimulation

–

HMLU (HML with Until): weak bisimulation

ACTL-X (fragment presented here):
–

Adequate with branching bisimulation

PDL and modal mu-calculus:
–

Adequate with strong bisimulation

–

Weak mu-calculus: weak bisimulation

〈〈

〉〉

ϕ

= 〈 τ* 〉 ϕ

〈〈

a

〉〉

ϕ

= 〈 τ*. a

. τ* 〉 ϕ

VTSA'08 - Max Planck Institute, Saarbrücken 206

On-the-fly verification

Principles

Alternation-free boolean

equation systems

Local resolution algorithms

Applications:

–

Equivalence checking

–

Model checking

–

Tau-confluence reduction

Implementation and use

VTSA'08 - Max Planck Institute, Saarbrücken 207

Principle of explicit-state verification

program desired
properties

compiler

model
(state space)

true / false
+

 diagnostic

verification
tool

Language
technology

Model
technology

VTSA'08 - Max Planck Institute, Saarbrücken 208

On-the-fly verification

Incremental construction of the state space
–

Way of fighting against state explosion

–

Detection of errors in complex systems

“Traditional”

methods:
–

Equivalence checking

–

Model checking

Solution adopted:
–

Translation of the verification problem into the
resolution of a boolean

equation system

(BES)

–

Generation of diagnostics

(fragments of the state space)
explaining the result of verification

VTSA'08 - Max Planck Institute, Saarbrücken 209

Boolean equation systems
 (syntax)

A BES is a tuple

B

= (x, M1

, …, Mn

), where
x

∈

X : main boolean

variable

Mi

= { xj

=σi

opj

Xj

}j ∈

[1, mi] : equation blocks
–

σi

∈

{ μ, ν

} : fixed point sign of block i
–

opj

∈

{ ∨, ∧

} : operator of equation j
–

Xj

⊆

X

: variables in the right-hand side of equation j
–

F = ∨∅

(empty disjunction), T = ∧∅

(empty conjunction)

–

xj

depends upon xk

iff

xk

∈

Xj

–

Mi

depends upon Ml

iff

a xj

of Mi

depends upon a xk

of Ml

–

Closed

block: does not depend upon other blocks

Alternation-free

BES: Mi

depends upon Mi+1

…

Mn

VTSA'08 - Max Planck Institute, Saarbrücken 210

Example

x1

=μ

x2

∨

x3

x2

=μ

x3

∨

x4

x3

=μ

x2

∧

x7M1

x4

=μ

x5

∨

x6

x5

=μ

x8

∨

x9

x6

=μ

F
M2

x7

=ν

x8

∧

x9

x8

=ν

T

x9

=ν

F
M3

VTSA'08 - Max Planck Institute, Saarbrücken 211

Particular blocks

Acyclic

block:
–

No cyclic dependencies between variables of the block

Var. xi

disjunctive (conjunctive): opi

= ∨

(opi

= ∧)
Disjunctive

block:

–

contains disjunctive variables
–

and conjunctive variables

with a single non constant successor in the block (the
last one in the right-hand side of the equation)
all other successors are constants or free variables
(defined in other blocks)

Conjunctive

block: dual definition

VTSA'08 - Max Planck Institute, Saarbrücken 212

Boolean equation systems
 (semantics)

Context: partial function δ

: X Bool
Semantics of a boolean

formula:

–

[[op

{ x1

, …, xp

}]] δ

= op

(δ

(x1

), …, δ

(xp

))

Semantics of a block:
–

[[{ xj

=σ

opj

Xj

}j ∈

[1, m]

]] δ

= σΦδ

–

Φδ

: Boolm Boolm

–

Φδ

(b1

, …, bm

) = ([[opj

Xj

]] (δ ⊕ [b1

/x1

, …, bm

/xm

]))j

∈

[1, m]

Semantics of a BES:
–

[[(x, M1

, …, Mn

)]] = δ1

(x)
–

δn

= [[Mn

]] []

(Mn

closed)
–

δi

= ([[Mi

]] δi+1

) ⊕ δi+1

(Mi

depends upon Mi+1

…

Mn

)

VTSA'08 - Max Planck Institute, Saarbrücken 213

Local resolution

Alternation-free BES B

= (x, M1

, …, Mn

)
Primitive: compute a variable of a block
–

A resolution routine Ri

associated to Mi

–

Ri

(xj

) computes the value of xj

in Mi

–

Evaluation of the rhs

of equations + substitution
–

Call stack R1

(x) … Rn (xk) bounded by the depth of
the dependency graph between blocks

–

“Coroutine-like”

style: each Ri

must keep its context

Advantages:
–

Simple resolution routines (a single type of fixed point)

–

Easy to optimize for particular kinds of blocks

VTSA'08 - Max Planck Institute, Saarbrücken 214

Example

x1

=μ

x2

∨

x3

x2

=μ

x3

∨

x4

x3

=μ

x2

∧

x7M1

x4

=μ

x5

∨

x6

x5

=μ

x8

∨

x9

x6

=μ

F
M2

x7

=ν

x8

∧

x9

x8

=ν

T

x9

=ν

F
M3

VTSA'08 - Max Planck Institute, Saarbrücken 215

Local resolution algorithms

Representation of blocks as boolean

graphs
 [Andersen-94]

To a block M

= { xj

=μ

opj

Xj

}j in [1, m]

we associate the
boolean

graph G

= (V, E, L, μ), where:

–

V

= { x1

, …, xm

}: set of vertices (variables)
–

E

= { (xi

, xj

) | xj

∈

Xi

}: set of edges (dependencies)
–

L

: V { ∨, ∧ }, L (xj) = opj: vertex labeling

Principle of the algorithms:
–

Forward

exploration of G

starting at x

∈

V

–

Backward

propagation of stable (computed) variables
–

Termination: x

is stable or G

is completely explored

VTSA'08 - Max Planck Institute, Saarbrücken 216

Example
BES (μ-block)

boolean

graph

x1

=μ

x2

∨

x3

x2

=μ

F
x3

=μ

x4

∨

x5

x4

=μ

T
x5

=μ

x1

: ∨-variables
: ∧-variables

1

4

2 3

5

VTSA'08 - Max Planck Institute, Saarbrücken 217

Three effectiveness criteria
 [Mateescu-06]

For each resolution routine R:

A.

The worst-case complexity of a call R

(x) must be
O

(|V|+|E|)
linear-time complexity for the overall BES resolution

B.

While executing R

(x), every variable explored
must be «

linked

»

to x

via unstable variables

graph exploration limited to “useful” variables

C.

After termination of R

(x), all variables explored
must be stable

keep resolution results between subsequent calls of R

VTSA'08 - Max Planck Institute, Saarbrücken 218

Algorithm A0
 (general)

DFS of the boolean

graph
Satisfies A, B, C
Memory complexity

 O

(|V|+|E|)
Optimized version of
[Andersen-94]
Developed for model
checking regular
alternation-free

 μ-calculus
[Mateescu-Sighireanu-00,03]

1

5

3 4

2

VTSA'08 - Max Planck Institute, Saarbrücken 219

Algorithm A1
(general)

BFS of the boolean

graph
Satisfies A, C

 (risk of computing
useless variables)
Slightly slower than A0
Memory complexity

 O

(|V|+|E|)
Low-depth diagnostics

2

10

5

98

76

1

3

4

VTSA'08 - Max Planck Institute, Saarbrücken 220

Algorithm A2
(acyclic)

DFS of the boolean

graph
Back-propagation of stable
variables on the DFS stack
only
Satisfies A, B, C
Avoids storing edges
Memory complexity

 O

(|V|)
Developed for trace-based
verification [Mateescu-02]

53 6

4

1

2

VTSA'08 - Max Planck Institute, Saarbrücken 221

Algorithm A3 / A4
(disjunctive / conjunctive)

DFS of the boolean

graph
Detection and
stabilization of SCCs
Satisfies A, B, C
Avoids storing edges
Memory complexity

 O

(|V|)
Developed for model
checking CTL, ACTL,

 and PDL

1

5

4

63

2

SCC of false
variables

SCC of true
variables

VTSA'08 - Max Planck Institute, Saarbrücken 222

Resolution algorithms
 (summary)

A0 (DFS, general)
–

Satisfies A,

B,

C

–

Memory complexity O

(|V|+|E|)

A1 (BFS, general)
–

Satisfies A,

C

+ «

small

»

diagnostics

–

Memory complexity O

(|V|+|E|) Time

A2 (DFS, acyclic)

complexity
–

Satisfies A,

B,

C O

(|V|+|E|)

–

Memory complexity O

(|V|)

A3/A4 (DFS, disjunctive/conjunctive)
–

Satisfies A,

B,

C

–

Memory complexity O

(|V|)

VTSA'08 - Max Planck Institute, Saarbrücken 223

Caesar_Solve

library of CADP
 [Mateescu-03,06]

15 000 lines of C
Integrated into
CADP in Dec. 2004
Diagnostic generation
features [Mateescu-00]
Used as verification back-end for
Bisimulator, Evaluator 3.5 and 4.0, Reductor

5.0

OPEN/CAESAR
libraries

CAESAR_SOLVE
library

(A0 –

A4 &

diagnostic)

im
pl

ic
it

 g
ra

ph

(s
uc

ce
ss

or

 f
un

ct
io

n)

BES
(boolean
graph)

diagnostic
(boolean
subgraph)

variable value

im
pl

ic
it

 g
ra

ph

(s
uc

ce
ss

or

 f
un

ct
io

n)

VTSA'08 - Max Planck Institute, Saarbrücken 224

Equivalence checking
 (principle)

description
of system

compiler

LTS
1

equivalence checker

true / false
+

diagnostic

description
of service

LTS
2

compiler

VTSA'08 - Max Planck Institute, Saarbrücken 225

Strong equivalence

M1

= (Q1

, A, T1

, q01

), M2

= (Q2

, A, T2

, q02

)
≈ ⊆ Q1

×

Q2

is the maximal relation s.t. p

≈

q

iff

∀a∈A.∀p

→a

p’∈T1

. ∃q

→a

q’∈T2

. p’

≈

q’
and
∀a∈A.∀q

→a

q’∈T2

. ∃p

→a

p’∈T1

. p’

≈

q’

M1

≈

M2 iff

q01

≈

q02

VTSA'08 - Max Planck Institute, Saarbrücken 226

p

≤

q
(preorder)

Translation to a BES

Principle:

p

≈

q

iff

Xp,q

is true
General BES:

Xp,q

=ν

(∧p

→a

p’

∨q

→a

q’

Xp’,q’

)
∧

 (∧q

→a

q’

∨p

→a

p’

Xp’,q’

)

Simple BES:
Xp,q

=ν

(∧p

→a

p’

Ya,p’,q

) ∧

(∧q

→a

q’

Za,p,q’

)
Ya,p’,q

=ν

∨q

→a

q’

Xp’,q’

Za,p,q’

=ν

∨p

→a

p’

Xp’,q’

VTSA'08 - Max Planck Institute, Saarbrücken 227

Tau*.a and safety equivalences
M1

= (Q1

, Aτ

, T1

, q01

), M2

= (Q2

, Aτ

, T2

, q02

)
Aτ

= A

∪

{ τ

}
Tau*.a equivalence:

Xp,q

=ν

(∧p

→τ*.a

p’

∨q

→τ*.a

q’

Xp’,q’

)
∧
(∧q

→τ*.a

q’

∨p

→τ*.a

p’

Xp’,q’

)

Safety equivalence:
Xp,q

=ν

Yp,q

∧

Yq,p

Yp,q

=ν ∧p

→τ*.a

p’

∨q

→τ*.a

q’

Yp’,q’

VTSA'08 - Max Planck Institute, Saarbrücken 228

Observational and branching
equivalences

Observational equivalence:
Xp,q

=ν

(∧p

→τ

p’

∨q

→τ*

q’

Xp’,q’

) ∧

(∧p

→a

p’

∨q

→τ*.a.τ*

q’

Xp’,q’

)
 ∧

 (∧q

→τ

q’

∨p

→τ*

p’

Xp’,q’

) ∧

(∧q

→a

q’

∨p

→τ*.a.τ*

p’

Xp’,q’

)

Branching equivalence:
Xp,q

=ν ∧p

→b

p’

((b=τ ∧ Xp’,q

) ∨ ∨q

→τ*

q’

→b

q’’

(Xp,q’

∧

Xp’,q’’

)
∧

 ∧q

→b

q’

((b=τ ∧ Xp,q’

) ∨ ∨p

→τ*

p’

→b

p’’

(Xp’,q

∧

Xp’’,q’

)

VTSA'08 - Max Planck Institute, Saarbrücken 229

Example
 (coffee machine)

≈

0

31

42

tc

mmm
0

c t
1

2 3

X00

Zm03Ym10 Zm01

Yt31

X11

Yc21

X13

Zc12 Yc23

X22

Zt14Yt33

X34

∧

∨

∧

∧ ∧

∧

∨∨∨∨∨

∨ ∨ ∨

X00

Ym10

Yt31

X11 X13

Yc23

0

31

42
Absent in LTS2: c

Absent in LTS2: t

mm

Counterexample

VTSA'08 - Max Planck Institute, Saarbrücken 230

Equivalence

checking

(time)

19 LTSs

of

the

VLTS benchmark suite

www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html

VTSA'08 - Max Planck Institute, Saarbrücken 231

Equivalence

checking

(memory)

VTSA'08 - Max Planck Institute, Saarbrücken 232

Equivalence checking
 (summary)

General

boolean

graph:
–

All equivalences and their preorders

–

Algorithms A0

and A1

(counterexample depth ↓)
Acyclic

boolean

graph:

–

Strong equivalence: one LTS acyclic
–

τ*.a

and safety: one LTS acyclic (τ-circuits allowed)

–

Branching and observational: both LTS acyclic
–

Algorithm A2

(memory ↓)

Conjunctive

boolean

graph:
–

Strong equivalence: one LTS deterministic

–

Weak equivalences: one LTS deterministic and τ-free
–

Algorithm A4

(memory ↓)

VTSA'08 - Max Planck Institute, Saarbrücken 233

Model checking
 (principle)

description
of system

compiler

LTS

properties

model checker

true / false
+

diagnostic

VTSA'08 - Max Planck Institute, Saarbrücken 234

On-the-fly model checking in CADP
 (Evaluator 3.x)

formulaLTS

BES

translation

resolution

yes / no + diagnostic

On-the-fly
activities

Model
checker

VTSA'08 - Max Planck Institute, Saarbrücken 235

Translation to Boolean

Equation
 Systems

formulaLTS

translation to PDLR

translation to HMLR

translation to BESs

PDLR spec

HMLR spec

BES

VTSA'08 - Max Planck Institute, Saarbrücken 236

Translation to PDL with recursion

State formula (expanded):
nu

Y0

. [true* . SEND]
mu

Y1

. 〈

true

〉

true

and

[not

RECV] Y1

PDLR specification [Mateescu-Sighireanu-03]:

Y0

=nu

[true* .

SEND] Y1

Y1

=mu

〈

true

〉

true

and

[not

RECV] Y1

VTSA'08 - Max Planck Institute, Saarbrücken 237

Simplification

PDLR specification:

Simple

PDLR specification:

Y0

=nu

[true* .

SEND] Y1

Y1

=mu

〈

true

〉

true

and

[not

RECV] Y1

Y0

=nu

[true* .

SEND] Y1 Y1

=mu

Y2

and

Y3

Y2

=mu 〈

true

〉

true
Y3

=mu [not

RECV] Y1

VTSA'08 - Max Planck Institute, Saarbrücken 238

Translation to BESs

s3

s1

s0

s2

SEND
RECV TIMEOUT

ii

Boolean

variables: xi, j

≡

si ⊨

Yj

x0,0

=ν

x0,4

∧

x0,5
x0,4

=ν

x1,1
x0,5

=ν

x1,0
x1,0

=ν

x1,4

∧

x1,5
x1,4

=ν

true
x1,5

=ν

x2,0

∧

x3,0
x2,0

=ν

x2,4

∧

x2,5
x2,4

=ν

true
x2,5

=ν

x0,0
x3,0

=ν

x3,4

∧

x3,5
x3,4

=ν

true
x3,5

=ν

x0,0

x1,1

=μ

x1,2

∧

x1,3
x1,2

=μ

true
x1,3

=μ

x2,1

∧

x3,1
x2,1

=μ

x2,2

∧

x2,3
x2,2

=μ

true
x2,3

=μ

true
x3,1

=μ

x3,2

∧

x3,3
x3,2

=μ

true
x3,3

=μ

x0,1
x0,1

=μ

x0,2

∧

x0,3
x0,2

=μ

true
x0,3

=μ

x1,1

Y0

=nu

Y4

and

Y5

Y4

=nu [SEND] Y1

Y5

=nu [true

] Y0

Y1

=mu

Y2

and

Y3

Y2

=mu 〈

true

〉

true
Y3

=mu [not

RECV] Y1

VTSA'08 - Max Planck Institute, Saarbrücken 239

Local BES resolution with diagnostic

x0,0

x0,5 x0,4

x1,0

x1,1

x1,4 x1,5

x2,0 x3,0

x2,5x2,4 x3,4 x3,5

x1,2 x1,3

x2,1 x3,1

x2,3x2,2 x3,2 x3,3

x0,1

x0,3x0,2

x0,0

x0,4

x1,1

x1,3

x3,1

x3,3

x0,1

x0,3

Counterexample

SEND

i

TIMEOUT

VTSA'08 - Max Planck Institute, Saarbrücken 240

Additional operators
Mechanisms for macro-definition (overloaded) and
library inclusion
Libraries encoding the operators of

CTL

and ACTL

EU (ϕ1

,

ϕ2

)

= mu

Y

.

ϕ2

or (ϕ1

and 〈

true 〉

Y)
EU (ϕ1

,

α1

,

α2 ,

ϕ2

)

= mu

Y

. 〈

α2

〉

ϕ2

or (ϕ1

and 〈

α1

〉

Y)

Libraries of high-level property patterns [Dwyer-99]
–

Property classes:

Absence, existence, universality, precedence, response

–

Property scopes:
Globally, before a, after a, between a and b, after a until b

–

More info:
http://www.inrialpes.fr/vasy/cadp/resources

http://www.inrialpes.fr/vasy/cadp/resources

VTSA'08 - Max Planck Institute, Saarbrücken 241

Disjunctive BES

Disjunctive

boolean

graph:
–

Potentiality

operator of CTL

E [ϕ1

U ϕ2

] = μX

. ϕ2

∨

(ϕ1

∧ 〈 T 〉

X)
{ X

=μ

ϕ2

∨

Y , Y

=μ

ϕ1

∧

Z , Z

=μ

〈

T 〉

X

}
{ Xs

=μ

ϕ2s

∨

Ys

, Ys

=μ

ϕ1s

∧

Zs

, Zs

=μ

∨s s’ Xs’ }
–

Possibility

modality of PDL

〈

(a

| b)* . c

〉

T
{ X

=μ

〈

c

〉

T ∨ 〈 a

〉

X

∨ 〈 b

〉

X

}
{ Xs

=μ

(∨s c s’ T) ∨ (∨s a s’ Xs’) ∨ (∨s b s’ Xs’) }

Algorithm A3

(memory ↓)

VTSA'08 - Max Planck Institute, Saarbrücken 242

Linear-time model checking
 (looping operator of PDL-delta)

Translation in mu-calculus of alternation
 depth 2 [Emerson-Lei-86]:

<

R > @

= nu

X . <

R >

X

But still checkable in linear-time:
–

Mark LTS states potentially satisfying X

–

Leads to marked variables in the disjunctive BES
–

Computation of boolean

SCCs

containing marked variables

–

A3cyc

algorithm [Mateescu-Thivolle-08]
Can serve for LTL model checking
Allows linear-time handling of repeated invocations

if R contains *-operators,
the formula is of

alternation depth 2

VTSA'08 - Max Planck Institute, Saarbrücken 243

Model checking
 of data-based

 properties
 (Evaluator 4.0)

Every SEND is followed by a RECV after 2 steps:

[true* .

SEND] < true {

2 } .

RECV > true

=
nu

X . ([

SEND] mu

Y (c:Nat

:=

2) .

if

c =

0 then <

RECV > true
else < true >

Y (c –

1)

end if
and
[true]

X)

SEND i i RECV

ACK

ERROR

VTSA'08 - Max Planck Institute, Saarbrücken 244

Translation into HMLR

nu

X . [

SEND] mu Y (c:Nat

:=

2) .
if

c =

0 then <

RECV > true

else < true >

Y (c –

1)
and [true]

X

end if

{

X =nu

{

Y (c:Nat)

=mu

[

SEND]

Y (2) if c =

0 then <

RECV > true
and

else < true >

Y (c –

1)

[true] X end if
} }

VTSA'08 - Max Planck Institute, Saarbrücken 245

Translation into
 BES and resolution

{

X =nu

{

Y (c:Nat)

=mu

[

SEND]

Y (2) if c =

0 then <

RECV > true
and

else < true >

Y (c –

1)

[true]

X end if
} }

Principle:

SEND i i RECV

ACK

ERROR

0 1 2 3 4

X0 Y1

(2)

X1

Y2

(1) Y0

(0)

Y3

(0). . .

Xs

= «

s |= X »
Ys

(c) = «

s |= Y (c) »

VTSA'08 - Max Planck Institute, Saarbrücken 246

Divergence

In presence of data parameters of infinite types,
termination of model checking is not guaranteed
anymore
(pathological) property:

LTS:

mu

X (n:Nat

:=

0) . <

a

>

X (n +

1)

BES :

{

Xs

(n:Nat)

=mu

OR s ->a s’

Xs’

(n +

1) }

=
{

Xs

(n:Nat)

=mu

Xs

(n +

1) }

a

s

.
Xs

(0) Xs

(1) Xs

(2) Xs

(n)

VTSA'08 - Max Planck Institute, Saarbrücken 247

Conjunctive BES

Conjunctive

boolean

graph:
–

Inevitability

operator of CTL

A [ϕ1

U ϕ2

] = μX

. ϕ2

∨

(ϕ1

∧ 〈 T 〉

T ∧ [T]

X)
{ X

=μ

ϕ2

∨

Y , Y

=μ

ϕ1

∧

Z ∧ [T]

X , Z

=μ

〈

T 〉

T }
{ Xs

=μ

ϕ2s

∨

Ys

, Ys

=μ

ϕ1s

∧

Zs

∧

(∧s s’ Xs’) , Zs =μ ∨s s’ T }
–

Necessity

modality of PDL

[(a

| b)* . c

] F
{ X

=μ

[c

] F ∧

[a

] X

∧

[b

] X

}
{ Xs

=μ

(∧s c s’ F) ∧ (∧s a s’ Xs’) ∧ (∧s b s’ Xs’) }

Algorithm A4

(memory ↓)

VTSA'08 - Max Planck Institute, Saarbrücken 248

Acyclic BES

Acyclic

boolean

graph:
–

Acyclic

LTS and guarded formulas [Mateescu-02]

Handling of CTL (and ACTL) operators:
–

E [ϕ1

U ϕ2

] = μX

. ϕ2

∨

(ϕ1

∧ 〈 T 〉

X)
–

A [ϕ1

U ϕ2

] = μX

. ϕ2

∨

(ϕ1

∧ 〈 T 〉

T ∧ [T]

X)

Handling of full mu-calculus
–

Translation to guarded form

–

Conversion from maximal to minimal fixed points
[Mateescu-02]

Algorithm A2

(memory ↓)

VTSA'08 - Max Planck Institute, Saarbrücken 249

Algorithm A1 vs. A3/A4
 (execution time –

CADP demos)

number of boolean

operators in the BES

tim
e

(s
ec

)

VTSA'08 - Max Planck Institute, Saarbrücken 250

Algorithm A1 vs. A3/A4
 (memory consumption –

CADP demos)

number of boolean

operators in the BES

m
em

or
y

(K
by

te
s)

VTSA'08 - Max Planck Institute, Saarbrücken 251

Algorithm A1 vs. A3/A4
 (diagnostic size –

BRP protocol)

message length (number of packets)

di
ag

no
st

ic
 s

iz
e

 (n
um

be
r o

f t
ra

ns
iti

on
s)

VTSA'08 - Max Planck Institute, Saarbrücken 252

Model checking
 (summary)

General

boolean

graph:
–

Any LTS and any alternation-free μ-calculus formula

–

Algorithms A0

and A1

(diagnostic depth ↓)
Acyclic

boolean

graph:

–

Acyclic LTS and guarded formula (CTL, ACTL)
–

Acyclic LTS and μ-calculus formula (via reduction)

–

Algorithm A2

(memory ↓)

Disjunctive/conjunctive

boolean

graph:
–

Any LTS and any formula of CTL, ACTL, PDL

–

Algorithm A3/A4

(memory ↓)
–

Matches the best local algorithms dedicated to CTL
[Vergauwen-Lewi-93]

VTSA'08 - Max Planck Institute, Saarbrücken 253

Partial order reduction
τ-confluence

[Groote-vandePol-00]

–

Form of partial-order reduction defined on LTSs
–

Preserves branching bisimulation

Principle
–

Detection of τ-confluent transitions

–

Elimination of “neighbour”

transitions (τ-prioritisation)

On-the-fly LTS reduction
–

Direct approach [Blom-vandePol-02]

–

BES-based approach

[Pace-Lang-Mateescu-03]
Define τ-confluence in terms of a BES
Detect τ-confluent transitions by locally solving the BES
Apply τ-prioritisation and compression on sequences

VTSA'08 - Max Planck Institute, Saarbrücken 254

Translation to a BES

Xp1,p2

=ν

∧p1

→b

p3

(
p2

→b

p3

∨

∨p2

→b

p4, p3→τ p4 Xp3,p4

∨
((b

= τ)

∧ ∨p3

→τ p2

Xp3,p2

)
)

VTSA'08 - Max Planck Institute, Saarbrücken 255

Tau-prioritisation

and compression

Original LTS

Reduced LTS
(exploration from s0

and s7

)

In practice: reductions of a factor 102

– 103

[Mateescu-05]

VTSA'08 - Max Planck Institute, Saarbrücken 256

Model checking using A3/A4
 (effect of τ-confluence reduction –

time –

Erathostene’s

sieve)

number of units in the sieve

tim
e

(s
ec

)

without τ-confluence
with τ-confluence

VTSA'08 - Max Planck Institute, Saarbrücken 257

Model checking using A3/A4
 (effect of τ-confluence reduction –

memory –

Erathostene’s

sieve)

without τ-confluence
with τ-confluence

number of units in the sieve

m
em

ot
y

(K
by

te
s)

VTSA'08 - Max Planck Institute, Saarbrücken 258

Checking branching bisimulation
 (effect of τ-confluence reduction –

time –

BRP protocol)

VTSA'08 - Max Planck Institute, Saarbrücken 259

Checking branching bisimulation
 (effect of τ-confluence reduction –

memory –

BRP protocol)

VTSA'08 - Max Planck Institute, Saarbrücken 260

On-the-fly verification
 (summary)

Already available:
Generic Caesar_Solve

library [Mateescu-03,06]

9 local BES resolution algorithms (A8 added in 2008)
Diagnostic generation features
Applications: Bisimulator, Evaluator 3.5, Reductor

5.0

Ongoing:
Distributed BES resolution algorithms on clusters of machines
[Joubert-Mateescu-04,05,06]
New applications

–

Test generation
–

Software adaptation

–

Discrete controller synthesis

VTSA'08 - Max Planck Institute, Saarbrücken 261

Case study

SCSI-2 bus arbitration protocol

Description in LOTOS

Specification of properties in TL

Verification using Evaluator 3.5 and 4.0

Interpretation of diagnostics

VTSA'08 - Max Planck Institute, Saarbrücken 262

SCSI-2 bus arbitration protocol

Prioritized

arbitration mechanism, based on static IDs on
bus (devices numbered from 0 to n –

1)

Fairness

problem (starvation of low-priority disks)

CMD
ARB
REC

CMD
ARB
REC

...Disk Disk Disk

Controller

...

VTSA'08 - Max Planck Institute, Saarbrücken 263

Architecture of the system
(

DISK [ARB, CMD, REC] (0, 0)
|[ARB]|
DISK [ARB, CMD, REC] (1, 0)
|[ARB]|
...
|[ARB]|
DISK [ARB, CMD, REC] (6, 0)

)
|[ARB, CMD, REC]|
CONTROLLER [ARB, CMD, REC] (NC, ZERO)

8-ary rendezvous
on gate ARB

binary rendezvous
on gates CMD, REC

VTSA'08 - Max Planck Institute, Saarbrücken 264

Synchronization constraints
 (bus arbitration policy)

Synchronizations on gate ARB:
ARB ?r0, …,r7:Bool [C (r0, …, r7, n)] ; ...

where:
–

r0, …, r7 = values of the electric signals on the bus

–

n = index of the current device

Two particular cases for guard condition C:
–

P (r0, …, r7, n): device n does not ask the bus

–

A (r0, …, r7, n): device n asks and obtains access to bus

VTSA'08 - Max Planck Institute, Saarbrücken 265

Guard conditions

Predicate P (r0, ..., r7, n) = ¬rn

P (r0, ..., r7, 0) = not (r0)
P (r0, ..., r7, 1) = not (r1)
...
P (r0, ..., r7, 7) = not (r7)

Predicate A (r0, ..., r7, n) =

rn

∧ ∀i ∈

[n+1, 7] . ¬ri

A (r0, ..., r7, 0) = r0 and not (r1 or ... or r7)
A (r0, ..., r7, 1) = r1 and not (r2 or ... or r7)
...
A (r0, ..., r7, 7) = r7

VTSA'08 - Max Planck Institute, Saarbrücken 266

Controller process
process

Controller [ARB, CMD, REC] (C:Contents) : noexit

:=

(* communicate with disk N *)
choice

N:Nat

[]

[(N >= 0) and (N <= 6)] ->
Controller2 [ARB, CMD, REC] (C, N)

[]
(* does not request the bus *)
ARB ?r0, ..., r7:Bool [P (r0, ..., r7, 7)];

Controller [ARB, CMD, REC] (C)
endproc

VTSA'08 - Max Planck Institute, Saarbrücken 267

Controller process
process

Controller2 [ARB, CMD, REC] (C:Contents, N:Nat) :

noexit

:=
[not_full

(C, N)] ->

(* request and obtain the bus *)
ARB ?r0, ..., r7:Bool [A (r0, ..., r7, 7)];

CMD !N; (* send a command *)
Controller [ARB, CMD, REC] (incr

(C, N))

[]
REC !N; (* receive an acknowledgement *)

Controller [ARB, CMD, REC] (decr

(C, N))
endproc

VTSA'08 - Max Planck Institute, Saarbrücken 268

Disk process
process

DISK [ARB, CMD, REC] (N, L:Nat) : noexit

:=

CMD !N; DISK [ARB,CMD,REC] (N, L+1)
[]
[L > 0] -> (

ARB ?r0, ..., r7:Bool [A (r0, ..., r7, N)];
REC !N; DISK [ARB, CMD, REC] (N, L-1)

[]
ARB ?r0, ..., r7:Bool [not (A (r0, ..., r7, N)) and

not (P (r0, ..., r7, N))];
DISK [ARB, CMD, REC] (N, L)

)
[]
[L = 0] -> ARB ?r0, ..., r7:Bool [P (r0, ..., r7, N)];

DISK [ARB, CMD, REC] (N, L)
endproc

VTSA'08 - Max Planck Institute, Saarbrücken 269

Absence of starvation property
 (PDL+ACTL formulation)

“Every time a disk i

receives a command from the controller,
it will be able to gain access to the bus in order to send the
corresponding acknowledgement”

[true* .

cmdi

] A [truetrue

Ureci

true]

Property fails
 for i <

nc

Counterexample
 produced by Evaluator 3.5

 for i

= 0 and nc

= 1:

VTSA'08 - Max Planck Institute, Saarbrücken 270

Starvation property
 (MCL formulation)

“Every time a disk i

with priority lower than the controller
nc

receives a command, its access to the bus can be

continuously preempted by any other disk j

with higher
priority”

[true*. {cmd

?i:Nat

where

i < nc}]
forall

j:Nat

among {

i + 1 ...

n −

1 } .

(j <> nc) implies
< (not {rec

!i})*. {cmd

!j} .

(not {rec

!i})*. {rec

!j} > @

VTSA'08 - Max Planck Institute, Saarbrücken 271

Safety property
 (MCL formulation)

“The difference between the number of commands received
and reconnections sent by a disk i

varies between 0

and 8

 (the size of the buffers associated to disks)”

forall

i:Nat

among {

0 …

n –

1 } .
nu

Y (c:Nat:=0) . (

[{cmd

!i}] ((c < 8) and

Y (c + 1))
and
[{rec

!i}] ((c > 0) and

Y (c −

1))

and
[not ({cmd

!i} or {rec

!i})]

Y (c)

)

VTSA'08 - Max Planck Institute, Saarbrücken 272

Safety property
 (standard mu-calculus formulation)

nu

CMD_REC_0 . (
[CMD_i

] nu

CMD_REC_1 . (
[CMD_i

] nu

CMD_REC_2 . (
[CMD_i

] nu

CMD_REC_3 . (
[CMD_i

] nu

CMD_REC_4 . (
[CMD_i

] nu

CMD_REC_5 . (
[CMD_i

] nu

CMD_REC_6 . (
[CMD_i

] nu

CMD_REC_7 . (
[CMD_i

] nu

CMD_REC_8 . (
[CMD_i

] false
and
[REC_i

] CMD_REC_7
and
[not ((CMD_i) or (REC_i))] CMD_REC_8

)
and
[REC_i

] CMD_REC_6
and
[not ((CMD_i) or (REC_i))] CMD_REC_7

)
and
[REC_i

] CMD_REC_5
and
[not ((CMD_i) or (REC_i))] CMD_REC_6

)

and
[REC_i

] CMD_REC_4
and
[not ((CMD_i) or (REC_i))] CMD_REC_5

)
and
[REC_i

] CMD_REC_3
and
[not ((CMD_i) or (REC_i))] CMD_REC_4

)
and
[REC_i

] CMD_REC_2
and
[not ((CMD_i) or (REC_i))] CMD_REC_3

)
and
[REC_i

] CMD_REC_1
and
[not ((CMD_i) or (REC_i))] CMD_REC_2

)
and
[REC_i

] CMD_REC_0
and
[not ((CMD_i) or (REC_i))] CMD_REC_1

)
and
[REC_i

] false
and
[not ((CMD_i) or (REC_i))] CMD_REC_0

)

VTSA'08 - Max Planck Institute, Saarbrücken 273

Discussion and perspectives
Model-based verification techniques:
–

Bug hunting, useful in early stages of the design process

–

Confronted with (very) large models
–

Temporal logics extended with data (XTL, Evaluator 4.0)

–

Machinery for on-the-fly verification (Open/Caesar)

Perspectives:
–

Parallel and distributed algorithms

State space construction
BES resolution

–

New applications
Analysis of genetic regulatory networks

	Model Checking of Action-Based Concurrent Systems
	Why formal verification?
	Diapositive numéro 3
	 Outline
	Asynchronous concurrent systems
	CADP toolbox:�Construction and Analysis of Distributed Processes�(http://www.inrialpes.fr/vasy/cadp)
	Communicating automata
	Diapositive numéro 8
	Communicating automata
	Automaton (LTS)
	LTS representations in CADP�(http://www.inrialpes.fr/vasy/cadp)
	Server example�(modeled using a single automaton)
	LTS of the server�(9 states, 16 transitions)
	Remarks
	Server example�(modeled using two concurrent automata)
	Decomposition in�concurrent subsystems
	Parallel composition (“product”)�of automata
	Binary parallel composition�(syntax)
	Binary parallel composition�(semantics)
	Example
	Interleaving semantics
	Internal and external choice
	Example of modeling with�communicating automata
	Peterson’s algorithm [1968]
	Automata of P0 and P1
	Automata of d0, d1, and t
	Architecture of the system�(graphical)
	Architecture of the system�(textual)
	Construction of the LTS�(“product automaton”)
	Construction of the LTS
	Remarks
	Verification
	Limitations of binary parallel composition
	Example�(ring network [Garavel-Sighireanu-99])
	General parallel composition�[Garavel-Sighireanu-99]
	General parallel composition�(semantics – rules without synchronization degrees)
	Example (1/3)
	Example (2/3)�(ring network [Garavel-Sighireanu-99])
	Example (3/3)
	Parallel composition using synchronization vectors
	Example�(client-server with gate multiplexing)
	Behavioural equivalence
	Equivalence relations between LTSs
	Trace equivalence
	Example�(coffee machine)
	Bisimulation
	Strong bisimulation
	Is strong bisimulation sufficient?
	Weak bisimulation�(or observational equivalence)
	Weak bisimulation�(formal definition)
	Example
	Communicating automata�(summary)
	Process algebraic languages
	Process algebras
	LOTOS�(Language Of Temporal Ordering Specification)
	LOTOS – data part
	LOTOS – process part
	Value expressions and offers
	Behaviour expressions�(Lots Of Terribly Obscure Symbols :-)
	Process definitions
	Remarks
	Example
	Multiple rendezvous
	Binary rendezvous
	Abstraction�(hiding)
	Example
	Operational semantics
	Semantics of “|[...]|”
	Semantics of “hide”
	Sequential behaviours
	Remarks
	Semantics of “stop”
	Prefix operator (“;”)
	Semantics of “;”
	Example (1/2)
	Example (2/2)
	Semantics of “;”
	Example (1/3)
	Example (2/3)
	Example (3/3)
	Rendezvous�(summary)
	Choice operator (“[]”)
	Semantics of “[]”
	Internal / external choice
	Internal action (“i”)
	Guard operator (“[…] -”)
	Semantics of “[…] -”
	Examples
	Operator “let”
	Semantics of “let”
	Remarks
	Operator “choice”
	Examples
	Operator “exit”
	Semantics of “exit”
	Operator “>>”
	Semantics of “>>”
	Example (1/4)
	Example (2/4)
	Example (3/4)
	Example (4/4)
	Sequential composition�(summary)
	Process call
	Example
	Static semantics�(summary)
	LOTOS specification
	Example:�Peterson’s mutual exclusion algorithm
	Description of variables d0, d1
	Description of variable t
	Description of processes P0 and P1
	Processes P0 et P1�(continued)
	Architecture of the system�(graphical)
	Architecture of the system�(textual)
	LTS model
	Process algebraic languages�(summary)
	Action-based temporal logics
	Why temporal logics?
	(Rough) classification of TLs
	Example�(coffee machine)
	Interpretation of�(branching-time) TLs on LTSs
	Running example:�mutual exclusion with a semaphore
	LTS model
	Modal logics
	Action predicates�(syntax)
	Action predicates�(semantics)
	Examples
	HML logic�(syntax)
	HML logic�(semantics)
	Example (1/4)
	Example (2/4)
	Example (3/4)
	Example (4/4)
	Some identities
	Characterization of branching
	Modal logics�(summary)
	Branching-time logics
	ACTL logic�(syntax)
	ACTL logic�(derived operators)
	ACTL logic�(semantics – potentiality operators)
	ACTL logic�(semantics – inevitability operators)
	Example (1/4)
	Example (2/4)
	Example (3/4)
	Example (4/4)
	Remark about inevitability
	Safety properties
	Liveness properties
	Branching-time logics�(summary)
	Regular logics
	Regular formulas�(syntax)
	Regular formulas�(semantics)
	Example (1/3)
	Example (2/3)
	Example (3/3)
	PDL logic�(syntax)
	PDL logic�(semantics)
	Example (1/2)
	Example (2/2)
	Some identities
	Fairness properties
	Fair execution
	Example
	Regular logics�(summary)
	Fixed point logics
	Modal mu-calculus�(syntax)
	Syntactic restrictions
	Modal mu-calculus�(semantics)
	Minimal fixed point
	Example
	Maximal fixed point
	Example
	Exercise
	Some identities
	Inevitable reachability
	Inevitable execution
	Example
	Fair execution
	Example
	Fixed point logics�(summary)
	Some verification tools�(for action-based logics)
	Extensions of µ-calculus with data
	Why to handle data?
	Model Checking Language
	Parameterized modalities
	Parameterized fixed points
	Example (1/3)
	Example (2/3)
	Example (3/3)
	Quantifiers
	Example
	Conditional operators (1/2)
	Syntactic restrictions
	Example
	Conditional operators (2/2)
	Example
	Variable definition
	Extended regular formulas
	Translations to basic MCL
	Example�(action counting revisited)
	Example�(safety of a n-place buffer)
	Testing operator of PDL
	Example
	Looping operator (from PDL-delta)
	Expressiveness�(summary)
	Adequacy with equivalence relations
	On-the-fly verification
	Principle of explicit-state verification
	On-the-fly verification
	Boolean equation systems�(syntax)
	Example
	Particular blocks
	Boolean equation systems�(semantics)
	Local resolution
	Example
	Local resolution algorithms
	Example
	Three effectiveness criteria�[Mateescu-06]
	Algorithm A0�(general)
	Algorithm A1 �(general)
	Algorithm A2 �(acyclic)
	Algorithm A3 / A4 �(disjunctive / conjunctive)
	Resolution algorithms�(summary)
	Caesar_Solve library of CADP�[Mateescu-03,06]
	Equivalence checking�(principle)
	Strong equivalence
	Translation to a BES
	Tau*.a and safety equivalences
	Observational and branching equivalences
		Example�	(coffee machine)
	Equivalence checking (time)�
	Equivalence checking (memory)�
	Equivalence checking�(summary)
	Model checking�(principle)
	On-the-fly model checking in CADP�(Evaluator 3.x)
	Translation to Boolean Equation Systems
	Translation to PDL with recursion
	Simplification
					Translation to BESs
	Local BES resolution with diagnostic�
	Additional operators
	Disjunctive BES
	Linear-time model checking�(looping operator of PDL-delta)
	Model checking�of data-based�properties�(Evaluator 4.0)				
	Translation into HMLR
	Translation into�BES and resolution
	Divergence
	Conjunctive BES
	Acyclic BES
	Algorithm A1 vs. A3/A4�(execution time – CADP demos)
	Algorithm A1 vs. A3/A4�(memory consumption – CADP demos)
	Algorithm A1 vs. A3/A4�(diagnostic size – BRP protocol)
	Model checking�(summary)
	Partial order reduction
	Translation to a BES
	Tau-prioritisation and compression
	Model checking using A3/A4�(effect of τ-confluence reduction – time – Erathostene’s sieve)
	Model checking using A3/A4�(effect of τ-confluence reduction – memory – Erathostene’s sieve)
	Checking branching bisimulation�(effect of τ-confluence reduction – time – BRP protocol)
	Checking branching bisimulation�(effect of τ-confluence reduction – memory – BRP protocol)
	On-the-fly verification�(summary)
	Case study
	SCSI-2 bus arbitration protocol
	Architecture of the system
	Synchronization constraints�(bus arbitration policy)
	Guard conditions
	Controller process
	Controller process
	Disk process�
	Absence of starvation property�(PDL+ACTL formulation)
	Starvation property�(MCL formulation)
	Safety property�(MCL formulation)
	Safety property�(standard mu-calculus formulation)
	Discussion and perspectives

