Model Checking of Action-Based Concurrent Systems

Radu Mateescu INRIA Rhône-Alpes / VASY http://www.inrialpes.fr/vasy

Why formal verification?

Therac-25 radiotherapy accidents (1985-1987)

Ariane-5 launch failure (1996) Mars climate orbiter failure (1999)

- Characteristics of these systems
 - Errors due to software
 - Complex, often involving parallelism
 - Safety-critical

➔ formal verification is useful for early error detection

VTSA'08 - Max Planck Institute, Saarbrücken

Outline

- Communicating automata
- Process algebraic languages
- Action-based temporal logics
- On-the-fly verification
- Case study
- Discussion and perspectives

VTSA'08 - Max Planck Institute, Saarbrücken

Asynchronous concurrent systems

Characteristics:

- Set of distributed processes
- Message-passing communication
- Nondeterminism

Applications:

- Hardware
- Software
- Telecommunications

CADP toolbox:

Construction and Analysis of Distributed Processes (http://www.inrialpes.fr/vasy/cadp)

• Description languages:

- ISO standards (LOTOS, E-LOTOS)
- Networks of communicating automata

• Functionalities:

- Compilation and rapid prototyping
- Interactive and guided simulation
- Equivalence checking and model checking
- Test generation

Case-studies and applications:

- >100 industrial case-studies
- >30 derived tools

• Distribution: over 400 sites (2008)

Communicating automata

- Basic notions
- Implicit and explicit representations
- Parallel composition and synchronization
- Hiding and renaming
- Behavioural equivalences

Transformational systems

- Work by computing a result in function of the entries
- Absence of termination undesirable
- Upon termination, the result is unique
- Sequential programming (sorting algorithms, graph traversals, syntax analysis, ...)

Reactive systems

- Work by reacting to the stimuli of the environment
- Absence of termination desirable
- Different occurrences of the same request may produce different results
- Parallel programming (operating systems, communication protocols, Web services, ...)
- Concurrent execution
- Communication + synchronization

Communicating automata

- Simple formalism describing the behaviour of concurrent systems
- Black-box approach:
 - One cannot inspect directly the state of the system
 - The behaviour of the system can be known only through its interactions with the environment

 Synchronization on a gate requires the participation of the process and of its environment (*rendezvous*)

Automaton (LTS)

- Labeled Transition System $M = \langle S, A, T, s_0 \rangle$
 - S: set of *states* ($s_1, s_2, ...$)
 - A: set of visible *actions* (a_1, a_2, \ldots)
 - *T*: *transition* relation $(s_1 a \rightarrow s_2 \in T)$
 - $s_0 \in S$: initial state
- Example: process client₁

internal action (noted i or τ)

every state is reachable from the initial state

deadlock (sink) state: no outgoing transitions

sequential model of a reactive system behaviour

- Other kinds of automata:
 - Kripke strictures (information associated to states)
 - Input/output automata [Lynch-Tuttle]

VTSA'08 - Max Planck Institute, Saarbrücken

LTS representations in CADP

(http://www.inrialpes.fr/vasy/cadp)

Explicit

- List of transitions
- Allows forward and backward exploration
- Suitable for global verification
- BCG (Binary Coded Graphs) environment
 - API in C for reading/writing
 - Tools and libraries for explicit graph manipulation (bcg_io, bcg_draw, bcg_info, bcg_edit, bcg_labels, ...)
 - Global verification tools (XTL)

Implicit

- "Successor" function
- Allows forward exploration only
- Suitable for local (or onthe-fly) verification
- Open/Caesar environment [Garavel-98]
 - API in C for LTS exploration
 - Libraries with data structures for implicit graph manipulation (stacks, tables, edge lists, hash functions, ...)
 - On-the-fly verification tools (Bisimula**tor**, Evalua**tor**, ...)

Server example

(modeled using a single automaton)

Server able to process two requests concurrently

- State variables u_1 , u_2 storing the request status:
 - Empty (e)
 - Received (r)
 - Handled (h)
- A state: couple <u₁, u₂>
- Initial state: <e, e> (ee for short)
- Gates (actions):
 - req1, req2: receive a request
 - res1, res2: send a response
 - i: internal action

Remarks

• All the theoretical states are reachable:

$$| u_1 | * | u_2 | = 3 * 3 = 9$$

(no synchronization between request processings)

- There is no sink state (the system is *deadlock-free*)
- From every state, it is possible to reach the initial state again (the server can be re-initialized)
- Shortcomings of modeling with a single automaton:
 - One must predict all the possible request arrival orders
 - For more complex systems, the LTS size grows rapidly

need of higher-level modeling features

Server example (modeled using two concurrent automata)

Decomposition of the system in two subsystems

- Every type of request is handled by a subsystem
- In the server example, subsystems are independent
- Simpler description w.r.t. single automaton:
 - 3 + 3 = 6 states

VTSA'08 - Max Planck Institute, Saarbrücken

Decomposition in concurrent subsystems

Required at physical level

- Modeling of distributed activities
- Multiprocessor/multitask ing execution platform

Chosen at logical level

- Simplified design of the system
- Well-structured programs
- Communication and synchronization between subsystems may introduce behavioural errors (e.g., *deadlocks*)
- In practice, even simple parallel programs may reveal difficult to analyze

→ need of computer-assisted verification

Parallel composition ("product") of automata

Goals:

- Define internal composition laws

 $\otimes: \mathsf{LTS} \times \ldots \times \mathsf{LTS} \to \mathsf{LTS}$

expressing the parallel composition of 2 (or more) LTSs

- Allow synchronizations on one or several actions (gates)
- Allow hierarchical decomposition of a system

• Consequences:

- A product of automata can always be translated into a single (sequential) automaton
- The logical parallelism can be implemented sequentially (e.g., time-sharing OS)

Binary parallel composition (syntax)

• EXP language [Lang-05]

- Description of communicating automata
- Extensive set of operators
 - Parallel compositions (binary, general, ...)
 - Synchronization vectors
 - Hiding / renaming, cutting, priority, ...
- Exp.Open compiler \rightarrow implicit LTS representation

• Binary parallel composition:

"lts1.bcg" |[G1, ..., Gn]| "lts2.bcg"

with synchronization on G1, ..., Gn

"lts1.bcg"

without synchronization (interleaving)

Binary parallel composition (semantics)

Let $M_1 = \langle S_1, A_1, T_1, s_{01} \rangle$, $M_2 = \langle S_2, A_2, T_2, s_{02} \rangle$ and $L \subseteq A_1 \cap A_2$ a set of visible actions to be synchronized.

 $\begin{array}{l} \mathsf{M}_{1} \mid [\mathsf{L}] \mid \mathsf{M}_{2} = \langle \mathsf{S}, \mathsf{A}, \mathsf{T}, \mathsf{s}_{0} \rangle \\ \bullet \mathsf{S} = \mathsf{S}_{1} \times \mathsf{S}_{2} \\ \bullet \mathsf{A} = \mathsf{A}_{1} \cup \mathsf{A}_{2} \\ \bullet \mathsf{S}_{0} = \langle \mathsf{s}_{01}, \mathsf{s}_{02} \rangle \\ \bullet \mathsf{T} \subseteq \mathsf{S} \times \mathsf{A} \times \mathsf{S} \\ \text{ defined by } \mathsf{R}_{1} \cdot \mathsf{R}_{3} \end{array} \left\{ \begin{array}{l} (\mathsf{R}_{1}) \quad \frac{\mathsf{s}_{1} \xrightarrow{\mathsf{a}} \mathsf{s}'_{1} \wedge \mathsf{a} \notin \mathsf{L}}{\langle \mathsf{s}_{1}, \mathsf{s}_{2} \rangle \xrightarrow{\mathsf{a}} \langle \mathsf{s}'_{1}, \mathsf{s}_{2} \rangle} \\ (\mathsf{R}_{2}) \quad \frac{\mathsf{s}_{2} \xrightarrow{\mathsf{a}} \mathsf{s}'_{2} \wedge \mathsf{a} \notin \mathsf{L}}{\langle \mathsf{s}_{1}, \mathsf{s}_{2} \rangle \xrightarrow{\mathsf{a}} \langle \mathsf{s}_{1}, \mathsf{s}'_{2} \rangle} \\ (\mathsf{R}_{3}) \quad \frac{\mathsf{s}_{1} \xrightarrow{\mathsf{a}} \mathsf{s}'_{1} \wedge \mathsf{s}_{2} \xrightarrow{\mathsf{a}} \langle \mathsf{s}'_{1}, \mathsf{s}'_{2} \rangle}{\langle \mathsf{s}_{1}, \mathsf{s}_{2} \rangle \xrightarrow{\mathsf{a}} \langle \mathsf{s}'_{1}, \mathsf{s}'_{2} \rangle} \end{array}$

Example

Interleaving semantics

- Hypothesis:
 - Every action is atomic
 - One can observe at most one action at a time
 - → suitable paradigm for distributed systems

interleaving lozenge

 Parallelism can be expressed in terms of choice and sequence (expansion theorem [Milner-89])

Internal and external choice

 External choice (the environment decides which branch of the choice will be executed)

the environment can force the execution of a and b by synchronizing on that action

• Internal choice (the system decides)

the environment may synchronize on a, but this will not remove the nondeterminism

VTSA'08 - Max Planck Institute, Saarbrücken

Example of modeling with communicating automata

• Mutual exclusion problem:

Given two parallel processes P_0 and P_1 competing for a shared resource, guarantee that at most one process accesses the resource at a given time.

• Several solutions were proposed *at software level*:

- In centralized setting (Peterson, Dekker, Knuth, ...)
- In distributed setting (Lamport, ...)

A. Raynal. Algorithmique du parallélisme: le problème de l'exclusion mutuelle. Dunod Informatique, 1984.

Peterson's algorithm [1968]

```
var d0 : bool := false
                             { read by P1, written by P0 }
                             { read by P0, written by P1 }
var d1 : bool := false
var t ∈ {0, 1} := 0
                             { read/written by P0 and P1 }
loop forever { P0 }
                                   loop forever { P1 }
1 : \{ ncs0 \}
                                  1 : { ncs1 }
2 : d0 := true
                                  2 : d1 := true
3 : t := 0
                                  3 : t := 1
4 : wait (d1 = false or t = 1)
                                  4 : wait (d0 = false or t = 0)
                                  5:{b_cs1}
5 : { b_cs0 }
6 : { e_cs0 }
                                  6:{e_cs1}
7 : d0 := false
                                   7 : d1 := false
endloop
                                  endloop
```


Automata of P₀ and P₁

Automata of d_0 , d_1 , and t

- Synchronized actions: «d0:=false», «d0:=true», ...
- Non synchronized actions: ncs0, b_cs0, e_cs0, ...

Architecture of the system (textual)

 Using binary parallel composition: (P0 ||| P1) ["d0:=false", "d0:=true", ...]| (d0 ||| d1 ||| t)

• Using general parallel composition:

par

"d0:=false", "d0:=true", ... → P0 || "d1:=false", "d1:=true", ... → P1 || "d0:=false", "d0:=true", "d0=false?" → d0 || "d1:=false", "d1:=true", "d1=false?" → d1 || "t:=0", "t:=1", "t=0?", "t=1?" → t end par

Construction of the LTS ("product automaton")

• Explicit-state method:

- LTS construction by exploring forward the transition relation, starting at the initial state
- Transitions are generated by using the R_1 , R_2 , R_3 rules
- Detect already visited states in order to avoid cycling
- Several possible exploration strategies:
 - Breadth-first, depth-first
 - Guided by a criterion / property, ...
- Several types of algorithms:
 - Sequential, parallel, distributed, ...

Construction of the LTS

Remarks

• The LTS of Peterson's algorithm is finite:

 $|~S~|~\cong 50 \leq 2 \times 2 \times 2 \times 7 \times 7 = 392$

- In the presence of synchronizations, the number of reachable states is (much) smaller than the size of the cartesian product of the variable domains
- Some tools of CADP for LTS manipulation:
 - OCIS (step-by-step and guided simulation)
 - Executor (random exploration)
 - Exhibitor (search for regular sequences)
 - Terminator (search for deadlocks)
 - → can be used in conjunction with Exp.Open

Verification

- Once the LTS is generated, one can formulate and verify automatically the desired properties of the system
- For Peterson's algorithm:
 - Deadlock freedom: each state has at least one successor
 - Mutual exclusion: at most one process can be in the critical section at a given time
 - Liveness: no process can indefinitely overtake the other when accessing its critical section

[see the chapter on temporal logics]

Limitations of binary parallel composition

• Several ways of modeling a process network:

- Absence of *canonical form*
- Difficult to determine whether two composition expressions denote the same process network
- Difficult to retrieve the process network from a composition expression
- The semantics of " $|[G_1, ..., G_n]|$ " (rule R_3) does not prevent that other processes synchronize on $G_1, ..., G_n$ (maximal cooperation)
- Some networks cannot be modeled using "|[]|":

P2

G

P3

 $|[G_4, G_5]|$ the composition expression does not reflect the symmetry of the process network

P₅

General parallel composition [Garavel-Sighireanu-99]

 "Graphical" parallel composition operator allowing the composition of several automata and their m among n synchronization:

par [$g_1 \# m_1, \ldots, g_p \# m_p$ in] $\underline{G}_1 \rightarrow B_1$ $|| \quad \underline{G}_2 \rightarrow B_2$ $gates with their associated synchronization degrees<math>|| \quad \underline{G}_n \rightarrow B_n$ automata (processes)end parcommunication interfaces (gate lists)

General parallel composition (semantics - rules without synchronization degrees)

$$\exists a, i . B_i - a \rightarrow B_i' \land a \notin G_i \land \forall j \neq i . B_j' = B_j$$

par $G_1 \rightarrow B_1, ..., G_n \rightarrow B_n - a \rightarrow par G_1 \rightarrow B_1', ..., G_n \rightarrow B_n'$ (GR1)

mandatory interleaved execution of non-synchronized actions

 $\exists a. \forall i. if a \in G_i \text{ then } B_i - a \rightarrow B_i' \text{ else } B_j' = B_j$ par $G_1 \rightarrow B_1, ..., G_n \rightarrow B_n - a \rightarrow par G_1 \rightarrow B_1', ..., G_n \rightarrow B_n'^{(GR2)}$

execution in maximal cooperation of synchronized actions

VTSA'08 - Max Planck Institute, Saarbrücken

Example (1/3)

Process network unexpressible using "|[]|":

• Description using general parallel composition: par G#2 in $G \rightarrow P_1$ $|| \quad G \rightarrow P_2$ $|| \quad G \rightarrow P_3$ maximal means of par

maximal cooperation avoided by means of synchronization degrees

Example (2/3) (ring network [Garavel-Sighireanu-99])

 Description using general parallel composition:

par

$$G_1, G_5 \rightarrow P_1$$

$$|| \quad G_2, G_1 \rightarrow P_2$$

$$|| \quad G_3, G_2 \rightarrow P_3$$

$$|| \quad G_4, G_3 \rightarrow P_4$$

$$|| \quad G_5, G_4 \rightarrow P_5$$
end par

the symmetry of the process network is also present in the composition expression

Example (3/3)

- Definition of "|[]|" in terms of "par": $B_1 | [G_1, ..., G_n] | B_2 = par G_1, ..., G_n \rightarrow B_1$ $| | G_1, ..., G_n \rightarrow B_2$ end par
- CREW (Concurrent Read / Exclusive Write):
 par W#2 in

Parallel composition using synchronization vectors

- Primitive form of n-ary parallel composition
- Proposed in various networks of automata: MEC [Arnold-Nivat], FC2 [deSimone-Bouali-Madelaine]
- Synchronizations are made explicit by means of synchronization vectors
- Syntax in the EXP language [Lang-05]:

par V_1, \ldots, V_m in $B_1 \parallel \ldots \parallel B_n$ synchronization vectors end par

$$V ::= (G_1 | _) * ... * (G_n | _) \rightarrow G_0$$

wildcard

Example

(client-server with gate multiplexing)

binary synchronization on gates req *and* res

Description using synchronization vectors:

par req * _ * req \rightarrow req, rep * _ * rep \rightarrow rep, _ * req * req \rightarrow req, _ * rep * rep \rightarrow rep in Client₁ || Client₂ || Server

end par

Behavioural equivalence

- Useful for determining whether two LTSs denote the same behaviour
- Allows to:
 - Understand the semantics of languages (communicating automata, process algebras) having LTS models
 - Define and assess translations between languages
 - Refine specifications whilst preserving the equivalence of their corresponding LTSs
 - Replace certain system components by other, equivalent ones (maintenance)
 - Exploit identities between behaviour expressions (e.g., $B_1 | [G] | B_2 = B_2 | [G] | B_1$) in analysis tools

Equivalence relations between LTSs

• A large spectrum of equivalence relations proposed:

- *Trace* equivalence (\cong language equivalence)
- Strong bisimulation [Park-81]
- Weak bisimulation [Milner-89]
- Branching bisimulation [Bergstra-Klop-84]
- Safety equivalence [Bouajjani-et-al-90]

Trace equivalence

- Trace: sequence of visible actions
 (e.g., σ = req₁ res₁ req₂ res₂)
- Notations (*a* = visible action):
 - s = a = >: there exists a transition sequence $s - i \rightarrow s_1 - i \rightarrow s_2 \dots - a \rightarrow s_k$
 - $s = \sigma = >$: there exists a transition sequence $s = a_1 = > s_1 \dots = a_n = > s_n$ such that $\sigma = a_1 \dots a_n$
- Two state are trace equivalents iff they are the source of the same traces:
 - $s \approx_{tr} s'$ iff $\forall \sigma . (s = \sigma =>)$ iff $s = \sigma =>)$

Example (coffee machine)

• The two LTSs below are trace equivalent:

Traces (*M*₁) = Traces (*M*₂) = { ε, money, money coffee, money tea }

have the two coffee machines the same behaviour w.r.t. a user?
M₁: risk of deadlock

Bisimulation

- Trace equivalence is not sufficiently precise to characterize the behaviour of a system w.r.t. its interaction with its environment
 - → stronger relations (bisimulations) are necessary
- Two states s_1 et s_2 are *bisimilar* iff they are the origin of the same behaviour (execution tree):

$$\forall s_1 - a \rightarrow s_1' : \exists s_2 - a \rightarrow s_2' : s_1' \approx s_2' \forall s_2 - a \rightarrow s_2' : \exists s_1 - a \rightarrow s_1' : s_2' \approx s_1'$$

- Bisimulation is an equivalence relation (reflexive, symmetric, and transitive) on states
- Two LTSs are bisimilar iff $s_{01} \approx s_{02}$

Strong bisimulation

Strong bisimulation: the largest bisimulation

➔ to show that two LTSs are strongly bisimilar, it is sufficient to find a bisimulation between them

Is strong bisimulation sufficient?

- Trace equivalence ignores internal actions (i) and does not capture the branching of transitions
 - ➔ does not distinguish the LTSs below

• Strong bisimulation captures the branching, but handles internal and visible actions in the same way

Joes not abstract away the internal behaviour

Weak bisimulation

(or observational equivalence)

In practice, it is necessary to compare LTSs

a

- By abstracting away internal actions
- By distinguishing the branching
- Weak bisimulation [Milner-89]:

every a-transition corresponds to an a-transition preceded and followed by 0 or more τ -transitions

Weak bisimulation (formal definition)

- Let $M_1 = \langle S_1, A, T_1, S_{01} \rangle$ and $M_2 = \langle S_2, A, T_2, S_{02} \rangle$
- A weak bisimulation is a relation $\approx \subseteq S_1 \times S_2$ such that $s_1 \approx s_2$ iff:

$$\forall s_1 - a \rightarrow s_1' : \exists s_2 - \tau^* \cdot a \cdot \tau^* \rightarrow s_2' : s_1' \text{ eq } s_2'' \\ \forall s_1 - \tau \rightarrow s_1' : \exists s_2 - \tau^* \rightarrow s_2' : s_1' \text{ eq } s_2''$$

and

$$\forall s_2 -a \rightarrow s_2' : \exists s_1 -\tau^* \cdot a \cdot \tau^* \rightarrow s_1' : s_1' \text{ eq } s_2''$$

$$\forall s_2 -\tau \rightarrow s_2' : \exists s_1 -\tau^* \rightarrow s_1' : s_1' \text{ eq } s_2'$$

• \approx_{obs} is the largest weak bisimulation

•
$$M_1 \approx_{obs} M_2$$
 iff $s_{01} \approx_{obs} s_{02}$

Example

 To show that two LTSs are weakly bisimilar, it is sufficient to find a weak bisimulation between them

Communicating automata (summary)

• Advantages:

- Simple model for describing concurrency
- Powerful tools for manipulation
 - MEC (University of Bordeaux)
 - Auto/Autograph/FC2 (INRIA, Sophia-Antipolis)
 - CADP (INRIA, Grenoble)
- Some industrial applications

Shortcomings:

- Limited expressiveness
 - No dynamic creation and destruction of automata
 - Impossible to express: A then (B || C) then D
 - No handling of data (each variable = an automaton), unacceptable for complex types (numbers, lists, structures, ...)
- Maintenance difficult and error-prone (large automata)

Process algebraic languages

- Basic notions
- Parallel composition and hiding
- Sequential composition and choice
- Value-passing and guards

Process definition and instantiation

VTSA'08 - Max Planck Institute, Saarbrücken

Process algebras

- PAs: theoretical formalisms for describing and studying concurrency and communication
- Examples of PAs for asynchronous systems:
 - CCS (Calculus of Communicating Systems) [Milner-89]
 - CSP (Communicating Sequential Processes) [Hoare-85]
 - ACP (Algebra of Communicating Processes) [Bergstra-Klop-84]
- Basic idea of PAs:
 - Provide a small number of operators
 - Construct behaviours by freely combining operators (lego)
- Standardized specification languages:
 - LOTOS [ISO-1988], E-LOTOS [ISO-2001]

LOTOS

(Language Of Temporal Ordering Specification)

 International standard [ISO 8807] for the formal specification of telecommunication protocols and distributed systems

http://www.inrialpes.fr/vasy/cadp/tutorial

Enhanced LOTOS (E-LOTOS): revised standard [2001]

- LOTOS contains two "orthogonal" sublanguages:
 - data part (for data structures)
 - *process* part (for behaviours)

 Handling data is necessary for describing realistic systems. "Basic LOTOS" (the dataless fragment of LOTOS) is useful only for small examples.

LOTOS - data part

Based on algebraic abstract data types (ActOne):

```
type Natural is
  sorts Nat
  opns 0 : -> Nat
    succ : Nat -> Nat
    + : Nat, Nat -> Nat
  eqns forall M, N : Nat
  ofsort Nat
    0 + N = N;
    succ(M) + N = succ(M + N);
endtype
```

• Caesar.Adt compiler of CADP [Garavel-Turlier-92]

 ADTs tend to become cumbersome for complex data manipulations (removed in E-LOTOS).

VTSA'08 - Max Planck Institute, Saarbrücken

LOTOS - process part

- Combines the best features of the process algebras CCS [Milner-89] and CSP [Hoare-85]
- Terminal symbols (identifiers):
 - Variables: *X*₁, ..., *X*_n
 - Gates: *G*₁, ..., *G*_n
 - Processes: P₁, ..., P_n
 - Sorts (\approx types): S_1 , ..., S_n
 - Functions: *F*₁, ..., *F*_n
 - Comments: (* ... *)
- Caesar compiler of CADP [Garavel-Sifakis-90]

Value expressions and offers

• Value expressions: $V_1, ..., V_n$ V ::= X $| F(V_1, ..., V_n)$ $| V_1 F V_2$

Behaviour expressions (Lots Of Terribly Obscure Symbols :-)

$$B ::= stop$$

$$| G_0 O_1 ... O_n [V]; B_0$$

$$| B_1 [] B_2$$

$$| B_1 |[G_1, ..., G_n]| B_2$$

$$| B_1 || | B_2$$

$$| hide G_1, ..., G_n in B_0$$

$$| [V] -> B_0$$

$$| let X : S = V in B_0$$

$$| choice X : S [] B_0$$

$$| P [G_1, ..., G_n] (V_1, ..., V_n)$$

inaction action prefix choice parallel with synchronization on G_1, \ldots, G_n interleaving hiding guard variable definition choice over values process call

Process definitions

where:

• P = process name

G₁, ..., G_n = formal *gate* parameters of P
X₁, ..., X_n = formal *value* parameters of P, of sorts S₁, ..., S_n

• B = body (behaviour) of P

Remarks

 LOTOS process: "black box" equipped with communication points (gates) with the outside

process *P* [*G*₁, *G*₂, *G*₃] (...) :=

endproc

 Each process has its own local (private) variables, which are not accessible from the outside

communication by rendezvous and not by shared variables

 Parallel composition and encapsulation of boxes: described using the [[...]], []], and hide operators

(Sender [PUT, A, D] ||| Receiver [GET, B, C]) |[A, B, C, D]| (Medium1 [A, B] ||| Medium2 [C, D])

or

```
(Sender [PUT, A, D] |[A]| Medium1 [A, B])
|[B, D]|
(Receiver [GET, B, C] |[C]| Medium2 [C, D])
```

VTSA'08 - Max Planck Institute, Saarbrücken

Multiple rendezvous

• LOTOS parallel operators allow to specify the synchronization of $n \ge 2$ processes on the same gate

Binary rendezvous

• The ||| operator allows to specify binary rendezvous (2 among *n*) on the same gate

Example (client-server):

```
(C1 [A] ||| C2 [A] ||| C3 [A])
|[A]|
S [A]
```

the three client processes are competing to access the server on gate A but only one can get access at a given moment

Abstraction (hiding)

- In LOTOS, when a synchronization takes place on a gate G between two processes, another one can also synchronize on G (*maximal cooperation*)
- If this is undesirable, it can be forbidden by hiding the gate (renaming it into *i*) using the hide operator:

hide G_1 , ..., G_n in B

which means that all actions performed by B on gates G_1 , ..., G_n are hidden

• The gates G_1 , ..., G_n are "abstracted away" (hidden from the outside world)

Example

process Network [PUT, GET] :=
 hide A, B, C, D in
 (Sender [PUT, A, D] ||| Receiver [GET, B, C])
 |[A, B, C, D]|
 (Medium1 [A, B] ||| Medium2 [C, D])
endproc

Operational semantics

• Notations:

- <u>G</u>: gate list (or set)
- L: action (transition label), of the form

*G V*₁, ..., *V*_n

where G is a gate and V_1 , ..., V_n is the list of values exchanged on G during the rendezvous

- gate (L) = G
- B [v / X]: syntactic substitution of all free occurrences of X inside B by a value v (having the same sort as X)
- V [v / X]: idem, substitution of X by v in V

Semantics of "|[...]|" $\frac{B_1 \rightarrow_L B_1' \wedge gate (L) \notin \underline{G}}{B_1 \mid [\underline{G}] \mid B_2 \rightarrow_L B_1' \mid [\underline{G}] \mid B_2} \qquad B_1 \text{ evolves}$

 $\frac{B_2 \rightarrow_L B_2' \wedge gate (L) \notin \underline{G}}{B_1 \mid [\underline{G}] \mid B_2 \rightarrow_L B_1 \mid [\underline{G}] \mid B_2'} \qquad B_2 \text{ evolves}$

 $\begin{array}{ll} B_1 \rightarrow_L B_1' \wedge B_2 \rightarrow_L B_2' \wedge gate \ (L) \in \underline{G} \\ B_1 \mid [\underline{G}] \mid B_2 \rightarrow_L B_1' \mid [\underline{G}] \mid B_2' \end{array} \qquad \begin{array}{ll} B_1 \ \text{and} \ B_2 \\ evolve \end{array}$

Gates have no direction of communication

VTSA'08 - Max Planck Institute, Saarbrücken

Semantics of "hide"

 $B \rightarrow_{L} B' \wedge gate (L) \notin \underline{G}$ normal gate hide \underline{G} in $B \rightarrow_{L}$ hide \underline{G} in B'

 $\frac{B \rightarrow_L B' \land gate \ (L) \in \underline{G}}{\text{hide } \underline{G} \text{ in } B \rightarrow_i \text{hide } \underline{G} \text{ in } B'} \qquad \text{hidden gate}$

• In LOTOS, i is a keyword: use with care

Sequential behaviours

 LOTOS allows to encode sequential automata by means of the choice ("[]") and sequence operators (";" and "stop"), and recursive processes

Remarks

- The description of automata in LOTOS is not far from regular expressions (operators ".", "|", "*"), except that:
 - The ";" operator of LOTOS is *asymmetric* (\neq from ".") $G O_1 \dots O_n$; B but not B_1 ; B_2
 - There is no iteration operator "*", one must use a recursive process call instead
- LOTOS allows to describe automata with data values (≈ functions in sequential languages) by using processes with value parameters

Semantics of "stop"

- The "stop" operator (inaction) has no associated semantic rule, because no transition can be derived from it
- A call of a "pathological" recursive process like process P [A] : noexit := P [A] endproc

has a behaviour equivalent to **stop** (unguarded recursion)

Prefix operator (";")

• Allows to describe:

- Sequential composition of actions
- Communication (emission / reception) of data values
- Simplest variant: actions on gates, without valuepassing (basic LOTOS)

Semantics of ";"

<u>Case 1</u>: action without reception offers (?X:S)

$$(\forall 1 \le i \le n . O_i \equiv ! V_i) \land V = \text{true}$$

$$\overline{G O_1 \dots O_n [V]; B \rightarrow_{G V1 \dots Vn} B}$$

- The boolean guard and the offers are optional
- If the guard V is false, the rendezvous does not happen (deadlock):

$$G O_1 \dots O_n [V]; B \approx \text{stop}$$

Example (1/2)

A !true; B !4; stop

Example (2/2)

• Synchronization by *value matching*: two processes send to each other the same values on a gate

$$G !1; B_1 | [G] | G !1; B_2$$
 RdV OK G1

 $G !1; B_1 | [G] | G !2; B_2$ deadlock

(different values)

$G !1; B_1 | [G] | G !true; B_2$

deadlock (different types)

Semantics of ";"

<u>Case 2</u>: action containing reception offer(s) (?X:S)

$$(v \in S) \land (V [v / X] = true)$$

G?X:S[V]; $B \rightarrow_{Gv} B [v / X]$

- The variables defined in the offers ?X:S are visible in the boolean guard V and inside B
- An action can freely mix emission and reception offers

 The semantics handles the reception by branching on all possible values that can be received

Example (2/3)

• Emission of a value = guarded reception:

$$G !V \equiv G ?X:S [X = V]$$

where S = type (V)

 Synchronization by value generation: two processes receive values of the same type on a gate

Example (3/3)

• Synchronization by *value-passing*:

G?X:Bool; stop |[G]| G!true; stop

Gtrue [[G]]

G ?*X*:Bool ; stop |[*G*]| *G* !3 ; stop

deadlock: the semantics of the "|[...]|" operator requires that the two labels be identical (same type for the emitted value and the reception offer)

G 3

G false

G true

Rendezvous (summary)

• General form:

 $G O_1 \dots O_m [V_1]; B_1 \quad |[\underline{G}]| \quad G' O_1' \dots O_n'[V_2]; B_2$

• Conditions for the rendezvous:

- G = G' and $G \in \underline{G}$
- *m* = *n*
- V_1 and V_2 are true in the context of O_1, \ldots, O_n '
- $\forall 1 \leq i \leq n$. type $(O_i) = type (O_i')$
- $\forall 1 \leq i \leq n. prop(O_i) \cap prop(O_i') \neq \emptyset$

where prop(O) = set of values accepted by offer O

- prop (!V) = { V }
- prop (?X:S) = S

Choice operator ("[]")

- "[]": notation inherited from the programs with guarded commands [Dijkstra]
- Allows to specify the choice between several alternatives:

(*B*₁ [] *B*₂ [] *B*₃)

can execute either B_1 , or B_2 , or B_3

• Example:

Semantics of "[]"

 After the choice, one of the two behaviours disappears (the execution was engaged on a branch of the choice and the other one is abandoned)

Internal / external choice

 $(G_1; B_1 [] G_2; B_2)$

- External choice: the environment can decide which branch will be executed
- Internal choice: the program decides
- Example (coffee machine):

Internal action ("i")

In LOTOS, the special gate i denotes an internal event on which the environment cannot act:

Guard operator ("[...] ->")

LOTOS does not possess an "if-then-else" construct *Guards* (boolean conditions) can be used instead
Informal semantics:

 $[V] \rightarrow B \approx \text{ if } V \text{ then } B \text{ else stop}$

 Frequent usage in conjunction with "[]": READ ?m,n:Nat ; ([m >= n] -> PRINT !m; stop [] [m < n] -> PRINT !n; stop)

Semantics of "[...] ->"

$$(V = \text{true}) \land B \rightarrow_L B'$$
$$[V] \rightarrow B \rightarrow_L B'$$

- If the boolean expression V evaluates to false, no semantic rule applies (deadlock):
 - [false] -> $B \approx \text{stop}$

VTSA'08 - Max Planck Institute, Saarbrücken

Examples

"if-then-else": "case": [V] -> B₁ [X < 0] -> B₁ [] [] [] [X = 0] -> B₂ [] [X > 0] -> B₃

• Beware of overlapping guards: $\begin{bmatrix} X \le 0 \end{bmatrix} \rightarrow B_1$ $\begin{bmatrix} I \\ I \end{bmatrix}$ $\begin{bmatrix} X \ge 0 \end{bmatrix} \rightarrow B_2$

if X = 0 then this is equivalent to an unguarded choice B1 [] B2

Operator "let"

- LOTOS allows to define variables for storing the results of expressions
- Variable definition:

let *X*:*S* = *V* **in** *B*

declares variable X and initializes it with the value of V. X is visible in B.

• Write-once variables (no multiple assignments):

let X:Bool = true in G !X; (* first X *)
let X:Bool = false in G !X; (* second X *)
stop

Semantics of "let"

$$B [V / X] \rightarrow_{L} B'$$

let X:S = V in $B \rightarrow_{L} B'$

• Example:
 let X:NatList = cons (0, nil) in
 G !X;
 H !cons (1, X);
 stop

Remarks

LOTOS is a *functional* language:

- No uninitialized variable (forbidden by the syntax)
- No assignment operator (":="), the value of a variable does not change after its initialization
- No "global" or "shared" variables between functions or processes
- Each process has its own local variables
- Communication by rendezvous only

No side-effects

Operator "choice"

- Operator "choice": similar to "let", except that variable X takes a nondeterministic value in the domain of its sort S
- Semantics:

$$(v \in S) \land B [v / X] \rightarrow_{L} B'$$

choice X:S [] $B \rightarrow_{L} B'$

Example:
 choice X:Bool []
 G !X; stop

Examples

• Reception of a value = particular case of "choice":
G ?X:S; B = choice X:S [] B

 Iteration over the values of an enumerated type: choice A:Addr []
 SEND !m !A ; stop

Generation of a random value:
 choice rand:Nat []
 [rand <= 10] -> PRINT !rand ; stop

Operator "exit"

 LOTOS allows to express *normal termination* of a behaviour, possibly with the return of one or several values:

exit (*V*₁, ..., *V*_n)

denotes a behaviour that terminates and produces the values $V_1, ..., V_n$

• Example:

Semantics of "exit"

true

exit (V_1 , ..., V_n) $\rightarrow_{exit V1 \dots Vn}$ stop

- exit = special gate, synchronized by the "|[...]|"
 operator (see later)
- The values V₁, ..., V_n are optional ("exit" means normal termination without producing any value)

Operator ">>"

• LOTOS allows to express the sequential composition between a behaviour B_1 that terminates and a behaviour B_2 that begins:

 $B_1 >> \text{ accept } X_1:S_1,..., X_n:S_n \text{ in } B_2$

means that when B_1 terminates by producing values $V_1, ..., V_n$, the execution continues with B_2 in which $X_1, ..., X_n$ are replaced by the values $V_1, ..., V_n$

• Example:

exit (1) >> accept n:Nat in PRINT !n ; stop

PRIN

Semantics of ">>"

 $\frac{(B_1 \rightarrow_L B_1') \land (gate (L) \neq exit)}{(B_1 \Rightarrow accept \underline{X}:\underline{S} in B_2) \rightarrow_L (B_1' \Rightarrow accept \underline{X}:\underline{S} in B_2)}$

$$\begin{array}{l} B_1 \rightarrow_{exit} \underline{V} B_1' \\
 (B_1 >> \text{ accept } \underline{X}: \underline{S} \text{ in } B_2) \rightarrow_i B_2 \left[\underline{V} / \underline{X} \right]
 \end{array}$$

- The \underline{V} values must belong pairwise to the \underline{S} sorts
- The *exit* gate is hidden (renamed into i) when sequential composition takes place
- The ">>" operator is also called *enabling* (B₂'s execution is made possible by B₁'s termination)

VTSA'08 - Max Planck Institute, Saarbrücken

Example (1/4)

Sequential composition without value-passing:

(ln1; ln2; exit [] ln2; ln1; exit)

>>

(Access; exit)

>>

(Out1; Out2; stop [] Out2; Out1; stop)

Example (2/4)

Sequential composition with value-passing:

```
READ ?m,n:Nat ;
                             READ01
                                          READ 0 2
( [ m >= n ] -> exit (m)
 [m < n] -> exit(n))
                             PRINT 1
                                          PRINT 2
>>
accept max:Nat in
PRINT !max ; stop
```


Example (3/4)

- Example of call: Login [Req,Conf,Abort] >> Transfer ; Logout ; stop

Example (4/4)

 Combination of "exit" and parallel composition: the two behaviours are synchronized on the exit gate (they terminate simultaneously)

(*a*; *b*; exit) | | | (*c*; exit)

Sequential composition (summary)

 B_1

 B_2

Process call

- Let a process *P* defined by:
 process *P* [*G*₁, ..., *G*_n] (*X*₁:*S*₁, ..., *X*_n:*S*_n) :=
 B endproc
- Semantics of a call to P:

$$\frac{B[g_1 / G_1, ..., g_n / G_n][v_1 / X_1, ..., v_n / X_n] \to_L B'}{D[g_1 / G_n][v_1 / X_1, ..., v_n / X_n] \to_L B'}$$

$$P[g_1, ..., g_n](v_1, ..., v_n) \to_L B$$

 This semantics explains why a call to process P[G] : noexit := P[G] endproc is equivalent to stop.

Example


```
process VAR [READ, WRITE] (b:Bool) : noexit :=
    READ !b;
    VAR [READ, WRITE] (b)
  []
    WRITE ?b2:Bool;
    VAR [READ, WRITE] (b2)
endproc
```

VTSA'08 - Max Planck Institute, Saarbrücken

Static semantics (summary)

• Scope of variables inside behaviours:

$$B ::= G !V_0 ?X:S ... [V]; B_0$$

- hide G in B_0
- let X:S = V in B_0
 - choice X:S [] B_0
 - $B_1 >>$ accept X:S in B_0
- Scope of process parameters: process P [G] (X:S) :=

- $p(X) = \{ V, B_0 \}$ $p(G) = \{ B_0 \}$ $p(X) = \{ B_0 \}$ $p(X) = \{ B_0 \}$ $p(X) = \{ B_0 \}$
- $p(G) = \{ B_0 \}$ $p(X) = \{ B_0 \}$

 B_{\cap}

endproc

LOTOS specification

 A LOTOS specification is similar to a process definition:

specification Protocol [SEND, RECEIVE] : noexit :=

(* ... type definitions *)

behaviour

(* ... behaviour = body of the specification *)

where

(* ... process definitions *)

endspec

Example: Peterson's mutual exclusion algorithm

var d0 : bool := false var d1 : bool := false var t \in {0, 1} := 0 { read by P1, written by P0 }
{ read by P0, written by P1 }
{ read/written by P0 and P1}

loop forever { P0 } 1 : { ncs0 } 2 : d0 := true 3 : t := 0 4 : wait (d1 = false or t = 1) 5 : { cs0 } 6 : d0 := false endloop

```
loop forever { P1 }
1 : { ncs1 }
2 : d1 := true
3 : t := 1
4 : wait (d0 = false or t = 0)
5 : { cs1 }
6 : d1 := false
endloop
```


Description of variables d0, d1

- Each variable: instance of the same process D
- Current value of the variable: parameter of D
- Reading and writing: RdV on gates R et W

```
process D [R, W] (b:Bool) : noexit :=
    R !b ; D [R, W] (b)
    []
    W ?b2:Bool ; D [R, W] (b2)
endproc
```

• $d0 \equiv D$ [R0, W0] (false), $d1 \equiv D$ [R1, W1] (false)

Description of variable t

- Variable t: instance of process T
- Current value of the variable: parameter of T
- Reading and writing: RdV on gates R et W

```
process T [R, W] (n:Nat) : noexit :=
    R !n ; T [R, W] (n)
    []
    W ?n2:Bool ; T [R, W] (n2)
endproc
```


Description of processes P0 and P1

Process P_m: instance of the same process P
 Index m of the process: parameter of P

process P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]
 (m:Nat) : noexit :=
 NCS !m ; Wm !true ; WT !m ;
 P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)
endproc

• $P0 \equiv P$ [R0, W0, R1, W1, RT, WT, NCS, CS] (0) • $P1 \equiv P$ [R1, W1, R0, W0, RT, WT, NCS, CS] (1)

Processes P0 et P1 (continued)

```
• Auxiliairy process to describe busy waiting:
 process P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]
             (m:Nat) : noexit :=
    Rn ?dn:Bool ; RT ?t:Nat ;
    ( [ dn and (t eq m) ] \rightarrow
        P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)
     Н
     [ not (dn) or (t eq ((m + 1) mod 2)) ] ->
        CS !m ; Wn !false ;
        P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m) )
 endproc
```


Architecture of the system (graphical)


```
Architecture of the system
                         (textual)
hide R0, W0, R1, W1, RT, WT in
    P [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
     P [R1, W1, R0, W0, RT, WT, NCS, CS] (1)
  |[ R0, W0, R1, W1, RT, WT ]|
     T [RT, WT] (0)
     D [R0, W0] (false)
     D [R1, W1] (false)
```


LTS model

55 states110 transitions

Process algebraic languages (summary)

- More concise than communicating automata: process parameterization, value-passing communication (Exercise: model variables d0, d1, t using a single gate allowing both reading / writing)
- In general, there are several ways of describing the parallel composition of processes (Exercise: write a different expression for the architecture of Peterson's algorithm)
- Modeling of nested loops: mutually recursive LOTOS processes (Exercise: model processes P0, P1 using a single LOTOS process)
- But: E-LOTOS process part is much more convenient

Action-based temporal logics

- Introduction
- Modal logics
- Branching-time logics
- Regular logics
- Fixed point logics

Why temporal logics?

• Formalisms for high-level specification of systems

- Example: all mutual exclusion protocols should satisfy
 - Mutual exclusion (at most one process in critical section)
 - Liveness (each process should eventually enter its critical section)
- Temporal logics (TLs):

formalisms describing the ordering of states (or actions) during the execution of a concurrent program

- TL specification = list of logical formulas, each one expressing a property of the program
- Benefits of TL [Pnueli-77]:
 - *Abstraction*: properties expressed in TL are independent from the description/implementation of the system
 - *Modularity*: one can add/remove a property without impacting the other properties of the specification

(Rough) classification of TLs

	State-based	Action-based
Linear-time	LTL (SPIN tool)	TLA (TLA+ tool)
(properties about execution sequences)	linear mu-calculus	action-based LTL (LTSA tool)
Branching-time	CTL (nuSMV tool)	ACTL (JACK tool) ACTL*
(properties about execution trees)	CTL*	modal mu-calculus (CWB, Concurrency Factory, CADP tools)

Example (coffee machine)

 $L(M_1) = L(M_2) =$ { money.coffee, money.tea }

- A linear-time TL cannot distinguish the two LTSs M₁ and M₂, which have the same set of execution sequences, but are not behaviourally equivalent (modulo strong bisimulation)
- A branching-time TL can capture nondeterminism and thus can distinguish M_1 and M_2

Interpretation of (branching-time) TLs on LTSs

- LTS model $M = \langle S, A, T, s_0 \rangle$, where:
 - S: set of states
 - A: set of actions (events)
 - $T \in S \times A \times S$: transition relation
 - $s_0 \in S$: initial state
- Interpretation of a formula φ on M: $[[\varphi]] = \{ s \in S \mid s \mid = \varphi \}$
 - ([[ϕ]] defined inductively on the structure of ϕ)
- An LTS *M* satisfies a TL formula φ (*M* |= φ) iff its initial state satisfies φ :

$$M \mid = \phi \quad \Leftrightarrow \quad s_0 \mid = \phi \quad \Leftrightarrow \quad s_0 \in [[\phi]]$$

Running example: mutual exclusion with a semaphore

Description using communicating automata

VTSA'08 - Max Planck Institute, Saarbrücken

LTS model

Modal logics

- They are the simplest logics allowing to reason about the sequencing and branching of transitions in an LTS
- Basic modal operators:
 - Possibility

from a state, there exists (at least) an outgoing transition labeled by a certain action and leading to a certain state

- Necessity

from a state, all the outgoing transitions labeled by a certain action lead to certain states

• Hennessy-Milner Logic (HML) [Hennessy-Milner-85]

Action predicates (syntax) atomic proposition $(a \in A)$ $\alpha :=$ Π constant "true" tt ff constant "false" disjunction $\alpha_1 \vee \alpha_2$ conjunction $\alpha_1 \wedge \alpha_2$ negation $\neg \alpha_1$ implication ($\neg \alpha_1 \lor \alpha_2$) $\alpha_1 \Rightarrow \alpha_2$ equivalence $(\alpha_1 \Rightarrow \alpha_2 \land \alpha_1 \Rightarrow \alpha_2)$ $\alpha_1 \Leftrightarrow \alpha_2$

Action predicates (semantics)

- Let $M = (S, A, T, s_0)$. Interpretation [[α]] $\subseteq A$:
- [[a]] = { a }
- [[tt]] = A
- [[ff]] = ∅
- [[$\alpha_1 \lor \alpha_2$]] = [[α_1]] \cup [[α_2]]
- [[$\alpha_1 \land \alpha_2$]] = [[α_1]] \cap [[α_2]]
- [[$\neg \alpha_1$]] = $A \setminus [[\alpha_1]]$
- $[[\alpha_1 \Rightarrow \alpha_2]] = (A \setminus [[\alpha_1]]) \cup [[\alpha_2]]$
- $[[\alpha_1 \Leftrightarrow \alpha_2]] = ((A \setminus [[\alpha_1]]) \cup [[\alpha_2]]) \cap ((A \setminus [[\alpha_2]]) \cup [[\alpha_1]]) \cup [[\alpha_1]])$

Examples

 $A = \{ NCS_0, NCS_1, CS_0, CS_1, REQ_0, REQ_1, REL_0, REL_1 \}$

- [[tt]] = { NCS_0 , NCS_1 , CS_0 , CS_1 , REQ_0 , REQ_1 , REL_0 , REL_1 }

- [[ff]] = ∅
- $[[NCS_0]] = \{NCS_0\}$
- $[[\neg NCS_0]] = \{ NCS_1, CS_0, CS_1, REQ_0, REQ_1, REL_0, REL_1 \}$
- $[[NCS_0 \land \neg NCS_1]] = \{NCS_0\} = [[NCS_0]]$
- $[[NCS_0 \lor NCS_1]] = \{NCS_0, NCS_1\}$
- $[[(NCS_0 \lor NCS_1) \land (NCS_0 \lor REQ_0)]] = \{NCS_0\}$
- $[[NCS_0 \land NCS_1]] = \emptyset = [[ff]]$
- $[[NCS_0 \lor \neg NCS_0]] =$

{ NCS_0 , NCS_1 , CS_0 , CS_1 , REQ_0 , REQ_1 , REL_0 , REL_1 } = [[tt]]

HML logic (syntax)

constant "true" tt ff constant "false" disjunction $\phi_1 \vee \phi_2$ conjunction $\varphi_1 \wedge \varphi_2$ negation $\neg \phi_1$ $\langle \alpha \rangle \phi_1$ possibility $[\alpha] \varphi_1$ necessity

• Duality:
$$[\alpha] \varphi = \neg \langle \alpha \rangle \neg \varphi$$

- Let $M = (S, A, T, s_0)$. Interpretation [[φ]] \subseteq S:
- [[tt]] = S
- [[ff]] = ∅
- [[$\phi_1 \lor \phi_2$]] = [[ϕ_1]] \cup [[ϕ_2]]
- [[$\phi_1 \land \phi_2$]] = [[ϕ_1]] \cap [[ϕ_2]]
- [[$\neg \phi_1$]] = S \ [[ϕ_1]]
- $[[\langle \alpha \rangle \varphi_1]] = \{ s \in S \mid \exists (s, a, s') \in T . a \in [[\alpha]] \land s' \in [[\varphi_1]] \}$
- [[[α] φ_1]] = { $s \in S \mid \forall (s, a, s') \in T$. $a \in [[\alpha]] \Rightarrow s' \in [[\varphi_1]]$ }

Example (1/4)

Deadlock freedom: (tt) tt

Example (2/4)

Possible execution of a set of actions: $\langle CS_0 \lor CS_1 \rangle$ tt

Example (3/4)

Forbidden execution of a set of actions: $[NCS_0 \lor NCS_1]$ ff

Example (4/4)

Execution of an action sequence: $\langle REQ_0 \rangle \langle CS_0 \rangle \langle REL_0 \rangle tt$

Some identities

• Tautologies:

-
$$\langle \alpha \rangle$$
 ff = \langle ff $\rangle \phi$ = ff

- [
$$\alpha$$
] tt = [ff] ϕ = tt

\bullet Distributivity of modalities over \lor and \land :

$$- \langle \alpha \rangle \phi_1 \lor \langle \alpha \rangle \phi_2 = \langle \alpha \rangle (\phi_1 \lor \phi_2)$$

$$- \langle \alpha_1 \rangle \phi \lor \langle \alpha_2 \rangle \phi = \langle \alpha_1 \lor \alpha_2 \rangle \phi$$

- [
$$\alpha$$
] $\phi_1 \wedge$ [α] ϕ_2 = [α] ($\phi_1 \wedge \phi_2$)

- [
$$\alpha_1$$
] $\phi \land$ [α_2] ϕ = [$\alpha_1 \lor \alpha_2$] ϕ

• Monotonicity of modalities over ϕ and α :

$$- (\phi_1 \Rightarrow \phi_2) \Rightarrow (\langle \alpha \rangle \phi_1 \Rightarrow \langle \alpha \rangle \phi_2) \land ([\alpha] \phi_1 \Rightarrow [\alpha] \phi_2)$$

$$- (\alpha_1 \Rightarrow \alpha_2) \Rightarrow (\langle \alpha_1 \rangle \phi \Rightarrow \langle \alpha_2 \rangle \phi) \land ([\alpha_2] \phi \Rightarrow [\alpha_1] \phi)$$

Characterization of branching

• Modal formula distinguishing between M_1 and M_2 :

 ϕ = [money] (\langle coffee \rangle tt $~\wedge~\langle$ tea \rangle tt)

$$M_1 \mid = \varphi$$
 and $M_2 \mid \neq \varphi$

Modal logics (summary)

- Are able to express simple branching-time properties involving states $s \in S$ and actions $a \in A$ of an LTS
- But:
 - Take into account only a finite number of steps around a state (nesting of modalities)
 - Cannot express properties about transition sequences or subtrees of arbitrary length
- Example: the property

"from a state s, there exists a sequence leading to a state s' where the action a is executable"

cannot be expressed in modal logic

(it would need a formula $\langle tt \rangle \langle tt \rangle ... \langle tt \rangle \langle a \rangle tt$)

Branching-time logics

- They are logics allowing to reason about the (infinite) execution trees contained in an LTS
- Basic temporal operators:
 - Potentiality

from a state, there exists an outgoing, finite transition sequence leading to a certain state

- Inevitability

from a state, all outgoing transition sequences lead, after a finite number of steps, to certain states

 Action-based Computation Tree Logic (ACTL) [DeNicola-Vaandrager-90]

ACTL logic (syntax)

tt | ff boolean constants $\phi_1 \vee \phi_2 \mid \neg \phi_1$ connectors E [$\varphi_{1\alpha 1}$ U φ_{2}] potentiality 1 $\mathsf{E} \left[\varphi_{1\alpha 1} \mathsf{U}_{\alpha 2} \varphi_{2} \right]$ potentiality 2 A [$\varphi_{1\alpha 1}$ U φ_{2}] inevitability 1 A [$\varphi_{1\alpha 1}$ U_{$\alpha 2$} φ_{2}] inevitability 2

ACTL logic (derived operators)

• $EF_{\alpha} \phi = E [tt_{\alpha} U \phi]$ • $AF_{\alpha} \phi = A [tt_{\alpha} U \phi]$

basic potentiality

basic inevitability

•
$$AG_{\alpha} \phi = \neg EF_{\alpha} \neg \phi$$

• $EG_{\alpha} \phi = \neg AF_{\alpha} \neg \phi$

invariance

trajectory

•
$$\langle \alpha \rangle \phi = E [tt_{ff} U_{\alpha} \phi]$$

• $[\alpha] \phi = \neg \langle \alpha \rangle \neg \phi$

possibility

necessity

dualities

ACTL logic (semantics - potentiality operators)

Let $M = (S, A, T, s_0)$. Interpretation [[ϕ]] \subseteq S:

- $\begin{bmatrix} \mathsf{E} \ [\ \varphi_{1\alpha} \ \mathsf{U} \ \varphi_{2} \] \] \end{bmatrix} = \{ s \in S \ | \ \exists s(=s_{0}) \rightarrow a_{0}s_{1} \rightarrow a_{1}s_{2} \rightarrow \dots$ $\exists k \ge 0. \ \forall 0 \le i < k. \ (s_{i} \in [[\ \varphi_{1} \]] \land a_{i} \in [[\ \alpha \lor \tau \]]) \land$ $s_{k} \in [[\ \varphi_{2} \]] \}$ $\bigcirc \alpha \lor \tau \ \varphi_{1} \qquad \varphi_{1} \qquad \varphi_{1} \qquad \varphi_{1} \qquad \varphi_{2} \qquad \varphi_{2}$
- [[E [$\varphi_{1\alpha 1} \cup_{\alpha 2} \varphi_{2}$]]] = { $s \in S \mid \forall s(=s_{0}) \rightarrow^{a0} s_{1} \rightarrow^{a1} s_{2} \rightarrow \dots$ $\exists k \geq 0. \forall 0 \leq i < k. \ (s_{i} \in [[\varphi_{1}]] \land a_{i} \in [[\alpha_{1} \lor \tau]] \land$ $s_{k} \in [[\varphi_{1}]] \land a_{k} \in [[\alpha_{2}]] \land s_{k+1} \in [[\varphi_{2}]]$ }

 $\bigcirc \begin{array}{c} \alpha_1 \lor \tau \\ \phi_1 \\ \phi_2 \\ \phi_1 \\ \phi_1 \\ \phi_2 \\ \phi_2$

ACTL logic (semantics - inevitability operators)

Example (1/4)

Potential reachability: $EF_{\neg REL1} \langle CS_0 \rangle tt$

Example (2/4)

Inevitable reachability: $AF_{\neg (REL0 \lor REL1)} \langle CS_0 \lor CS_1 \rangle tt$

Example (3/4)

Invariance: $AG_{\neg (NCS0 \lor NCS1)} \langle NCS_0 \lor NCS_1 \rangle tt$

Example (4/4)

Trajectory: $EG_{\neg CS0} [CS_0] ff$

Remark about inevitability

• Inevitable reachability: all sequences going out of a state lead to states where an action *a* is executable

 $\mathsf{AF}_{\mathsf{tt}} \langle a \rangle \mathsf{tt}$

- Inevitable execution: all sequences going out of a state contain the action a
- Inevitable execution \Rightarrow inevitable reachability but the converse does not hold:

$$s \xrightarrow{b} a \xrightarrow{c} s |= AF_{tt} \langle a \rangle tt$$

 Inevitable execution must be expressed using the inevitability operators of ACTL:

$$s \mid \neq A [tt_{tt} U_a tt]$$

Safety properties

 Informally, safety properties specify that "something bad never happens" during the execution of the system

 One way of expressing safety properties: forbid undesirable execution sequences

- Mutual exclusion:

$$\neg \langle CS_0 \rangle EF_{\neg REL0} \langle CS_1 \rangle tt$$

= [CS₀] AG_{¬REL0} [CS₁] ff

• In ACTL, forbidding a sequence is expressed by combining the [α] ϕ and AG_{\alpha} ϕ operators

Liveness properties

- Informally liveness properties specify that "something good eventually happens" during the execution of the system
- One way of expressing liveness properties: require desirable execution sequences / trees
 - Potential release of the critical section: $\langle NCS_0 \rangle EF_{tt} \langle REQ_0 \rangle EF_{tt} \langle REL_0 \rangle tt$
 - Inevitable access to the critical section:
 - A [$tt_{tt} U_{CS0} tt$]
- In ACTL, the existence of a sequence is expressed by combining the $\langle \ \alpha \ \rangle \ \phi$ and $\text{EF}_{\alpha} \ \phi$ operators

Branching-time logics (summary)

- The temporal operators of ACTL: strictly more powerful than the HML modalities $\langle \ \alpha \ \rangle \ \phi$ and [α] ϕ
- They allow to express branching-time properties on an unbounded depth in an LTS

• But:

- They do not allow to express the unbounded repetition of a subsequence
- Example: the property

"from a state s, there exists a sequence a.b.a.b ... a.b leading to a state s' where an action c is executable" cannot be expressed in ACTL

Regular logics

- They allow to reason about the regular execution sequences of an LTS
- Basic operators:
 - Regular formulas

two states are linked by a sequence whose concatenated actions form a word of a regular language

- Modalities on sequences

from a state, some (all) outgoing regular transition sequences lead to certain states

 Propositional Dynamic Logic (PDL) [Fischer-Ladner-79]

Regular formulas (syntax)

Some identities:

nil = ff *

Regular formulas (semantics)

Let $M = (S, A, T, s_0)$. Interpretation [[β]] $\subseteq S \times S$:

•
$$[[\alpha]] = \{ (s, s') | \exists a \in [[\alpha]] . (s, a, s') \in T \}$$

• $[[nil]] = \{ (s, s) | s \in S \}$ (identity)
• $[[\beta_1 . \beta_2]] = [[\beta_1]] \circ [[\beta_2]]$ (composition)
• $[[\beta_1 | \beta_2]] = [[\beta_1]] \cup [[\beta_2]]$ (union)
• $[[\beta_1^*]] = [[\beta_1]]^*$ (transitive refl. closure)
• $[[\beta_1^+]] = [[\beta_1]]^*$ (transitive closure)

Example (1/3)

One-step sequences: $NCS_0 \lor CS_0$

Example (2/3)

Alternative sequences: $(REQ_0 . CS_0) | (REQ_1 . CS_1)$

Example (3/3)

Sequences with repetition: $NCS_0 \cdot (\neg NCS_1)^* \cdot CS_0$

PDL logic (syntax)

tt | ff boolean constants disjunction $\phi_1 \lor \phi_2$ conjunction $\phi_1 \wedge \phi_2$ negation $\neg \phi_1$ $\langle \beta \rangle \phi_1$ possibility [β] φ₁ necessity

• Duality: $[\beta] \phi = \neg \langle \beta \rangle \neg \phi$

- Let $M = (S, A, T, s_0)$. Interpretation [[φ]] \subseteq S:
- [[tt]] = S
- [[ff]] = ∅
- [[$\phi_1 \lor \phi_2$]] = [[ϕ_1]] \cup [[ϕ_2]]
- [[$\phi_1 \land \phi_2$]] = [[ϕ_1]] \cap [[ϕ_2]]
- [[$\neg \phi_1$]] = S \ [[ϕ_1]]
- $[[\langle \beta \rangle \phi_1]] = \{ s \in S \mid \exists s' \in S .$ $(s, s') \in [[\beta]] \land s' \in [[\phi_1]] \}$
- [[[β] φ_1]] = { $s \in S \mid \forall s' \in S$. (s, s') \in [[β]] \Rightarrow $s' \in$ [[φ_1]] }

Example (1/2)

Potential reachability of critical section: $\langle NCS_0 . tt * . CS_0 \rangle tt$

Example (2/2)

Mutual exclusion: $[CS_0 . (\neg REL_0)^* . CS_1]$ ff

Some identities

 \bullet Distributivity of regular operators over $\langle \ \rangle$ and []:

-
$$\langle \beta_1 . \beta_2 \rangle \phi = \langle \beta_1 \rangle \langle \beta_2 \rangle \phi$$

- $\label{eq:phi_eq} \ \ \langle \ \beta_1 \ \mid \ \beta_2 \ \rangle \ \phi = \ \langle \ \beta_1 \ \rangle \ \phi \lor \ \langle \ \beta_2 \ \rangle \ \phi$
- $\langle \beta^* \rangle \phi = \phi \lor \langle \beta \rangle \langle \beta^* \rangle \phi$
- [β_1 , β_2] ϕ = [β_1] [β_2] ϕ
- [$\beta_1 \mid \beta_2$] φ = [β_1] $\varphi \land$ [β_2] φ
- [β^*] $\phi = \phi \land [\beta] [\beta^*] \phi$

• Potentiality and invariance operators of ACTL:

-
$$\mathsf{EF}_{\alpha} \phi = \langle \alpha^* \rangle \phi$$

- $AG_{\alpha} \phi = [\alpha^*] \phi$

Fairness properties

• Problem: from the initial state of the LTS, there is no inevitable execution of action $CS_0 \Rightarrow process P_1$ can enter its critical section indefinitely often

- Fair execution of an action a: from a state, all transition sequences that do not cycle indefinitely contain action a
- Action-based counterpart of the *fair reachability of* predicates [Queille-Sifakis-82]

Fair execution

• Fair execution of an action *a* expressed in PDL:

fair (a) = [$(\neg a)^*$] \langle tt*. a \rangle tt

• Equivalent formulation in ACTL:

fair (a) =
$$AG_{\neg a} EF_{tt} \langle a \rangle tt$$

VTSA'08 - Max Planck Institute, Saarbrücken

Example

Fair execution of critical section: [$(\neg CS_0)^*$] $\langle tt^*. CS_0 \rangle tt$

Regular logics (summary)

 They allow a direct and natural description of regular execution sequences in LTSs

• More intuitive description of safety properties:

- Mutual exclusion:
 - $[CS_0] AG_{\neg REL0} [CS_1] ff = (in ACTL)$ $[CS_0. (\neg REL_0)^*. CS_1] ff (in PDL)$

• But:

 Not sufficiently powerful to express inevitability operators (expressiveness uncomparable with branching-time logics)

Fixed point logics

- Very expressive logics ("temporal logic assembly languages") allowing to characterize finite or infinite tree-like patterns in LTSs
- Basic temporal operators:
 - *Minimal fixed point* (µ)

"recursive function" defined over the LTS: *finite* execution trees going out of a state

- Maximal fixed point (v)

dual of the minimal fixed point operator: *infinite* execution trees going out of a state

Modal mu-calculus [Kozen-83, Stirling-01]

Modal mu-calculus (syntax)

φ ::=	tt ff	boolean constants
I	$\phi_1 \lor \phi_2 \mid \neg \phi_1$	connectors
I	$\langle \alpha \rangle \phi_1$	possibility
I	[α]φ ₁	necessity
I	X	propositional variable
I	μ Χ .φ ₁	minimal fixed point
	ν Χ .φ ₁	maximal fixed point

• Duality: $vX \cdot \phi = \neg \mu X \cdot \neg \phi [\neg X / X]$

Syntactic restrictions

• Syntactic monotonicity [Kozen-83]

- Necessary to ensure the existence of fixed points
- In every formula $\sigma X \cdot \phi(X)$, where $\sigma \in \{\mu, \nu\}$, every free occurrence of X in ϕ falls in the scope of an even number of negations

 $\mu X \cdot \langle a \rangle X \lor \neg \langle b \rangle X$

- Alternation depth 1 [Emerson-Lei-86]
 - Necessary for efficient (linear-time) verification
 - In every formula $\mu X \cdot \phi(X)$, every maximal subformula $\nu Y \cdot \phi'(Y)$ of ϕ is closed

 $\mu X . \langle a \rangle \nu Y . ([b] Y \land [c] X)$

Modal mu-calculus (semantics)

- Let $M = (S, A, T, s_0)$ and $\rho : X \to 2^s$ a context mapping propositional variables to state sets. Interpretation $[[\phi]] \subseteq S$:
- [[X]] $\rho = \rho (X)$

• [[
$$\mu X \cdot \varphi$$
]] $\rho = \bigcup_{k \ge 0} \Phi_{\rho}^{k} (\emptyset)$

• [[
$$vX \cdot \phi$$
]] $\rho = \bigcap_{k \ge 0} \Phi_{\rho}^{k}$ (S)
where $\Phi_{\rho} : 2^{s} \rightarrow 2^{s}$,

$$\Phi_{\rho} (U) = [[\phi]] \rho [U / X]$$

Minimal fixed point

 Potential reachability of an action a (existence of a sequence leading to a transition labeled by a):

 $\mu X \cdot \langle a \rangle \mathsf{tt} \vee \langle \mathsf{tt} \rangle X$

• Associated functional:

 $\Phi (U) = [[\langle a \rangle tt \lor \langle tt \rangle X]] [U / X]$

• Evaluation on an LTS:

Example

Potential reachability: $\mu X \cdot \langle CS_0 \rangle$ tt $\vee \langle \neg (REL_1 \vee REL_0) \rangle X$

Maximal fixed point

Infinite repetition of an action a (existence of a cycle containing only transitions labeled by a):

 $vX.\langle a \rangle X$

• Associated functional:

 $\Phi (U) = [[\langle a \rangle X]] [U / X]$

• Evaluation on an LTS:

Example

Infinite repetition: $vX \cdot \langle NCS_1 \lor REQ_1 \lor CS_1 \lor REL_1 \rangle X$

Exercise

Evaluate the formula: $\mu X \cdot \langle CS_0 \rangle tt \vee ([NCS_0] ff \land \langle tt \rangle X)$

Some identities

• Description of (some) ACTL operators:

- E [
$$\varphi_{1\alpha 1}$$
 U _{$\alpha 2$} φ_{2}] = $\mu X \cdot \varphi_{1} \wedge (\langle \alpha_{2} \rangle \varphi_{2} \lor \langle \alpha_{1} \rangle X)$

- A [
$$\varphi_{1\alpha 1} \cup_{\alpha 2} \varphi_{2}$$
] = $\mu X \cdot \varphi_{1} \wedge \langle tt \rangle tt \wedge [\neg(\alpha_{1} \vee \alpha_{2})]$ ff
 $\wedge [\neg \alpha_{1} \wedge \alpha_{2}] \varphi_{2} \wedge [\neg \alpha_{2}] X \wedge [\alpha_{1} \wedge \alpha_{2}] (\varphi_{2} \vee X)$

-
$$\mathsf{EF}_{\alpha} \phi = \mu X \cdot \phi \lor \langle \alpha \rangle X$$

- $AF_{\alpha} \phi = \mu X \cdot \phi \lor (\langle tt \rangle tt \land [\neg \alpha] ff \land [\alpha] X)$

• Description of the PDL operators:

-
$$\langle \beta^* \rangle \phi = \mu X \cdot \phi \lor \langle \beta \rangle X$$

- [
$$\beta^*$$
] $\phi = \nu X \cdot \phi \wedge [\beta] X$

Inevitable reachability

• Inevitable reachability of an action *a*:

access (a) =
$$AF_{tt} \langle a \rangle tt =$$

 $\mu X \cdot \langle a \rangle tt \vee (\langle tt \rangle tt \wedge [tt] X)$

• Associated functional:

 $\Phi(U) = [[\langle a \rangle tt \lor (\langle tt \rangle tt \land [tt]X)]] [U / X]$ • Evaluation on an LTS:

Inevitable execution

• Inevitable execution of an action *a*:

inev (a) =
$$\mu X \cdot \langle tt \rangle tt \wedge [\neg a] X$$

• Associated functional:

 $\Phi (U) = [[\langle tt \rangle tt \land [\neg a] X]] [U / X]$

• Evaluation on an LTS:

Example

Inevitable execution: $\mu X \cdot \langle tt \rangle tt \wedge [\neg CS_0] X$

Fair execution

• Fair execution of an action *a*: fair (a) = $[(\neg a)^*] \langle tt^*. a \rangle tt$ $= vX \cdot \langle tt^* \cdot a \rangle tt \wedge [\neg a] X$ • Associated functional: $\Phi(U) = [[\langle \mathsf{tt}^*. a \rangle \mathsf{tt} \land [\neg a] X]] [U / X]$ • Evaluation on an LTS: b b a n

a

 $\Phi(S)$

Example

Fair execution: [$(\neg CS_0)^*$] $\langle tt^*. CS_0 \rangle tt$

Fixed point logics (summary)

- They allow to encode virtually all TL proposed in the literature
- Expressive power obtained by *nesting* the fixed point operators:

 $(a . b^{*})^{*} . c \rangle tt =$

 $\mu X \cdot \langle c \rangle tt \vee \langle a \rangle \mu Y \cdot (X \vee \langle b \rangle Y)$

• Alternation depth of a formula: degree of mutual recursion between μ and ν fixed points

Example of alternation depth 2 formula:

 $vX \cdot \langle a^* \cdot b \rangle X = vX \cdot \mu Y \cdot \langle b \rangle X \vee \langle a \rangle Y$

Some verification tools (for action-based logics)

CWB (Edinburgh) and

- Concurrency Factory (State University of New York)
 - Modal µ-calculus (fixed point operators)
- JACK (University of Pisa, Italy)
 - μ -ACTL (modal μ -calculus combined with ACTL)

• CADP / Evaluator 3.x (INRIA Rhône-Alpes / VASY)

- Regular alternation-free $\mu\text{-calculus}$ (PDL modalities and fixed point operators)

Extensions of µ-calculus with data

- Temporal logics (ACTL, PDL, ...) and µ-calculi
 - No data manipulation (basic LOTOS, pure CCS, ...)
 - Too low-level operators (complex formulas)
 - Extended temporal logics are needed in practice
- Several µ-calculus extensions with data:
 - For polyadic pi-calculus [Dam-94]
 - For symbolic transition systems [Rathke-Hennessy-96]
 - For µCRL [Groote-Mateescu-99]
 - For full LOTOS [Mateescu-Thivolle-08]

Why to handle data?

 Some properties are cumbersome to express without data (e.g., action counting):

 $\langle b \rangle \langle b \rangle \langle a \rangle$ tt or $\langle b \{3\} . a \rangle$ tt ?

 LTSs produced from value-passing process algebraic languages (full CCS, LOTOS, ...) contain values on transition labels

Model Checking Language

• Based on EVALUATOR 3.5 input language

- standard µ-calculus
- regular operators

Data-handling mechanisms

- data extraction from LTS labels
- regular operators with counters
- variable declaration
- parameterized fixed point operators
- expressions

Constructs inspired from programming languages

Parameterized modalities SEND 1 RECV 1 • Possibility: < {SEND ?msg:Nat} > < {RECV !msg} > true value extraction and propagation • Necessity: RECV 5 [{RECV ?msg:Nat}] (msg < 6) value extraction and propagation

Parameterized fixed points

- P contains « calls » X (E')
- Allows to perform computations and store intermediate results while exploring the PLTS

Example (1/3)

• Counting of actions (e.g., clock ticks):

Example (2/3)

• Alternation of two actions and value propagation:

SEND m1 i i RECV m1 i SEND m2 i RECV m2

```
nu X (s:Bool := true, m:Msg := nil) . (
    [ {SEND ?p:Msg} ] (s and X (false, p))
    and
    [ {RECV ?q:Msg} ] (not s and q = m and X (true, nil))
    and
    [ not ({RECV any} or {SEND any}) ] X (s, m)
```


Example (3/3)

• Syntax analysis on sequences:

$$\bigcirc \overset{(*)}{\longrightarrow} \bigcirc \overset{(*)}{\longrightarrow}) \overset{(*)}{\longrightarrow} \bigcirc \overset{(*)}{\longrightarrow}) \overset{(*)}{\longrightarrow}$$

mu X (op_cl:nat := 0) . (
 (([true] false) implies (op_cl = 0)) and
 < "(" > X (op_cl + 1) and
 < ")" > ((op_cl > 0) and X (op_cl - 1))

 Allows to simulate pushdown automata (by storing the stack in a parameter)

Quantifiers

Universal quantifier: forall x:T among { E₁ ... E₂ } . P

→ shorthands for large disjunctions and conjunctions

VTSA'08 - Max Planck Institute, Saarbrücken

Example

Broadcast of messages:

forall msg:Nat among { 1 ... 10 } . mu X . (< {SEND !msg} > true or < true > X)

Syntactic restrictions

- State formulas present in conditions must be propositionally closed (to ensure syntactic monotonicity)
- Example (illegal): mu X . (... if X then P_1 else P_2 end if negative occurrence of X boolean translation: mu X . (... (X and P_1) or (not X and P_2)

Example

• Counting of actions (revisited):

```
[ {LEVEL ?l:Nat where l > 10} ]
nu X (c:Nat := 0) .
if c < 15 then
      [ not ALARM ] X (c + 1)
else
      [ not ALARM ] false
    end if</pre>
```


Example

Variable definition

Initialisation operator: let x:T := E in P end let

```
    Example:

            [{RECV ?l:NatList}]
            let n:Nat := sum (l) in
            {DELIVER !n} > < {ACK !n} > true
            end let
```


Extended regular formulas

• Counting operators:

R { E } R { E₁ ... } R { E₁ ... E₂ } repetition E times repetition at least E_1 times repetition between E_1 and E_2 times

Some identities:
 nil = false *
 R * = R { 0 ... }
 R + = R { 1 ... }

R + = R . R* R ? = R { 0 ... 1 } R { E } = R { E ... E }

Translations to basic MCL

• < R { $E_1 \dots E_2$ } > P = mu X (c:Nat := 0). if $c < E_1$ then < R > X (c+1)elsif c < E_2 then P or < R > X (c+1)else Ρ end if

Example (action counting revisited)

• Formulation using counting operators:

[{LEVEL ?l:Nat where l > 10} . (not ALARM) { 16 }] false

VTSA'08 - Max Planck Institute, Saarbrücken

Example (safety of a n-place buffer)

Formulation using extended regular operators:
 [true*. ((not OUTPUT)*. INPUT) { n + 1 }] false

• Formulation using parameterized fixed points:

VTSA'08 - Max Planck Institute, Saarbrücken

Testing operator of PDL

- PDL with tests [Fischer-Ladner-79]:
 - Express properties of intermediate states of sequences denoted by a regular formula
 - Add a "test" operator on regular formulas

P ?

- Syntax (PDL):
- Semantics:
- Example:

< P_1 ? > P_2 = P_1 and P_2 < P_1 ? . a . P_1 ? . b > P_2 = P_1 and < a > (P_1 and < b > P_2)

P? = if P then nil else false end if

Example

mu X . (P_2 or (P_1 and < true > X)) =

< if P₁ then true end if * > P₂

"else" clause not mandatory:
 if P then R end if = if P then R else nil end if

Looping operator (from PDL-delta)

 A R operator added to PDL to specify infinite behaviours [Streett-82]

• MCL syntax: < R > @

cycle containing one or more repetitions of R

• Examples:

- process overtaking

 $[REQ_0] < (not GET_0)^*$. REQ_1 . $(not GET_0)^*$. $GET_1 > @$

R*

- Büchi acceptance condition

< true* . if $P_{accepting}$ then true end if > @

→ allows to encode LTL model checking

VTSA'08 - Max Planck Institute, Saarbrücken

VTSA'08 - Max Planck Institute, Saarbrücken

Adequacy with equivalence relations

• A temporal logic L is adequate with an equivalence relation \approx iff for all LTSs M_1 and M_2

 $M_1 \approx M_2 \quad \text{iff} \quad \forall \phi \in L \ . \ (M_1 \mid = \phi \iff M_2 \mid = \phi)$ • HML:

- Adequate with strong bisimulation
- HMLU (HML with Until): weak bisimulation
- ACTL-X (fragment presented here):
 - Adequate with branching bisimulation
- PDL and modal mu-calculus:
 - Adequate with strong bisimulation
 - Weak mu-calculus: weak bisimulation

 $\langle \langle \rangle \rangle \phi = \langle \tau^* \rangle \phi$

 $\langle \langle a \rangle \rangle \phi = \langle \tau^*. a \cdot \tau^* \rangle \phi$

On-the-fly verification

- Principles
- Alternation-free boolean equation systems
- Local resolution algorithms
- Applications:
 - Equivalence checking
 - Model checking
 - Tau-confluence reduction
- Implementation and use

Principle of explicit-state verification

VTSA'08 - Max Planck Institute, Saarbrücken

On-the-fly verification

Incremental construction of the state space

- Way of fighting against state explosion
- Detection of errors in complex systems
- "Traditional" methods:
 - Equivalence checking
 - Model checking
- Solution adopted:
 - Translation of the verification problem into the resolution of a *boolean equation system* (BES)
 - Generation of *diagnostics* (fragments of the state space) explaining the result of verification

Boolean equation systems (syntax)

- A BES is a tuple $B = (x, M_1, ..., M_n)$, where
- $x \in X$: main boolean variable
- $M_i = \{ x_j = \sigma_i op_j X_j \}_{j \in [1, mi]}$: equation blocks
 - $\sigma_i \in \{ \ \mu, \ \nu \ \}$: fixed point sign of block i
 - $op_j \in \{ \lor, \land \}$: operator of equation j
 - $X_j \subseteq X$: variables in the right-hand side of equation j
 - $F = \sqrt{\emptyset}$ (empty disjunction), $T = \sqrt{\emptyset}$ (empty conjunction)
 - x_j depends upon x_k iff $x_k \in X_j$
 - M_i depends upon M_l iff a x_j of M_i depends upon a x_k of M_l
 - Closed block: does not depend upon other blocks

• Alternation-free BES: M_i depends upon M_{i+1} ... M_n

Particular blocks

• Acyclic block:

- No cyclic dependencies between variables of the block
- Var. x_i disjunctive (conjunctive): $op_i = \lor (op_i = \land)$

• *Disjunctive* block:

- contains disjunctive variables
- and conjunctive variables
 - with a single non constant successor in the block (the last one in the right-hand side of the equation)
 - all other successors are constants or free variables (defined in other blocks)
- Conjunctive block: dual definition

Boolean equation systems (semantics)

- Context: partial function $\delta : X \rightarrow Bool$
- Semantics of a boolean formula:
 - [[$op \{ x_1, ..., x_p \}$]] $\delta = op (\delta (x_1), ..., \delta (x_p))$
- Semantics of a block:
 - [[{ $x_j = \sigma op_j X_j \}_{j \in [1, m]}$]] $\delta = \sigma \Phi_{\delta}$
 - Φ_{δ} : Bool^m \rightarrow Bool^m
 - Φ_{δ} (b₁, ..., b_m) = ([[$op_{j} X_{j}$]] ($\delta \oplus [b_{1}/x_{1}, ..., b_{m}/x_{m}]$))_{j \in [1, m]}
- Semantics of a BES:
 - [[$(x, M_1, ..., M_n)$]] = $\delta_1(x)$
 - $\delta_n = [[M_n]][]$
 - $\delta_i = ([[M_i]] \delta_{i+1}) \oplus \delta_{i+1}$

(M_n closed)

 $(M_i \text{ depends upon } M_{i+1} \dots M_n)$

Local resolution

- Alternation-free BES $B = (x, M_1, ..., M_n)$
- Primitive: compute a variable of a block
 - A resolution routine R_i associated to M_i
 - $R_i(x_j)$ computes the value of x_j in M_i
 - Evaluation of the rhs of equations + substitution
 - Call stack $R_1(x) \rightarrow ... \rightarrow R_n(x_k)$ bounded by the depth of the dependency graph between blocks
 - "Coroutine-like" style: each R_i must keep its context
- Advantages:
 - Simple resolution routines (a single type of fixed point)
 - Easy to optimize for particular kinds of blocks

Example

Local resolution algorithms

- Representation of blocks as boolean graphs [Andersen-94]
- To a block $M = \{ x_j =_{\mu} op_j X_j \}_{j \text{ in } [1, m]}$ we associate the boolean graph $G = (V, E, L, \mu)$, where:
 - $V = \{ x_1, ..., x_m \}$: set of vertices (variables)
 - $E = \{ (x_i, x_j) \mid x_j \in X_i \}$: set of edges (dependencies)
 - $L: V \rightarrow \{ \lor, \land \}, L(x_j) = op_j: \text{ vertex labeling}$
- Principle of the algorithms:
 - *Forward* exploration of *G* starting at $x \in V$
 - *Backward* propagation of stable (computed) variables
 - Termination: x is stable or G is completely explored

Three effectiveness criteria [Mateescu-06]

For each resolution routine *R*:

- A. The worst-case complexity of a call R (x) must be
 O (|V|+|E|)
 → linear-time complexity for the overall BES resolution
- B. While executing R (x), every variable explored must be « linked » to x via unstable variables
 → graph exploration limited to "useful" variables
- C. After termination of R(x), all variables explored must be stable
 - \rightarrow keep resolution results between subsequent calls of R

Algorithm A0 (general)

- DFS of the boolean graph
- Satisfies A, B, C
- Memory complexity
 O(|V|+|E|)
- Optimized version of [Andersen-94]
- Developed for model checking regular alternation-free μ-calculus [Mateescu-Sighireanu-00,03]

Algorithm A1 (general)

- BFS of the boolean graph
- Satisfies A, C (risk of computing useless variables)
- Slightly slower than A0
- Memory complexity
 O(|V|+|E|)
- Low-depth diagnostics

Algorithm A2 (acyclic)

- DFS of the boolean graph
- Back-propagation of stable variables on the DFS stack only
- Satisfies A, B, C
- Avoids storing edges
- Memory complexity
 O(|V|)
- Developed for trace-based verification [Mateescu-02]

Algorithm A3 / A4 (disjunctive / conjunctive)

- DFS of the boolean graph
- Detection and stabilization of SCCs
- Satisfies A, B, C
- Avoids storing edges
- Memory complexity
 O(|V|)
- Developed for model checking CTL, ACTL, and PDL

Caesar_Solve library of CADP [Mateescu-03,06]

- Diagnostic generation features [Mateescu-00]
- Used as verification back-end for Bisimulator, Evaluator 3.5 and 4.0, Reductor 5.0

Strong equivalence

- $M_1 = (Q_1, A, T_1, q_{01}), M_2 = (Q_2, A, T_2, q_{02})$ $\approx \subseteq Q_1 \times Q_2$ is the maximal relation s.t. $p \approx q$ iff
 - $\forall a \in A. \forall p \rightarrow_a p' \in T_1. \exists q \rightarrow_a q' \in T_2. p' \approx q'$ and
 - $\forall a \in A. \forall q \rightarrow_a q' \in T_2. \exists p \rightarrow_a p' \in T_1. p' \approx q'$

• $M_1 \approx M_2$ iff $q_{01} \approx q_{02}$

Translation to a BES

Principle: *p* ≈ *q* iff *X*_{*p*,*q*} is true
 General BES:

$$\begin{cases} X_{p,q} =_{v} (\wedge_{p \to a p}, \vee_{q \to a q}, X_{p',q'}) \\ & & & \\ (\wedge_{q \to a q}, \vee_{p \to a p}, X_{p',q'}) \end{cases}$$

• Simple BES:

$$\begin{cases} X_{p,q} =_{v} (\wedge_{p \to a p}, Y_{a,p',q}) \\ Y_{a,p',q} =_{v} \vee_{q \to a q'} X_{p',q'} \\ Z_{a,p,q'} =_{v} \vee_{p \to a p'} X_{p',q'} \end{cases} \land (\wedge_{q \to a q'} Z_{a,p,q'}) \\ P \leq q \\ (preorder) \end{cases}$$

Tau*.a and safety equivalences

• $M_1 = (Q_1, A_{\tau}, T_1, q_{01}), M_2 = (Q_2, A_{\tau}, T_2, q_{02})$ $A_{\tau} = A \cup \{\tau\}$

• Tau*.a equivalence:

$$\begin{cases} X_{p,q} =_{v} (\bigwedge_{p \to \tau^{*}.a p}, \bigvee_{q \to \tau^{*}.a q}, X_{p',q'}) \\ & \land \\ (\bigwedge_{q \to \tau^{*}.a q}, \bigvee_{p \to \tau^{*}.a p}, X_{p',q'}) \end{cases}$$

• Safety equivalence: $\begin{cases}
X_{p,q} =_{v} Y_{p,q} \land Y_{q,p} \\
Y_{p,q} =_{v} \land_{p \to \tau^{*}.a p'} \lor_{q \to \tau^{*}.a q'} Y_{p',q'}
\end{cases}$

Observational and branching equivalences

Observational equivalence:

$$\begin{cases} X_{p,q} =_{v} (\wedge_{p \to \tau p}, \vee_{q \to \tau^{*} q}, X_{p',q'}) \wedge (\wedge_{p \to a p}, \vee_{q \to \tau^{*} a}, \tau^{*} q, X_{p',q'}) \\ & \wedge \\ (\wedge_{q \to \tau q}, \vee_{p \to \tau^{*} p}, X_{p',q'}) \wedge (\wedge_{q \to a q}, \vee_{p \to \tau^{*} a}, \tau^{*} p, X_{p',q'}) \end{cases}$$

• Branching equivalence:

$$\begin{cases} X_{p,q} = _{v} \wedge_{p \to b p'} ((b = \tau \wedge X_{p',q}) \vee \vee_{q \to \tau^{*} q' \to b q''} (X_{p,q'} \wedge X_{p',q''}) \\ & \wedge \\ & \wedge_{q \to b q'} ((b = \tau \wedge X_{p,q'}) \vee \vee_{p \to \tau^{*} p' \to b p''} (X_{p',q} \wedge X_{p'',q'}) \end{cases}$$

VTSA'08 - Max Planck Institute, Saarbrücken

VTSA'08 - Max Planck Institute, Saarbrücken

Equivalence checking (summary)

• General boolean graph:

- All equivalences and their preorders
- Algorithms A0 and A1 (counterexample depth \downarrow)

• Acyclic boolean graph:

- Strong equivalence: one LTS acyclic
- $\tau^*.a$ and safety: one LTS acyclic (τ -circuits allowed)
- Branching and observational: both LTS acyclic
- Algorithm A2 (memory \downarrow)
- Conjunctive boolean graph:
 - Strong equivalence: one LTS deterministic
 - Weak equivalences: one LTS deterministic and $\tau\text{-}free$
 - Algorithm A4 (memory \downarrow)

Model checking (principle)

On-the-fly model checking in CADP (Evaluator 3.x)

Translation to PDL with recursion

- State formula (expanded):
 nu Y₀ . [true* . SEND]
 mu Y₁ . (true) true and [not RECV] Y₁
- PDLR specification [Mateescu-Sighireanu-03]:

Simplification

• PDLR specification:

$$Y_0 =_{nu} [true^* . SEND] Y_1$$

$$Y_1 =_{mu} \langle true \rangle true and [not RECV] Y_1$$

• Simple PDLR specification:

$$Y_0 =_{nu} [true^* . SEND] Y_1 \rightarrow Y_1 =_{mu} Y_2 and Y_3$$
$$Y_2 =_{mu} \langle true \rangle true$$
$$Y_3 =_{mu} [not RECV] Y_1$$

Translation to BESs

Boolean variables: $x_{i,j} \equiv s_i \models Y_j$

 $\mathbf{X}_{0,0} = \mathbf{X}_{0,4} \wedge \mathbf{X}_{0,5}$ $\mathbf{x}_{0,4} = \mathbf{x}_{1,1}$ $x_{0,5} = x_{1,0}$ $\mathbf{X}_{1,0} = \mathbf{X}_{1,4} \wedge \mathbf{X}_{1,5}$ $X_{1,4} = v$ true $\mathbf{X}_{1,5} = \mathbf{X}_{2,0} \wedge \mathbf{X}_{3,0}$ $\mathbf{X}_{2,0} = \mathbf{X}_{2,4} \wedge \mathbf{X}_{2,5}$ $X_{2,4} = v$ true $x_{3,4} = v_{v}$ true $x_{3,5} = v_{v} x_{0,0}$

$$X_{1,1} =_{\mu} X_{1,2} \land X_{1,3}$$

$$X_{1,2} =_{\mu} true$$

$$X_{1,3} =_{\mu} X_{2,1} \land X_{3,1}$$

$$X_{2,1} =_{\mu} X_{2,2} \land X_{2,3}$$

$$X_{2,2} =_{\mu} true$$

$$X_{2,3} =_{\mu} true$$

$$X_{3,1} =_{\mu} X_{3,2} \land X_{3,3}$$

$$X_{3,2} =_{\mu} true$$

$$X_{3,3} =_{\mu} X_{0,1}$$

$$X_{0,1} =_{\mu} X_{0,2} \land X_{0,3}$$

$$X_{0,2} =_{\mu} true$$

$$X_{0,3} =_{\mu} X_{1,1}$$

Local BES resolution with diagnostic

Additional operators

- Mechanisms for macro-definition (overloaded) and library inclusion
- Libraries encoding the operators of CTL and ACTL EU (φ_1, φ_2) = mu Y . φ_2 or (φ_1 and $\langle true \rangle Y$) EU ($\varphi_1, \alpha_1, \alpha_2, \varphi_2$) = mu Y . $\langle \alpha_2 \rangle \varphi_2$ or (φ_1 and $\langle \alpha_1 \rangle Y$)
- Libraries of high-level property patterns [Dwyer-99]
 - Property classes:
 - Absence, existence, universality, precedence, response
 - Property scopes:
 - Globally, before *a*, after *a*, between *a* and *b*, after *a* until *b*
 - More info:
 - http://www.inrialpes.fr/vasy/cadp/resources

Disjunctive BES

• Disjunctive boolean graph:

- *Potentiality* operator of CTL

$$E [\phi_1 \cup \phi_2] = \mu X \cdot \phi_2 \vee (\phi_1 \wedge \langle T \rangle X)$$

$$\{ X =_{\mu} \phi_2 \vee Y , Y =_{\mu} \phi_1 \wedge Z , Z =_{\mu} \langle T \rangle X \}$$

$$\{ X_s =_{\mu} \phi_{2s} \vee Y_s , Y_s =_{\mu} \phi_{1s} \wedge Z_s , Z_s =_{\mu} \lor_{s \to s}, X_{s'} \}$$

Possibility modality of PDL

$$\langle (a \mid b)^* . c \rangle T \{ X =_{\mu} \langle c \rangle T \lor \langle a \rangle X \lor \langle b \rangle X \} \{ X_s =_{\mu} (\lor_{s \to c s'} T) \lor (\lor_{s \to a s'} X_{s'}) \lor (\lor_{s \to b s'} X_{s'}) \} Algorithm A3 (memory \downarrow)$$

Linear-time model checking (looping operator of PDL-delta)

- Translation in mu-calculus of alternation depth 2 [Emerson-Lei-86]:
 - < R > @ = nu X . < R > X

if R contains *-operators, the formula is of alternation depth 2

But still checkable in linear-time:

- Mark LTS states potentially satisfying X
- Leads to marked variables in the disjunctive BES
- Computation of boolean SCCs containing marked variables
- A3_{cyc} algorithm [Mateescu-Thivolle-08]
 - Can serve for LTL model checking
 - Allows linear-time handling of repeated invocations

Model checking of data-based properties (Evaluator 4.0)

• Every SEND is followed by a RECV after 2 steps:

and [true] X)

VTSA'08 - Max Planck Institute, Saarbrücken

Translation into HMLR

Translation into BES and resolution

Divergence

 In presence of data parameters of infinite types, termination of model checking is not guaranteed anymore

Conjunctive BES

• Conjunctive boolean graph:

- Inevitability operator of CTL

 $\begin{array}{l} A \left[\phi_1 ~ U ~ \phi_2 \right] = \mu X ~ . ~ \phi_2 \lor (\phi_1 \land \langle ~ T \rangle ~ T \land [~ T ~] ~ X) \\ \left\{ ~ X =_{\mu} \phi_2 \lor Y ~ , ~ Y =_{\mu} \phi_1 \land Z \land [~ T ~] ~ X ~ , ~ Z =_{\mu} \langle ~ T ~ \rangle ~ T ~ \right\} \\ \left\{ ~ X_s =_{\mu} \phi_{2s} \lor Y_s ~ , ~ Y_s =_{\mu} \phi_{1s} \land Z_s \land (\wedge_{s \rightarrow s}, ~ X_{s'}) ~ , ~ Z_s =_{\mu} \lor_{s \rightarrow s}, ~ T ~ \right\} \\ - \textit{Necessity modality of PDL} \end{array}$

$$[(a | b)^* . c] F$$

$$\{X =_{\mu} [c] F \land [a] X \land [b] X\}$$

$$\{X_s =_{\mu} (\land_{s \rightarrow c \ s'} F) \land (\land_{s \rightarrow a \ s'} X_{s'}) \land (\land_{s \rightarrow b \ s'} X_{s'})\}$$
• Algorithm A4 (memory \downarrow)

Acyclic BES

• Acyclic boolean graph:

- Acyclic LTS and guarded formulas [Mateescu-02]

• Handling of CTL (and ACTL) operators:

- E [ϕ_1 U ϕ_2] = $\mu X \cdot \phi_2 \lor (\phi_1 \land \langle T \rangle X)$
- A [ϕ_1 U ϕ_2] = μX . $\phi_2 \lor (\phi_1 \land \langle T \rangle T \land [T] X)$
- Handling of full mu-calculus
 - Translation to guarded form
 - Conversion from maximal to minimal fixed points [Mateescu-02]
- Algorithm A2 (memory \downarrow)

Algorithm A1 vs. A3/A4 (execution time - CADP demos)

Algorithm A1 vs. A3/A4 (memory consumption - CADP demos)

Algorithm A1 vs. A3/A4 (diagnostic size - BRP protocol)

Model checking (summary)

• General boolean graph:

- Any LTS and any alternation-free $\mu\text{-calculus}$ formula
- Algorithms A0 and A1 (diagnostic depth \downarrow)

• Acyclic boolean graph:

- Acyclic LTS and guarded formula (CTL, ACTL)
- Acyclic LTS and μ -calculus formula (via reduction)
- Algorithm A2 (memory \downarrow)
- *Disjunctive/conjunctive* boolean graph:
 - Any LTS and any formula of CTL, ACTL, PDL
 - Algorithm A3/A4 (memory \downarrow)
 - Matches the best local algorithms dedicated to CTL [Vergauwen-Lewi-93]

Partial order reduction

• *τ-confluence* [Groote-vandePol-00]

- Form of partial-order reduction defined on LTSs
- Preserves branching bisimulation
- Principle
 - Detection of τ -confluent transitions
 - Elimination of "neighbour" transitions (τ -prioritisation)
- On-the-fly LTS reduction
 - Direct approach [Blom-vandePol-02]
 - BES-based approach [Pace-Lang-Mateescu-03]
 - Define τ -confluence in terms of a BES
 - Detect τ-confluent transitions by locally solving the BES
 - Apply τ-prioritisation and compression on sequences

Translation to a BES

Tau-prioritisation and compression

Reduced LTS

(exploration from s_0 and s_7)

In practice: reductions of a factor 10² - 10³ [Mateescu-05]

VTSA'08 - Max Planck Institute, Saarbrücken

Model checking using A3/A4

(effect of τ -confluence reduction - time - Erathostene's sieve)

Model checking using A3/A4

(effect of τ -confluence reduction - memory - Erathostene's sieve)

Checking branching bisimulation (effect of τ-confluence reduction - time - BRP protocol)

Checking branching bisimulation (effect of τ-confluence reduction - memory - BRP protocol)

VTSA'08 - Max Planck Institute, Saarbrücken

On-the-fly verification (summary)

Already available:

- Generic Caesar_Solve library [Mateescu-03,06]
- 9 local BES resolution algorithms (A8 added in 2008)
- Diagnostic generation features
- Applications: Bisimulator, Evaluator 3.5, Reductor 5.0

Ongoing:

- Distributed BES resolution algorithms on clusters of machines [Joubert-Mateescu-04,05,06]
- New applications
 - Test generation
 - Software adaptation
 - Discrete controller synthesis

Case study

- SCSI-2 bus arbitration protocol
- Description in LOTOS
- Specification of properties in TL
- Verification using Evaluator 3.5 and 4.0
- Interpretation of diagnostics

SCSI-2 bus arbitration protocol

- Prioritized arbitration mechanism, based on static IDs on bus (devices numbered from 0 to n - 1)
- Fairness problem (starvation of low-priority disks)

Architecture of the system

```
DISK [ARB, CMD, REC] (0, 0)
    |[ARB]|
    DISK [ARB, CMD, REC] (1, 0)
    |[ARB]|
    |[ARB]|
                                      8-ary rendezvous
    DISK [ARB, CMD, REC] (6, 0)
                                        on gate ARB
                                      binary rendezvous
|[ARB, CMD, REC]|
                                      on gates CMD, REC
CONTROLLER [ARB, CMD, REC] (NC, ZERO)
```


Synchronization constraints (bus arbitration policy)

 Synchronizations on gate ARB: ARB ?r0, ...,r7:Bool [C (r0, ..., r7, n)]; ... where:

- r0, ..., r7 = values of the electric signals on the bus
- n = index of the current device
- Two particular cases for guard condition C:
 - P (r0, ..., r7, n): device n does not ask the bus
 - A (r0, ..., r7, n): device n asks and obtains access to bus

Guard conditions

• Predicate P (r0, ..., r7, n) =
$$\neg r_n$$

P (r0, ..., r7, 0) = not (r0)
P (r0, ..., r7, 1) = not (r1)
...
P (r0, ..., r7, 7) = not (r7)
• Predicate A (r0, ..., r7, n) = $r_n \land \forall i \in [n+1, 7] . \neg r_i$
A (r0, ..., r7, 0) = r0 and not (r1 or ... or r7)
A (r0, ..., r7, 1) = r1 and not (r2 or ... or r7)
...
A (r0, ..., r7, 7) = r7

Controller process

```
process Controller [ARB, CMD, REC] (C:Contents) : noexit :=
  (* communicate with disk N *)
  choice N:Nat []
       [(N \ge 0) \text{ and } (N \le 6)] \rightarrow
              Controller2 [ARB, CMD, REC] (C, N)
  (* does not request the bus *)
  ARB ?r0, ..., r7:Bool [P (r0, ..., r7, 7)];
       Controller [ARB, CMD, REC] (C)
endproc
```


Controller process

process Controller2 [ARB, CMD, REC] (C:Contents, N:Nat) :
noexit :=

```
[not_full (C, N)] ->
      (* request and obtain the bus *)
      ARB ?r0, ..., r7:Bool [A (r0, ..., r7, 7)];
             CMD !N; (* send a command *)
                    Controller [ARB, CMD, REC] (incr (C, N))
  []
  REC !N; (* receive an acknowledgement *)
      Controller [ARB, CMD, REC] (decr (C, N))
endproc
```


Disk process

```
process DISK [ARB, CMD, REC] (N, L:Nat) : noexit :=
  CMD !N; DISK [ARB, CMD, REC] (N, L+1)
  [L > 0] -> (
      ARB ?r0, ..., r7:Bool [A (r0, ..., r7, N)];
             REC !N; DISK [ARB, CMD, REC] (N, L-1)
       ARB ?r0, ..., r7:Bool [not (A (r0, ..., r7, N)) and
                             not (P (r0, ..., r7, N))];
             DISK [ARB, CMD, REC] (N, L)
  [L = 0] -> ARB ?r0, ..., r7:Bool [P (r0, ..., r7, N)];
                    DISK [ARB, CMD, REC] (N, L)
```

endproc

VTSA'08 - Max Planck Institute, Saarbrücken

Absence of starvation property (PDL+ACTL formulation)

"Every time a disk i receives a command from the controller, it will be able to gain access to the bus in order to send the corresponding acknowledgement"

Starvation property (MCL formulation)

"Every time a disk i with priority lower than the controller nc receives a command, its access to the bus can be continuously preempted by any other disk j with higher priority"

[true*. {cmd ?i:Nat where i < nc}]
forall j:Nat among { i + 1 ... n - 1 } .
 (j <> nc) implies
 < (not {rec !i})*. {cmd !j} .
 (not {rec !i})*. {rec !j} > @

Safety property (MCL formulation)

"The difference between the number of commands received and reconnections sent by a disk i varies between 0 and 8 (the size of the buffers associated to disks)"

```
forall i:Nat among { 0 ... n - 1 } .
    nu Y (c:Nat:=0) . (
        [ {cmd !i} ] ((c < 8) and Y (c + 1))
        and
        [ {rec !i} ] ((c > 0) and Y (c - 1))
        and
        [ not ({cmd !i} or {rec !i}) ] Y (c)
        )
```


Safety property (standard mu-calculus formulation)

```
nu CMD_REC_0. (
    [CMD_i] nu CMD_REC_1.(
      [CMD_i] nu CMD_REC_2.(
        [CMD_i] nu CMD_REC_3.(
           [CMD_i] nu CMD_REC_4.(
             [CMD_i] nu CMD_REC_5.(
               [CMD_i] nu CMD_REC_6.(
                  [CMD_i] nu CMD_REC_7.(
                    [CMD_i] nu CMD_REC_8.(
                      [ CMD_i ] false
                      and
                      [ REC_i ] CMD_REC_7
                      and
                      [ not ((CMD_i) or (REC_i)) ] CMD_REC_8
                    )
                    and
                    [ REC_i ] CMD_REC_6
                    and
                    [ not ((CMD_i) or (REC_i)) ] CMD_REC_7
                  and
                  [ REC_i ] CMD_REC_5
                  and
                  [ not ((CMD_i) or (REC_i)) ] CMD_REC_6
               )
```

```
and
            [ REC_i ] CMD_REC_4
            and
            [ not ((CMD_i) or (REC_i)) ] CMD_REC_5
          and
         [REC_i]CMD_REC_3
          and
         [ not ((CMD_i) or (REC_i)) ] CMD_REC_4
       and
       [ REC_i ] CMD_REC_2
       and
       [ not ((CMD_i) or (REC_i)) ] CMD_REC_3
     and
     [ REC_i ] CMD_REC_1
     and
     [ not ((CMD_i) or (REC_i)) ] CMD_REC_2
  and
  [ REC_i ] CMD_REC_0
  and
  [ not ((CMD_i) or (REC_i)) ] CMD_REC_1
[ REC_i ] false
[ not ((CMD_i) or (REC_i)) ] CMD_REC_0
```


and

and

Discussion and perspectives

Model-based verification techniques:

- Bug hunting, useful in early stages of the design process
- Confronted with (very) large models
- Temporal logics extended with data (XTL, Evaluator 4.0)
- Machinery for on-the-fly verification (Open/Caesar)

• Perspectives:

- Parallel and distributed algorithms
 - State space construction
 - BES resolution
- New applications
 - Analysis of genetic regulatory networks

