
1IFM’07, Oxford, UK, July 3-5, 2007

Translating FSP into LOTOS and
Networks of Automata

Gwen Salaün*

Frédéric Lang

Jeff Kramer

Jeff Magee

* New affiliation: Universidad de Málaga

2IFM’07, Oxford, UK, July 3-5, 2007

Motivations
• Process algebras are abstract description languages to

specify concurrent systems:
– expressive and textual notations

– compositional specifications

– formal verification tools

• Fragmentation of the process algebra community

⇒ languages incompatible in practice

• Our goal:
– filling the gap between process algebras

– making the joint use of existing tool-boxes possible

3IFM’07, Oxford, UK, July 3-5, 2007

Motivations
• FSP is a popular process algebra
+ concise, expressive, and easy-to-use notation
– basic verification means (LTSA)
⇒ animation and LTL property checking

• LOTOS is an ISO standard
+ rich verification toolbox CADP
– expressive notation, needs expertise

• Translating FSP into LOTOS:
– FSP is a simple yet expressive notation
– CADP is a rich toolbox to be used jointly with LTSA to analyse

FSP specifications

4IFM’07, Oxford, UK, July 3-5, 2007

Comparison

YesNoCompositionality

ComplexSimpleData

Yes (+)Yes (+)Expressiveness

Yes (-)Yes (+)User-friendliness

Yes (-)Yes (+)Conciseness/readability

Yes (-)Yes (++)Graphical notations

Yes (++)Yes (-)Tools

YesYesName matching

Yes (E-LOTOS)NoM among N comm.

YesYesN-ary communication

YesYesBinary communication

LOTOSFSPCriteria

5IFM’07, Oxford, UK, July 3-5, 2007

LOTOS + EXP.OPEN
• High-level translation between process calculi are

preferred as often as possible:
– Translation of behavioural operators easier
– Mandatory to use some verification tools of CADP
– Benefit from the Caesar.adt and Caesar compilers

• However, FSP composite processes are difficult to
encode into LOTOS:
– Synchronisations between complex labels
– Priorities

⇒ encoding into EXP.OPEN (EXP for short) which allows the
description of networks of automata

6IFM’07, Oxford, UK, July 3-5, 2007

Outline of the Talk

• FSP, LOTOS, and EXP

• Translating FSP basic processes into LOTOS

• Translating FSP composite processes into EXP

• Prototype and validation

• Conclusion and future work

7IFM’07, Oxford, UK, July 3-5, 2007

Finite State Processes (FSP)
• Constants, ranges, sets

SERVER = (request[id:0..1] -> LOC[id]),

LOC[id:0..1] = (when id==0 over -> END |

when id!=0 comm.send[id] -> END).

TWO = SERVER; SERVER; END /{comm/request} \{over}.

• Prefix, choice, if, sequence, hiding, renaming

comm[k:R] ⇒ comm.1, comm.2, comm.3
order.m[S] ⇒ order.mash, order.meat

const C=3 range R=1..C set S={ash,eat}

• Expressive notation to specify labels

8IFM’07, Oxford, UK, July 3-5, 2007

Finite State Processes (FSP)
• Parallel composition C1||C2 of processes

• Label priority: >> {l1, …, ln}, << {l1, …, ln}

• Renaming /{l1/l1’, …, ln/ln’}, hiding \{l1, …, ln}

• Process labelling {l1, …, ln}:C and sharing {l1, …, ln}::C

CLIENT = ([1] -> send[1] -> CLIENT).

||SYS = (TWO || comm:CLIENT).

P = (comm->END).

||C1 = {a,b}:P.

||C2 = {a,b}::P.

9IFM’07, Oxford, UK, July 3-5, 2007

Language of Temporal Ordering
Specification (LOTOS)

• Abstract datatypes:
⇒ sorts, operations, generators, axioms

• Basic LOTOS (only behaviours)

• Full LOTOS (behaviours + data terms)

aa; exit [] (bb; comm; exit |[comm]| cc; comm; exit)

aa; exit [] (bb; comm!5; exit
|[comm]|

cc; comm?x:Nat; ([x>2] -> dd; exit))

10IFM’07, Oxford, UK, July 3-5, 2007

Networks of Automata (EXP.OPEN)
• Parallel composition of automata (bcg format):

– CCS, CSP, (E)LOTOS, MuCRL compositions, for instance
label par l1, …, lm in B1 || … || Bn end par
B1 ||| … ||| Bn (interleaving)

– Synchronisation vectors
label par v1, …, vm in B1 || … || Bn end par

• Renaming, hiding, cutting, priority operators
total rename l1→ l1’, …, ln→ ln’ in B end rename

total hide/cut l1, …, ln in B end hide/cut

total prio l1, …, ln > all but l1, …, ln in B end prio

total prio all but l1, …, ln > l1, …, ln in B end prio

11IFM’07, Oxford, UK, July 3-5, 2007

Outline of the Talk

• FSP, LOTOS, and EXP

• Translating FSP basic processes into LOTOS

• Translating FSP composite processes into EXP

• Prototype and validation

• Conclusion and future work

12IFM’07, Oxford, UK, July 3-5, 2007

Action Labels
• One FSP label may describe several LOTOS ones

⇒ expansion of labels to make renaming and hiding
possible

• Full expansion when renaming/hiding needed

• Compact notation keeping variable otherwise

lab[x:1..2] ⇒ EVENT!CONS(LAB,CONS(1,NIL))

⇒ EVENT!CONS(LAB,CONS(2,NIL))

lab[x:1..2] ⇒

choice X:Int[] … EVENT!CONS(LAB,CONS(X,NIL)) [X≥1 and X≤2]

13IFM’07, Oxford, UK, July 3-5, 2007

Sequential Processes
• Terminations:

– END ⇒ exit
– STOP ⇒ stop
– ERROR ⇒ P_ERROR [EVENT_ERROR]

• Action prefix l->B ⇒ (l1; exit [] … [] ln; exit) >> B
→ li obtained by expansion, renaming, hiding

• Choice: when G1 B1 | when G2 B2

⇒ [G1] -> B1 [] [G2] -> B2

• Sequential composition: B1;B2 ⇒ B1>>B2

• if G then B1 else B2 ⇒ [G] -> B1 [] [¬G] -> B2

EVENT_ERROR

14IFM’07, Oxford, UK, July 3-5, 2007

Example (1)

process SERVER_1 [EVENT] : exit :=
(EVENT !CONS (COMM, CONS (POS(0), NIL)) ; LOC_1 [EVENT] (0 of Int)
[] EVENT !CONS (COMM, CONS (POS(1), NIL)) ; LOC_1 [EVENT] (1 of Int))

where
process LOC_1 [EVENT] (ID : Int) : exit :=
[ID==POS(0)] ->

([true] -> i; exit
[]
[false] -> EVENT !CONS (COMM, CONS (SEND, CONS (POS(0), NIL))); exit)

[] [ID==POS(1)] -> …
endproc

endproc

SERVER = (request[id:0..1] -> LOC[id]),

LOC[id:0..1] = (when id==0 over -> END |

when id!=0 comm.send[id] -> END).

TWO = SERVER; SERVER; END /{comm/request} \{over}.

Code never
accessed:

optim possible

15IFM’07, Oxford, UK, July 3-5, 2007

Example (2)

process SERVER_1 [EVENT] : exit :=
(EVENT !CONS (COMM, CONS (POS(0), NIL)) ; LOC_1 [EVENT] (0 of Int)
[] EVENT !CONS (COMM, CONS (POS(1), NIL)) ; LOC_1 [EVENT] (1 of Int))

where
process LOC_1 [EVENT] (ID : Int) : exit :=
[ID==POS(0)] -> i; exit
[]
[ID==POS(1)] -> EVENT !CONS (COMM, CONS (SEND, CONS (POS(1), NIL))); exit
endproc

endproc

SERVER = (request[id:0..1] -> LOC[id]),

LOC[id:0..1] = (when id==0 over -> END |

when id!=0 comm.send[id] -> END).

TWO = SERVER; SERVER; END /{comm/request} \{over}.

16IFM’07, Oxford, UK, July 3-5, 2007

Outline of the Talk

• FSP, LOTOS, and EXP

• Translating FSP basic processes into LOTOS

• Translating FSP composite processes into EXP

• Prototype and validation

• Conclusion and future work

17IFM’07, Oxford, UK, July 3-5, 2007

Composite Processes
• Process P is translated as “P.bcg” if sequential

• Parallel composition C1||C2 ⇒ label par l1, …, lm in
C1||C2 end par with li=alph(C1) ∩ alph(C2)

• Label priority, hiding: total prio, total hide

• Renaming using vectors (1-to-many renaming)

/{l1/l1’, …, ln/ln’} ⇒ label par v1, …, vm in … end par

• Process labelling and sharing:
– {l1,…,ln}:C ⇒ prefixing with vectors + interleaving

– {l1,…,ln}::C ⇒ prefixing with vectors

• if G then C1 else C2 ⇒ [G] -> C1 [] [¬G] -> C2

18IFM’07, Oxford, UK, July 3-5, 2007

Example
CLIENT = ([1] -> send[1] -> CLIENT).

||SYS = (TWO || comm:CLIENT).

label par “EVENT !CONS (COMM, CONS (POS(1), NIL))”,

“EVENT !CONS (COMM, CONS (SEND, CONS (POS(1), NIL)))” in

total cut exit in “TWO.bcg” end cut

||

(label par

“EVENT !CONS (POS(1), NIL)”

-> “EVENT !CONS (COMM, CONS (POS(1), NIL))”, … in

total cut exit in “CLIENT.bcg” end cut

end par

)

end par

19IFM’07, Oxford, UK, July 3-5, 2007

Outline of the Talk

• FSP, LOTOS, and EXP

• Translating FSP basic processes into LOTOS

• Translating FSP composite processes into EXP

• Prototype and validation

• Conclusion and future work

20IFM’07, Oxford, UK, July 3-5, 2007

Prototype
• A prototype translator fsp2lotos:

– total of 25,500 lines of SYNTAX, LOTOS NT, and C

– validated on 10,500 lines of FSP specifications

72,000 l. LOTOS, 8,000 l. EXP, 2,000 l. SVL

• Translation in two steps:
– parsing and building an abstract syntax tree

– translating the tree into semantically equivalent LOTOS code

• In the paper, application to a semaphore example for
which CADP is used to analyse FSP specifications

21IFM’07, Oxford, UK, July 3-5, 2007

Semantics Preservation
• Essential to ensure that verification on the LOTOS

specification is valid on the FSP one

FSP LOTOS/EXP
translation verification

CADP

LTS ≅ LTS
SEND !2
COMM !1
ALERT
DEADLOCK

debugging

• Conjecture: our translation preserves a branching
equivalence relation

• Checked automatically on all the examples with
Bisimulator (tool part of CADP)

22IFM’07, Oxford, UK, July 3-5, 2007

Outline of the Talk

• FSP, LOTOS, and EXP

• Translating FSP basic processes into LOTOS

• Translating FSP composite processes into EXP

• Prototype and validation

• Conclusion and future work

23IFM’07, Oxford, UK, July 3-5, 2007

Conclusion
• Translation from FSP to LOTOS and EXP

⇒ makes the joint use of LTSA and CADP possible

Future Work

• LTSFSP ≅ LTSLOTOS: equivalence to be proven

• Application to a complex system, e.g., in web
services, where CADP tools would be necessary

• Encoding FSP safety and progress properties into
mu-calculus formulas, input format of Evaluator

