
Translating Pi-Calculus into LOTOS NT

Radu Mateescu
INRIA – LIG, France

Gwen Salaün
Grenoble INP – INRIA – LIG, France

IFM'10, Nancy, France, October 2010 2

Introduction

We present here a novel translation from pi-calculus to a
classical process algebra, namely LOTOS NT

We focus here on the finite control fragment of the pi-
calculus

LOTOS NT being an input language of the CADP toolbox, our
approach allows to verify pi-calculus specifications using all
the state-of-the-art verification tools available in CADP

Our translation is fully automated by the pic2lnt prototype
tool

IFM'10, Nancy, France, October 2010 3

Outline

Pi-Calculus and LOTOS NT

Translation

Prototype Tool

Case Study: A Dispatcher Service

Concluding Remarks

IFM'10, Nancy, France, October 2010 4

Pi-calculus

We consider the original version of Pi-calculus equipped
with the early operational semantics

For the sake of simplicity, we focus on the monadic Pi-
calculus, but our translator accepts a polyadic Pi-calculus

Grammar of Pi-calculus:
P ::= 0 | tau.P | xy.P | x(y).P | P1 |P2 | P1 +P2 |

(nu x)P | [x=y]P | [x!=y]P | A(x1 ,...,xr)

Agents do not contain recursive calls through the parallel
composition operator (finite control property)

IFM'10, Nancy, France, October 2010 5

LOTOS NT

LOTOS NT is a value-passing process algebra with user-
friendly syntax and operational semantics

The specification language consists of two parts:
A functional language to describe data types
An imperative-like formalism to specify processes

Grammar of the behavioural LOTOS NT fragment we use:
B ::= stop| G(!E, ?X) where E’ | if E then B end if

| var x:T in x:=E ; B end var | hide G in B end hide

| P [G1 ,..,Gm] (E1 ,..,En) | select B1 [] … [] Bn end select

| par G in B1 || … || Bn end par

Verification using CADP through a translation to LOTOS

IFM'10, Nancy, France, October 2010 6

Construction and Analysis of Distributed
Processes (CADP)

Design of asynchronous systems
Concurrent processes
Message-passing communication
Nondeterminism

Formal approach rooted in concurrency theory: process
calculi, Labeled Transition Systems, temporal logics

Many verification techniques: simulation, model and
equivalence-checking, compositional verification, test case
generation, performance evaluation, etc

Numerous practical applications, e.g., telecommunications,
middleware and software architectures, hardware

IFM'10, Nancy, France, October 2010 7

Pi-calculus versus LOTOS NT

Multi-way rendez-vous
Bidirectional communication
Static channels
Static network of processes
Constructed datatypes
Symmetric sequential compo.

Differences

Similarities

Binary rendez-vous
Unidirectional communication
Mobile channels
Dynamic creation of processes
Names only
Action prefix

Choice, recursion
Binary parallel composition

IFM'10, Nancy, France, October 2010 8

Outline

Pi-Calculus and LOTOS NT

Translation

Prototype Tool

Case Study: A Dispatcher Service

Concluding Remarks

IFM'10, Nancy, France, October 2010 9

Channel Names (1/2)

Two classes of channels, public (Gpub) and private (Gpriv),
used to model non-synchronized communications

We cannot use LOTOS NT static gates to represent mobile
communication

We represent Pi-calculus channel names as values of a
LOTOS NT datatype Chan

We model channel mobility between Pi-calculus agents by
communicating values of this type along gates

IFM'10, Nancy, France, October 2010 10

Channel Names (2/2)

The following type Chan is generated for (nu x)(ab.cx.0)

type Chan is

a, b, c, x(id:Nat) with “==”, “!=”

end type

function is_public (ch:Chan) : Bool is

case ch in
a|b|c →

return true

| any →

return false

end case

end type

function new_id () : Nat is

!external null

end function

IFM'10, Nancy, France, October 2010 11

Action Prefix (1/2)

The translation takes as input:
– A Pi-calculus agent P,
– The gates G on which P communicates with its

environment, and
– A natural k (pid) identifying the concurrent activity

Communication on a channel x is translated using a choice
on all gates G connecting the term P to its environment

Binary unidirectional communications are encoded using
different gate names (one for each |) and identifying
explicitly the sender and receiver using placeholders

IFM'10, Nancy, France, October 2010 12

Action Prefix (2/2)

t(xy.P,{G1 ,...,Gn ,Gpub ,Gpriv },k) =

select var r:Nat in
G1 (!x,!y,!k,?r) [] … [] Gn (!x,!y,!k,?r) []

Gpub (!x,!y,!true) where is_public(x) []

Gpriv (!x,!y,!true) where not(is_public(x))

end select; t(P,{G1 ,...,Gn ,Gpub ,Gpriv },k)

t(x(y).P,{G1 ,...,Gn ,Gpub ,Gpriv },k) =

select var s:Nat, y:Chan in
G1 (!x,?y,?s,!k) [] … [] Gn (!x,?y,?s,!k) []

Gpub (!x,?y,!false) where is_public(x) []

Gpriv (!x,?y,!false) where not(is_public(x))

end select; t(P,{G1 ,...,Gn ,Gpub ,Gpriv },k)

IFM'10, Nancy, France, October 2010 13

Sum, Match, Mismatch, Parallel, Channel
Creation

t(P1 +P2 ,G,k) = select t(P1 ,G,k) [] t(P2 ,G,k) end select

t([x=y]P,G,k) = if x==y then t(P,G,k) end if

t([x!=y]P,G,k) = if x!=y then t(P,G,k) end if

t(P1 |P2 ,G,k) = hide Gnew in par Gnew in

t(P1 ,G U {Gnew },2k) || t(P2 ,G U {Gnew },2k+1)

end par end hide

t((nu x)P,G,k) = var x:Chan in x:=x(new_id()); t(P,G,k) end var

IFM'10, Nancy, France, October 2010 14

Agent Definition / Instantiation, Main
Specification

t(A(x1 ,...,xr)=P,G,k) = process Ad [G] (x1 ,...,xr :Chan, k:Nat) is

t(P,G,k)

end process

t(A(y1 ,...,yr),G,k) = Ad [G] (y1 ,...,yr ,k)

pic2lnt(P) = par Gpriv in t(P,{Gpub ,Gpriv },1) || stop end par

IFM'10, Nancy, France, October 2010 15

Outline

Pi-Calculus and LOTOS NT

Translation

Prototype Tool

Case Study: A Dispatcher Service

Concluding Remarks

IFM'10, Nancy, France, October 2010 16

Prototype Tool

The translation is completely automated by a tool we
implemented

Our benchmark currently contains 160 files:
2000 lines of Pi-calculus →

23000 lines of LOTOS NT

IFM'10, Nancy, France, October 2010 17

Outline

Pi-Calculus and LOTOS NT

Translation

Prototype Tool

Case Study: A Dispatcher Service

Concluding Remarks

IFM'10, Nancy, France, October 2010 18

A Dispatcher Service in Pi-Calculus
Main = (nu req, a, b, c)

(Client(req,a,b,c) | Dispatcher(req) | Server(a) | Server(b) | Server(c))

Client (req,a,b,c) = (nu x) (request a.req<a,x>.ClientAux(req,a,a,b,c,x)) +

(nu x) (request b.req<b,x>.ClientAux(req,b,a,b,c,x)) +

(nu x) (request c.req<c,x>.ClientAux(req,c,a,b,c,x))

ClientAux(req,k,a,b,c,x) =

x(info).(x purchase.purchase k.0 + x refuse.refuse k.Client(req,a,b,c))

Dispatcher(req) = req(k,x).k x.Dispatcher(req)

Server(k) = k(x).x info.x(decision).Server(k)

IFM'10, Nancy, France, October 2010 19

Dispatcher Service in LOTOS NT (1/2)

process MAIN [PUBLIC,PRIVATE:any] is

var req, a, b, c:Chan in

req:=req(new_id()); a:=a(new_id()); b:=b(new_id()); c:=c(new_id());

hide G0:any in par G0 in hide G1:any in par G1 in

hide G2:any in par G2 in hide G3:any in par G3 in

Client_4 [PUBLIC,PRIVATE,G0,G1,G2,G3] (req,a,b,c,2)

|| Dispatcher_4 [PUBLIC,PRIVATE,G0,G1,G2,G3] (req,6) end par end hide

|| Server_3 [PUBLIC,PRIVATE,G0,G1,G2] (a,14) end par end hide

|| Server_2 [PUBLIC,PRIVATE,G0,G1] (b,30) end par end hide

|| Server_1 [PUBLIC,PRIVATE,G0] (c,31) end par end hide

end var

end process

IFM'10, Nancy, France, October 2010 20

Dispatcher Service in LOTOS NT (2/2)

process Dispatcher_4 [PUBLIC,PRIVATE,G0,G1,G2,G3:any] (req:Chan,pid:Nat) is

select var k,x:Chan, s:Nat in

G0 (!req, ?k, ?x, ?s, !pid) [] G1 (!req, ?k, ?x, ?s, !pid) []

G2 (!req, ?k, ?x, ?s, !pid) [] G3 (!req, ?k, ?x, ?s, !pid) []

PUBLIC (!req, ?k, ?x, !false) where is_public(req) []

PRIVATE (!req, ?k, ?x, !false) where not(is_public(req))

end select ;

select var r:Nat in

G0 (!k, !x, !pid, ?r) [] G1 (!k, !x, !pid, ?r) []

G2 (!k, !x, !pid, ?r) [] G3 (!k, !x, !pid, ?r) []

PUBLIC (!k, !x, !true) where is_public(k) []

PRIVATE (!k, !x, !true) where not(is_public(k))

end select ; Dispatcher_4 [PUBLIC,PRIVATE,G0,G1,G2,G3] (req,pid)

end process

IFM'10, Nancy, France, October 2010 21

LTS of the Dispatcher Service

One can use for instance the Evaluator model-checker to
check MCL formulas, e.g., “each request submitted by the
client is eventually answered positively”

IFM'10, Nancy, France, October 2010 22

Outline

Pi-Calculus and LOTOS NT

Translation

Prototype Tool

Case Study: A Dispatcher Service

Concluding Remarks

IFM'10, Nancy, France, October 2010 23

Concluding Remarks

We have presented a translation from the finite fragment of
the Pi-calculus to LOTOS NT

This translation makes possible to analyze Pi-calculus
specifications using the CADP verification tools

The translation is fully automated by the pic2lnt tool we
implemented and validated on many examples

Main perspective: extending the Pi-calculus with data-
handling features to widen its possible application domains
(applied Pi-calculus)

	Translating Pi-Calculus into LOTOS NT
	Introduction
	Outline
	Pi-calculus
	LOTOS NT
	Construction and Analysis of Distributed Processes (CADP)
	Pi-calculus versus LOTOS NT
	Outline
	Channel Names (1/2)
	Channel Names (2/2)
	Action Prefix (1/2)
	Action Prefix (2/2)
	Sum, Match, Mismatch, Parallel, Channel Creation
	Agent Definition / Instantiation, Main Specification
	Outline
	Prototype Tool
	Outline
	A Dispatcher Service in Pi-Calculus
	Dispatcher Service in LOTOS NT (1/2)
	Dispatcher Service in LOTOS NT (2/2)
	LTS of the Dispatcher Service
	Outline
	Concluding Remarks

