Translating Pi-Calculus into LOTOS NT

Radu Mateescu
INRIA - LIG, France

Gwen Salaln
Grenoble INP - INRIA - LIG, France

%I INRIA

RHOME-ALPES

Introduction

> We present here a novel translation from pi-calculus to a
classical process algebra, namely LOTOS NT

> We focus here on the finite control fragment of the pi-
calculus

> LOTOS NT being an input language of the CADP toolbox, our
approach allows to verify pi-calculus specifications using all
the state-of-the-art verification tools available in CADP

> Our translation is fully automated by the pic2Int prototype
tool

IFM'10, Nancy, France, October 2010]! J 2

Outline

> Pi-Calculus and LOTOS NT

> Translation

> Prototype Tool

» Case Study: A Dispatcher Service

» Concluding Remarks

IFM'10, Nancy, France, October 2010 l!‘l

Pi-calculus

> We consider the original version of Pi-calculus equipped
with the early operational semantics

> For the sake of simplicity, we focus on the monadic Pi-
calculus, but our translator accepts a polyadic Pi-calculus

» Grammar of Pi-calculus:
P::=0] tau.P | xy.P | x(y).P | P1|P2 | P,+P, |
(nu X)P | [x=y]P | [x!'=y]P | A(x1 xr)

» Agents do not contain recursive calls through the parallel
composition operator (finite control property)

IFM'10, Nancy, France, October 2010]! J 4

LOTOS NT

> LOTOS NT 1s a value-passing process algebra with user-
friendly syntax and operational semantics

> The specification language consists of two parts:

- A functional language to describe data types
- An imperative-like formalism to specify processes

» Grammar of the behavioural LOTOS NT fragment we use:

B .= stop| G('E, ?X) where E* | if Ethen B end if
| varx:Tinx:=E; Bendvar | hide G in B end hide
| PIG,...G_](E,-..E) | select B, [] ... [] B, end select
| parGinB || .. || B,endpar

> Verification using CADP through a translation to LOTOS

IFM'10, Nancy, France, October 2010]!‘J 5

Construction and Analysis of Distributed

Processes (CADP) e

> Design of asynchronous systems

- Concurrent processes
- Message-passing communication
- Nondeterminism

> Formal approach rooted in concurrency theory: process
calculi, Labeled Transition Systems, temporal logics

> Many verification techniques: simulation, model and
equivalence-checking, compositional verification, test case
generation, performance evaluation, etc

> Numerous practical applications, e.g., telecommunications,
middleware and software architectures, hardware

IFM'10, Nancy, France, October 2010 l!‘l 6

Pi-calculus versus LOTOS NT

Differences

Binary rendez-vous Multi-way rendez-vous

Unidirectional communication Bidirectional communication

Mobile channels Static channels

Dynamic creation of processes Static network of processes

Names only Constructed datatypes

Action prefix Symmetric sequential compo.
Similarities

Choice, recursion
Binary parallel composition

IFM'10, Nancy, France, October 2010]!‘J 7

Outline

> Pi-Calculus and LOTOS NT

> Translation

> Prototype Tool

» Case Study: A Dispatcher Service

» Concluding Remarks

IFM'10, Nancy, France, October 2010 I!‘l

Channel Names (1/2)

» Two classes of channels, public (G,,)) and private (G_;,),
used to model non-synchronized communications

> We cannot use LOTOS NT static gates to represent mobile
communication

> We represent Pi-calculus channel names as values of a
LOTOS NT datatype Chan

> We model channel mobility between Pi-calculus agents by
communicating values of this type along gates

IFM'10, Nancy, France, October 2010 l!‘l e

Channel Names (2/2)

The following type Chan is generated for (nu x)(ab.cx.0)

type Chan is function new_id () : Nat is
a, b, ¢, x(id:Nat) with “==", “1=" lexternal null
end type end function

function is_public (ch:Chan) : Bool is

case chin
alb]c - return true
| any - return false

end case

end type

IFM'10, Nancy, France, October 2010 l!‘l 10

Action Prefix (1/2)

> The translation takes as input:
— A Pi-calculus agent P,

— The gates G on which P communicates with its
environment, and

— A natural k (pid) identifying the concurrent activity

» Communication on a channel x Is translated using a choice
on all gates G connecting the term P to its environment

> Binary unidirectional communications are encoded using

different gate names (one for each |) and identifying
explicitly the sender and receiver using placeholders

IFM'10, Nancy, France, October 2010]| J 11

Action Prefix (2/2)

t(xy.P{Gy,....G, G Gprivd - K) =
select var r:Nat in
G, (Ix,ty,tk,7n) [... [1 G, (1%, 1y, 1k, 7r) [
Goup (IX,y,!true) where is_public(x) []
Goriv ('x,!y,!true) where not(is_public(x))

end select; t(P,{G;,...,G,Cp,p,Gpiv}:K)

t(x(y)-P.{G;,..-,G,G s Gprivd - K) =
select var s:Nat, y:Chan in
G, ('x,?y,7s,'k) [1 ... [1 G,, (Ix,?y,7?s,'k) []
Goup (1X,?y,!false) where is_public(x) []
Goriv ('x,?y,false) where not(is_public(x))
end select; t(P,{G,,...,G,Cp,p,Cpiv}:K)

IFM'10, Nancy, France, October 2010 l!‘l 12

Sum, Match, Mismatch, Parallel, Channel
Creation

t(P,+P,,G,k) = select t(P,,G,k) [] t(P,,G,k) end select

t([x=y]P,G,k) = if x==y then t(P,G,k) end if
t([x!=y]P,G,Kk) = If x!I=y then t(P,G,k) end if

t(P,IP,,G,k) = hide G __ inparG__ in
t(P,,GU{G_}.2K) |l t(P,,G U {G__,},2k+1)

end par end hide

new

t((nu x)P,G,k) = var x:Chan in x:=x(new _id()); t(P,G,k) end var

IFM'10, Nancy, France, October 2010]!‘J 13

Agent Definition / Instantiation, Main
Specification

x)=P,G,k) = process A, [G] (x,,...,x,:Chan, k:Nat) IS
t(P,G,k)
end process

t(AlY,,---,Y,),G,K) = Ay [G] (Vy,---.Y,.K)

pic2Int(P) = par G_., in t(P,{G },D) || stop end par

priv pub? Gpriv

IFM'10, Nancy, France, October 2010 I!‘l 14

Outline

> Pi-Calculus and LOTOS NT

> Translation

> Prototype Tool

» Case Study: A Dispatcher Service

» Concluding Remarks

IFM'10, Nancy, France, October 2010 I!‘l

15

Prototype Tool

> The translation is completely automated by a tool we
Implemented

__

| |
|
.pic i ic2Int. LNT.OPEN !
|
|
|
|

CADP tools

» Our benchmark currently contains 160 files:
2000 lines of Pi-calculus —» 23000 lines of LOTOS NT

IFM'10, Nancy, France, October 2010]! J 16

Outline

> Pi-Calculus and LOTOS NT

> Translation

> Prototype Tool

> Case Study: A Dispatcher Service

» Concluding Remarks

IFM'10, Nancy, France, October 2010 I!A"

17

A Dispatcher Service In Pi-Calculus

Main = (nu req, a, b, c)

(Client(req,a,b,c) | Dispatcher(req) | Server(a) | Server(b) | Server(c))

Client (req,a,b,c) = (nu x) (request a.reqg<a,x>.ClientAux(req,a,a,b,c,x)) +

(nu x) (request b.reg<b,x>.ClientAux(req,b,a,b,c,x)) +

(nu x) (request c.reg<c,x>.ClientAux(req,c,a,b,c,x))

ClientAux(req,k,a,b,c,x) =

x(info).(x purchase.purchase k.0 + x refuse.refuse k.Client(req,a,b,c))

Dispatcher(req) = req(k,x).k x.Dispatcher(req)

Server(k) = k(x).x info.x(decision).Server(k)

IFM'10, Nancy, France, October 2010 l!‘l 18

Dispatcher Service in LOTOS NT (1/2)

process MAIN [PUBLIC,PRIVATE:any] is
var req, a, b, c:Chan in

req:.=req(new_id()); a:=a(new_id()); b:=b(new _id()); c:=c(new_id());

hide GO:any in par GO in hide G1l:any in par G1 in
hide G2:any in par G2 in hide G3:any in par G3 in
Client_4 [PUBLIC,PRIVATE,G0,G1,G2,G3] (req,a,b,c,?2)

| | Dispatcher_4 [PUBLIC,PRIVATE,GO0,G1,G2,G3] (req,6) end par end hide

|| Server 3 [PUBLIC,PRIVATE,GO0,G1,G2] (a,14) end par end hide

|| Server_2 [PUBLIC,PRIVATE,GO0,G1] (b,30) end par end hide

|| Server_1 [PUBLIC,PRIVATE,GO] (c,31) end par end hide
end var

end process 7’
IFM'10, Nancy, France, October 2010 ‘J 19

Dispatcher Service in LOTOS NT (2/2)

process Dispatcher_4 [PUBLIC,PRIVATE,GO0,G1,G2,G3:any] (req:Chan,pid:Nat) is
select var k,x:Chan, s:Nat in
GO ('req, 7k, ?x, ?s, !pid) [] G1 ('req, 7k, ?Xx, ?s, !pid) []
G2 ('req, 7k, ?x, ?s, !pid) [] G3 ('req, 7k, ?Xx, ?s, !pid) []
PUBLIC (Ireq, ?k, ?x, Ifalse) where is_public(req) []
PRIVATE ('req, 7k, ?x, !false) where not(is_public(req))
end select ;
select var r:Nat in
GO ('k, 'x, !pid, ?r) [] G1 (Ik, 'x, !'pid, 7r) []
G2 ('k, 'x, !pid, ?r) [] G3 (Ik, !x, !pid, 7r) []
PUBLIC (1k, Ix, Itrue) where is_public(k) []
PRIVATE (Ik, !x, !true) where not(is_public(k))
end select ; Dispatcher_4 [PUBLIC,PRIVATE,G0,G1,G2,G3] (req,pid)

end process 7’
IFM'10, Nancy, France, October 2010 J 20

LTS of the Dispatcher Service

One can use for instance the Evaluator model-checker to
check MCL formulas, e.g., “each request submitted by the
client iIs eventually answered positively”

IFM'10, Nancy, France, October 2010 I!‘l 21

Outline

> Pi-Calculus and LOTOS NT

> Translation

> Prototype Tool

» Case Study: A Dispatcher Service

> Concluding Remarks

IFM'10, Nancy, France, October 2010 I!‘l

22

Concluding Remarks

> We have presented a translation from the finite fragment of
the Pi-calculus to LOTOS NT

> This translation makes possible to analyze Pi-calculus
specifications using the CADP verification tools

> The translation is fully automated by the pic2int tool we
Implemented and validated on many examples

> Main perspective: extending the Pi-calculus with data-
handling features to widen its possible application domains
(applied Pi-calculus)

IFM'10, Nancy, France, October 2010 l!‘l 23

	Translating Pi-Calculus into LOTOS NT
	Introduction
	Outline
	Pi-calculus
	LOTOS NT
	Construction and Analysis of Distributed Processes (CADP)
	Pi-calculus versus LOTOS NT
	Outline
	Channel Names (1/2)
	Channel Names (2/2)
	Action Prefix (1/2)
	Action Prefix (2/2)
	Sum, Match, Mismatch, Parallel, Channel Creation
	Agent Definition / Instantiation, Main Specification
	Outline
	Prototype Tool
	Outline
	A Dispatcher Service in Pi-Calculus
	Dispatcher Service in LOTOS NT (1/2)
	Dispatcher Service in LOTOS NT (2/2)
	LTS of the Dispatcher Service
	Outline
	Concluding Remarks

