Applicable ormal Method?

Hubert Garavel Frédeéric Lang
Radu Mateescu Wendelin Serwe

CADP

@ Construction and Analysis of Distributed Processes
@ Comprehensive toolbox

@ Rooted in concurrency theory

@ Various Verification approaches & techniques

@ Complete design cycle of asynchronous systemes:
specification, interactive simulation, rapid prototyping,
verification, testing, performance evaluation

@ Continuously improved
since 1990

@ Distributed worldwide
@ http://cadp.inria.fr

UCALzzia -

G
LY

i

L

%

R =
‘- [
L

Applicability
How can the approach be applied in practice?

@ Students learning concurrency theory

» instantiation of theoretical concepts
(process, automata, synchronization, ...)

» list of lectures: http://cadp.inria.fr/training

@ Scientists/Engineers building complex systems
» assistance in all main design phases
» most frequently: formal modelling and verification

» but also: performance evaluation, conformance testing,
and rapid prototyping

» |ist of case studies: http://cadp.inria.fr/case-studies
» list of tools: http://cadp.inria.fr/software

<

|
MIIIIII\ ‘

Automation

Which tool support is proposed?
If abstraction is needed, how is it automated?

@ Completely automatic simulation tools

@ Need for experts to devise verification strategies
»on-the-fly techniques
» compositional techniques
»SVL (Script Verification Language)

@ Modelling languages with rich data types
»ease the step from informal specifications to models
»convenient targets for domain specific languages

If
’MIIIIII\ ‘

UCALzzia -

Translation
from
SystemVerilog
to LNT

Automation

-- main SV module
module address_decoder (
ch_bit.in add_in,
ch_data_t.in d_in,
ch_data_t.out d_out0,
ch_data_t.out d_outl
);
always begin
bit address;
data_t data;
fork
add_in.BeginRead(address);
d_in.BeginRead(data);
join
case (address)
1'b0: d_out0.Write(data);
1'bl: d_outl . Write(data);
end case
fork
add_in.EndRead();
d_in.EndRead();
join
end
end module

-- main LNT process
process main|
add_in : ch_bit,
d_in,
d_out0,
d_outl : ch_data_t]
is
loop var
address : bit,
data : data_tin
par
add_in(?address)
|| d_in(?data)
end par;
case address in
0 -> d_outO(data); d_outO
| 1->d_outl(data); d_outl
end case;
par
add_in
|| d_in
end par
end var end loop
end process

Integration

What are the benefits of integrating several approaches?

@ Tools and libraries for various abstraction levels
@ Documented interfaces

@ OPEN/CASAR architecture separating
»|language-dependent and

lancuage-indenendent aspects
FIUIIbM b [N | r.l r.l

vides transitions between otherwise opaque and monolithic states. For example, the
OPEN/CZSAR interface [1] has been underlying the success of the CADP toolkit [2].

@ Reuse of existing C-code (mostly data handling)
@ Ease development of new tools and prototypes
UCGAZLzzia -

If
MIIIIII\ ‘

Scalability

How can the approach be applied at scale?
@ Optimised to reduce memory before run time

° ° Overview | Lavets | Progress | Staustics | Resources | m]w\m|m\m__\

Hasts. Explored States Femaning States Transitians. Vartation Momary (M) CPU Usage (%)
borteriine -9.bordea grids000.ir | I | m [T mﬁnrsm-n,nsm.r | | T
onterine -9, bordeaus.gras000.tr | T I = borverine-avoricawegnasoonte ||
‘chingchint- 36 fillegrid5000.fr [T T 7 = chingehint-36.4e gigsooo.e [|
chinqchint- 36 lille.grids000.r | I I = hinqehint-36 o gnasoonee [[
ol -B.grenabile gridsD00.ir [f f = odel-Ugronoblegrasoo0 e ||
ol - gronoblo gris000.fr | f I = ocel-0 gronobde griasoo0 fr [[
° ‘granduc-5 kommboury,grid$000.fr I | = gramhic -5 huxemboury. ¥ | —]
aranduc-5 Aoeioury.grids000.fr | f f = gramic- Jusemboury. ¥ o e
» arifion-66.nancy grids000.ir | I [= griffon -B6.nancy.gridSO00. BT E—T
wriffon-66 nancy grdsootr [I r = gfton-sBaancy gidsonoe [[

[] hercule-Z fyon gridso00.r | [T =] horcule-2lyongrasonose |

horcudo-2 fyon gridso00.r | [I = narcuie-ziyongnasooo.re [
parsdont-2Breves grdso00 e [| [= paradent zerencs gasoouse ||
Paratont - 25 renvias grasO0O.r | [[= paraent-zo ronees griosoon.te ||

L L o pastel-45 tououse grid5000.fr | [[(| pastel--5.taulouss Grs 000, 1

stromi-5.reims grds000.fr | i r = R —
ompositional techniques |Z= (==
Sun0 -6 S0phiagrids000 fr | [[= U0 36 Sophia. gridS000,
sun0- 36 sophia.grasoon i | f = sum-S6sopiagncsooote ||
=il =i

The advantage of using compositional construction in terms of
space and time 1s apparent. Stepwise minimization keeps the
size of state spaces low. This, in turns, reduces the duration of
the minimization time in the next step, and so on, thus saving
significant amount of time.

@ Gold medals in paraIIeI tracks of RERS chaIIenges

HAW 4WEM

EN R RNr
AN L] 14

mm \Ear

Transfer

How is teaching or training to be organized?

@ Towards a flat learning curve
@ Goal: autonomous users

analyzing confidential systems in-house

@ User-friendly languages with familiar syntax
LNT: modelling asynchronous systems

MCL: model checking language

@ Comprehensive T eer 0

< for tid:N

tep ... ?F:NatSet
where is_in(tid,F)} >
at from 0 to MAX_ID do

documentation if is_in(tid, F) then

end if
end for
> @

truex .

{Step !tid ...}

UCALza 35

Usefulness
Is the approach effective?

@ > 200 case studies & > 100 connected tools

@ Early error detection

In October 2014, STMicroelectronics architects detected a limitation in the
IP implementation of the CCI. This limitation manifests in a subset of the coun-

terexamples for the data integrity property we verified 20 months before. Pre-

@ Leveraging modelling effort over several activities

all the testing activity would be completely automated. The time spent in
specifying the BULL'S CC_NUMA architecture, formalizing test purposes
and generating the test cases with TGV is completely paid by the better
correctness and the confidence to put in the implementation. This approach
permitted to detect 5 bugs concerning principally the address collision, and

J Counterexample generation

MIIIIII\ ,

<

|

Ease of Use

How is ease of use achieved? Is the approach effective?

@ From mathematics to concrete computer science:
flat learning curve & intuitive syntax

contnbunions. vve 111ustrate several aavantages ol modeling and analyzing the U1D using LN 1, a new formal language based
on process algebra and functional programming. First, although modeling the DTD in a classical formal specification lan-
guage, such as LOTOS [6], is theoretically possible, using LNT made the development of a formal model practically feasible.
In particular, features such as predefined array data-types, loops, and modifiable variables helped to obtain a model easily
understandable by hardware architects. Second, the automatic analysis capabilities offered by CADP (e.g. step-by-step simu-

Iatinn mndal rharcl-inag ra_cimulatinn) anahlad tniimenvar A nrnhlam in tha hardarlina 11ca raca wiith hath hasawnr annlicatinn

@ SVL (Script Verification Lanquage)
To enable mechanized interaction, CADP provides a scripting
language, SVL, which is particularly convenient to experi-
ment with different strategies to alternate construction and
minimization steps. Note that due to the considerations in

@ Graphical user interface

@ Carefully selected default options ===

<

|
MIIIIII\ ‘

10

Evaluation

Why will the approach be useful
for a wide range of critical applications?

@ Numerous case-studies with critical systems
http://cadp.inria.fr/case-studies

@ Generic theoretical concepts
@ Modular architecture and interfaces

@ Promotion of formal methods by contributions to
challenges, contests, and model repositories

B4l 4REM

EE R Rr
AN nmr

E \Emr

~Models for Formal Analysis of F

Model Checking Contest SelRe SEoRuapn it . "
UCA Lz L35 11

Conclusion

@ Software primacy

@ Stability

» backward com patlblllty tation of similar tools could likely yield worse per-
. . . formance. We exploit CADP [10] since it is a popular
> NO Systematlc inclusion

toolbox maintained, regularly improved, and used

of prototype tools in many industrial projects, as a verification frame-
. work. Another important advantage of using CADP
. RegUIar teStlng is that, when a property does not hold, the model

collection of models, formulas, scripts ...
@ Documentation

» manual pages for all tools

» demo exam pIes that usability may not be a strong barrier for formal tools’

. adoption. Main barriers are the limited support for develop-
B user community eng functionalities, such as traceability, and other process-
(web, FAQ, forum) integration features. We share our evaluation sheets [56],

MIIIIII\ ‘

12

